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TRANSCENDENCE DEGREE OF ZERO-CYCLES AND THE

STRUCTURE OF CHOW MOTIVES

S. GORCHINSKIY, V. GULETSKĬI

Abstract. In the paper we introduce a transcendence degree of a zero-
cycle on a smooth projective variety X and relate it to the structure of
the motive of X . In particular, we show that in order to prove Bloch’s
conjecture for a smooth projective complex surface X of general type with
pg = 0 it suffices to prove that one single point of a transcendence degree
2 in X(C), over the minimal subfield of definition k ⊂ C of X , is rationally
equivalent to another single point of a transcendence degree zero over k.
This can be of particular interest in the context of Bloch’s conjecture for
those surfaces which admit a concrete presentation, such as Mumford’s fake
surface, see [13].

1. Introduction

Since [3] we know that the generic point, considered as a zero-cycle, plays
an important role in the study of algebraic cycles on a smooth projective
variety X over a field k, because it can be considered as a specialization of the
diagonal carrying the motivic information at large. More precisely, let k be an
algebraically closed field, let d be the dimension of X , and let K = k(X) be
the function field on X . Consider a pull-back homomorphism

Φ : CHd(X ×X) → CHd(XK)

induced by the embedding of the generic point η = Spec(K) into X . The
kernel of Φ is generated by correspondences supported on Z × X , where Z
runs Zariski closed subschemes in X different from X itself, see [10]. Hence,
various motivic effects, given originally in terms of correspondences, i.e. cycle
classes in CHd(X×X), can be expressed in terms of zero-cycles onXK , modulo
motives of varieties of dimension < d.
Assume, for example, thatX is a surface of general type over an algebraically

closed field k, and the second Weil cohomology group H2(X) is algebraic. Let
∆X be the diagonal on X ×X . Its specialization

Pη = Φ(∆)

is the generic point η viewed as a zero-cycle on XK . Fix now a k-rational
point P0 on X . Let Ω be a universal domain containing k and embed K into
Ω over k. In the paper we will show, see Corollary 8, that if Pη is rationally
equivalent to P0 on XΩ then any point P is rationally equivalent to any other

2000 Mathematics Subject Classification. 14C15, 14C25.
Key words and phrases. algebraic cycles, rational equivalence, motives, balanced corre-

spondence, generic cycle, minimal field of definition, transcendence degree, Bloch’s conjec-
ture, rational curve.

1

http://arxiv.org/abs/1009.1434v2


2 S. GORCHINSKIY, V. GULETSKĬI

point Q on XΩ, i.e. Bloch’s conjecture hold’s for XΩ. As Bloch’s conjecture
is equivalent to finite-dimensionality of the motive M(XΩ), we see that the
above specialization map Φ allows to reformulated motivic effects at large in
terms of rational equivalence between two concrete points on XΩ.
Certainly, it is still not easy to prove (or disprove) rational equivalence

between the above points Pη and P0. One of the problems here consists of
the lack of rational curves on surfaces of general type with algebraic H2(X).
However, we believe that any further progress towards Bloch’s conjecture must
involve analysis of a possibility of an explicit rational deformation of Pη into
P0 on the surface XΩ.

The above picture can now be generalized as follows. Let X be a smooth
projective variety of dimension d over an algebraically closed field k. To any
zero-cycle Z =

∑

i niPi on X one can define its transcendence degree as the
maximum of transcendence degrees of the residue fields k(Pi). The transcen-
dence degree of a zero-cycle class α ∈ CHd(X) is the exact lower bound of
the transcendence degrees of representatives of α. Then the motive M(X) is
a direct summand of motives of varieties of dimensions < d, twisted by Lef-
schetz motives, if and only if the transcendence degree of any zero-cycle class
α ∈ CHd(X) is strictly smaller than d.
A nice thing is that the last assertion is also equivalent to the fact that there

exists a point P of transcendence degree d on XΩ, rationally equivalent to a
zero-cycle on X whose transcendence degree is strictly smaller than d. More
precisely, we prove the following theorem (see Theorem 7 in the text below):

For any smooth projective variety X of dimension d over k the following
conditions are equivalent:

(i) the class of the diagonal ∆X is balanced;
(ii) the Chow motive of X is a direct summand of a sum of motives
of varieties of dimension strictly smaller than d;
(iii) the transcendence degree of any zero-cycle class on XΩ is
strictly less than d;
(iv) there exists a closed point on XΩ whose transcendence degree
is d but the transcendence degree of its class modulo rational equiv-
alence is strictly less than d.

Acknowledgements. The first author was partially supported by the
grants RFBR 08-01-00095, NSh-4713.2010.1 and MK-297.2009.1. Both authors
are thankful to Artiom Brazovsky for the hospitality in his country-house in
Zadomlya (Belarus) where the draft version of this paper has been designed in
August 2010.
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2. Some motivic lemma

Below we will use the notation from [7]. In particular, all Chow groups will
be with coefficients in Q, unless the cases when integral coefficients will be
subscripted by Z. The category of Chow motives CM over a field k will be
contravariant. That is, if X and Y are two smooth projective varieties over k,
and X is decomposed in to its connected components Xj, then the group of
correspondences

CHm(X, Y )

of degree m from X to Y is a direct sum of the Chow groups

CHej+m(Xj × Y ) ,

where ej is the dimension of Xj. The composition of two correspondences
f ∈ CHn(X, Y ) and g ∈ CHm(Y, Z) is standard

g ◦ f = p13∗(p
∗

12(f) · p
∗

23(g)) ,

where the dot stands for the intersection of cycle classes in the sense of [6]. We
also have a contravariant functor M from the category of smooth projective
varieties over k to the category CM sending any variety X to its motive

M(X) = (X,∆X , 0) ,

where ∆X is the diagonal class of X , and any morphism f : X → Y maps to
the class of transposition of its graph

Γt
f ∈ CH0(X, Y ) .

The category of Chow motives CM is tensor, with the tensor product induced
by the products of varieties. The unite motive1 = (Spec(k),∆Spec(k), 0)

and the Lefschetz motiveL = (Spec(k),∆Spec(k),−1)

are related by the formula

M(P1) = 1⊕ L .

For any positive integer m let Lm be the m-fold tensor power of the Lefschetz
motive L, let L0 = 1 and let L−m = (L−1)⊗−m, whereL−1 = (Spec(k),∆Spec(k),−1) .

Further details on Chow motives can be found, for example, in [7].

The next notion we need is the notion of balancing. Let X and Y be two
equi-dimensional varieties over k. Similarly to [1], we say that a correspondence
α ∈ CHm(X, Y ) is balanced on the left (respectively, on the right) if there exists
an equi-dimensional Zariski closed subscheme Z ⊂ X , such that

dim(Z) < dim(X) ,

and an algebraic cycle Γ on X × Y , such that [Γ] = α in CHm(X, Y ) and the
support of Γ is contained in Z×X (respectively, in X×Z). The subscheme Z
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will be called a pan of balancing. We say that α ∈ CHm(X, Y ) is balanced if
α = α1+α2, where α1 is balanced on the left, and α2 is balanced on the right.

Balancing was discovered in [3] and [5]. It is a motivic notion and can be
restated in purely motivic terms:

Lemma 1. Let X and Y be equidimensional smooth projective varieties over
k, and let α ∈ CHm(X, Y ). Then α is balanced on the left if and only if there
exists an equidimensional smooth projective variety Z over k with

dim(Z) < dim(X) ,

such that α factors through M(Z), that is α is a composition

M(X) −→ M(Z) −→ M(Y )⊗ L−m .

Symmetrically, the correspondence α is balanced on the right if and only if
there exists an equidimensional smooth projective variety Z over k with

n = dim(Y )− dim(Z) > 0 ,

such that α is a composition

M(X) −→ M(Z)⊗ Ln−m −→ M(Y )⊗ L−m .

Proof. If m = 0 and the closed subscheme Z is smooth, then the lemma is just
obvious. Indeed, let i : Z →֒ X be the closed embedding, and let Γt

i be the
transpose of the graph of the embedding i. If α is balanced on the left then it
can be considered as a correspondence of degree zero from Z to Y . Therefore,
the correspondence α from X to Y is a composition of the correspondence Γt

i

with α as a correspondence from Z to Y .
The detailed proof of the lemma when Z is not necessarily smooth and

m 6= 0 is given in [7].

In the next section we will introduce the transcendence degree of a zero cycle
on a smooth projective variety and we will show how it is related to balancing
of the diagonal, and so the above motivic factorizations from Lemma 1.

3. Transcendence degree of zero-cycles

First we need to recall some well-known things from the theory of schemes.

Let k be a field, and let X be an algebraic scheme over k. Let k ⊂ K
be a field extension. Recall that a K-point on X is a morphism of schemes
P : Spec(K) → X over Spec(k). A subextension k ⊂ L ⊂ K is a field of
definition of the point P if there exists a morphism

pL : Spec(L) −→ X ,
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such that the following diagram is commutative

Spec(K)

$$HHHHHHHHHHHHHHHHHHHH

P
// X

Spec(L)

PL

<<zzzzzzzzzzzzzzzzzz

as a diagram over Spec(k).
Let ξP be the image of the unique point in Spec(L) with respect to the

morphism P , and let k(ξP ) be the residue field of the point ξP on the scheme
X . Then k(ξP ) is the minimal field of definition of the point P , i.e. the
initial object in the category of fields of definition of the point P , because
k(ξP ) →֒ L and the above morphism PL factors through the natural morphism
Spec(k(ξP )) → X .
By definition, the transcendence degree of the point P over the ground field

k is the transcendence degree of the field k(ξP ) over k:

tr.deg(P/k) = tr.deg(k(ξP )/k) .

Thus, the transcendence degree tr.deg(P/k) is the transcendence degree of
the minimal field of definition of the point P over the ground field k.
Notice that if k ⊂ L ⊂ K is a field subextension then one has a commutative

diagram

Spec(K)

$$HHHHHHHHHHHHHHHHHHHH

QL
// X ×Spec(k) Spec(L)

xxqqqqqqqqqqqqqqqqqqqqqqq

Spec(L)

Notice that the transcendence degree tr.deg(QL/L) can be different from the
transcendence degree tr.deg(P/k). For example, tr.deg(Pk(ξP )/k(ξP )) = 0.

Let Y be the Zariski closure of the schematic point ξP in X . Then Y is a
closed irreducible subscheme in X and

tr.deg(P/k) = dimk(Y ) .

It follows, in particular, that

tr.deg(P/k) ≤ dimk(X) .

Now we are going to introduce the notion of a transcendence degree of a
zero-cycle on a variety. Let Ω be a universal domain containing k. Suppose X
is an equidimensional variety, and let d be the dimension of X .
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Definition 2. A transcendence degree tr.deg(α/k) of a zero-cycle class α ∈
CHd(XΩ) over k is the minimal natural number n, such that there exists a
zero-cycle

Z =
∑

i

niPi

on XΩ representing the class α with the property

tr.deg(Pi/k) ≤ n

for all i.

The following properties of the transcendence degree for zero-cycles follow
directly from the above definition.

Lemma 3. Let X be an equidimensional variety over k of dimension d. Then
the following is true:

(i) for any element α ∈ CHd(XΩ) one has

tr.deg(α/k) ≤ d;

(ii) for all elements α, β ∈ CHd(XΩ) we have that

tr.deg((α + β)/k) ≤ max{tr.deg(α/k) , tr.deg(β/k)};

(iii) given a field subextension k ⊂ K ⊂ Ω and an element β ∈
CHd(XK), we have an inequality

tr.deg(β Ω/k) ≤ tr.deg(K/k) .

Remark 4. Not any cycle class α ∈ CHd(XΩ) is equal to β Ω, for some
β ∈ CHd(XK) and K with tr.deg(K/k) = tr.deg(α/k). Let, for example, X
be a smooth projective curve of genus at least two. Then there exists a point
P of transcendence degree at least two on the Jacobian variety Jac(X) of X
over k. Let α be a cycle class in the Chow group CH1(XΩ)0 of degree zero
0-cycles on the curve X corresponding to the point P under the isomorphism

CH1(XΩ)0 = Jac(X)Ω .

Then tr.deg(α) ≤ 1 because dim(X) = 1. Suppose now that α comes from
an element β ∈ CH1(XK)0 by means of the scalar extension from K to Ω,
where tr.deg(K/k) = 1. Since the isomorphism between the Chow group of
degree zero 0-cycles and the Jacobian commutes with scalar extensions of the
ground field, the point P must be defined over K, which is impossible as
tr.deg(P/k) = 2.

We will also use the following fact.

Lemma 5. Let X and Y be two smooth projective equidimensional varieties
over k, let d = dim(X), e = dim(Y ) and assume e < d. Let ϕ be a cor-
respondence of degree d − e from Y to X, that is ϕ is a morphism of Chow
motives

M(Y )⊗ L⊗(d−e) −→ M(X) .
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Then for any element α ∈ CHe(YΩ) one has

tr.deg((ϕΩ)∗(α)/k) ≤ tr.deg(α/k) .

Proof. Let
∑

i niPi be a zero-cycle on YΩ, such that

α =

[

∑

i

niPi

]

,

and
tr.deg(Pi/k) ≤ tr.deg(α/k)

for all i. By linearity of the push-forward homomorphism (ϕΩ)∗ and also by
Lemma 3 (ii), it is enough to show that

tr.deg((ϕΩ)∗[Pi]/k) ≤ tr.deg(Pi/k)

holds true for all indices i.
Let P be one of the points Pi. By the definition of a transcendence degree

of a point there exists a field K, such that

tr.deg(K/k) = tr.deg(P/k) ,

and a point W ∈ Y (K), such that

WΩ = P .

Moreover,
(ϕΩ)∗[P ] = ((ϕK)∗[W ])Ω .

Since (ϕK)∗[W ] ∈ CHd(XK), by Lemma 3(3), we see that

tr.deg((ϕΩ)∗[P ]/k) ≤ tr.deg(K/k) = tr.deg(P/k) ,

which completes the proof.

Remark 6. Certainly, one can also define the notion of a transcendence degree
for all closed irreducible subschemes in XΩ and, respectively, for elements
in Chow groups CHp(XC) of arbitrary codimension p. Moreover, analogs of
Lemma 3 (ii) (iii) and Lemma 5 imply that a transcendence degree is also
well-defined for elements in Chow groups of Chow motives over k, and that
this transcendence degree does not increase under taking push-forwards with
respect to morphisms between Chow motives over k.

Now we are ready to prove our main statement.

Theorem 7. Let X be an irreducible smooth projective variety over k of di-
mension d. The following conditions are equivalent:

(i) the class of the diagonal ∆X is balanced in CHd(X ×X);
(ii) the Chow motive M(X) is isomorphic to a direct summand of the
motive

M(Y1)⊕ (M(Y2)⊗ Ld−e) ,

where Y1 and Y2 are equidimensional smooth projective varieties over
k whose dimensions are strictly less than d, and e is the dimension of
the variety Y2;
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(iii) any element α ∈ CHd(XΩ) satisfies

tr.deg(α/k) < d ;

(iv) there exists a closed point P ∈ XΩ, such that tr.deg(P/k) = d and

tr.deg([P ]) < d ,

where [P ] is the class of the point P in CHd(XΩ).

Proof.

(i) ⇒ (ii)

Suppose that [∆X ] = α1 + α2, where α1 is balanced on the left and α2 is
balanced on the right. By Lemma 1, there exist two equidimensional varieties
Y1 and Y2 as in (2), and factorizations of α1 and α2, so that α factorizes like
this:

M(X) → M(Y1) → M(X), M(X) → M(Y2)⊗ Ld−e → M(X) .

Put M := M(Y1)⊕ (M(Y2)⊗Ld−e). Then the identity morphism from M(X)
to itself factors through M , thus, M(X) is a direct summand in M .

(ii) ⇒ (iii)

Looking at the Chow groups of the motives involved in the decomposition

M(X) −→ M(Y1)⊕ (M(Y2)⊗ Ld−e) −→ M(X)

we see that all elements in CHd(XΩ) are push-forwards with respect to the
morphism

M(Y2)⊗ Ld−e −→ M(X) ,

as
CHd(M((Y1)Ω)) = CHd((Y1)Ω) = 0

because e < d. Then (iii) follows from Lemma 5 and Lemma 3 (i).

(iii) ⇒ (iv)

This is just obvious.

(iv) ⇒ (i)

Let
∑

i niPi be a zero-cycle on XΩ, such that

[P ] =

[

∑

i

niPi

]

,

and
tr.deg(Pi/k) < d .

By definition of a transcendence degree, there are field extensions

K ⊂ Ω and Ki ⊂ Ω

over k, and points
W ∈ X(K) , Wi ∈ X(Ki) ,
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such that

WΩ = P , (Wi)Ω = Pi ,

the fields K and Ki are finitely generated over k with

tr.deg(K/k) = d and tr.deg(Ki/k) < d .

Let L be the composite of the fields K and Ki in Ω. As

[P ] =

[

∑

i

niPi

]

∈ CHd(XΩ)

and all involved Chow groups are with coefficients in Q, one has

[WL] =

[

∑

i

ni(Wi)L

]

∈ CHd(XL) ,

see [3], page 1.21.
Let now V be a smooth irreducible quasi-projective variety over k, such that

k(V ) = K .

Then we also have a rational dominant morphism

f : V 99KX ,

which coincides at the generic point with the morphism W : Spec(K) → X .
Similarly, for each i, we have a smooth irreducible quasi-projective variety

Vi with k(Vi) = Ki, and a rational dominant morphism

fi : Vi99KX

inducing the morphism Wi : Spec(Ki) → X at the generic point.
Shrinking the varieties V and Vi to Zariski open subsets one can think that

the above morphisms f and fi are all regular.
We also need a smooth irreducible quasi-projective variety Z over k with

dominant regular morphisms g : Z → V and gi : Z → Vi, such that the
function field k(Z) coincides with L.
For any regular morphism h let Γh be the graph of h. Shrinking Z to a

non-empty Zariski open subset if necessary, we have that

[Γfg] =

[

∑

i

niΓfigi

]

in the group CHd(Z × X), because the analogous rational equivalence holds
over the generic point of Z, which is Spec(L), see above.
Notice that

dim(V ) = tr.deg(K/k) = d .

Let T ⊂ Z be a generic d-dimensional multiple hyperplane section of Z.
The scheme T is irreducible by Bertini’s theorem, and the restrictions

h := g|T : T → W, hi := (gi)| T : T → Wi
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are still dominant. By taking pull-backs in Chow groups with respect to the
embedding T ×X → Z ×X , we obtain

[Γfh] =

[

∑

i

niΓfihi

]

in the group CHd(T ×X).
Since dim(T ) = d and the composition fh : T → X is dominant, we see

that fh is generically finite. Thus, shrinking T to a non-empty open subset,
we may assume that the morphism fh is a finite surjective morphism from T
onto a non-empty open subset U in X .
Now we use push-forwards in Chow groups with respect to the finite mor-

phism

fh× idX : T ×X −→ U ×X .

From the above equality we obtain that

(fh× idX)∗[Γfh] = (fh× idX)∗

[

∑

i

niΓfihi

]

in the group CHd(U ×X).
Set-theoretically,

(fh× idX)(Γfh) = ∆X ∩ (U ×X) .

The closure of (fh× idX)(Γfihi
) in X ×X is contained in X × fi(Wi), where

fi(Wi) is the Zariski closure of fi(Wi) in X .
Since

dim(Vi) = tr.deg(Ki/k) < d

and all the Chow groups are with rational coefficients, we see that ∆X is
balanced.

Remark. The equivalence (i) ⇔ (ii) was actually proved in [8] but we in-
cluded it in the theorem for the convenience of the reader.

4. An example

An important thing in Theorem 7 is that (iv) implies (i). Let us illustrate
this by an example.
Let X be a smooth projective surface over C, of general type and with

pg = 0. Recall, that Bloch’s conjecture predicts that for any two closed points
P and Q on XC the point P is rationally equivalent to Q. This conjecture is a
codimension 2 case of the Bloch-Beilinson paradigma for algebraic cycles, and
it is highly inaccessible. It is known for surfaces with the Kodaira dimension
< 2, [4], for finite quotients of products of curves, [11], and for surfaces of
general type (which are not finite quotients of products of curves) in [9], [2]
and [17].
Let now k be the algebraic closure in C of the minimal field of definition

of the surface X , and let K = k(X) be the function field of X over k. Let
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η = Spec(K) be the generic point of X , and let Pη be the corresponding
K-rational closed point on XK . Theorem 7 implies the following corollary:

Corollary 8. Bloch’s conjecture holds for X if and only if there exist an
embedding of K into C over k, and a k-rational point P on X, such that the
above closed K-rational point Pη is rationally equivalent to P on X as a variety
over C.

This can be made absolutely explicit in the case of Godeaux surfaces, for
which Bloch’s conjecture was proved by C.Voisin in [17]. Namely, let µ5 be the
group of 5-th roots of the unit in C, and let ǫ be a primitive root in it. The
group µ5 acts on P3 by the rule:

[x0 : x1 : x2 : x3] 7→ [x0 : ǫx1 : ǫ
2x2 : ǫ

3x3]

Let f = f(x) be a µ5-invariant smooth quintic form in P3, and let Y = Z(f)
be the set of zeros of f in P3. Since f is µ5-invariant, the group µ5 acts on
Y . Assume, in addition, that Y does not contain the four fixed points of the
action of µ5 on P3. Then the quotient surface

X = Y/µ5

is non-singular, and it is called a Godeaux surface. It is well known that
pg = q = 0 for such X , see [16].
Take now two transcendental complex numbers which are algebraically in-

dependent over Q, say e and eπ, see [14]. Let α be one of the zeros of the
polynomial obtained by substitution of the coordinates e and eπ in to the
affinized form f . Then Pη can be represented as the class of the point

(e, eπ, α) ∈ C3

under the quotient-map Y → X .
Then Voisin’s result says that the point Pη is rationally equivalent to a point

in X(Q̄). The specificity of Corollary 8 is that it says that the above rational
equivalence between two single points on X(C) is the only reason for vanishing
of the whole Albanese kernel in this situation.
We believe that this observation can be useful in approaching to Bloch’s

conjecture in some concrete contexts, such as Mumford’s fake surface, see [13].
Recall that such surfaces were recently classified in [15].

WARNING. It would be a temptation to find a rational curve through the
points Pη and P0 on the Godeaux surface X over C. The first problem is that
X is a surface of general type whose discrete invariants vanish, so that one can
expect only a few rational curves on XC. But this is not yet the main trouble.
The main difficulty is that no rational curves can pass through Pη at all.

Indeed, let X be a smooth projective surface over the ground subfield k
in Ω. Let Pη be a closed point of transcendence degree 2 on XΩ. Suppose
there exists a field subextension k ⊂ K ⊂ Ω, a point P : Spec(K) → X with
tr.deg(P/k) = 2, and a rational curve C on XK passing through the point
P . Let us show that X is uniruled then. Without loss of generality one can
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assume that K is finitely generated over k. Let Y be an irreducible variety over
k, such that K is the function field of Y over k.The rational curve C ⊂ XK

induces a morphism

φ : P1
K −→ XK

which induces a rational morphism

P1 ×k Y 99K X ×k Y ,

such that

f ×Y Spec(K) = φ .

The point p gives a morphism

Spec(K) → P1 ×k K

over K. This corresponds to some rational section of the projection

P1 × Y → Y .

The morphism

Spec(K) → P1
K → XK → X

sends the unique point in Spec(K) in to the generic point of X because
tr.deg(p/k) = 2. Therefore, the composition

Y 99K P1 ×k Y
f

99K X ×k Y
pX
99K X

is dominant, where pX is the projection onto X . It follows that the morphism

P1 ×k Y −→ X

is dominant as well. Moreover, the induced map

P1
K −→ XK

gives a birational isomorphism with its image. It follows that this image is a
curve in XK . Hence, the map

P1 ×k Y −→ X

does not factor through the projection P1 × Y → Y . Hence, at least for one
point y ∈ Y the induced map

P1
y −→ X

is not constant. Hence, X is uniruled by [12, 1.3.4]

Thus, if we could have a rational curve through Pη on a smooth projective
surface XC, of general type with pg = 0, then immediately we would get a
contradiction as such a surface is very far from to be uniruled.

This shows that in order to find a precise rational equivalence between Pη

and P0 we need to find more than one curves of genus > 0 on the Godeaux
surface X , and rational functions of them, which will provide a suitable zero-
poles cancelation for their principle divisors.
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