Derivative Formula and Applications for Hyperdissipative Stochastic Navier-Stokes/Burgers Equations*

Feng-Yu Wang $^{a),b)}$ and Lihu Xu $^{c)}$

a) School of Math. Sci. and Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China

 $^{b)}$ Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, UK

Email: wangfy@bnu.edu.cn; F.Y.Wang@swansea.ac.uk

 $^{c)}$ PO Box 513, EURANDOM, 5600 MB Eindhoven. The Netherlands

Email: xu@eurandom.tue.nl

September 9, 2010

Abstract

By using coupling method, a Bismut type derivative formula is established for the Markov semigroup associated to a class of hyperdissipative stochastic Navier-Stokes/Burgers equations. As applications, gradient estimates, dimension-free Harnack inequality, strong Feller property, heat kernel estimates and some properties of the invariant probability measure are derived.

AMS subject Classification: 60J75, 60J45.

Keywords: Bismut formula, coupling, strong Feller, stochastic Navier-Stokes equation.

1 Introduction

Let H be the divergence free sub-space of $L^2(\mathbb{T}^d; \mathbb{R}^d)$, where $\mathbb{T}^d := (\mathbb{R}/[0, 2\pi])^d$ is the d-dimensional torus. The d-dimensional Navier-Stokes equation (for $d \geq 2$) reads

$$dX_t = \{\nu \Delta X_t - B(X_t, X_t)\}dt,$$

^{*}Supported in part by WIMCS and NNSFC(10721091).

where $\nu > 0$ is the viscosity constant and $B(u,v) := \mathbf{P}(u \cdot \nabla)v$ for $\mathbf{P} : L^2(\mathbb{T}^d; \mathbb{R}^d) \to H$ the orthogonal projection (see e.g. [13]). When d = 1 and $H = L^2(\mathbb{T}^d; \mathbb{R}^d)$, this equation reduces to the Burgers equation. In recent years, the stochastic Navier-Stokes equations have been investigated intensively, see e.g. [6] for the ergodicity of 2D Navier-Stokes equations with degenerate noise, and see [3, 5, 12] for the study of 3D stochastic Navier-Stokes equations. The main purpose of this paper is to establish the Bismut type derivative formula for the Markov semigroup associated to stochastic Navier-Stokes type equations, and as applications, to derive gradient estimates, Harnack inequality, and strong Feller property for the semigroup.

We shall work with a more general framework as in [8], which will be reduced to a class of hyperdissipative (i.e. the Laplacian has a power larger than 1) stochastic Navier-Stokes/Burgers equations in Section 2.

Let $(H, \langle \cdot, \cdot \rangle, \| \cdot \|_H)$ be a separable real Hilbert space, and $(L, \mathcal{D}(L))$ a positively definite self-adjoint operator on H with $\lambda_0 := \inf \sigma(L) > 0$, where $\sigma(L)$ is the spectrum of L. Let $V = \mathcal{D}(L^{1/2})$, which is a Banach space with norm $\| \cdot \|_V := \| L^{1/2} \cdot \|$. Let Q be a Hilbert-Schmidt linear operator on H with Ker $Q = \{0\}$. Then $\mathcal{D}(Q^{-1}) := Q(H)$ is a Banach space with norm $\|x\|_Q := \|Q^{-1}x\|_H$. In general, for $\theta > 0$, let $V_\theta = \mathcal{D}(L^{\theta/2})$ with norm $\|L^{\theta/2} \cdot \|_H$. We assume that there exist two constants $\theta \in (0,1]$ and $K_1 > 0$ such that $V_\theta \subset \mathcal{D}(Q^{-1})$ and

(A0)
$$||u||_Q^2 \le K_1 ||u||_{V_\theta}^2$$
, $u \in V_\theta$.

Moreover, let

$$B: V \times V \to H$$

be a bilinear map such that

(A1)
$$\langle v, B(v, v) \rangle = 0, v \in V;$$

- (A2) There exists a constant C > 0 such that $||B(u,v)||_H^2 \le C||u||_H^2||v||_V^2$, $u, v \in V$;
- (A3) There exists a constant $K_2 > 0$ such that $||B(u,v)||_Q^2 \le K_2 ||u||_{V_{\theta}}^2 ||v||_{V_{\theta}}^2$, $u, v \in V$.

Finally, let W_t be the cylindrical Brownian motion on H. We consider the following stochastic differential equation on H:

$$dX_t = QdW_t - \{LX_t + B(X_t)\}dt,$$

where $B(X_t) := B(X_t, X_t)$. According to [8], for any initial value $X_0 \in H$ the equation (1.1) has a unique strong solution, which gives rise to a Markov process on H (see Appendix for details). For any $x \in H$, let X_t^x be the solution starting at x. Let $\mathscr{B}_b(H)$ be the set of all bounded measurable functions on H. Then

$$P_t f(x) := \mathbb{E} f(X_t^x), \quad x \in H, t \ge 0, f \in \mathscr{B}_b(H)$$

defines a Markov semigroup $(P_t)_{t\geq 0}$.

We shall adopt a coupling argument to establish a Bismut type derivative formula for P_t , which will imply explicit gradient estimates and the dimension-free Harnack inequality in the sense of [14]. This type of Harnack inequality has been applied to the study of several models of SDEs and SPDEs, see e.g. [4, 7, 9, 11, 10, 15] and references within.

For $f \in \mathcal{B}_b(H), h \in V_\theta, x \in H$ and t > 0, let

$$D_h P_t f(x) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left\{ P_t f(x + \varepsilon h) - P_t f(x) \right\}$$

provided the limit in the right-hand side exists. Let $\tilde{B}(u,v) = B(u,v) + B(v,u)$.

Theorem 1.1. Assume that (A0)-(A3) hold for some constants $\theta \in (0, 1], K_1, K_2, C > 0$. Then for any $t > 0, h \in V_\theta$ and $f \in \mathcal{B}_b(H), D_h P_t f$ exists on H and satisfies

$$(1.2) \quad D_h P_t f(x) = \mathbb{E}\left\{f(X_t^x) \int_0^t \left\langle Q^{-1} \left(\frac{1}{t} e^{-sL} h - \frac{t-s}{t} \tilde{B}(X_s^x, e^{-sL} h)\right), dW_s \right\rangle\right\}, \quad x \in H.$$

Let V_{θ}^* be the dual space of V_{θ} . According to Theorem 1.1, under assumptions (A0)-(A3) we may define the gradient $DP_tf: H \to V_{\theta}^*$ by letting

$$V_{\theta}^*\langle DP_t f(x), h\rangle_{V_{\theta}} = D_h P_t f(x), \quad x \in H, h \in V_{\theta}.$$

We shall estimate

$$||DP_t f(x)||_{V_\theta^*} := \sup_{\|h\|_{V_\theta} \le 1} |D_h P_t f(x)|, \quad x \in H.$$

To this end, let ||Q|| and $||Q||_{HS}$ be the operator norm and the Hilbert-Schmidt norm of $Q: H \to H$ respectively.

Corollary 1.2. Under assumptions of Theorem 1.1.

(1) For any $t > 0, x \in H$ and $f \in \mathcal{B}_b(H)$,

$$||DP_t f(x)||_{V_{\theta}^*}^2 \le (P_t f^2(x)) \Big\{ \frac{2K_1}{t} + \frac{4K_2}{\lambda_0^{2-\theta}} \big(||x||_H^2 + ||Q||_{HS}^2 t \big) \Big\}.$$

(2) Let $f \in \mathscr{B}_b(H)$ be positive. For any $x \in H, t > 0$ and $\delta \ge 4\sqrt{K_2} \|Q\| \lambda_0^{(\theta-3)/2}$,

$$||DP_t f(x)||_{V_{\theta}^*} \leq \delta \Big\{ P_t(f \log f) - (P_t f) \log P_t f \Big\}(x) + \frac{2}{\delta} \Big\{ \frac{K_1}{t} + \frac{2K_2}{\lambda_0^{1-\theta}} (||x||_H^2 + ||Q||_{HS}^2 t) \Big\} P_t f(x).$$

(3) Let $\alpha > 1, t > 0$ and $f \ge 0$. The Harnack inequality

$$(P_t f(x))^{\alpha} \le (P_t f^{\alpha}(y)) \exp\left[\frac{2\alpha \|x - y\|_{V_{\theta}}^2}{\alpha - 1} \left\{ \frac{K_1}{t} + \frac{2K_2}{\lambda_0^{1 - \theta}} (\|x\|_H^2 \vee \|y\|_H^2 + \|Q\|_{HS}^2 t) \right\} \right]$$

holds for $x, y \in H$ such that

$$||x - y||_{V_{\theta}} \le \frac{(\alpha - 1)\lambda_0^{(3-\theta)/2}}{4\alpha ||Q||\sqrt{K_2}}.$$

In particular, P_t is V_{θ} -strong Feller, i.e. $\lim_{\|y-x\|_{V_{\theta}}\to 0} P_t f(y) = P_t f(x)$ holds for $f \in \mathscr{B}_b(H), t > 0, x \in H$.

As applications of the Harnack inequality derived above, we have the following result.

Corollary 1.3. Under assumptions of Theorem 1.1. P_t has an invariant probability measure μ such that $\mu(V) = 1$ and hence, $\mu(V_\theta) = 1$. If moreover $\theta \in (0, 1)$, then:

- (1) P_t has a unique invariant probability measure μ , and the measure has full support on V_{θ} .
- (2) P_t has a density $p_t(x,y)$ on V_{θ} w.r.t. μ . Moreover, let $r_0 = \frac{(\alpha-1)\lambda_0^{(3-\theta)/2}}{4\alpha\|Q\|\sqrt{K_2}}$ and $B_{\theta}(x,r_0) = \{y : \|y-x\|_{V_{\theta}} \le r_0\},$

$$\left(\int_{V_{\theta}} p_{t}(x,y)^{(\alpha+1)/\alpha} \mu(\mathrm{d}y) \right)^{\alpha} \\
\leq \frac{1}{\int_{B_{\theta}(x,r_{0})} \exp\left[-\frac{2\alpha \|x-y\|_{V_{\theta}}^{2}}{\alpha-1} \left\{ \frac{K_{1}}{t} + \frac{2K_{2}}{\lambda_{0}^{1-\theta}} (\|x\|_{H}^{2} \vee \|y\|_{H}^{2} + \|Q\|_{HS}^{2} t) \right\} \right] \mu(\mathrm{d}y)} < \infty$$

holds for any $t > 0, \alpha > 1$ and $x \in V_{\theta}$.

Note that the Harnack inequality presented in Corollary 1.2 is local in the sense that $||x-y||_{V_{\theta}}$ has to be bounded above by a constant. To derive a global Harnack inequality, we need to extend the gradient-entropy inequality in Corollary 1.2 (2) to all $\delta > 0$. In this spirit, we have the following result.

Theorem 1.4. Under assumptions of Theorem 1.1.

(1) For any $\delta > 0$ and any positive $f \in \mathscr{B}_b(H)$,

$$||DP_t f(x)||_{V_{\theta}^*} \le \delta \Big\{ P_t(f \log f) - (P_t f) \log P_t f \Big\}(x)$$

$$+ \frac{2}{\delta} \Big\{ \frac{K_1}{t \wedge t_{\delta}} + \frac{2K_2 e}{\lambda_0^{1-\theta}} (||x||_H^2 + ||Q||_{HS}^2 t) \Big\} P_t f(x), \quad x \in H, t > 0$$

holds for
$$t_{\delta} := \frac{\delta^2 \lambda_0^{3-\theta}}{4\|Q\|^2 e K_2}$$
.

(2) Let $\alpha > 1, t > 0$ and $f \ge 0$. Then

$$(P_t f(x))^{\alpha} \leq (P_t f^{\alpha}(y)) \exp \left[\frac{2\alpha \|x - y\|_{V_{\theta}}^2}{\alpha - 1} \left\{ K_1 \left(\frac{1}{t} \vee \frac{4\alpha^2 \|Q\|^2 e K_2 \|x - y\|_{V_{\theta}}^2}{(\alpha - 1)^2 \lambda_0^{3 - \theta}} \right) + \frac{2K_2 e}{\lambda_0^{1 - \theta}} \left(\|x\|_H^2 \vee \|y\|_H^2 + \|Q\|_{HS}^2 t \right) \right\} \right]$$

holds for all $x, y \in \mathbb{H}$.

The remainder of the paper is organized as follows. We first consider in Section 2 a class of stochastic Navier-Stokes type equations to illustrate our results, then prove these results in Section 3.

2 Stochastic hyperdissipative Navier-Stokes/Burgers equations

Let $\mathbb{T}^d = (\mathbb{R}/[0,2\pi])^d$ for $d \geq 1$. Let Δ be the Laplace operator on \mathbb{T}^d . To formulate Δ using spectral representation, we first consider the complex L^2 space $L^2(\mathbb{T}^d;\mathbb{C}^d)$. Recall that for $a = (a_1, \dots, a_d), b = (b_1, \dots, b_d) \in \mathbb{C}^d$, we have $a \cdot b = \sum_{i=1}^d a_i \bar{b}_i$. Let

$$e_k(x) = (2\pi)^{-d/2} e^{i(k \cdot x)}, \quad k \in \mathbb{Z}^d, x \in \mathbb{T}^d.$$

Then $\{e_k : k \in \mathbb{Z}^d\}$ is an ONB of $L^2(\mathbb{T}^d; \mathbb{C})$. Obviously, for a sequence $\{u_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{C}^d$,

$$u := \sum_{k \in \mathbb{Z}^d} u_k e_k \in L^2(\mathbb{T}^d; \mathbb{R}^d)$$

if and only if $\bar{u}_k = u_{-k}$ holds for any $k \in \mathbb{Z}^d$ and $\sum_{k \in \mathbb{Z}^d} |u_k|^2 < \infty$. By spectral representation, we may characterize $(\Delta, \mathcal{D}(\Delta))$ on $L^2(\mathbb{T}^d; \mathbb{R}^d)$ as follows:

$$\Delta u = -\sum_{k \in \mathbb{Z}^d} |k|^2 u_k e_k, \quad u := \sum_{k \in \mathbb{Z}^d} u_k e_k \in \mathscr{D}(\Delta),$$
$$\mathscr{D}(\Delta) := \left\{ \sum_{k \in \mathbb{Z}^d} u_k e_k : \quad u_k \in \mathbb{C}^d, \, \bar{u}_k = u_{-k}, \sum_{k \in \mathbb{Z}^d} |u_k|^2 |k|^4 < \infty \right\}.$$

To formulate the Navier-Stokes/Burgers type equation, when $d \geq 2$ we consider the sub-space divergence free elements of $L^2(\mathbb{T}^d; \mathbb{R}^d)$. It is easy to see that a smooth vector field

$$u = \sum_{k \in \mathbb{Z}^d} u_k e_k$$

is divergence free if and only if $u_k \cdot k = 0$ holds for all $k \in \mathbb{Z}^d$. Moreover, to make the spectrum of $-\Delta$ strictly positive, we shall not consider non-zero constant vector fields. Therefore, the Hilbert space we are working on becomes

$$H := \left\{ \sum_{k \in \hat{\mathbb{Z}}^d} u_k e_k : u_k \in \mathbb{C}^d, (d-1)(u_k \cdot k) = 0, \bar{u}_k = u_{-k}, \sum_{k \in \hat{\mathbb{Z}}^d} |u_k|^2 < \infty \right\},\,$$

where $\hat{\mathbb{Z}}^d = \mathbb{Z}^d \setminus \{0\}$. Since when d = 1 the condition $(d-1)(u_k \cdot k) = 0$ is trivial, the divergence free restriction does not apply for the one-dimensional case.

Let $(A, \mathcal{D}(A)) = (-\Delta, \mathcal{D}(\Delta))|_H$, the restriction of $(\Delta, \mathcal{D}(\Delta))$ on H, and let $\mathbf{P} : L^2(\mathbb{T}^d; \mathbb{R}^d) \to H$ be the orthogonal projection. Let

$$L = \lambda_0 A^{\delta+1}$$

for some constants $\lambda_0, \delta > 0$. As in Section 1, define $V = \mathcal{D}(L^{1/2})$ and $V_{\theta} = \mathcal{D}(L^{\theta/2})$. Then

$$B: V \times V \to H; \quad B(u, v) = \mathbf{P}(u \cdot \nabla)v$$

is a continuous bilinear (see the (b) in the proof of Theorem 2.1 below). Let $Q = A^{-\sigma}$ for some $\sigma > 0$, and let W_t be the cylindrical Brownian motion on H. Obviously, $||Q|| \le 1$ and when $\sigma > \frac{d}{4}$,

$$||Q||_{HS}^2 \le \sum_{k \in \hat{\mathbb{Z}}^d} |k|^{-4\sigma} < \infty.$$

We consider the stochastic differential equation

(2.1)
$$dX_t = QdW_t - (LX_t + B(X_t))dt,$$

where B(u) := B(u, u) for $u \in V$. Thus, we are working on the stochastic hyperdissipative Navier-Stokes (for $d \ge 2$) and Burgers (for d = 1) equations.

Theorem 2.1. Let $\delta > \frac{d}{2}$, $\sigma \in (\frac{d}{4}, \frac{\delta}{2}]$ and $\theta \in [\frac{2\sigma+1}{\delta+1}, 1]$. Then all assertions in Section 1 hold for $K_1 = \frac{1}{\lambda_0^{\theta}}$ and

$$K_2 = \frac{4^{2\delta\theta+1}}{\lambda_0^{2\theta}} \sum_{k \in \hat{\mathbb{Z}}^d} |k|^{-2(\delta+1)\theta} < \infty.$$

Proof. Since $\sigma > \frac{d}{4}$, $Q: H \to H$ is Hilbert-Schmidt. By Theorem 1.1 and its consequences, it suffices to verify assumptions (A0)-(A3). Since (A1) is trivial for d=1 and follows from the divergence free property for $d \geq 2$, we only have to prove (A0), (A2) and (A3). Let

$$u = \sum_{k \in \hat{\mathbb{Z}}^d} u_k e_k, \quad v = \sum_{k \in \hat{\mathbb{Z}}^d} v_k e_k$$

be two elements in V_{θ} .

(a) Since $\theta \in \left[\frac{2\sigma+1}{\delta+1}, 1\right]$ implies $4\sigma \leq 2\theta(\delta+1)$, we have

$$\|u\|_Q^2 = \sum_{k \in \hat{\mathbb{Z}}^d} |u_k|^2 |k|^{4\sigma} \leq \frac{1}{\lambda_0^\theta} \sum_{k \in \hat{\mathbb{Z}}^d} \lambda_0^\theta |u_k|^2 |k|^{2\theta(\delta+1)} = \frac{1}{\lambda_0^\theta} \|u\|_{V_\theta}^2.$$

Thus, (A0) holds for $K_1 = \frac{1}{\lambda_0^0}$.

(b) It is easy to see that

(2.2)
$$B(u,v) = \mathbf{P} \sum_{l,m \in \hat{\mathbb{Z}}^d, m \neq l} i(u_{l-m} \cdot m) v_m e_l.$$

By Hölder inequality,

$$||B(u,v)||_{H}^{2} \leq \sum_{l \in \hat{\mathbb{Z}}^{d}} \left(\sum_{m \in \hat{\mathbb{Z}}^{d} \setminus \{l\}} |u_{l-m}| \cdot |m| \cdot |v_{m}| \right)^{2}$$

$$\leq \sum_{l \in \hat{\mathbb{Z}}^{d}} \left(\sum_{m \in \hat{\mathbb{Z}}^{d} \setminus \{l\}} |u_{l-m}|^{2} |m|^{-2\delta} \right) \sum_{m \in \hat{\mathbb{Z}}^{d}} |v_{m}|^{2} |m|^{2(\delta+1)}$$

$$\leq \frac{1}{\lambda_{0}} \left(\sum_{m \in \hat{\mathbb{Z}}^{d}} |m|^{-2\delta} \right) ||u||_{H}^{2} ||v||_{V}^{2}.$$

Since $\delta > \frac{d}{2}$, we have $\sum_{m \in \hat{\mathbb{Z}}^d} |m|^{-2\delta} < \infty$. Thus, **(A2)** holds for some constant C. (c) By (2.2), we have

$$||B(u,v)||_{Q}^{2} := ||A^{\sigma}B(u,v)||_{H}^{2} \leq \sum_{l \in \hat{\mathbb{Z}}^{d}} |l|^{4\sigma} \left(\sum_{m \in \hat{\mathbb{Z}}^{d}} |u_{l-m}| \cdot |m| \cdot |v_{m}| \right)^{2}$$

$$\leq 2 \sum_{l \in \hat{\mathbb{Z}}^{d}} |l|^{4\sigma} \left(\sum_{|m| > \frac{|l|}{2}, m \neq l} |u_{l-m}| \cdot |m| \cdot |v_{m}| \right)^{2}$$

$$+ 2 \sum_{l \in \hat{\mathbb{Z}}^{d}} |l|^{4\sigma} \left(\sum_{|m| < \frac{|l|}{2}, m \in \hat{\mathbb{Z}}^{d}} |u_{l-m}| \cdot |m| \cdot |v_{m}| \right)^{2} := 2I_{1} + 2I_{2}.$$

By the Schwartz inequality,

$$I_1 \leq \sum_{l \in \hat{\mathbb{Z}}^d} |l|^{4\sigma} \bigg(\sum_{|m| > \frac{|l|}{2}, m \neq l} |u_{l-m}|^2 |l-m|^{2(\delta+1)\theta} |m|^{2-2(\delta+1)\theta} \bigg) \sum_{|m| > \frac{|l|}{2}, m \neq l} |v_m|^2 |m|^{2(\delta+1)\theta} |l-m|^{-2(\delta+1)\theta}.$$

Since $\theta \ge \frac{2\sigma+1}{\delta+1}$ implies that $4\sigma - 2(\delta+1)\theta + 2 \le 0$, if $|m| > \frac{|l|}{2}$ and $|l| \ge 1$ we have

$$|l|^{4\sigma}|m|^{-2(\delta+1)\theta+2} \le 4^{(\delta+1)\theta-1}|l|^{4\sigma-2(\delta+1)\theta+2} \le 4^{(\delta+1)\theta-1}.$$

Therefore,

$$(2.4) I_{1} \leq \frac{1}{\lambda_{0}^{\theta}} 4^{(\delta+1)\theta-1} \|u\|_{V_{\theta}}^{2} \sum_{l \in \hat{\mathbb{Z}}^{d}} \sum_{|m| > \frac{|l|}{2}, m \neq l} |v_{m}|^{2} |m|^{2(\delta+1)\theta} |l - m|^{-2(\delta+1)\theta}$$

$$\leq \frac{1}{\lambda_{0}^{2\theta}} 4^{(\delta+1)\theta-1} \left(\sum_{m \in \hat{\mathbb{Z}}^{d}} |m|^{-2(\delta+1)\theta} \right) \|u\|_{V_{\theta}}^{2} \|v\|_{V_{\theta}}^{2}.$$

Similarly, when $|m| \leq \frac{|l|}{2}$ we have $|l-m| \geq \frac{|l|}{2}$ and thus, due to $4\sigma - 2(\delta + 1)\theta \leq 0$,

$$|l|^{4\sigma}|l-m|^{-2(\delta+1)\theta} \le 4^{(\delta+1)\theta}|l|^{4\sigma-2(\delta+1)\theta} \le 4^{(\delta+1)\theta}|m|^{4\sigma-2(\delta+1)\theta}.$$

Therefore,

$$\begin{split} I_{2} &\leq \sum_{l \in \hat{\mathbb{Z}}^{d}} |l|^{4\sigma} \bigg(\sum_{1 \leq |m| \leq \frac{|l|}{2}} |u_{l-m}|^{2} |l - m|^{2(\delta+1)\theta} |m|^{2-2(\delta+1)\theta} \bigg) \sum_{1 \leq |m| \leq \frac{|l|}{2}} |v_{m}|^{2} |m|^{2(\delta+1)\theta} |l - m|^{-2(\delta+1)\theta} \\ &\leq \frac{4^{(\delta+1)\theta}}{\lambda_{0}^{2\theta}} \bigg(\sum_{m \in \hat{\mathbb{Z}}^{d}} |m|^{4\sigma - 4(\delta+1)\theta + 2} \bigg) ||u||_{V_{\theta}}^{2} ||v||_{V_{\theta}}^{2} \leq \frac{4^{(\delta+1)\theta}}{\lambda_{0}^{2\theta}} \bigg(\sum_{m \in \hat{\mathbb{Z}}^{d}} |m|^{-2(\delta+1)\theta} \bigg) ||u||_{V_{\theta}}^{2} ||v||_{V_{\theta}}^{2}, \end{split}$$

where the last step is due to $4\sigma - 2(\delta + 1)\theta + 2 \le 0$ mentioned above. Combining this with (2.3) and (2.4), we prove (A3) for the desired K_2 which is finite since $\theta \ge \frac{2\sigma + 1}{\delta + 1}$ and $\sigma > \frac{d}{4}$ imply that $2(\delta + 1)\theta \ge 4\sigma + 1 > d$.

3 Proofs of Theorem 1.1 and consequences

We first present an exponential estimate of the solution, which will be used in the proof of Theorem 1.1.

Lemma 3.1. In the situation of Theorem 1.1, we have

$$\mathbb{E} \exp \left[\frac{\lambda_0^2}{2\|Q\|^2} \int_0^t \|X_s^x\|_V^2 \mathrm{d}s \right] \le \exp \left[\frac{\lambda_0^2}{2\|Q\|^2} (\|x\|_H^2 + \|Q\|_{HS}^2 t) \right], \quad x \in H, t \ge 0.$$

Moreover, for any t > 0 and $x \in H$,

$$\mathbb{E} \exp \left[\frac{2}{\|Q\|^2 \mathrm{e}t} \int_0^t \|X_s^x\|_V^2 \mathrm{d}s \right] \le \exp \left[\frac{2}{\|Q\|^2 t} (\|x\|_H^2 + \|Q\|_{HS}^2 t) \right].$$

Proof. (a) Since $\langle B(u,v),v\rangle=0$, by the Itô formula we have

(3.1)
$$d\|X_t^x\|_H^2 \le -2\|X_t^x\|_V^2 dt + \|Q\|_{HS}^2 dt + 2\langle X_t^x, Q dW_t \rangle.$$

Let

$$\tau_n := \inf\{t \ge 0 : ||X_t^x||_H \ge n\}.$$

By Theorem 4.1 below we have $\tau_n \to \infty$ as $n \to \infty$. So, for any $\lambda > 0$ and $n \ge 1$,

$$\mathbb{E} \exp \left[\lambda \int_0^{t \wedge \tau_n} \|X_s^x\|_V^2 \mathrm{d}s\right] \le \mathbb{E} \exp \left[\frac{\lambda}{2} (\|x\|_H^2 + \|Q\|_{HS}^2 t) + \lambda \int_0^{t \wedge \tau_n} \langle X_s^x, Q \mathrm{d}W_s \rangle\right]$$

$$\le \exp \left[\frac{\lambda}{2} (\|x\|_H^2 + \|Q\|_{HS}^2 t)\right] \left(\mathbb{E} \exp \left[2\lambda^2 \|Q\|^2 \int_0^{t \wedge \tau_n} \|X_s^x\|_H^2 \mathrm{d}s\right]\right)^{1/2} < \infty.$$

Since $\|\cdot\|_H^2 \leq \frac{1}{\lambda_0} \|\cdot\|_V^2$, this implies that

$$\mathbb{E} \exp \left[\lambda \int_0^{t \wedge \tau_n} \|X_s^x\|_V^2 ds \right] \le e^{\frac{\lambda}{2} (\|x\|_H^2 + \|Q\|_{HS}^2 t)} \left(\mathbb{E} \exp \left[\frac{2\lambda^2 \|Q\|^2}{\lambda_0} \int_0^{t \wedge \tau_n} \|X_s^x\|_V^2 ds \right] \right)^{1/2}.$$

Letting $\lambda = \frac{\lambda_0^2}{2\|Q\|^2}$, we obtain

$$\mathbb{E} \exp \left[\frac{\lambda_0^2}{2\|Q\|^2} \int_0^{t \wedge \tau_n} \|X_s^x\|_V^2 ds \right] \le \exp \left[\frac{\lambda_0^2}{2\|Q\|^2} (\|x\|_H^2 + \|Q\|_{HS}^2 t) \right].$$

This proves the first inequality by letting $n \to \infty$.

(b) Next, due to the first inequality and the Jensen inequality, we only have to prove the second one for $t \leq \lambda_0^{-2}$. In this case, let

$$\beta(s) = e^{(\lambda_0^2 - t^{-1})s}, \quad s \in [0, t].$$

By the Itô formula, we have

 $d\|X_s^x\|_H^2\beta(s) = \left\{-2\|X_s^x\|_V^2\beta(s) + \beta'(s)\|X_s^x\|_H^2 + \beta(s)\|Q\|_{HS}^2\right\}ds + 2\beta(s)\langle X_s^x, QdW_s\rangle.$ Thus, for any $\lambda > 0$,

$$\mathbb{E} \exp \left[2\lambda \int_{0}^{t \wedge \tau_{n}} \|X_{s}^{x}\|_{V}^{2} \beta(s) ds - \lambda \|x\|_{H}^{2} - \lambda \|Q\|_{HS}^{2} t \right] \\
\leq \mathbb{E} \exp \left[2\lambda \int_{0}^{t \wedge \tau_{n}} \beta(s) \langle X_{s}^{x}, Q dW_{s} \rangle + \lambda \int_{0}^{t \wedge \tau_{n}} \beta'(s) \|X_{s}^{x}\|_{H}^{2} ds \right] \\
\leq \left(\mathbb{E} \exp \left[2\lambda \int_{0}^{t \wedge \tau_{n}} \|X_{s}^{x}\|_{V}^{2} \beta(s) ds \right] \right)^{1/2} \left(\mathbb{E} \exp \left[4\lambda \int_{0}^{t \wedge \tau_{n}} \beta(s) \langle X_{s}^{x}, Q dW_{s} \rangle - 2\lambda \int_{0}^{t \wedge \tau_{n}} \|X_{s}^{x}\|_{H}^{2} \left(\lambda_{0}^{2} \beta(s) - \beta'(s) \right) ds \right] \right)^{1/2}.$$

Note that the first inequality in the above display implies that

$$\mathbb{E} \exp \left[2\lambda \int_0^{t \wedge \tau_n} \|X_s^x\|_V^2 \beta(s) ds \right] < \infty, \quad n \ge 1.$$

Let

$$\lambda = \frac{1}{t||Q||^2}.$$

By our choice of $\beta(s)$ and noting that $t \leq \lambda_0^{-2}$ so that $\beta(s) \leq 1$, we have

$$\frac{1}{2}(4\lambda)^2 \beta(s)^2 ||Q||^2 \le 2\lambda^2 \beta(s) ||Q||^2 \le 2\lambda (\lambda_0^2 \beta(s) - \beta'(s)).$$

Therefore,

$$\mathbb{E} \exp \left[4\lambda \int_0^{t \wedge \tau_n} \beta(s) \langle X_s^x, Q dW_s \rangle - 2\lambda \int_0^{t \wedge \tau_n} \|X_s^x\|_H^2 (\lambda_0^2 \beta(s) - \beta'(s)) ds \right] \le 1.$$

Combining this with (3.2) for $\lambda = (t||Q||^2)^{-1}$, we obtain

$$\mathbb{E} \exp \left[\frac{2}{\|Q\|^2 e t} \int_0^{t \wedge \tau_n} \|X_s^x\|_V^2 ds \right] \le \exp \left[\frac{2}{\|Q\|^2 t} (\|x\|_H^2 + \|Q\|_{HS}^2 t) \right].$$

This completes the proof by letting $n \to \infty$.

Proof of Theorem 1.1. Simply denote $X_s = X_s^x$, which solves (2.1) for $X_0 = x$. For given $h \in V_\theta$ and $\varepsilon > 0$, by Theorem 4.1 below the equation

(3.3)
$$dY_s = QdW_s - \left\{ LY_s + B(X_s) + \frac{\varepsilon}{t} e^{-Ls} h \right\} ds, \quad Y_0 = x + \varepsilon h$$

has a unique solution. So,

$$d(X_s - Y_s) = -L(X_s - Y_s)ds + \frac{\varepsilon}{t}e^{-Ls}hds.$$

This implies that

(3.4)
$$X_{s} - Y_{s} = e^{-Ls}(X_{0} - Y_{0}) + \frac{\varepsilon}{t} \int_{0}^{s} e^{-L(s-r)} e^{-Lr} h dr$$
$$= \frac{\varepsilon(t-s)}{t} e^{-Ls} h =: Z_{s}, \quad s \in [0, t].$$

Let

$$\eta_s = B(X_s + Z_s) - B(X_s) - \frac{\varepsilon}{t} e^{-Ls} h,$$

which is well-defined since according to Lemma 3.1, $X \in V$ holds $\mathbb{P} \times ds$ -a.e. Then, by (3.4) the equation (3.3) reduces to

(3.5)
$$dY_s = QdW_s - \{LY_s + B(Y_s)\}ds + \eta_s ds = Qd\tilde{W}_s - \{LY_s + B(Y_s)\}ds,$$

where

$$\tilde{W}_s := W_s + \int_0^s Q^{-1} \eta_r dr, \quad s \in [0, t].$$

By (A0) and (A3) we have

(3.6)
$$\|Q^{-1}\eta_s\|_H^2 \leq \frac{2\varepsilon^2 K_1^2}{t^2} \|h\|_{V_{\theta}}^2 + 2\|\tilde{B}(X_s, Z_s) + B(z_s, z_s)\|_Q^2$$

$$\leq \varepsilon^2 C(t) (\|h\|_{V_{\theta}}^2 + \varepsilon^2 \|h\|_{V_{\theta}}^4 + \|h\|_{V_{\theta}}^2 \|X_s\|_{V_{\theta}}^2).$$

Since $\theta \leq 1$ so that $\|\cdot\|_{V_{\theta}} \leq c\|\cdot\|_{V}$ holds for some constant c > 0, combining (3.6) with Lemma 3.1 we concluded that

$$\mathbb{E}e^{\int_0^t \|\eta_s\|_Q^2 ds} < \infty$$

holds for small enough $\varepsilon > 0$. By the Girsanov theorem, in this case

$$R_s := \exp\left[-\int_0^s \langle Q^{-1}\eta_r, dW_r \rangle - \frac{1}{2} \int_0^s \|\eta_r\|_Q^2 dr\right], \quad s \in [0, t]$$

is a martingale and $\{\tilde{W}_s\}_{s\in[0,t]}$ is the cylindrical Brrownian motion on H under the probability measure $\mathbb{R}_t\mathbb{P}$. Combining this with (3.5) and the fact that $Y_t=X_t$ due to (3.4), for small $\varepsilon>0$ we have

$$P_t f(x + \varepsilon h) = \mathbb{E}[R_t f(Y_t)] = \mathbb{E}[R_t f(X_t)].$$

Therefore, by the dominated convergence theorem due to Lemma 3.1 and (3.6), we conclude that

$$\begin{split} &D_h P_t f(x) := \lim_{\varepsilon \to 0} \frac{P_t f(x + \varepsilon h) - P_t f(x)}{\varepsilon} \\ &= \lim_{\varepsilon \to 0} \mathbb{E} \left[\frac{R_t - 1}{\varepsilon} f(X_t) \right] = -\mathbb{E} \left\{ f(X_t) \lim_{\varepsilon \to 0} \int_0^t \left\langle Q^{-1} \frac{\eta_s}{\varepsilon}, \mathrm{d}W_s \right\rangle \right\} \\ &= -\mathbb{E} \left\{ f(X_t) \int_0^t \left\langle Q^{-1} \left(\frac{t - s}{t} \tilde{B}(\mathrm{e}^{-Ls} h, X_s) - \frac{1}{t} \mathrm{e}^{-Ls} h \right), \mathrm{d}W_s \right\rangle \right\}, \end{split}$$

where the last step is due to the bilinear property of B, which implies that

$$\frac{\eta_s}{\varepsilon} = \frac{1}{\varepsilon} \tilde{B}(X_s, z_s) + \frac{1}{\varepsilon} B(Z_\varepsilon) - \frac{1}{t} e^{-Ls} h$$

$$= \frac{t - s}{t} \tilde{B}(X_s, e^{-Ls} h) - \frac{1}{t} e^{-Ls} h + \frac{\varepsilon(t - s)}{t} B(e^{-Ls} h, e^{-Ls} h).$$

Proof of Corollary 1.2. (1) By (1.2) and the Schwartz inequality, for any h with $||h||_{V_{\theta}} \leq 1$, we have

(3.7)
$$|D_h P_t f(x)|^2 \le (P_t f(x))^2 \mathbb{E} \int_0^t \left\| \frac{1}{t} e^{-Ls} h - \frac{t-s}{t} \tilde{B}(X_s^x, h) \right\|_Q^2 ds \\ \le 2(P_t f^2(x)) \left\{ \frac{K_1}{t} + \mathbb{E} \int_0^t \|\tilde{B}(X_s^x, h)\|_Q^2 ds \right\},$$

where the last step is due to the fact that (A0) implies

(3.8)
$$\|\mathbf{e}^{-Ls}h\|_{Q}^{2} \le K_{1}\|\mathbf{e}^{-Ls}h\|_{V_{\theta}}^{2} \le K_{1}\|h\|_{V_{\theta}}^{2}.$$

Next, by (A3) and $\theta \leq 1$ we have

(3.9)
$$\|\tilde{B}(X_s^x, h)\|_Q^2 \le 4K_2 \|h\|_{V_\theta}^2 \|X_s^x\|_{V_\theta}^2 \le \frac{4K_2}{\lambda_0^{1-\theta}} \|X_s^x\|_V^2.$$

Combining this with (3.1) we obtain

$$\mathbb{E} \int_0^t \|\tilde{B}(X_s^x, h)\|_Q^2 ds \le \frac{2K_2}{\lambda_0^{1-\theta}} (\|x\|_H^2 + \|Q\|_{HS}^2 t).$$

The proof of (1) is completed by this and (3.7).

(2) Let $f \geq 0$ and h be such that $||h||_{V_{\theta}} \leq 1$. Let

$$M_t = \int_0^t \left\langle Q^{-1} \left(\frac{t-s}{t} \tilde{B}(e^{-Ls} h, X_s) - \frac{1}{t} e^{-Ls} h \right), dW_s \right\rangle.$$

By (1.2) and the Young inequality (see e.g. [2, Lemma 2.4]),

$$(3.10) |D_h P_t f(x)| \le \delta \{ P_t (f \log f) - (P_t f) \log P_t f \}(x) + \{ \delta \log \mathbb{E} e^{\frac{1}{\delta} M_t} \} P_t f(x), \quad \delta > 0.$$

Since by (3.8) and (3.9) we have

(3.11)
$$\langle M \rangle_t = \int_0^t \left\| \frac{1}{t} e^{-Ls} h - \frac{t-s}{t} \tilde{B}(X_s^x, h) \right\|_Q^2 ds$$

$$\leq \frac{2K_1}{t} + \frac{4K_2}{\lambda_0^{1-\theta}} \int_0^t \|X_s^x\|_V^2 ds,$$

it follows from Lemma 3.1 that for any $\delta \geq \delta_0 := 4\sqrt{K_2} \|Q\| \lambda_0^{(\theta-3)/2}$,

$$\mathbb{E} \exp\left[\frac{1}{\delta}M_{t}\right] \leq \left(\mathbb{E} \exp\left[\frac{2}{\delta^{2}}\langle M\rangle_{t}\right]\right)^{1/2} \leq \left(\mathbb{E} \exp\left[\frac{2}{\delta^{2}_{0}}\langle M\rangle_{t}\right]\right)^{\delta^{2}_{0}/(2\delta^{2})}$$

$$\leq \exp\left[\frac{2K_{1}}{\delta^{2}t}\right] \left(\mathbb{E} \exp\left[\frac{8K_{2}}{\delta^{2}_{0}\lambda_{0}^{1-\theta}}\int_{0}^{t}\|X_{s}^{x}\|_{V}^{2}\mathrm{d}s\right]\right)^{\delta^{2}_{0}/(2\delta^{2})}$$

$$= \exp\left[\frac{2K_{1}}{\delta^{2}t}\right] \left(\mathbb{E} \exp\left[\frac{\lambda_{0}^{2}}{2\|Q\|^{2}}\int_{0}^{t}\|X_{s}^{x}\|_{V}^{2}\mathrm{d}s\right]\right)^{\delta^{2}_{0}/(2\delta^{2})}$$

$$\leq \exp\left\{\frac{2K_{1}}{\delta^{2}t} + \frac{\lambda_{0}^{2}\delta^{2}_{0}}{4\delta^{2}\|Q\|^{2}}(\|x\|_{H}^{2} + \|Q\|_{HS}^{2}t)\right\}$$

$$= \exp\left\{\frac{2}{\delta^{2}}\left(\frac{K_{1}}{t} + \frac{2K_{2}}{\lambda_{0}^{1-\theta}}(\|x\|_{H}^{2} + \|Q\|_{HS}^{2}t)\right)\right\}.$$

Combining this with (3.10) we prove (2).

(3) According to e.g. [4, proof of Proposition 4.1]), the V_{θ} -strong Feller property of P_t follows from the claimed Harnack inequality, which we prove below by using an argument in [2, Proof of Theorem 1.2]. Let $x \neq y$ be such that

(3.12)
$$||x - y||_{V_{\theta}} \le \frac{\alpha - 1}{\alpha \delta_0} \text{ for } \delta_0 := \frac{4||Q||\sqrt{K_2}}{\lambda_0^{(3-\theta)/2}}.$$

Let

$$\beta_s = 1 + s(\alpha - 1), \quad \gamma_s = x + s(y - x), \quad s \in [0, 1].$$

We have

$$\frac{d}{ds} \log(P_{t}f^{\beta(s)})^{\alpha/\beta(s)}(\gamma_{s})
= \frac{\alpha(\alpha - 1)}{\beta(s)^{2}} \cdot \frac{P_{t}(f^{\beta(s)} \log f^{\beta(s)}) - (P_{t}f^{\beta(s)}) \log P_{t}f^{\beta(s)}}{P_{t}f^{\beta(s)}}(\gamma_{s}) + \frac{\alpha D_{y-x}P_{t}f^{\beta(s)}}{\beta(s)P_{t}f^{\beta(s)}}(\gamma_{s})
\geq \frac{\alpha \|x - y\|_{V_{\theta}}}{\beta(s)P_{t}f^{\beta(s)}(\gamma_{s})} \left\{ \frac{\alpha - 1}{\beta(s)\|x - y\|_{V_{\theta}}} \left(P_{t}(f^{\beta(s)} \log f^{\beta(s)}) - (P_{t}f^{\beta(s)}) \log P_{t}f^{\beta(s)} \right) (\gamma_{s}) - \|DP_{t}f^{\beta(s)}(\gamma_{s})\|_{V_{\theta}}^{*} \right\}.$$

Therefore, applying (2) to

$$\delta := \frac{\alpha - 1}{\beta(s) \|x - y\|_{V_{\theta}}}$$

which is larger than δ_0 according to (3.12), we obtain

$$\frac{\mathrm{d}}{\mathrm{d}s} \log(P_t f^{\beta(s)})^{\alpha/\beta(s)}(\gamma_s) \ge -\frac{2\alpha \|x - y\|_{V_{\theta}}}{\delta\beta(s)} \left\{ \frac{K_1}{t} + \frac{2K_2}{\lambda_0^{1-\theta}} (\|\gamma_s\|_H^2 + \|Q\|_{HS}^2 t) \right\}
\ge -\frac{2\alpha \|x - y\|_{V_{\theta}}^2}{\alpha - 1} \left\{ \frac{K_1}{t} + \frac{2K_2}{\lambda_0^{1-\theta}} (\|x\|_H^2 \vee \|y\|_H^2 + \|Q\|_{HS}^2 t) \right\}.$$

П

Integrating over [0,1] w.r.t. ds, we derive the desired Harnack inequality.

Proof of Corollary 1.3. Since $u \mapsto \|u\|_V^2$ is a compact function on H, i.e. for any r > 0 the set $\{u \in H : \|u\|_V \le r\}$ is relatively compact in H, (3.1) implies the existence of the invariant probability measure satisfying (1) by a standard argument (see e.g. [15, Proof of Theorem 1.2]). Moreover, any invariant probability measure μ satisfies $\mu(\|\cdot\|_V^2) < \infty$, hence, $\mu(V) = 1$. Below, we assume $\theta \in (0,1)$ and prove (1) and (2) repsectively.

(1) Let μ be an invariant probability measure, we first prove it has full support on μ .

$$r_0 = \frac{\lambda_0^{(3-\theta)/2}}{8\|Q\|\sqrt{K_2}}.$$

By Corollary 1.2(3) for $\alpha = 2$, for any fixed t > 0 there exists a constant C(t) > 0 such that

$$(P_t f(x))^2 \le (P_t f^2(y)) e^{C(t)(\|x\|_H^2 + \|y\|_H^2)}, \|x - y\|_{V_\theta} \le r_0.$$

Applying this inequality n times, we may find a constant c(t,n) > 0 such that

$$(3.13) (P_t f(x))^{2n} \le (P_t f^{2n}(y)) e^{C(t,n)(\|x\|_H^2 + \|y\|_H^2)}, \quad \|x - y\|_{V_{\theta}} \le n r_0.$$

Since V is dense in V_{θ} , to prove that μ has full support on V_{θ} , it suffices to show that

(3.14)
$$\mu(B_{\theta}(x,\varepsilon)) > 0, \quad x \in V, \varepsilon > 0$$

holds for $B_{\theta}(x,\varepsilon) := \{y : ||y-x||_{V_{\theta}} < \varepsilon\}$. Since $\mu(V_{\theta}) = 1$, there exists $n \ge 1$ such that $\mu(B_{\theta}(x,nr_0)) > 0$. Applying (3.13) to $f = 1_{B_{\theta}(x,\varepsilon)}$ we obtain

$$\mathbb{P}(\|X_t^x - x\|_{V_{\theta}} < \varepsilon)^{2n} \int_{B_{\theta}(x, nr_0)} e^{-C(t, n)(\|x\|_H^2 + \|y\|_H^2)} \mu(\mathrm{d}y) \le \mu(B_{\theta}(x, \varepsilon)).$$

So, if $\mu(B_{\theta}(x,\varepsilon)) = 0$ then

$$(3.15) \qquad \mathbb{P}(\|X_t^x - x\|_{V_\theta} \ge \varepsilon) = 1, \quad t > 0.$$

To see that this is impossible, let us observe that for any $m \ge 1$ there exists a constant c(m) > 0 such that

(3.16)
$$\|\cdot\|_{V_{\theta}}^{2} \leq c(m)\|\cdot\|_{H}^{2} + \frac{1}{(\lambda_{0}m)^{1-\theta}}\|\cdot\|_{V}^{2}$$

holds. Moreover, using $\langle \cdot, \cdot \rangle$ to denote the duality w.r.t H, we have

$$2\langle X_t^x - x, LX_t^x \rangle = 2\|X_t^x - x\|_V^2 + 2\langle X_t^x - x, Lx \rangle$$

$$\geq 2\|X_t^x - x\|_V^2 - 2\|X_t^x - x\|_V\|x\|_V \geq \|X_t^x - x\|_V^2 - \|x\|_V^2$$

and due to (A1) and (A2),

$$2\langle X_t^x - x, B(X_t^x) \rangle = -2\langle x, B(X_t^x) \rangle \le 2C \|x\|_H \|X_t^x\|_V \|X_t^x\|_H \le \frac{1}{2} \|X_t^x - x\|_V^2 + c_1 + c_2 \|X_t^x\|_H^2$$

holds for some constants c_1, c_2 depending on x. Therefore, by the Itô formula for $||X_t^x - x||_H^2$, we arrive at

$$d\|X_t^x - x\|_H^2 = \{\|Q\|_{HS}^2 - 2\langle X_t^x - x, LX_t^x \rangle + 2\langle X_t^x - x, B(X_t^x) \rangle \} dt + 2\langle X_t^x - x, QdW_t \rangle$$

$$\leq -\frac{1}{2} \|X_t^x - x\|_V^2 dt + (c_3 + c_2 \|X_t^x\|_H^2) dt + 2\langle X_t^x - x, QdW_t \rangle$$

for some constant $c_3 > 0$. Since by Theorem 4.1 below $\mathbb{E} \sup_{t \in [0,1]} ||X_t||_H^2 < \infty$, this and the continuity of X_s^x in s imply

$$\lim_{t \to 0} \frac{1}{t} \int_0^t \|X_s^x - x\|_H^2 ds = 0$$

and

$$\mathbb{E} \int_0^t \|X_t^x - x\|_V^2 ds \le c_0 t, \quad t \in [0, 1]$$

for some constant $c_0 > 0$. Combining these with (3.16), we conclude that

$$\limsup_{t \to 0} \frac{1}{t} \int_0^t \mathbb{E} ||X_s^x - x||_{V_{\theta}}^2 ds \le \frac{c_0}{(\lambda_0 m)^{1-\theta}}, \quad m \ge 1.$$

Letting $m \to \infty$ we obtain

$$\lim_{t \to 0} \frac{1}{t} \int_0^t \mathbb{E} ||X_s^x - x||_{V_\theta}^2 ds = 0.$$

this is contractive to (3.15).

Next, if the invariant probability measure is not unique, we may take two different extreme elements μ_1, μ_2 of the set of all invariant probability measures. It is well-known that μ_1 and μ_2 are singular with each other. Let D be a μ_1 -null set, since μ_1 has full support on V_{θ} and $P_t 1_D$ is continuous and $\mu_1(P_t 1_D) = \mu_1(D) = 0$, we have $P_t 1_D \equiv 0$. Thus, $\mu_2(D) = \mu_2(P_t 1_D) = 0$. This means that μ_2 has to be absolutely continuous w.r.t. μ_1 , which is contradictive to the singularity of μ_1 and μ_2 .

(2) As observe above that $P_t 1_D \equiv 0$ for any μ -null set D. So, P_t has a transition density $p_t(x, y)$ w.r.t. μ on V_{θ} . Next, let $f \geq 0$ such that $\mu(f^{\alpha}) \leq 1$. By the Harnack inequality in Corollary 1.2(3), we have

$$(P_t f(x))^{\alpha} \int_{B_{\theta}(x,r_0)} \exp\left[-\frac{2\alpha \|x-y\|_{V_{\theta}}^2}{\alpha-1} \left\{ \frac{K_1}{t} + \frac{2K_2}{\lambda_0^{1-\theta}} (\|x\|_H^2 \vee \|y\|_H^2 + \|Q\|_{HS}^2 t) \right\} \right] \mu(\mathrm{d}y) \le 1.$$

Then the desired estimate on $\int p_t(x,z)^{(\alpha+1)/\alpha a} \mu(\mathrm{d}z)$ follows by taking

$$f(\cdot) = p_t(x, \cdot).$$

Proof of Theorem 1.4. (1) Let M_t be in the proof of Corollary 1.2 (2). By (3.11), for $\delta > 0$ we have

$$\mathbb{E} \exp\left[\frac{M_t}{\delta}\right] \le \left(\mathbb{E} \exp\left[\frac{2\langle M \rangle_t}{\delta^2}\right]\right)^{1/2}$$

$$\le \exp\left[\frac{2K_1}{\delta^2 t}\right] \left(\exp\left[\frac{8K_2}{\lambda_0^{1-\theta}\delta^2} \int_0^t \|X_s^x\|_V^2 ds\right]\right)^{1/2}.$$

If $t \leq t_{\delta}$ then

$$\frac{8K_2}{\lambda_0^{1-\theta}\delta^2} \le \frac{2\lambda_0^2}{\|Q\|^2 et},$$

so that by the Jensen inequality and the second inequality in Lemma 3.1,

$$\mathbb{E} \exp\left[\frac{M_t}{\delta}\right] \le \exp\left[\frac{2K_1}{\delta^2 t}\right] \left(\exp\left[\frac{2\lambda_0^2}{\|Q\|^2 e t} \int_0^t \|X_s^x\|_V^2 ds\right]\right)^{\frac{2K_2\|Q\|^2 e t}{\delta^2 \lambda_0^{3-\theta}}}$$
$$\le \exp\left[\frac{2K_1}{\delta^2 t} + \frac{4K_2 e}{\delta^2 \lambda_0^{1-\theta}}\right], \quad t \le t_\delta.$$

Combining this with (3.10) we prove the desired gradient estimate for $t \leq t_{\delta}$. By the gradient estimate for $t = t_{\delta}$ and the semigroup property, when $t > t_{\delta}$ we have

$$||DP_{t}f(x)||_{V_{\theta}^{*}} = ||DP_{t_{\delta}}(P_{t-t_{\delta}}f)(x)||_{V_{\theta}^{*}} \leq \delta \left\{ P_{t_{\delta}}((P_{t-t_{\delta}}f)\log P_{t-t_{\delta}}f) - (P_{t}f)\log P_{t}f \right\}(x) + \frac{2}{\delta} \left\{ \frac{K_{1}}{t_{\delta}} + \frac{2K_{2}e}{\lambda_{0}^{1-\theta}} (||x||_{H}^{2} + ||Q||_{HS}^{2}t) \right\} P_{t}f(x).$$

This implies the desired gradient estimate for $t > t_{\delta}$ since due to the Jensen inequality

$$P_{t_{\delta}}((P_{t-t_{\delta}}f)\log P_{t-t_{\delta}}f) \leq P_{t}f\log f.$$

(2) Repeating the proof of Corollary 1.3 (3) using the inequality in Theorem 1.4 (1) instead of Corollary 1.2 (2) for $\delta = \frac{\alpha - 1}{\beta(s)||x - y||_{V_{\theta}}}$, we obtain

$$\frac{\mathrm{d}}{\mathrm{d}s} \left(\log P_t f^{\beta(s)} \right)^{\alpha/\beta(s)} \ge -\frac{2\alpha \|x - y\|_{V_{\theta}}^2}{\alpha - 1} \left\{ \frac{K_1}{t \wedge t_{\delta}} + \frac{2K_2 \mathrm{e}}{\lambda_0^{1-\theta}} \left(\|x\|_H^2 \vee \|y\|_H^2 + \|Q\|_{HS}^2 t \right) \right\}.$$

This completes the proof by integrating over [0,1] w.r.t. ds and noting that

$$t_{\delta} = \frac{\delta^2 \lambda_0^{3-\theta}}{4\|Q\|^2 e K_2} \ge \frac{(\alpha - 1)^2 \lambda_0^{3-\theta}}{4\alpha^2 \|Q\|^2 K_2 e \|x - y\|_{V_a}^2}$$

since

$$\delta = \frac{\alpha - 1}{\beta(s) \|x - y\|_{V_{\theta}}} \ge \frac{\alpha - 1}{\alpha \|x - y\|_{V_{\theta}}}.$$

4 Appendix

We aim to verify the existence and uniqueness of the solution to (1.1) by using the main result of [8].

Theorem 4.1. Assume (A1) and (A2). For any $X_0 \in H$ the equation (1.1) has a unique solution X_t , which is a continuous Markov process on H such that

$$\mathbb{E}\left(\sup_{t\in[0,T]}\|X_t\|_H^p + \int_0^T \|X_t\|_V^2 dt\right) < 0$$

holds for any p > 1 and \mathbb{P} -a.s.

$$X_t = X_0 - \int_0^t (LX_s + B(X_s)) ds + QW_t, \quad t \ge 0$$

 $holds \ on \ H.$

Proof. Let V^* be the dual space of V w.r.t. H. Then for any $v \in V$,

$$A(v) := -(Lv + B(v)) \in V^*.$$

It suffices to verify assumptions (H1)-(H4) in [8, Theorem 1.1] for the functional A. The hemicontinuity assumption H1) follows immediately form the bilinear property of B. Next, by (A2) and the bilinear property of B, we have

$$V^*\langle A(v_1) - A(v_2), v_1 - v_2 \rangle_V = -\|v_1 - v_2\|_V^2 + \|B(v_2 - v_1, v_1), v_1 - v_2 \rangle_V$$

$$\leq -\|v_1 - v_2\|_V^2 + C\|v_1 - v_2\|_H^2 \|v_1\|_V^2.$$

So, the assumption (H2) in [8] holds for $\rho(v) := c \|v\|_V^2$. Moreover, by (A1) we have

$$_{V^*}\langle A(v), v\rangle_V \le -\|v\|_V^2.$$

Thus, the coercivity assumption (H3) in [8] holds for $\theta = 1$, $\alpha = 2$, K = 0 and f =constant. Finally, (A2) implies that

$$||A(v)||_{V^*}^2 \le 2||v||_V^2 + 2||L^{-1/2}B(v)||_H^2 \le 2||v||_V^2 + \frac{2c}{\lambda_0}||v||_H^2||v||_V^2.$$

Therefore, the growth condition (H4) in [8] holds for some constant f, K > 0 and $\alpha = \beta = 2$.

References

- [1] M. Arnaudon, A. Thalmaier, F.-Y. Wang, Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below, Bull. Sci. Math. 130(2006), 223–233.
- [2] M. Arnaudon, A. Thalmaier and F.-Y. Wang, Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stoch. Proc. Appl. 119(2009), 3653–3670.
- [3] G. Da Prato, A. Debussche, Ergodicity for the 3D stochastic Navier-Stokes equations, J. Math. Pures Appl. 82(2003), 877–947.
- [4] G. Da Prato, M. Röckner and F.-Y. Wang, Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups, J. Funct. Anal. 257(2009), 992–1017.
- [5] F. Flandoli, M. Romito, Markov selections for the 3D stochastic Navier-Stokes equations, Probab. Theory Relat. Fields 140(2008), 407–458.
- [6] M. Hairer, J. C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math. 164(2006), 993–1032.

- [7] W. Liu, Doctor-Thesis, Bielefeld University, 2009.
- [8] W. Liu, M. Röckner, SPDE in Hilbert space with locally monotone coefficients, arXiv:1005.0632v1, 2010.
- [9] W. Liu and F.-Y. Wang, Harnack inequality and strong Feller property for stochastic fast diffusion equations, J. Math. Anal. Appl. 342(2008), 651–662.
- [10] S.-X. Ouyang, Doctor-Thesis, Bielefeld University, 2009.
- [11] S.-X. Ouyang, M. Röckner and F.-Y. Wang, Harnack inequalities and applications for Ornstein-Uhlenbeck semigroups with jump, arXiv:0908.2889
- [12] M. Romito, L. Xu, HErgodicity of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noise, 2009 Preprint.
- [13] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis (2nd Ed), CBMS-NSF Regional Conference Series in Appl. Math. V66, SIAM, Philadelphia, 1995.
- [14] F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields 109(1997), 417–424.
- [15] F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab. 35(2007), 1333–1350.