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ON THE GEOMETRY OF COMPLETE RICCI

SOLITONS

PAOLO MASTROLIA AND MARCO RIGOLI

Abstract. In this paper we establish three basic equations for a

general soliton structure on the Riemannian manifold (M, 〈 , 〉). We

then draw some geometric conclusions with the aid of the maximum

principle.

1. Introduction and main results

Let (M, 〈 , 〉) be an m-dimensional, complete, connected Riemannian

manifold. A soliton structure (M, 〈 , 〉 ,X) on M is the choice (if any)

of a smooth vector field X on M and a real constant λ such that

(1.1) Ricc+
1

2
LX 〈 , 〉 = λ 〈 , 〉 ,

where Ricc denotes the Ricci tensor of the metric 〈 , 〉 on M and LX 〈 , 〉
is the Lie derivative of this latter in the direction of X. In what follows

we shall refer to λ as to the soliton constant. The soliton is called

expanding, steady or shrinking if, respectively, λ < 0, λ = 0 or λ > 0. If

X is the gradient of a potential f ∈ C∞(M), then (1.1) takes the form

(1.2) Ricc+Hess(f) = λ 〈 , 〉 ,

and the Ricci soliton is called a gradient Ricci soliton. Both equations

(1.1) and (1.2) can be considered as perturbations of the Einstein equa-

tion

Ricc = λ 〈 , 〉
and reduce to this latter in case X or ∇f are Killing vector fields. When

X = 0 or f is constant we call the underlying Einstein manifold a trivial

Ricci soliton.

Since the appearance of the seminal works of R. Hamilton, [4], and

G. Perelman, [7], the study of gradient Ricci solitons has become the
1
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subject of a rapidly increasing investigation directed mainly towards

two goals, classification and triviality ; among the enormous literature

on the subject we only quote, as a few examples, the papers [9], [11],

[10], [16], [12], [2].

In this paper we focus our attention on the more general case of Ricci

solitons, that is, when X is not necessarily the gradient of a potential

f . A first important difference is that, in the present case, we cannot

make use of the weighted manifold structure
(

M, 〈 , 〉 , e−fdvol
)

which

naturally arises when dealing with gradient solitons. The same applies

for related concepts such as the Bakry-Emery Ricci tensor, giving rise

to weighted volume estimates, or the weak maximum principle for the

diffusion operator ∆f (the “f -Laplacian”), acting on u ∈ C2(M) by

∆fu = ∆u− 〈∇f,∇u〉 ,

that we considered in a previous investigation (see [12] for details). Thus

our assumptions and techniques have to rest on the original Riemannian

structure of M . This restricts the applicability of the technical tools we

used in [12]; nevertheless, we are still able to obtain some stringent

geometric conclusions as those we are going to describe in a shortwhile.

From now on we fix an origin o ∈ M and let r(x) = dist(x, o). We set

Br and ∂Br to denote respectively the geodesic ball of radius r centered

at o and its boundary.

To state our first result, we recall that, given a Schrödinger type

operator L = ∆+ q(x) for some q(x) ∈ C0(M), the spectral radius of L

on M is defined via the Rayleigh characterization by

λL
1 (M) = inf

ϕ∈C∞

0
(M)

ϕ 6≡0

∫

M |∇ϕ|2 − q(x)ϕ2

∫

M ϕ2
.

Theorem 1.1. Let (M, 〈 , 〉) be a complete manifold with Ricci tensor

satisfying

(1.3) Ricc ≤ 1

2
a(x) 〈 , 〉
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for some a(x) ∈ C0,α(M) with 0 ≤ α < 1. Assume that, for some

H ≥ 1,

(1.4) λLH

1 (M) ≥ 0

where LH = ∆+Ha(x). If there exists a soliton structures (M, 〈 , 〉 ,X)

on (M, 〈 , 〉) with X 6≡ 0 satisfying

(1.5)

{
∫

∂Br

|X|4(β+1)

}−1

6∈ L1(+∞)

for some 0 ≤ β ≤ H − 1, then X is a parallel field and (M, 〈 , 〉) is

Einstein. Furthermore, the simply connected universal cover of M is

a warped product (R×c P, h) with c = |X|, h = dt2 + cg and (P, g) is

Einstein.

Remark. If |X| ∈ L4(β+1)(M) then (1.5) is satisfied. Furthermore, if

X ≡ 0 then (M, 〈 , 〉) is trivially Einstein.

The following is a “second version” of Theorem 1.1.

Theorem 1.2. Let (M, 〈 , 〉) be a complete manifold and assume, for

some 0 ≤ α < 1, the validity on M of the Sobolev-Poincaré inequality

(1.6)

∫

M
|∇ϕ|2 ≥ S(α)−1

{

|ϕ| 2

1−α

}1−α

for each ϕ ∈ C∞
0 (M) with a positive constant S(α). Suppose

(1.3) Ricc ≤ 1

2
a(x) 〈 , 〉

for some a(x) ∈ C0,α(M) with 0 ≤ α < 1; let σ > 1
2 and assume that

(1.7) ‖a+(x)‖
L

1
α (M)

< 4
2σ − 1

σ2

1

S(α)
.

Then there are no Ricci solitons (M, 〈 , 〉 ,X) on (M, 〈 , 〉) satisfying

X 6≡ 0 and

(1.8)

∫

Br

|X|2σ = o
(

r2
)

as r → +∞.

We then consider a general triviality result:
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Theorem 1.3. Let (M, 〈 , 〉) be a complete manifold with Ricci tensor

satisfying

(1.9) Ricc ≤ − B

(1 + r(x))µ

for some constant B > 0 and let σ, µ ∈ R satisfy

(1.10) σ ≥ 0, σ + µ < 2.

Suppose that

(1.11) lim inf
r(x)→+∞

log vol(Br)

r(x)2−σ−µ
= d0 < +∞.

Then there are no Ricci solitons (M, 〈 , 〉 ,X) on M satisfying X 6≡ 0

and

(1.12) lim sup
r(x)→+∞

|X|2
r(x)σ







= 0, 0 < σ < 2,

< +∞, σ = 0.

Our next result relates the soliton constant λ with the infimum S∗

of the scalar curvature of the manifold (M, 〈 , 〉). We recall that this

latter is said to satisfy the Omori-Yau maximum principle if for each

u ∈ C2(M) with u∗ = supM u < +∞ there exists a sequence {xk} ⊂ M

such that

(i)u(xk) > u∗ − 1

k
, (ii) |∇u(xk)| <

1

k
, (iii)∆u(xk) <

1

k

for each k ∈ N. Conditions to insure the validity of the Omori-Yau

maximum principle are discussed in [13].

Theorem 1.4. Let (M, 〈 , 〉) be a complete manifold of dimension m

with scalar curvature S(x) and satisfying the Omori-Yau maximum prin-

ciple. Let (M, 〈 , 〉 ,X) be a Ricci soliton on (M, 〈 , 〉) with soliton con-

stant λ. Assume

(1.13) |X|∗ = sup
M

|X| < +∞.

Let

S∗ = inf
M

S.
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(i) If λ < 0 then mλ ≤ S∗ ≤ 0. Furthermore, if S(x0) = S∗ = mλ

for some x0 ∈ M , then (M, 〈 , 〉) is Einstein and X is a Killing

field, while if S(x0) = S∗ = 0 for some x0 ∈ M , then (M, 〈 , 〉)
is Ricci flat and X is a homothetic vector field.

(ii) If λ = 0 then S∗ = 0. Furthermore, if S(x0) = S∗ = 0 for some

x0 ∈ M , then (M, 〈 , 〉) is Ricci flat and X is a Killing field.

(iii) If λ > 0 then 0 ≤ S∗ ≤ mλ. Furthermore, if S(x0) = S∗ = 0 for

some x0 ∈ M , then (M, 〈 , 〉) is Ricci flat and X is a homothetic

vector field, while if S(x0) = S∗ = mλ for some x0 ∈ M , then

(M, 〈 , 〉) is compact, Einstein and X is a Killing field.

Remark. In case X = ∇f , that is, the soliton is a gradient Ricci soliton

and (M, 〈 , 〉) is Einstein, a complete classification is given in Theorem

1.3 of [12].

From Theorem 1.4 we immediately obtain

Corollary 1.5. Let (M, 〈 , 〉) be a complete manifold with scalar curva-

ture S such that

S∗ = inf
M

S(x) < 0 (resp. > 0)

and Ricci tensor satisfying

(1.14) Ricc ≥ −(m− 1)B2
(

1 + r2
)

for some B ≥ 0. Then (M, 〈 , 〉) does not support any shrinking or

steady (resp., expanding or steady) soliton with

|X|∗ = sup
M

|X| < +∞.

Note that (1.14) implies the validity of the Omori-Yau maximum

principle on any complete manifold (M, 〈 , 〉). However, the validity of

this latter is guaranteed also in other circumstances such as, for instance,

those of the next

Corollary 1.6. Let (M, 〈 , 〉) be a complete manifold admitting a shrink-

ing or steady soliton structure (M, 〈 , 〉 ,X) with |X|∗ = supM |X| <

+∞. Then any proper minimal immersion of M into R
n, with n >

m = dimM , is totally geodesic.
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In our last result we consider the conformally flat case.

Theorem 1.7. Let (M, 〈 , 〉) be a complete manifold of dimension m ≥ 3

with scalar curvature S(x), trace-free Ricci tensor T and satisfying the

Omori-Yau maximum principle. Assume that (M, 〈 , 〉) is conformally

flat and that

S∗ = sup
M

S(x) < +∞.

Let (M, 〈 , 〉 ,X) be a Ricci soliton on (M, 〈 , 〉) with soliton constant

λ and |X|∗ = supM |X| < +∞. Then either (M, 〈 , 〉) is of constant

sectional curvature or |T |∗ = supM |T | satisfies

(1.15) |T |∗ ≥ 1

2

(

√

m(m− 1)λ− S∗ m− 2
√

m(m− 1)

)

.

2. Preliminary results

The proof of our results rests on three interesting formulas. The first

(eq. (2.8)) is due to Bochner (at least in case X is a Killing field), as

reported in [8], page 191. The remaining two, that is equations (2.21)

and (2.52), have been found for gradient Ricci solitons in [12] but are

new and in fact unexpected, at least for us, in the present generality.

In what follows, to perform computations, we shall use the method of

the moving frame referring to a local orthonormal coframe
{

θi
}

for the

metric and corresponding Levi-Civita connection and curvature forms,

indicated respectively with
{

θij

}

and
{

Θi
j

}

, 1 ≤ i, j, . . . ≤ m = dimM .

The Einstein summation convention will be in force throughout.

The following generalized version of the Bochner formula is probably

well known; we include a proof here for the sake of completeness.

Lemma 2.1. (Generalized Bochner formula) Let Y be a vector field on

M . Then

(2.1) div (LY 〈 , 〉)(Y ) =
1

2
∆|Y |2 − |∇Y |2 +Ricc (Y, Y ) +∇Y (div Y ),

where LY 〈 , 〉 is the Lie derivative of the metric in the direction of Y .

Proof. Let {ei} be the o.n. frame dual to
{

θi
}

. Then

Y = Y iei = Yiei
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and setting Yij for the coefficients of the covariant derivative ∇Y of Y

we have

(2.2) Yijθ
j = dYi − Ykθ

k
i .

Differentiating (2.2), using the definition of covariant derivative, the

structure equations

dθi = −θij ∧ θj, dθij = −θik ∧ θkj +Θi
j

and the components Ri
jkt of the Riemann curvature tensor defined by

Θi
j =

1

2
Ri

jktθ
k ∧ θt

we obtain

Yikjθ
j ∧ θk = −1

2
YtR

t
ijkθ

j ∧ θk.

Thus, inverting the indexes k and j

Yijkθ
k ∧ θj = −1

2
YtR

t
ikjθ

k ∧ θj.

Comparing these last two equations we deduce

(2.3) Yijk − Yikj = YtR
t
ijk.

Since

LY 〈 , 〉 = (Yik + Yki)θ
i ⊗ θk

we have

(2.4) div (LY 〈 , 〉)(Y ) = YiYikk + YiYkik.

From the commutation relation (2.3) tracing with respect to i and k we

obtain

(2.5) Ykik = Ykki + YtR
t
kik = Ykki + YtRti,

where, as usual, with Rti we have indicated the components of the Ricci

tensor. Thus

(2.6) YiYkik = ∇Y (div Y ) + Ricc (Y, Y ).

On the other hand, from |Y |2 = YiYi we deduce

d|Y |2 = 2YiYikθ
k
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and

∆|Y |2 = 2YikYik + 2YiYikk,

or, in other words,

(2.7)
1

2
∆|Y |2 = |∇Y |2 + YiYikk.

Substituting (2.6) and (2.7) into (2.4) we immediately obtain (2.1).

q.e.d.

Remark. If Y = ∇f , f ∈ C∞(M), then (2.1) can be rewritten as

1

2
∆|∇f |2 = |Hess(f)|2 − Ricc (∇f,∇f)− 〈∇∆f,∇f〉

+ div (2Hess(f))(∇f)

= |Hess(f)|2 +Ricc (∇f,∇f) + 〈∇∆f,∇f〉 ,

that is, (2.1) in this case is the classical Bochner’s formula.

Proposition 2.2. Let (M, 〈 , 〉 ,X) be a Ricci soliton on (M, 〈 , 〉). Then

(2.8)
1

2
∆|X|2 = |∇X|2 − Ricc (X,X).

Proof. We trace the soliton equation (1.1) to obtain

S + divX = mλ,

and from here we deduce

(2.9) ∇S = −∇ divX.

On the other hand, contracting twice the second Bianchi’s identities we

have the well-known formula

(2.10) ∇S = 2div Ricc .

Thus, comparing (2.9) and (2.10),

(2.11) ∇ divX = −2 divRicc .

Now taking the divergence of (1.1) and using the fact that div (λ 〈 , 〉) =
0 we obtain

div (LX 〈 , 〉) = −2 divRicc
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and (2.11) yields

∇ divX = div (LX 〈 , 〉).
In particular,

(2.12) ∇X divX = div (LX 〈 , 〉)(X).

Thus applying (2.1) of Lemma 2.1 we immediately get (2.8). q.e.d.

Remark. In case X = ∇f , that is, the soliton is a gradient soliton,

(2.8) becomes

1

2
∆|∇f |2 = |Hess(f)|2 −Ricc (∇f,∇f).

Then, using the identity

1

2

〈

∇f,∇|∇f |2
〉

= Hess (f)(∇f,∇f)

and the gradient Ricci soliton equation (1.2), we deduce

1

2
∆|∇f |2 = 1

2

〈

∇f,∇|∇f |2
〉

+ |Hess(f)|2 − λ|∇f |2.

This latter, with the aid of the diffusion operator ∆f of the Introduction,

can be written as

(2.13)
1

2
∆f |∇f |2 = |Hess(f)|2 − λ|∇f |2.

Formula (2.13) has often appeared in the recent literature on gradient

Ricci solitons: see for instance [2], [12] and the references therein.

Before proceeding to the next proposition we need to determine some

further “commutation relations”.

Lemma 2.3. Let Y be a vector field on M . Then

(2.14) Ytkkt − Ykktt =
1

2
〈∇S, Y 〉+ 1

2
tr (LY 〈 , 〉 ◦Ricc).

Proof. We start from the commutation relations (2.3). By taking co-

variant derivative we deduce

(2.15) Yijkt − Yikjt = YstRsijk + YsRsijk, t.

Next we recall that, by definition of covariant derivative,

(2.16) Yijkθ
k = dYij − Ytjθ

t
i − Yitθ

t
j.
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Thus differentiating both members of (2.16), using the structure equa-

tions and (2.16) itself, we arrive at

Yijklθ
l ∧ θk = −1

2
(YtjRtilk + YitRtjlk)θ

l ∧ θk,

from which, inverting k with l and summing up, we deduce

(2.17) Yijkl − Yijlk = YtjRtikl + YitRtjkl.

Now, (2.14) follows immediately from (2.15), (2.17), (2.10) and tracing.

q.e.d.

For later use we also recall:

Lemma 2.4. For the Ricci tensor we have

(2.18) Rij, k = Rji, k;

(2.19) Rij, k −Rik, j = −Rtijk, t;

(2.20) Rij, kl −Rij, lk = RisRsjkl +RjsRsikl.

Proof. (2.18) is obvious. (2.19) follows from the second Bianchi’s iden-

tities, while (2.20) can be obtained with the same methods used in the

proofs of Lemmas 2.1 and 2.3. q.e.d.

We are now ready to prove

Proposition 2.5. Let (M, 〈 , 〉 ,X) be a Ricci soliton with soliton con-

stant λ on (M, 〈 , 〉) and let S(x) be the scalar curvature. Then

1

2
∆S =

1

2
〈∇S,X〉+ λS − |Ricc|2(2.21)

=
1

2
〈∇S,X〉+ λS − S2

m
−
∣

∣

∣

∣

Ricc− S

m
〈 , 〉
∣

∣

∣

∣

2

.

Proof. We start from the soliton equation (1.1), which in components

reads

(2.22) Rij +
1

2
(Xij +Xji) = λδij .

Differentiating (2.22) we get

(2.23) Rij, k = −1

2
(Xijk +Xjik).
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From (2.3) applied to X and (2.23) we obtain

(2.24) 2(Rik, j −Rjk, i) = Xjki −Xikj +XtRtkji.

Taking covariant derivatives we deduce the further commutation rela-

tion

(2.25) 2(Rik, jt −Rjk, it) = Xjkit −Xikjt +XstRskji +XsRskji, t.

Contracting (2.20) with respect to i and l we get

(2.26) Rlj, kl −Rlj, lk = RlsRsjkl +RjsRsk;

note that, from (2.19), we deduce

(2.27) XsRijks, j = XsRskji, j = XsRik, s −XsRis, k.

Now, from (2.25),

(2.28)

∆Rik = Rik, jj = Rjk, ij +
1

2
(Xjkij −Xikjj +XsjRskji +XsRskji, j).

Inserting (2.27) into (2.28) we get

(2.29)

∆Rik = Rjk, ij +
1

2
(Xjkij −Xikjj)+

1

2
XsjRskji+

1

2
XsRik, s−

1

2
XsRis, k.

Next, we rewrite (2.20) in the form

(2.30) Rjk, ij = Rjk, ji +RjsRskij +RksRsi

and we insert (2.30) into (2.29) to get

∆Rik =
1

2
XsjRskji +

1

2
XsRik, s −

1

2
XsRis, k(2.31)

+Rjk, ji +RjsRskij +RksRsi +
1

2
(Xjkij −Xikjj).

From the second Bianchi’s identities we recall that

(2.32) 2Rik, i = Sk,

so that

(2.33) Rjk, ji =
1

2
Ski.
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Using (2.33) into (2.31) yields

∆Rik =
1

2
Ski +

1

2
XsjRskji +

1

2
XsRik, s −

1

2
XsRis, k(2.34)

+RjsRskij +RksRsi +
1

2
(Xjkij −Xikjj).

Note that from the soliton equation (1.1)

(2.35) Xsj = −Xjs + 2λδsj − 2Rsj ,

and therefore

(2.36)
1

2
XsjRskji = −1

2
XjsRskji + λRki −RsjRskji.

Substituting (2.36) into (2.34) gives

∆Rik =
1

2
Ski −

1

2
XjsRskji + λRki − 2RsjRskji+(2.37)

+
1

2
XsRik, s −

1

2
XsRis, k +RksRsi+

+
1

2
(Xjkij −Xikjj).

We trace (2.37) with respect to i and k and use the relation

1

2
XtRkk, t −

1

2
XtRkt, k =

1

4
XtRkk, t =

1

4
XtSt

so that

1

2
∆S = λS − 1

2
XjsRsj −RsjRsj+(2.38)

+
1

2
XtRkk, t −

1

2
XtRkt, k +

1

2
(Xjkkj −Xkkjj)

= λS − |Ricc|2 − 1

2
XjsRsj +

1

2
(Xtkkt −Xkktt) +

1

4
XtSt.

Now we apply Lemma 2.3 to X and from (2.38) we immediately obtain

the desired result. q.e.d.

Remark. In caseX = ∇f , f ∈ C∞(M), that is, the soliton is a gradient

soliton, we can rewrite (2.21) in the form

1

2
∆fS = λS − |Ricc|2,

which is formula (2.15) (with λ constant) of Lemma 2.3 in [12].



ON THE GEOMETRY OF COMPLETE RICCI SOLITONS 13

Our aim is now to compute ∆|T |2, where T is the traceless Ricci

tensor, that is,

(2.39) Tij = Rij −
S

m
δij .

Thus

(2.40) |T |2 = |Ricc|2 − S2

m
,

and it follows that

∆|T |2 = ∆|Ricc|2 − 1

m
∆S2 =(2.41)

= 2|∇Ricc|2 + 2 〈Ricc,∆Ricc〉 − 2

m
S∆S − 2

m
|∇S|2.

We have

Proposition 2.6. Let (M, 〈 , 〉 ,X) be a Ricci soliton with soliton con-

stant λ on (M, 〈 , 〉) and let S(x) be the scalar curvature. Then,

1

2
∆|T |2 = 1

2

〈

∇|T |2,X
〉

+ |∇T |2 + 2λ|T |2+(2.42)

+
2

m

(

S2

m
+ |T |2

)

S + 2RikRsjRskij.

Proof. Using (2.37) we have

2 〈Ricc,∆Ricc〉 = 2Rik∆Rik =

(2.43)

= 2λ|Ricc|2 + 2Tr(Ricc3) +
1

2

〈

∇|Ricc|2,X
〉

+RikSik−

−XjsRskjiRik −XsRikRis,k − 4RikRsjRskji+

+XjkijRik −XikjjRik.

First we analyze the term XjkijRik. Towards this aim we consider the

soliton equation

(2.22) Rij +
1

2
(Xij +Xji) = λδij .

Tracing with respect to i and j we obtain

S +Xtt = mλ,
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so that, taking covariant derivatives,

(2.44) Si = −Xtti

and similarly from (2.44)

Sik = −Xttik.

It follows that

(2.45) RikSik = −XttikRik.

From the commutation relations (2.17) and (2.15) we get

Xjkij = Xjkji +XtkRti +XjtRtkij =

= Xjjki +XsiRsk +XsRsk,i +XtkRti +XjtRtkij

and therefore, using (2.45) and soliton equation (2.22),

RikXjkij = −SikRik +Rik(Xkt +Xtk)Rti +XsRikRsk,i+

+XjtRikRtkij =

= −SikRik + 2λ|Ricc|2 − 2Tr(Ricc3) +XsRikRsk,i+

+XjtRikRtkij .

Substituting this latter into (2.43) and simplifying we obtain

2Rik∆Rik = 4λ|Ricc|2 + 1

2

〈

∇|Ricc|2,X
〉

− 2XjsRikRskji−(2.46)

− 4RikRsjRskji −XikttRik.

Now we analyze the term XikttRik. Towards this end we take covariant

derivative of the soliton equation (2.22):

Rij,k = −1

2
(Xijk +Xjik).

Tracing with respect to j and k we get

Rik,k = −1

2
(Xikk +Xkik),

so that, using (2.32), (2.5) and (2.44),

Sk = −Xktt −Xtkt = −Xktt −Xttk −XsRsk = Sk −Xktt −XsRsk,
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that is,

Xitt = −XsRsi.

Taking covariant derivative of this latter

(2.47) Xittk = −XskRsi −XsRsi,k.

Next, from (2.17) and (2.15) we obtain

Xittk = Xitkt +XstRsitk +XisRsttk =

= Xiktt + 2XstRsitk −XisRsk +XsRsitk,t.

Hence, using (2.47) and (2.19) we deduce

RikXiktt = −XsRikRsi,k −XsRikRsitk,t − 2XstRsitkRik =

(2.48)

= −XsRikRsi,k − 2XstRsitkRik +XsRik(Rks,i −Rki,s) =

= −1

2

〈

∇|Ricc|2,X
〉

− 2XstRsitkRik.

We substitute (2.48) into (2.46) to get

(2.49) 2Rik∆Rik = 4λ|Ricc|2 +
〈

∇|Ricc|2,X
〉

+ 4RikRsjRskij.

Thus, from (2.41), (2.49) and (2.21) we obtain

∆|T |2 = 2|∇Ricc|2 − 2

m
|∇S|2 + 4λ|Ricc|2 +

〈

∇|Ricc|2,X
〉

+(2.50)

+ 4RikRsjRskij − 4
λ

m
S2 − 2

m
S 〈∇S,X〉+ 4

m2
S3+

+
4

m
S|T |2.

An immediate computation shows that

|∇T |2 = |∇Ricc|2 − 1

m
|∇S|2.

Using this fact and (2.40), after some algebraic manipulation from (2.50)

we obtain (2.42). q.e.d.
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We recall the decomposition of the curvature tensor (m ≥ 3) into its

irreducible components:

Rijks = Wijks +
1

m− 2
(Rikδjs −Risδjk +Rjsδik −Rjkδis)−(2.51)

− S

(m− 1)(m− 2)
(δikδjs − δisδjk),

where Wijks are the component of the Weyl curvature tensor W . Note

that (M, 〈 , 〉), m = dimM ≥ 3, is conformally flat if and only if W ≡ 0.

We are now ready to prove

Corollary 2.7. Let (M, 〈 , 〉 ,X) be a Ricci soliton with soliton constant

λ on (M, 〈 , 〉) and let S(x) be the scalar curvature. Assume m ≥ 3 and

that (M, 〈 , 〉) is conformally flat. Then

1

2
∆|T |2 = 1

2

〈

∇|T |2,X
〉

+ |∇T |2 + 2

(

λ− m− 2

m(m− 1)
S

)

|T |2+(2.52)

+
4

m− 2
Tr(T 3).

Proof. A computation shows that

(2.53) Tr(T 3) = Tr(Ricc3)− 3

m
S|Ricc|2 + 2

m2
S3.

Thus a simple algebraic manipulation using W ≡ 0, (2.51) and (2.53)

gives

(2.54) 2RikRsjRskij =
4

m− 2
Tr(T 3)− 2

2m− 3

m(m− 1)
S|T |2 − 2

m2
S3.

Inserting (2.54) into (2.42) immediately yields the desired equation

(2.52). q.e.d.

Remark. In caseX = ∇f , f ∈ C∞(M), that is, the soliton is a gradient

soliton, we can rewrite (2.52) in the form

1

2
∆f |T |2 = |∇T |2 + 2

(

λ− m− 2

m(m− 1)
S

)

|T |2 + 4

m− 2
Tr(T 3),

which is formula (2.21) (with λ constant) of Corollary 2.7 in [12].
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3. Proof of the main results

3.1. Proof of Theorem 1.1 and a further result. First of all, using

Cauchy-Schwarz inequality we have that for any vector field Y on M

(3.1)
1

4

∣

∣

∣
∇|Y |2

∣

∣

∣

2
≤ |Y |2|∇Y |2.

We set u = |X|2, we multiply (2.8) by u and use (3.1) to obtain

(3.2)
1

2
u∆u+ uRicc (X,X) ≥ 1

4
|∇u|2.

Next we use assumption (1.3) to deduce

(3.3) u∆u+ a(x)u2 ≥ 1

2
|∇u|2.

From the work of Fisher-Colbrie and Schoen, [3], we know that assump-

tion (1.4) implies the existence of ϕ ∈ C2(M), ϕ > 0, solution of

(3.4) ∆ϕ+Ha(x)ϕ = 0 on M.

Next, we apply the proof of Theorem 3.1 of [15] with b(x) ≡ 0, K = 0,

A = −1
2 under assumption (1.5) which replaces assumption (3.6) of

Theorem 3.1 with p = 2 and 0 ≤ β ≤ H − 1, to arrive up to the

conclusion

(3.5) uH = Cϕ

for some C ≥ 0. Since by assumption X 6≡ 0 we conclude that C > 0

and u > 0 on M . We insert the expression of ϕ in terms of u in (3.4)

and divide by HuH−2 to obtain

u∆u+ a(x)u2 = −(H − 1)|∇u|2.

Thus, from (3.3) we deduce that u and hence |X|2 are constant. We

then go back to (3.2) to obtain, using (1.3) and (2.8),

(3.6)
1

2
a(x)|X|2 ≥ Ricc (X,X) = |∇X|2.

However, from (3.5) ϕ is a positive constant and (3.4) implies, since

H ≥ 1, a(x) ≡ 0. Thus from (3.6) |∇X| ≡ 0 on M and X is a parallel

vector field. Thus X is a Killing field and going back to (1.1)

Ricc = λ 〈 , 〉 ,
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that is, (M, 〈 , 〉) is Einstein. Now, since X is parallel, X is a closed

conformal field and the final part of the Theorem follows from (c) of

Proposition 2 in [5] and from Corollary 9.107 of [1]. q.e.d.

The next result is a consequence of the previous proof.

Proposition 3.1. In the assumptions of Theorem 1.1 suppose vol(M) =

+∞. Thus, there are no soliton structures (M, 〈 , 〉 ,X) on (M, 〈 , 〉) with
X 6≡ 0 and X ∈ Lp(M) for some p > 0.

Proof. We proceed as above up to showing that |X|2 is a positive con-

stant. Thus the result immediately follows since vol(M) = +∞. q.e.d.

3.2. Proof of Theorem 1.2. Let |X|2 = u. Then u satisfies (3.3).

Now apply Theorem 9.12 of [14] to contradict (1.7). q.e.d.

3.3. Proof of Theorem 1.3. From equation (2.8) we deduce

(3.7) ∆|X|2 = 2|∇X|2 − 2Ricc(X,X) ≥ 2B

(1 + r(x))µ
|X|2 on M.

Assume now |X|2 6≡ 0 and choose γ > 0 such that Ωγ =
{

x ∈ M : |X|2 > γ
}

6=
∅. On Ωγ we have then, using (3.7),

(1 + r(x))µ∆|X|2 ≥ 2B|X|2 > 2Bγ > 0,

which implies

inf
Ωγ

(1 + r(x))µ∆|X|2 > 0.

Applying now Theorem 4.1 in [13] (with ϕ(t) = t, A = δ = 1) we obtain

a contradiction. q.e.d.

3.4. Proof of Theorem 1.4. From (2.21) of Proposition 2.5 we have

(3.8)
1

2
∆S ≤ 1

2
〈∇S,X〉+ λS − S2

m
.

Thus, u = −S satisfies the differential inequality

1

2
∆u ≥ 1

2
〈∇u,X〉+ λu+

u2

m
.

Therefore, from (1.13) and the above we have

(3.9)
1

2
∆u ≥ −1

2
|X|∗|∇u|+ λu+

u2

m
.
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Now the validity of the Omori-Yau maximum principle on M implies

that of Theorem 1.31 on [13] that we apply with the choices F (t) = t2

and

ϕ(u, |∇u|) = −1

2
|X|∗|∇u|+ λu+

u2

m
.

Then u∗ = supM u < +∞ and

(3.10) λu∗ +
(u∗)2

m
≤ 0.

But u∗ = −S∗, so that the claimed bounds on S∗ in the statement of

Theorem 1.4 follow immediately from (3.10).

Case (i). Suppose now λ < 0 and that for some x0 ∈ M

S(x0) = S∗ = mλ.

In particular S(x) ≥ mλ on M and the function w = S − mλ is non-

negative on M . From (3.8) we immediately see that

(3.11) ∆w − 〈X,∇w〉+ 2λw ≤ ∆w − 〈X,∇w〉 + 2
S

m
w ≤ 0.

We let

Ω0 = {x ∈ M : w(x) = 0}.
Ω0 is closed and not empty since x0 ∈ Ω0; let now y ∈ Ω0. By the

maximum principle applied to (3.11) w ≡ 0 in a neighborhood of y so

that Ω0 is open. Thus Ω0 = M and S(x) ≡ λm on M . From equation

(2.21) we then deduce
∣

∣Ricc− S
m 〈 , 〉

∣

∣ ≡ 0, that is, (M, 〈 , 〉) is Einstein

and from (1.1) X is a Killing field. Analogously, if S(x0) = S∗ = 0

for some x0 ∈ M , we deduce that (M, 〈 , 〉) is Ricci flat and X is a

homothetic vector field.

Case (ii). Suppose λ = 0 and that, for some x0 ∈ M ,

S(x0) = S∗ = 0.

From (3.8)

∆S − 〈X,∇S〉 ≤ −S2

m
≤ 0.

Since S(x) ≥ S∗ = 0, by the maximum principle we conclude S(x) ≡ 0,

by (2.21) (M, 〈 , 〉) is Ricci-flat and from (1.1) X is a Killing field.



20 PAOLO MASTROLIA AND MARCO RIGOLI

Case (iii). Finally, suppose λ > 0. Then S(x) ≥ S∗ ≥ 0. From (3.8)

∆S − 〈X,∇S〉 − 2λS ≤ 0.

If S(x0) = S∗ = 0 for some x0 ∈ M , then again by the maximum

principle S(x) ≡ 0. From (2.21), (M, 〈 , 〉) is Ricci-flat and from (1.1)

LX 〈 , 〉 = 2λ 〈 , 〉 so that X is a homothetic vector field. Suppose now

S(x0) = S∗ = mλ for some x0 ∈ M . From (3.8)

∆S − 〈X,∇S〉 ≤ 2
S

m
(λm− S)

and since S(x) ≥ S∗ = mλ > 0,

∆S − 〈X,∇S〉 ≤ 0 on M.

By the maximum principle S(x) ≡ mλ, from (2.21) (M, 〈 , 〉) is Einstein
and (1.1) implies that X is a Killing field. Furthermore, since λ > 0,

(M, 〈 , 〉) is compact by Myers’s Theorem. q.e.d.

3.5. Proof of Corollary 1.5. Under the curvature assumption of Corol-

lary 1.5, we have the validity of the Omori-Yau maximum principle (see

[13]) and the result now follows from Theorem 1.4. q.e.d.

3.6. Proof of Corollary 1.6. Let ϕ : M → R
n be a proper min-

imal immersion. Then by [13], Example 1.14, the Omori-Yau max-

imum principle holds on (M, 〈 , 〉). If ϕ is not totally geodesic then

S∗ = infM S(x) < 0 and we contradict Theorem 1.4. q.e.d.

3.7. Proof of Theorem 1.7. By Okumura’s lemma, [6],

Tr(T 3) ≥ − m− 2
√

m(m− 1)
|T |3.
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Thus, from (2.52) of Corollary 2.7 we deduce

1

2
∆|T |2 ≥ 1

2

〈

∇|T |2,X
〉

+ |∇T |2 + 2

(

λ− m− 2

m(m− 1)
S∗

)

|T |2−

− 4
√

m(m− 1)
|T |3

≥ −1

2

∣

∣

∣
∇|T |2

∣

∣

∣
|X|∗ + 2

(

λ− m− 2

m(m− 1)
S∗

)

|T |2 − 4
√

m(m− 1)
|T |3.

Setting |T |2 = u we rewrite the above as

(3.12)
1

2
∆u ≥ −1

2
|∇u||X|∗ + 2

(

λ− m− 2

m(m− 1)
S∗

)

u− 4
√

m(m− 1)
u3/2.

Now if |T |∗ = +∞ then (1.15) is obviously satisfied. Otherwise u∗ =

supM u < +∞ and we can apply the Omori-Yau maximum principle to

(3.12) to obtain

4
√

m(m− 1)
u∗

[

1

2

(

λ
√

m(m− 1)− m− 2
√

m(m− 1)
S∗

)

−
√
u∗

]

≤ 0,

from which we deduce that either u∗ = 0, that is T ≡ 0 on M , or

|T |∗ satisfies (1.15). In the first case (M, 〈 , 〉) is Einstein, and being

conformally flat it is necessarily of constant sectional curvature. q.e.d.

4. A final remark

Let Y be a smooth vector field on M . Define the associated vector

field

WY = T (Y, )♯,

where T is the traceless Ricci tensor and ♯ is the musical isomorphism
♯ : T ∗M → TM .

Lemma 4.1. Let S(x) be the scalar curvature of (M, 〈 , 〉). Then

(4.1) divWY =
1

2
Tr (LY 〈 , 〉 ◦ T ) + m− 2

2m
Y (S).

Proof. We give the short proof for completeness. With the notations of

Section 2,

WY = YiTijej , Y = Yiei,
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where {ei} is the o.n. frame dual to
{

θi
}

. Thus

divWY = YikTik + YiTik,k.

Using the fact that T is symmetric and (2.32) we have

divWY =
1

2
(Yik + Yki)Tik + Yi

(

Rik,k −
Si

m

)

=

=
1

2
Tr (LY 〈 , 〉 ◦ T ) + m− 2

2m
SiYi,

that is, (4.1). q.e.d.

Thus,

Proposition 4.2. Let (M, 〈 , 〉 ,X) be a soliton structure on (M, 〈 , 〉)
and let S(x) be the scalar curvature. Then

(4.2) divWX =
m− 2

2m
X(S)− |T |2.

In particular, if M is compact

(4.3)
m− 2

2m

∫

M
X(S) =

∫

M
|T |2.

Proof. We use soliton equation (1.1), (2.39) and (2.40) into (4.1) to

immediately obtain (4.2). q.e.d.

Remark. Equation (4.3) can be interpreted as a kind of “Kazdan-

Warner condition” for compact solitons.
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