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DEPTH OF EDGE RINGS ARISING FROM FINITE GRAPHS

TAKAYUKI HIBI, AKIHIRO HIGASHITANI, KYOUKO KIMURA, AND AUGUSTINE B. O’KEEFE

Abstract. Let G be a finite graph and K[G] the edge ring of G. Based on the technique
of Gröbner bases and initial ideals, it will be proved that, given integers f and d with
7 ≤ f ≤ d, there exists a finite graph G on [d] = {1, . . . , d} with depthK[G] = f and
with Krull-dimK[G] = d.

Introduction

The edge ring [3] and its toric ideal [4] arising from a finite graph have been studied from
viewpoints of both commutative algebra and combinatorics. Especially, the normality of
the edge ring as well as Gröbner bases of its toric ideal is extensively investigated. However,
the fundamental question when an edge ring is Cohen–Macaulay is presumably open.

Let G be a finite simple graph, i.e., a finite graph with no loop and no multiple edge,
on the vertex set [d] = {1, . . . , d} and E(G) = {e1, . . . , er} its edge set. Let K[t] =
K[t1, . . . , td] be the polynomial ring in d variables over a field K and write K[G] for the
subring of K[t] generated by those squarefree quadratic monomials te = titj with e =
{i, j} ∈ E(G). The semigroup ring K[G] is called the edge ring of G. Let Krull-dimK[G]
denote the Krull dimension of K[G] and depthK[G] the depth of K[G]. Let K[x] =
K[x1, . . . , xr] be the polynomial ring in r variables over a field K. The kernel IG of the
surjective homomorphism π : K[x] → K[G] defined by setting π(xi) = tei for i = 1, . . . , r is
called the toric ideal of G. One has K[G] ∼= K[x]/IG. If G is connected and is nonbipartite
(resp. bipartite), then Krull-dimK[G] = d (resp. Krull-dimK[G] = d− 1).

The criterion of normality [3, Corollary 2.3] of edge rings guarantees that K[G] is normal
if either G is bipartite or d ≤ 6. If d = 7, then there exists a finite graph G for which
K[G] is nonnormal. However, it follows easily that K[G] is Cohen–Macaulay whenever
d ≤ 7. Computing the depth of the edge rings of all connected nonbipartite graphs G
with 7 vertices shows that the depth of K[G] is at least 7. Moreover, our computational
experiment would naturally lead the authors into the temptation to give the following

Conjecture 0.1. Let G be a finite graph on [d] with d ≥ 7. Then depthK[G] ≥ 7.

Now, even though Conjecture 0.1 is completely open, by taking Conjecture 0.1 into
consideration, this paper will be devoted to proving the following

Theorem 0.2. Given integers f and d with 7 ≤ f ≤ d, there exists a finite graph G on
[d] with depthK[G] = f and with Krull-dimK[G] = d.

Let k ≥ 1 be an arbitrary integer and Gk+6 the finite graph on [k + 6] of Figure 0.1.
The essential part of a proof of Theorem 0.2 is to show that

depthK[Gk+6] = depthK[x]/IGk+6
= 7.(0.1)
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2 DEPTH OF EDGE RINGS

In Section 1, by virtue of the formula [1, Theorem 2.1], the inequality depthK[Gk+6] ≤ 7
will be proved. In Section 2, we compute a Gröbner basis of IGk+6

and an initial ideal
in(IGk+6

) of IGk+6
, and show the inequality depthK[x]/ in(IGk+6

) ≥ 7. In general, one has
depthK[x]/IGk+6

≥ depthK[x]/ in(IGk+6
) (e.g., [2, Theorem 3.3.4 (d)]). Thus the desired

equality (0.1) follows.
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Figure 0.1. (finite graph Gk+6)

Once we know that depthK[Gk+6] = 7, to prove Theorem 0.2 is straightforward. In
fact, given integers f and d with 7 ≤ f ≤ d, let Γ denote the finite graph Gd−f+7 on
[d− f + 7] and write G for the finite graph on [d] obtained from Γ by adding f − 7 edges

{1, d − f + 8}, {1, d − f + 9}, . . . , {1, d}

to Γ. It then follows that depthK[G] = depthK[Γ] + f − 7. Since depthK[Γ] = 7, one
has depthK[G] = f , as required.

1. Proof of depthK[Gk+6] ≤ 7

Let G = Gk+6 of Figure 0.1. In this section, we prove that depthK[G] ≤ 7. Since the
number of edges of G is r = 2(k − 1) + 8, Auslander–Buchsbaum formula implies that we
may prove pdK[G] ≥ r − 7 = 2k − 1.

Let SG be the semigroup arising from G. Let AG = {a1, . . . , ar} be the set of columns
of the incidence matrix of G where al corresponds to the edge el (which corresponds to
the variable xl). Therefore, SG = NAG.

To prove pdK[G] ≥ 2k − 1, we use the following theorem due to Briales, Campillo,
Marijuán, and Pisón [1]. For s ∈ SG, we define the simplicial complex

∆s = {F ⊂ [r] : s− nF ∈ SG},

where nF =
∑

l∈F al. We denote by βi,s(K[G]), the ith multigraded Betti number of K[G]
in degree s.

Lemma 1.1 ([1, Theorem 2.1]). Let G be a finite simple graph. Then

βj+1,s(K[G]) = dimK H̃j(∆s;K).

We consider the case where

s = (1, 1, k + 1, k + 1, 1, 1, 2, 2, . . . , 2).

By Lemma 1.1, it is sufficient to prove the following lemma:

Lemma 1.2. Set s = (1, 1, k + 1, k + 1, 1, 1, 2, 2, . . . , 2). Then

dimK H̃2k−2(∆s;K) 6= 0.
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We set ∆ = ∆s. Before proving Lemma 1.2, we compute the simplicial complex ∆.

Lemma 1.3. Set s = (1, 1, k+1, k+1, 1, 1, 2, 2, . . . , 2). Then facets of ∆s are the following
subsets of [r]:

F1,i = {1, 4, 5, 7, 8, . . . , 2(k − 1) + 8} \ {2(i − 1) + 8}, i = 1, . . . , k;

F2,j = {2, 3, 6, 7, 8, . . . , 2(k − 1) + 8} \ {2(j − 1) + 7}, j = 1, . . . , k.

Proof. Since s− nF1,i
= a2(i−1)+7 ∈ SG, we have F1,i ∈ ∆s = ∆. (It follows that s ∈ SG.)

Similarly, we have F2,j ∈ ∆.
To prove that there are no facet other than F1,i, F2,j , it is enough to show that

• {1, 2}, {1, 3}, {4, 6}, {5, 6} /∈ ∆;
• {1, 6} /∈ ∆;
• {2, 4}, {2, 5}, {3, 4}, {3, 5} /∈ ∆;
• F0 = {7, 8, . . . , 2(k − 1) + 8} /∈ ∆.

Since the first entry of s − n{1,2} is −1 < 0, it follows that s − n{1,2} /∈ SG. Therefore

{1, 2} /∈ ∆. By the symmetry, we also have {1, 3}, {4, 6}, {5, 6} /∈ ∆.
Second we show that {1, 6} /∈ ∆. Suppose, on the contrary, that {1, 6} ∈ ∆, i.e.,

s− n{1,6} = (0, 0, k + 1, k + 1, 0, 0, 2, 2, . . . , 2) ∈ SG.

Then we can write s−n{1,6} =
∑r

l=1 clal, where cl ∈ N. Since (s−n{1,6})1 = (s−n{1,6})2 =

0 and (s − n{1,6})3 = k + 1, we have c1 = c2 = c3 = 0 and
∑k

i=1 c2(i−1)+7 = k + 1.

Similarly, we have c4 = c5 = c6 = 0 and
∑k

j=1 c2(j−1)+8 = k + 1. Then
∑k

i=1 c2(i−1)+7 +∑k
j=1 c2(j−1)+8 = 2(k + 1), but it must be 2k. This is a contradiction.

Next we show that {2, 4}, {2, 5}, {3, 4}, {3, 5} /∈ ∆. Suppose that {2, 4} ∈ ∆, i.e.,

s− n{2,4} = (0, 1, k, k, 0, 1, 2, 2, . . . , 2) ∈ SG.

Then we can write s − n{2,4} =
∑r

l=1 clal, where cl ∈ N. Since (s − n{2,4})1 = 0 and

(s − n{2,4})2 = 1, we have c3 = 1. Similarly, we have c5 = 1. Thus

(0, 0, k − 1, k − 1, 0, 0, 2, 2, . . . , 2) ∈ SG.

Then the similar argument on the proof of {1, 6} /∈ ∆ yields a contradiction. Therefore
{2, 4} /∈ ∆. By the symmetry, we also have {2, 5}, {3, 4}, {3, 5} /∈ ∆.

Last, we show F0 /∈ ∆. It follows from

s− nF0
= (1, 1, 1, 1, 1, 1, 0, 0, . . . , 0) /∈ SG.

�

Now we prove Lemma 1.2.

Proof of Lemma 1.2. Let ∆1 be the subcomplex of ∆ whose facets are F1,i, i = 1, . . . , k,
and ∆2 the subcomplex of ∆ whose facets are F2,j , j = 1, . . . , k. Then ∆ = ∆1∪∆2. Also
facets of the simplicial complex ∆1 ∩∆2 are

{7, 8, . . . , 2(k − 1) + 8} \ {2(j − 1) + 7, 2(i − 1) + 8}, i, j = 1, . . . , k.

In particular, dim∆1 ∩∆2 = 2k − 3. Note that both of ∆1 and ∆2 are cones over some
simplicial complexes and so the reduced homologies of these all vanish. Therefore the
Mayer–Vietoris sequence

· · · −→ H̃i(∆1 ∩∆2;K) −→ H̃i(∆1;K)⊕ H̃i(∆2;K) −→ H̃i(∆;K)

−→ H̃i−1(∆1 ∩∆2;K) −→ H̃i−1(∆1;K)⊕ H̃i−1(∆2;K) −→ · · ·
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yields

H̃i(∆;K) ∼= H̃i−1(∆1 ∩∆2;K) for all i.

We can see H̃2k−3(∆1 ∩∆2;K) 6= 0 by considering the alternating sum of all facets of
∆1 ∩∆2:

∑

1≤i,j≤k

(−1)i+j{7, 8, . . . , 2(k − 1) + 8} \ {2(j − 1) + 7, 2(i − 1) + 8}.

Therefore we have H̃2k−2(∆;K) 6= 0.
�

2. Proof of depthK[Gk+6] ≥ 7

Let, as before, G = Gk+6 of Figure 0.1. In this section we prove that depthK[G] ≥ 7.
We set C1 = (e2, e1, e3) and C2 = (e4, e6, e5), both of which are 3-cycles of G. By [4,

Lemma 3.2], there are 3 kinds of primitive even closed walks Γ of G up to the way:

(I) a 4-cycle: Γ = (e2(i−1)+7, e2(i−1)+8, e2(j−1)+8, e2(j−1)+7), where i < j;
(II) a walk on two 3-cycles C1, C2 and a single path connecting C1 and C2: Γ =

(C1, e2(i−1)+7, e2(i−1)+8, C2, e2(i−1)+8, e2(i−1)+7), where i = 1, . . . , k;
(III) a walk on two 3-cycles C1, C2 and two different paths combining C1 and C2: Γ =

(C1, e2(i−1)+7, e2(i−1)+8, C2, e2(j−1)+8, e2(j−1)+7), where i < j.

It was proved in [4, Lemma 3.1] that binomials corresponding to these primitive even
closed walks generate the toric ideal IG. Let us consider the lexicographic order <=<lex

with x1 > x2 > x3 > · · · > x2(k−1)+8.

Lemma 2.1. The set of binomials corresponding to primitive even closed walks (I), (II),
(III) is a Gröbner basis of IG with respect to <lex.

Proof. The result follows from a straightforward application of Buchberger’s algorithm to
the set of generators of IG corresponding to the primitive even closed walks listed above.
Let f and g be two such generators. We will prove that the S-polynomial, S(f, g), yielding
from Buchberger’s algorithm will reduce to 0 by generators of type (I), (II) and (III). For
convenience of notation, we will assume that i, j, p, and q are all odd integers such that
7 ≤ i < j, 7 ≤ p < q.

Case 1: Let f = xixj+1 − xi+1xj and g = xpxq+1 − xp+1xq be generators of type (I).
If i 6= p and j 6= q, then the leading terms of f and g are relatively prime and thus the
S-polynomial S(f, g) will reduce to 0 (e.g., [2, Lemma 2.3.1]). Suppose i = p, then

S(f, g) =
lcm(f, g)

LT<lex
(f)

f −
lcm(f, g)

LT<lex
(g)

g

= xq+1(xixj+1 − xi+1xj)− xj+1(xixq+1 − xi+1xq)

= xi+1xj+1xq − xi+1xjxq+1

= xi+1(xj+1xq − xjxq+1).

Note that, up to sign, xj+1xq−xjxq+1 is a generator of IG of type (I) and therefore S(f, g)
will reduce to 0. The case of j = q is similar.

Case 2: Let f be the same as above and g = x1x4x5x
2
p − x2x3x6x

2
p+1 a generator of

type (II). If i 6= p then the leading terms of f and g are relatively prime and therefore
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negligible. If i = p then

S(f, g) = x1x4x5xi(xixj+1 − xi+1xj)− xj+1(x1x4x5x
2
i − x2x3x6x

2
i+1)

= x2x3x6x
2
i+1xj+1 − x1x4x5xixi+1xj

= −xi+1(x1x4x5xixj − x2x3x6xi+1xj+1)

where x1x4x5xixj − x2x3x6xi+1xj+1 is a generator of type (III).
Case 3: Again, we assume that f is the same as above. Now assume g is of type (III),

g = x1x4x5xpxq − x2x3x6xp+1xq+1. If i 6= p, q then the leading terms of f and g will be
relatively prime. Suppose i = p, then

S(f, g) = x1x4x5xq(xixj+1 − xi+1xj)− xj+1(x1x4x5xixq − x2x3x6xi+1xq+1)

= −xi+1(x1x4x5xqxj − x2x3x6xq+1xj+1)

and again we have that x1x4x5xqxj − x2x3x6xq+1xj+1 is either a type (II) or type (III)
generator of IG. The case of i = q is similar.

Case 4: Now let f and g both be generators of type (II), f = x1x4x5x
2
i −x2x3x6x

2
i+1, g =

x1x4x5x
2
j − x2x3x6x

2
j+1. Then the S-polynomial

S(f, g) = x2j(x1x4x5x
2
i − x2x3x6x

2
i+1)− x2i (x1x4x5x

2
j − x2x3x6x

2
j+1)

= x2x3x6(x
2
ix

2
j+1 − x2i+1x

2
j )

= x2x3x6(xixj+1 + xi+1xj)(xixj+1 − xi+1xj)

is a multiple of a type (I) generator.
Case 5: Let f be the same as in Case 4 and g = x1x4x5xpxq − x2x3x6xp+1xq+1 of type

(III). First suppose that i 6= p, q. Let us consider the case of i < p. Then

S(f, g) = xpxq(x1x4x5x
2
i − x2x3x6x

2
i+1)− x2i (x1x4x5xpxq − x2x3x6xp+1xq+1)

= x2x3x6(x
2
i xp+1xq+1 − x2i+1xpxq)

= x2x3x6[xixq+1(xixp+1 − xi+1xp) + xixi+1xpxq+1 − x2i+1xpxq]

= x2x3x6[xixq+1(xixp+1 − xi+1xp) + xi+1xp(xixq+1 − xi+1xq)].

And so S(f, g) reduce to 0 by two type (I) generators. The cases of p < i < q and q < i
are similar.

Now suppose i = p, then the S-polynomial,

S(f, g) = xq(x1x4x5x
2
i − x2x3x6x

2
i+1)− xi(x1x4x5xixq − x2x3x6xi+1xq+1)

= x2x3x6xi+1(xixq+1 − xi+1xq).

is a multiple of a type (I) generator. The case of i = q is similar.
Case 6: Finally, we let consider the case that both f and g are of type (III): f =

x1x4x5xixj − x2x3x6xi+1xj+1, g = x1x4x5xpxq − x2x3x6xp+1xq+1. We may assume that
i ≤ p. Let us first suppose that i, j 6= p, q, then

S(f, g) = xpxq(x1x4x5xixj − x2x3x6xi+1xj+1)− xixj(x1x4x5xpxq − x2x3x6xp+1xq+1)

= x2x3x6(xixjxp+1xq+1 − xi+1xj+1xpxq)

= x2x3x6[xjxq+1(xixp+1 − xi+1xp) + xi+1xp(xjxq+1 − xj+1xq)].

Now let i = p. We then have

S(f, g) = xqf − xjg = −xqx2x3x6xi+1xj+1 + xjx2x3x6xi+1xq+1

= x2x3x6xi+1(xjxq+1 − xj+1xq).

The cases of j = p and j = q are similar.
�
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Now we prove that depthK[G] ≥ 7. We denote by in(IG), the initial ideal of IG with
respect to <lex. Since

depthK[G] = depthK[x]/IG ≥ depthK[x]/ in(IG),

it is sufficient to prove that depthK[x]/ in(IG) ≥ 7. By Auslander–Buchsbaum formula,
it is enough to prove the following lemma:

Lemma 2.2.

pdK[x]K[x]/ in(IG) ≤ 2k − 1.

Proof. First we compute in(IG).
The binomials corresponding to type (I) are

x2(i−1)+7x2(j−1)+8 − x2(i−1)+8x2(j−1)+7, where i < j.

The initial term of this binomial is x2(i−1)+7x2(j−1)+8 (i < j). We denote by I ′, the ideal
generated by these monomials. Note that x8 and x2(k−1)+7 do not appear in the minimal

system of monomial generators of I ′.
The binomials corresponding to types (II), (III) are

x2x3x6x2(i−1)+8x2(j−1)+8 − x1x4x5x2(i−1)+7x2(j−1)+7, where i ≤ j.

The initial term of this binomial is −x1x4x5x2(i−1)+7x2(j−1)+7 (i ≤ j).
Therefore

in(IG) = x1x4x5(x7, x9, . . . , x2(k−1)+7)
2 + I ′

= ((x7, x9, . . . , x2(k−1)+7)
2 + I ′) ∩ ((x1x4x5) + I ′).

We set

I1 = (x7, x9, . . . , x2(k−1)+7)
2 + I ′

I2 = (x1x4x5) + I ′.

By the short exact sequence 0 → K[x]/I1∩I2 → K[x]/I1⊕K[x]/I2 → K[x]/(I1+I2) → 0,
we have
(2.1)
pdK[x]K[x]/ in(IG) ≤ max{pdK[x]K[x]/I1,pdK[x]K[x]/I2,pdK[x]K[x]/(I1 + I2)− 1}.

Now we investigate each of pdK[x]K[x]/I1,pdK[x]K[x]/I2,pdK[x]K[x]/(I1 + I2).
First we consider the ideal I1. Note that x1, . . . , x6 and x8 do not appear in the minimal

system of monomial generators of I1. Let K[x′] be the polynomial ring over K with
variables x7, x9, x10, . . . , x2(k−1)+8. Then pdK[x]K[x]/I1 = pdK[x′]K[x′]/(I1 ∩K[x′]). By

Hilbert’s syzygy theorem, we have pdK[x′]K[x′]/(I1 ∩K[x′]) ≤ 2k − 1.

Next we consider the ideal I2 = (x1x4x5) + I ′. Since the variables x1, x4, x5 do not
appear in the minimal systems of generators of I ′, we have

pdK[x]K[x]/I2 = pdK[x]K[x]/I ′ + pdK[x]K[x]/(x1x4x5) = pdK[x]K[x]/I ′ + 1.

Then similarly to the case of I1, we have pdK[x]K[x]/I ′ ≤ 2k − 2. Thus we have

pdK[x]K[x]/I2 ≤ 2k − 1.

Last, we consider the ideal I1 + I2 = (x1x4x5) + I1. The same reason as the case of I2,
we have pdK[x]K[x]/(I1 + I2) = pdK[x]K[x]/I1 + 1 ≤ 2k.

Combining these results with (2.1), we have pdK[x]K[x]/ in(IG) ≤ 2k−1, as desired. �
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