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THE POLYNOMIAL MULTIDIMENSIONAL SZEMEREDI THEOREM
ALONG SHIFTED PRIMES

NIKOS FRANTZIKINAKIS, BERNARD HOST, AND BRYNA KRA

ABSTRACT. If @i,...,Gmn: Z — Z* are polynomials with zero constant terms and E C
7* has positive upper Banach density, then we show that the set EN(E —qi(p—1))N
...N(E=gm(p—1)) is nonempty for some prime p. We also prove mean convergence for
the associated averages along the prime numbers, conditional to analogous convergence
results along the full integers. This generalizes earlier results of the authors, of Wooley
and Ziegler, and of Bergelson, Leibman and Ziegler.

1. INTRODUCTION

1.1. Background and new results. Recent advances in ergodic theory and number
theory have lead to numerous results on patterns in subsets of the integers with positive
upper density, with descriptions of possible restrictions on differences between successive
terms. In this vein, we show that the parameters in the polynomial multidimensional
Szemerédi Theorem of Bergelson and Leibman [4] can be restricted to the shifted primes.
Let P denote the set of prime numbers.

Theorem 1.1. Let {,m € N, Gi,...,Gn: Z — Z be polynomials with §;(0) = 0 for
i=1,...,m, and let E C Z' with upper Banach densit_vﬂ d*(E) > 0. Then the set of
integers n. such that

d(EN(E-am)N...0(E—gu(n)) >0
has nonempty intersection with P — 1 and P+ 1.

In fact, our argument shows this intersection has positive relative density in the shifted
primes.

The first result in this direction was due to Sarkozy [17], who used analytic number
theory to show that the difference set £ — FE for a set E of positive upper Banach density
contains a shifted prime p — 1 for some p € P (and similarly, as for all the results stated
here, a shifted prime of the form p 4+ 1). In [7], relying on strong uniformity results
of [II] related to the primes combined with a bit of ergodic theory, we took a first
step towards a multiple version, showing that such E contains an arithmetic progression
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'The upper Banach density d*(E) of a set E C Z is defined by d*(E) = lim SUP| 7|00 IElﬂI‘, where

the limsup is taken over all parallelepipeds I C Z¢ whose side lengths tend to infinity.
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of length 3 whose common difference is a shifted prime. This was generalized in two
ways. First, Wooley and Ziegler [20] proved Theorem [[T] for ¢ = 1, relying on a deep
ergodic structure theorem and milder number theoretic input than used in [7]. More
recently, Bergelson, Leibman, and Ziegler [5], proved Theorem [L.1] for linear polynomials
qis- -5 qm, by combining the ergodic results on IP-recurrence of [9] and the uniformity
results related to the primes of [11], [12] and [13] (their proof also gives the partition
version of our main result in full generality). Theorem [[I] generalizes the results of [20]
and [5], and is in the spirit of [7], with the main ingredient being the number theoretic
uniformity results of [11], [12] and [13].

By the Furstenberg Correspondence Principle (see Section 2.1 below), Theorem [[.1]is
equivalent to an ergodic version and this is the version that we prove:

Theorem 1.2. Let ¢ € N, (X, X, 1) be a probability space, and let Ty,...,Ty: X — X
be commuting invertible measure preserving transformations. Let m € N, q; ;: Z — 7 be
polynomials with ¢; j(0) =0 fori=1,....,0 and j =1,...,m. Then for any A € X with
w(A) > 0, the set of integers n such that

¢ ‘
pAn[[ "0 n(] " A) >0
i=1 i=1
has nonempty intersection with P — 1 and P+ 1.

We also prove mean convergence results for the corresponding multiple ergodic aver-
ages over the primes, conditional on the convergence of the corresponding averages over
the full set of natural numbers (in some cases these results are not known). To keep
notation to a minimum, we only state the result for polynomials taking values in Z, but
the analogous statement in Z‘ can be proved in a similar way.

Theorem 1.3. Let ¢ € N, (X, B, ) be a probability space, Ty, ..., T;: X — X be com-
muting invertible measure preserving transformations, and let qq, ..., qe: Z — Z be poly-
nomaials such that the averages

N
1 an an
@ N DRI ) (1)
n=1
converge in L*(i) as N — oo for all integers a,b > 1. Then the averages

1
(2) ) Yoo APy f(T ),
pePN[1,N]
where w(N) denotes the number of primes up to N, also converge in L*(u) as N — oo.

Convergence of (2)) for a single linear polynomial was proved by Wierdl [19] (more
generally he showed pointwise convergence, an issue that we do not address here). When
all the transformations are equal and one restricts to linear polynomials, we proved
convergence of (2)) in [7], but for ¢ > 3 this was conditional upon the results of [12]
and [I3] that were subsequently proven. In the case where all the transformations are

equal, convergence of (2)) was proved by Wooley and Ziegler in [20]. Combined with the
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convergence results of [14] and [16], Theorem [[.3 recovers the convergence results of [20].
Using the convergence results of [18], we obtain the new result of mean convergence for
the linear averages

1

m(N)

> ATTx) - ful(TE),

pePN[1,N]
and combined with the results of [6], we have mean convergence for other new cases, for
example the averages

b
(N)

Combining the Z* version of Theorem [[3 with the convergence results of [I] and [2], we
have mean convergence of the averages

LS w1 ).

7T( ) pePN[1,N]

No o A(TTa) - BT ) ST ),

pEPA[L,N]

1.2. Strategy of the proof. We prove Theorems and [[.3 by reducing the problem
to a deep result on the uniformity of the modified von Mangoldt function (Theorem
below). The main idea is to compare the multiple ergodic averages along the primes
with the corresponding ones along the natural numbers, and show that the difference
between the two converges to zero in mean. Some variation of this idea holds and is given
in Proposition B.6l The proof of this follows by successive applications of the van der
Corput lemma and a straightforward PET induction argument, reducing the problem to
the aforementioned uniformity result. Given the comparison result of Proposition [B.6]
the proof of Theorem follows in a straightforward manner, and the proof of Theo-
rem [[.2] follows similarly, with the additional input of a uniform version of the polynomial
Szemerédi theorem.

1.3. Further directions. Combining the method of this paper with the multiple recur-
rence result and methods of [15], one can show that Theorem [[.2] holds under the relaxed
assumption that the transformations 71, ..., Ty generate a nilpotent group (and thus ob-
tain further combinatorial implications, as in [I5]). Likewise the obvious extension of
Theorem to the nilpotent case holds. In both cases, the missing ingredient is an
extension of the uniformity estimate of Lemma to the case that the transformations
Ty, ..., T, generate a nilpotent group, which can be proved using the PET induction
scheme in [15]. We do not carry this out here.

A more challenging problem is the extension of Theorems and [L.3] to sequences
involving fractional powers. For example, one could hope to show that for any positive
real numbers a and b, any F C Z with d*(EF) > 0 contains patterns of the form m,m +
[p?], m + 2[p%], or patterns of the form m, m+ [p®], m + [p*] for some m € N and p € P. If
one is to use the methods of this paper, the missing ingredient is the appropriate variant
of Lemma [B.5] a seemingly nontrivial result.

Lastly, let us mention that for two or more transformations, even the simplest pointwise

variants of the mean convergence results we have established remain open. For example,
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it is not known whether for every probability space (X, X', i), measure preserving trans-
formation T: X — X, and functions fi, fo € L*(u), the averages ﬁ ZpePﬁ[l,N] f1(TPx)-

f2(T?2x), or the averages ﬁ > pepnpn J1(TP2) - fo (T?"z), converge pointwise as N —

oo. For such problems, the methods of the current paper do not seem to be applicable.

1.4. General conventions and notation. We denote the positive integers by N =
{1,2,...} and write Zy = Z/NZ. If f is a measurable function on a measure space X
with transformation 7: X — X, we write T'f = foT. If S is a finite set and a: S — C,
then we write E,csa(n) = ﬁ > nes @(n). We use the symbol < when some expression is
majorized by a constant multiple of some other expression. If this constant depends on
variables ki, ..., ks, we write <, _,- We use oy (1) to denote a quantity that converges
to zero when N — oo and all other parameters are fixed.

2. BACKGROUND

2.1. Furstenberg correspondence principle. We state a modification of the corre-
spondence principle of Furstenberg (the formulation given is similar to the one in [4]):

Furstenberg Correspondence Principle ([8]). Let £ € N and E C Z*. There exists
a probability space (X, X, 1), commuting invertible measure preserving transformations
Ty,....,7T: X = X, and set A € X with u(A) = d*(E), such that

d(EN(E—i)N...n(E—i) > pAn (] An.. .01 A)

i=1
for allm € N and 7i; = (ny,...,nej) € Z° forj=1,...,m.

In particular, this correspondence shows that Theorem [L.T] follows from Theorem

2.2. Averages along the primes and weighted averages. Let A: N — R denote
the von Mangoldt function, taking the value logp on a prime p and its powers and 0
elsewhere. Also let

AN(n) =1p(n) - A(n)

for n € N. Throughout, the roles of A and A’ are interchangeable, and all the results
can be proven for either function (as the contribution from prime powers greater than 1
is negligible in our averages).

The following lemma is classical (for a proof, see for example [7]) and allows us to
relate averages over the primes with weighted averages over the integers:

Lemma 2.1. Ifa: N — C is bounded, then

’w(iv) > alp) - % >N () - a(n)| = ox(1).
< -



In particular, the average in (2)) is asymptotically equal to the weighted average over
the natural numbers:

N
SN ) AT (T ),
n=1

2.3. Gowers norms. If a: Zy — C, we inductively define:

||a'||U1(ZN) = }EHEZNa(n)‘

and
- 2d 1/2d+1
||a||Ud+1(ZN) = (EhEZN |a - aHUd(ZN))

where ap(n) = a(n + h). Gowers [10] showed that for d > 2 this defines a norm on Zy.

Y

2.4. Uniformity of the modified von Mangoldt function. For w > 2 let

denote the product of the primes bounded by w. For r € N let

Ay, (n) = % N Wn+r),
where ¢ denotes the Euler function.
The next result is key for our study. It was obtained in [I1] (Theorem 7.2), conditional
upon results on the Mobius function later obtained in [12] (Theorem 1.1) and the inverse

conjecture for the Gowers norms (recently proved in [13]):

Theorem 2.2 (Green and Tao ([II], [12]), Green, Tao, and Ziegler [13]). With the
previous notation, for every d € N, the mazimum, taken over those r between 1 and W
satisfying (r, W) =1, of

(A% = 1) L nllva@a)
converges to 0 as N — oo and then w — 0.

Note that in [11] (Theorem 7.2), the result is stated with w being a specific slowly
growing function of N, but the authors also note any sufficiently slowly growing function
of N works too, and this implies our version. Furthermore, in [I1] the theorems are
stated without the indicator function 1p nj, but the results of [I1], [I2] and [I3], also
imply this version.

3. COMPARING AVERAGES

3.1. PET (polynomial exhaustion technique) induction. We describe the induc-
tive scheme from [4] and follow the notation and implementation used in [6]. Let
¢,m € N. Given ¢ ordered families of polynomials

Ql = (q1,17 ey ql,m)7 CI) QZ = (qf,la CI) qu@)v
we define an ordered family (Qy, ..., Q) of m polynomial {-tuples by

(Qb R Qé) = ((qua H '>q€,1)a LI (qu) s aQZ,m)>-
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This gives a concise way of recording the polynomial iterates that appear in the average
of

f (T1q1,1(n) . -Tqu’l(n)x) o fm(quLm(") . Tg]z,m(n)x)'
The maximum of the degrees of the polynomials in the families Q, ..., Q, is called the
degree of the family (Q1, ..., Qy).
Fix an integer s > 1; we restrict ourselves to families of degree < s. Fori=1,..., /¢,

define Q) to be the (possibly empty) set given by:
Q. = {nonconstant ¢; ; € Q;: ¢ ; is constant for i’ < i}.

Two polynomials are said to be equivalent if they have the same degree and the same
leading coefficient. For 7 =1,...,f and j = 1,...,s, we let w; ; denote the number of
distinct non-equivalent classes of polynomials of degree j in the family Q.

Define the (matriz) type of the family (Qy,..., Q) to be the matrix

Wys ... Wi
Wes ... W21
Wys .. Wy

A matrix is said to be of matriz type zero if all the w;; are zero, and this happens
exactly when all the polynomials are constant.

We order the types lexicographically: given two ¢ x s matrices W = (w; ;) and W' =
(w; ;), we say that W is bigger than W', and write W > W', if wy 4 > w} 4, or w14 = w4
and wi g1 > w4 4, ... Or wy; = wy,; fori=1,...,d and wyg > w} 4, and so on. We
have:

Lemma 3.1. Every decreasing sequence of types of families of £-tuples of polynomials is
stationary.

Thus applying some operation that reduces the type, after finitely many repetitions,
the procedure terminates. Such an operation is described in the next subsection.

3.2. The van der Corput operation. Given a family Q = (ql, ey qm), q € Z[t], and
h € N, we define the families S, Q and Q — ¢ as follows:

ShQ = (Shq1,- -, Sngm) and Q —q = (1 = ¢, -, Gm — q),

where (Spq)(n) = q(n + h).
Given a family of /-tuples of polynomials (Qy, . .., Qy), an ¢-tuple (q1, ..., q) € (Q1,... Q),
and h € N, define the operation

(q1s-- a0, ) -vdC(Qu, ..., Qp) = (Qu, - - Qun),

where

Qin = (509 — i, Qi — @)
fori=1,... 4.

Starting with a family (Qs, ..., Q), we successively apply appropriate van der Corput
operations to arrive at constant families of /-tuples of polynomials. This is achieved
using:

6



Lemma 3.2 (Bergelson and Leibman [4]). Let (Qy,..., Q) be a family of (-tuples of
polynomials with nonzero matriz type. Then there exists (q1,...,q) € (Q1, ..., Qp) such
that for every h € N, the family (q1,...,qe, h)-vdC(Qy, ..., Qy) has strictly smaller type
than (Q1,..., Q).

While this lemma is usually stated to hold for sufficiently large h, this is only in order
to maintain extra properties of the polynomial family (such as being essentially distinct),
and we do not need these properties here. Thus we are able to phrase this in the slightly
stronger, and easier to use for our purposes, setting of all h € N.

Assuming Lemma [3.2] the proof of the next result is standard:

Lemma 3.3. Let (Qy,...,Qy) be a family of m polynomial ¢-tuples and nonzero matriz
type. Suppose that we successively apply the (q1, ..., qe, h) -vdC operation for appropriate
choices of q1,...,q0 € Z[t] and h € N, as described in the previous lemma, each time
obtaining a family of (-tuples of polynomials with strictly smaller type. Then after a
finite number of operations, depending only on £, m, and the mazximum degree of the
polynomials (but not on the successive choices of h), we obtain families of (-tuples of
polynomials of degree 0.

3.3. Controlling averages. We use the following version of the van der Corput Lemma:

Lemma 3.4. Let N € N and v(1),...,v(N) be elements of a Hilbert space H, with inner
product (-,-) and norm ||-||. Then

3w <<—Zr|v P+~ %Z_@(Hh%v(”»

Before stating the main lemma used to control averages, we give a simple case that
illustrates the technique:

Example. Let a: N — C be a sequence that satisfies a(n)/n'/* — 0. Let (X, X, 1) be a
probability space, T: X — X be a measure preserving transformation, and f € L*(u)
be a function bounded by 1. Then we have that

L
N;a(n) T

To prove this, we apply van der Corput (Lemma B4 for v(n) = a(n) - T f) and the
Cauchy-Schwarz Inequality and we have

(3)

< la- 1 mllos@zsy) +on(1).
L2(p)

2

L
~ > a(n) <
n=1 L2(n)
| —hs | X
I Z a(n —+ hy) - a(n) - T2+ f + 53 Z la(n)|?
h1=1 =1 LQ(M) n=1




By assumption, the second term is oy(1) and we are left with estimating the first term.
For hy =1,..., N, rewriting the interior sum as

— Z Ly (n+hy) - a(n+ hy) - a(n) - T2tk f

and applying van der Corput and Cauchy-Schwarz once more, we have that

2

N—hq
"N S atn+h)-af) T <
n=1 L2()
N—hi— 1 N
— Z ) Z a(n+h1)-a(n+hs)- (n+h1+h2)‘ 5 2 [atn-+h1)-a(m).
h2 1 n=1

Again, by assumption, the average over hy € {1,..., N} of the second term is oy (1). By
further applications of Cauchy-Schwarz, we have that the eighth power of the L?(p)-norm
of the original average is bounded by a constant multiple of

1 1 N—h1—ho

2

@ w5 > |v D al)-alnth)-aln+ha) - a(n+ b+ ha)| -+ on ().
1<hy,ho<N n=1

On the other hand, letting ay(n) = a(n) - 1;;,n)(n), for n = 1,...,3N, and thinking of

ay as a function Zsy — C, we have that

lan Tz = B hozon [Bnezay an(n) - an(n + h) - an(n+ ho) - an(n + hy + ho)|?.

(The sums n + hy, n + he, and n + hy + hy are taken modulo 3N, and we make the
somewhat less conventional identification of Zsy with [1,...,3N].) This is greater than
or equal to (eliminating values with N < hy, hy < 3N)

1
e > [Enezoyan(n) - an(n+hy) - an(n+ ha) - an(n+ hy + ha) |,
1<hy,ha<N

where we maintain the same convention on sums. Since in this expression we have
1 < hy,hy < N and ay(n) is zero for n € {N + 1,...,3N}, we have that all hy, ho,n
that make a nonzero contribution to this last average satisfy 1 <n + hy + hy < 3N. In
particular, there are no circular effects and the last expression is equal to

b 2
9N? Z ‘ ZaN can(n+hi)-an(n+he) -an(n+ by + he)
1<hyha<N
1 N—hi— )
~2TN? 2 ’ Z a(n+hy) - a(n+ hy) - a(n+hy 4 hs)|
1§h17h2§N n=1

where the sums n+ hy, n+ hy, and n+ hy + hy are taken in N, without reduction modulo
3N. But this expression is exactly 1/27 of the average in (4]). Combining these estimates,
8



we have that the eighth power of the L?(u)-norm of the original averages is bounded by

a constant times |lay]|? Us(25y) PIUS an oy (1) term. Thus we have estimate (3).

We now turn to the general case:

Lemma 3.5. Let {,m € N, (X, X, u) be a probability space, Ty, ..., T;: X — X be com-
muting invertible measure preserving transformations, fi, ..., fm € L>®(u) be functions
bounded by 1, and ¢;;: Z — Z, i € {1,.... 4}, j € {1,...,m}, be polynomials. Let
a: N — C be a sequence of complex numbers satisfying a(n)/n® — 0 for every ¢ > 0.
Then there exists d € N, depending only on the mazimum degree of the polynomials g, ;
and the integers £ and m, such that

¢

~ Z HT"“( Voo ([T fon

i=1 i=1

< lla - 1p mllvgza) +on(1).
L2(p)

Furthermore, the implicit constant is independent of the sequence (a(n))nen, and the
on(1) term depends only the integer d and on the sequence (a(n))nen-

Proof. For i = 1,...,¢, let Q; = (¢i1,---,%m). If the matrix type of the family
(Q1,...,Qy) is zero, then all the polynomials are constant, in which case the conclusion
holds trivially for d = 1. If the matrix type is nonzero, then by Lemma there exists
(q1,---,q0) € (Q1,..., Q) such that for hy € N, the family (q1, ..., qs, h1)-vdC(Qy, ..., Q)
has type strictly smaller than that of (Qy,..., Q).

As in the model example, using van der Corput and Cauchy-Schwarz, we have that

N
%Za Hqul(n HTqm(n
n=1 =

is bounded by an oyx(1) term plus a constant multiple of

N —h1 ‘
Z N Z a(n+ hy) - H thl i coL (H Tith,i,2m("))g2m
e =1 L2(u)

where (Gn,1,js---Qhiij) € (s, q0, h1)-vdC(Qy, ..., Q) for every hy € N and j =
1,...,2m. If the new family of polynomials has zero matrix type, we stop. If not, as in
the model example, we continue to use van der Corput and Cauchy-Schwarz to bound
the average over n. By Lemma [B.3] after a finite number of steps, depending only on
the maximum degree of the polynomials g; ; and the integers ¢ and m, we have families
of polynomials with zero matrix type. Assume that this takes d steps. We deduce that
the expression ([]) is bounded by a oy(1) term (using the assumption that a(n)/n¢ — 0
for every ¢ > 0 to control the lower order terms) plus a constant multiple of

2d+1

()

L2(p)

2d

1 | Nhimha )
- }N ST an)-a(n+h)-aln+ho) - aln by 4o )
1<h1,...hy<N n=1
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(Note that the last occurrence of @ in this expression may actually be a, depending on
the parity of d.) As in the model example, we see that this last average is bounded by
a constant (equal to d?) times

2d+1
Uat1(Zay1yn)?

lla - 1pnll
completing the proof. O

3.4. Comparing averages. The key result needed to compare averages over the primes
and over the integers is (recall that W = HpeIP,p < P denotes the product of the primes
bounded by w):

Proposition 3.6. Let ¢, m € N, (X, X, ) be a probability space, Ty, ..., T;: X — X be
commuting invertible measure preserving transformations, fi,..., fm € L*(u) be func-
tions, and q; j: Z — Z, i € {1,...,0}, 5 € {1,...,m}, be polynomials. Then the maz-
imum, taken over those r between 1 and W satisfying (r,W) = 1, of the L*(u)-norm

of
1 N L L
i,1(Wn+r im(Wn+r
5 2 = D (T f (T T
n=1 i=1 1=1

converges to 0 as N — oo and then w — 0.

Proof. We can assume that all functions are bounded by 1. We apply Lemma for
awr(n) = Ay, .(n) — 1 for w,r € N, and the family of polynomials g; ;(Wn + 7). Let
Ly = {r € [1,W]: (r,IW) = 1}. We get that there exists d € N, independent of w and
r, such that

N ¢ 0
1 ; n+r i m(Wn4r
max NZ =0 ([Tme ™ () <4
n=1 =1 =1 LQ(u)
max (A, = 1) - 1pmllvg@ay) +on(1)

where the term oy (1) depends only on the integers d and w. The result now follows from
Theorem 2.2l O
4. PROOF OF THE MAIN RESULTS

4.1. Proof of Theorem We use the following uniform multiple recurrence result,
proved in the same way as Theorem 3.2 is proved in [3]:

Theorem 4.1. Let (X, X, ) be a probability space and T, ..., T;: X — X be commuting
invertible measure preserving transformations. Let q;;: Z — 7 be polynomials with
¢j(0)=0fori=1,....0 and j=1,...,m. Then for any A € X with u(A) > 0, there
ezists a positive constant ¢, depending only on p(A) and the polynomials ¢; ;, such that

‘
thrigjf—Zu (An HTq”(n ...ﬂ(lj[lﬂ-qi”"(n)A
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It is important to note that the constant ¢ does not depend on the transformations
Ti,...,T,. This observation enables us to prove a uniform multiple recurrence result
more suitable for our purposes (the uniformity in W is crucial):

Corollary 4.2. Let (X, X, u) be a probability space and Ty, ..., Ty: X — X be commut-
ing invertible measure preserving transformations. Let q; j: Z — Z be polynomials with
¢.j(0)=0fori=1,....0 and j=1,...,m. Then for any A € X with u(A) > 0, there
exists a positive constant ¢, depending on p(A) and the polynomials q; ;, such that for
every W € N, we have

¢ ¢
qi, 1(W’ﬂ) qi,m(Wn)
hnllol})f—g (AN HT A)ﬂ...ﬂ(HTi A)) > e

n=1 i=1 i=1

Proof. We write the proof for ¢, m = 1, as the general case follows in an analogous
manner. Let (X, X, u) be a probability space and let T: X — X be an invertible

measure preserving transformation. Let q(n) = cin + - -+ + ¢gn?, where ¢1,...,¢cq4 € 7Z
and d € N. Given A € X and W € N, we have that
d .
p(ANTPYMA) = (AN (J] 57 A))
i=1
where S; = T4W" for i = 1,...,d. The result now follows from Theorem FIl U

Combining Proposition and Corollary .2] we have for that for sufficiently large
w e N,

L L

lim inf — Z Al An([ ="y . on (" 4) > o.

N—o0
i=1 =1

By Lemma 2.1] the conclusion of Theorem is satisfied for a set of n with positive
relative density in the shifted primes P — 1.
A similar argument holds for the shifted primes P + 1.

4.2. Proof of Theorem [1.3l To complete the proof, we follow the method used in [7].
By Lemma 2.1] it suffices to prove convergence in L*(u) for the corresponding weighted
averages

Z N(n Tq1(n . Té]e(") fo.

Equivalently, it suffices to show that the sequence of functions (A(N))yey is Cauchy in
L*(n).
Let € > 0. Fix w,r € N, and let
X
=¥ Z qul(W"'H“)fl .. Tlflz(W"-H’)fé‘

11



(As before, W denotes the product of primes bounded by w.) By Proposition 3.6, we
have that for some wy € N (and corresponding Wy € N), if IV is large enough, then

(© AWN) e Y Bu, )| <</

¢( 0) 1<r<Wo,(r,Wp)=1 L2(p)

By assumption, for r = 1,..., W, the sequence (B, (N))nen converges in L?(u).
Therefore, if M and N are sufficiently large, then for r =1, ..., W, we have

(7) [ Bug.r(N) = Bugwr (M) 12,y < €/6.

Combining (@) and (7)) we have that if M and N are sufficiently large, then
(8) [A(WoN) — A(WOM)HLQ(M) <e/2.

Lastly, for r = 1,..., W), we have

9) i [AGWON +7) = AWoN)| 2,y =0

Combining () and (@), it follows that if M and N are sufficiently large, then
[A(N) = A(M)]| 2, < e

Therefore, the sequence (A(N))yey is Cauchy in L?(u), completing the proof of Theo-
rem [[.3]
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