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Abstract

This paper brings a contribution to the Bayesian theory of nonpara-

metric and semiparametric estimation. We are interested in the asymp-

totic normality of the posterior distribution in Gaussian linear regression

models when the number of regressors increases with the sample size. Two

kinds of Bernstein-von Mises Theorems are obtained in this framework:

nonparametric theorems for the parameter itself, and semiparametric the-

orems for functionals of the parameter. We apply them to the Gaussian

sequence model and to the regression of functions in Sobolev and C
α

classes, in which we get the minimax convergence rates. Adaptivity is

reached for the Bayesian estimators of functionals in our applications.
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1 Introduction

To estimate a parameter of interest in a statistical model, a Bayesian puts a
prior distribution on it and looks at the posterior distribution, given the obser-
vations. A Bernstein-von Mises Theorem is a result stating that under adequate
conditions the posterior distribution is asymptotically normal, centered at the
maximum likelihood estimator (MLE) of the model used, with a variance equal
to the asymptotic frequentist variance of the MLE.

Such an asymptotic posterior normality is important because it allows to con-
struct approximate credible regions, based on the posterior distribution, which
keep good frequentist properties. In particular it is difficult to build frequentist
confidence regions in complex models, while the Monte-Carlo Markov chain al-
gorithms (MCMC) make more feasible the construction of Bayesian confidence
regions — however Bernstein-von Mises Theorems are difficult to derive in com-
plex models.

For parametric models, the Bernstein-von Mises Theorem is a well-known
result, for which we refer to [18]. In nonparametric models (where the pa-
rameter space is infinite-dimensional or growing), and semiparametric models
(when the parameter of interest is a finite-dimensional functional of the com-
plete infinite-dimensional parameter), there are still relatively few asymptotic
normality results. [6] gives negative results, and we recall some positive ones
below. However many recent papers deal with the convergence rate of posterior
distributions in various settings, which is linked with the model complexity: we
refer to [9, 16] as early representatives of this school.
Nonparametric Bernstein-von Mises Theorems have been developed for models
based on a sieve approximation, where the dimension of the parameter grows
with the sample size. In particular two situations have been studied: regression
models in [7]; exponential models in [8], [4], and [2] (this last one deals with the
discrete case, when the observations follow some unknown infinite multinomial
distribution).
In semiparametric frameworks the asymptotic normality has been obtained in
several situations. [12] and [11] study the nonparametric right-censoring model
and the proportional hazard model. [3] obtains Bernstein-von Mises Theorems
for Gaussian process priors, in the semiparametric framework where the un-
known quantity is (θ, f), with θ the parameter of interest and f an infinite-
dimensional nuisance parameter. It clarifies a preceding paper [15], which
considers also the more general framework where the quantity of interest is
a finite-dimensional function g(f) of the infinite-dimensional parameter f of the
model. [14] obtains the Bernstein-von Mises Theorem for linear functionals of
the density of the observations, in the context of a sieve approximation; they

2



achieve also the frequentist minimax estimation rate for densities in specific
regularity classes with a deterministic (non-adaptive) value of the cutoff kn.

In the current paper we obtain nonparametric and semiparametric Bernstein-
von Mises Theorems in a Gaussian regression framework with an increasing
number of regressors.
Our nonparametric results cover the case of a specific Gaussian prior, and the
case of more generic smooth priors. They are said nonparametric because we use
sieve priors and the dimension of the parameter grows. These results improve
on the preceding ones by [7] which did not suppose the normality of the errors
but imposed other conditions, in particular on the growth rate of the number
of regressors. We apply them to the periodic Sobolev classes and to regular-
ity classes Cα[0, 1] in the context of the regression model (using respectively
trigonometric polynomials and splines as regressors), as well as to the Gaus-
sian sequence model. In all these situations we get the asymptotic normality of
the posterior in addition to the minimax convergence rates, with appropriate
(non-adaptive) choices of the prior. We also show that for some priors known
to reach this convergence rate, the Bernstein-von Mises Theorem does not hold.
We derive also semiparametric Bernstein-von Mises Theorems for linear and
nonlinear functionals of the parameter. The linear case is an immediate corol-
lary of the nonparametric theorems and do not need any additional condition.
We apply these results to the periodic Sobolev classes to estimate a linear func-
tional and the L2 norm of the regression function f if enough smoothness is
present, and in both cases we are able to build an adaptive Bayesian estimator
which achieves the minimax convergence rate whatever the unknown parameter
of the class is, in addition to the asymptotic normality.

The paper is organized as follows. We present the framework in section 2.
Section 3 states the nonparametric Bernstein-von Mises Theorems, for Gaussian
or non-Gaussian priors. In section 4 we expound the semiparametric Bernstein-
von Mises Theorems for linear and non-linear functionals of the parameter.
Then we consider in section 5 applications to the Gaussian sequence model, and
to the regression of a function in a Sobolev and Cα[0, 1] class. In section 6 the
nonparametric and semiparametric Bernstein-von Mises Theorems are proved.
Eventually the Appendix contains various technical tools used in the main anal-
ysis.

2 Framework

We consider a Gaussian linear regression framework. For any n ≥ 1, our obser-
vation Y = (Y1, . . . , Yn) ∈ R

n is a Gaussian random vector

Y = F + ε (1)

where the vector of errors ε = (ε1, . . . , εn) ∼ N (0, σ2
nIn) is centered normal

and the mean vector F belongs to R
n. The observations Yi and the variance

σ2
n of the errors may depend on n, but σ2

n is known. Fix a (sequence of) mean
vector(s) F0. We denote by PF0 the probability distribution of a random variable
following N (F0, σ

2
nIn), and E the associated expectation.

Let φ1, . . . , φkn
a collection of kn linearly independent regressors in R

n,
where kn ≤ n grows with n. We gather these regressors in the n× kn-matrix Φ
of rank kn, and we denote 〈φ〉 their linear span. 〈φ〉 is the misspecified model in
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which the Bernstein-von Mises Theorems will be stated. It can be parametrized
as 〈φ〉 =

{
Φθ : θ = (θ1, . . . , θkn

) ∈ R
kn
}
. We denote by Pθ the probability dis-

tribution of a random variable following N (Φθ, σ2
nIn), and Eθ the associated

expectation.
As examples, we present three different frameworks, each one with its own

collection of regressors. In section 5 the Bernstein-von Mises Theorems are
applied to each one of these frameworks.

1. The Gaussian sequence model.

Our first application concerns the Gaussian sequence model, which is also
equivalent to the white noise model (see [13, ch. 4] for instance). We
consider the infinite dimensional setting

Yj = θ0j +
1√
n
ξj , j ≥ 1 (2)

where the random variables ξj , j ≥ 1 are independant and have distri-
bution N (0, 1). Projecting on the first kn coordinates with kn ≤ n, we
retrieve our model (1) with θ0 = (θ0j )1≤j≤kn

, σn = 1/
√
n, and ΦTΦ = Ikn

.

2. Regression of a function in a Sobolev class.

Let f : [0, 1] → R be a function in L
2([0, 1]). We observe realizations of

random variables
Yi = f(i/n) + εi (3)

for 1 ≤ i ≤ n, where the errors εi are iid N (0, σ2
n) and σn does not depend

on n.

We denote by (ϕj)j≥1 the Fourier basis

ϕ1 ≡ 1

ϕ2m(x) =
√
2 cos(2πmx) ∀m ≥ 1

ϕ2m+1(x) =
√
2 sin(2πmx) ∀m ≥ 1

(4)

For the regression on Fourier’s basis we choose a regular design xi = i/n
for 1 ≤ i ≤ n. This gives the collection of regressors φj = (ϕj(i/n))1≤i≤n,
1 ≤ j ≤ kn.

In practice we suppose that f belongs to one of the Sobolev classes:

Definition 1. Let α > 0 and L > 0. Let (ϕj)j≥1 denote the Fourier basis
(4). We define the Sobolev class W(α,L) as the collection of all functions
f =

∑∞
j=1 θjϕj in L

2([0, 1]) such that θ = (θj)j≥1 is an element of the

ellipsoid of ℓ2(N)

Θ(α,L) =



θ ∈ ℓ2(N) :

∞∑

j=1

a2jθ
2
j ≤ L2

π2α





where

aj =

{
jα if j is even;
(j − 1)α if j is odd.

(5)
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3. Regression of a function in Cα[0, 1].
Fix a regularity α > 0, and consider a function f ∈ Cα[0, 1]. This means
that f is α0 times continuously differentiable with ‖f‖α < ∞, α0 being
the greatest integer less than α and the seminorm being defined by

‖f‖α = sup
x 6=x′

∣∣f (α0)(x)− f (α0)(x′)
∣∣

|x− x′|α−α0
.

Consider a design
(
x
(n)
i

)
n≥1,1≤i≤n

, not necessarily uniform. Here F0 is

the vector
(
f
(
x
(n)
i

))
1≤i≤n

. Once again we suppose that σn = σ does not

depend on n.

Fix an integer q ≥ α, and let K = kn + 1 − q. Partition the interval
(0, 1] into K subintervals ((j − 1)/K, j/K] for 1 ≤ j ≤ K. We want to
perform the regression of f in the space of splines of order q defined on
that partition, and use the B-splines basis (Bj)1≤j≤kn

(see [5] for instance).

Our collection of regressors is φj =
(
Bj

(
x
(n)
i

))
1≤i≤n

, for 1 ≤ j ≤ kn.

For any value of n ≥ 1, let W be a prior distribution on F , with support
included in 〈φ〉. Equivalently, W is induced by a probability distribution W̃ on
θ by the application θ 7→ Φθ. PW denotes the marginal distribution of Y under
prior W , and W (dG(F )|Y ) denotes the posterior distribution of a functional
G(F ). Note that everything depends on n — W for instance is a distribution
on R

n — even if we do not use n as index to simplify our notations.
W is a sieve prior. Such priors are specially well adapted for increasing di-
mension frameworks; they also make clear the relations between the parametric
and nonparametric results. On the other hand the question of the choice of the
cutoff kn arises.
The exact parametrization by θ and the corresponding collection of regres-
sors φ1, . . . , φkn

are somehow arbitrary: what matters is the posterior distri-
bution of F and this depends on 〈φ〉, which is characterized by the matrix
Σ = Φ(ΦTΦ)−1ΦT of the orthogonal projection onto 〈φ〉. In practice it is dif-
ficult to dissociate 〈φ〉 and the collection φ1, . . . , φkn

, but we have chosen to

emphasize W and F over W̃ and θ.
In the model 〈φ〉, the MLE of F0 is the orthogonal projection Y〈φ〉 of Y ;

so Y〈φ〉 = ΣY . We set θY = (ΦTΦ)−1ΦTY its associated parameter. Let also
F〈φ〉 = Φθ0 be the projection of F0 on 〈φ〉, with θ0 = (ΦTΦ)−1ΦTF0. Even if
〈φ〉 contains the support of the prior distribution W , we do not suppose that
F0 belongs to 〈φ〉, and this improves on some previous results. θ0 has not to be
seen as some “true” parameter.

Although the MLE is naturally defined in the sieve 〈φ〉, it heavily depends
on the choice of 〈φ〉. Therefore the Bernstein-von Mises Theorems we establish
depends on the choice of the sieve the prior distribution is built on. This is true
in particular in a maybe more veiled way for our semiparametric results, in which
the centering point is a plug-in estimator based on the MLE defined on 〈φ〉. In
nonparametric models constructed on an infinite dimensional parameter, there
is no definition of a MLE; what should be the natural centering for a Bernstein-
von Mises Theorem in such situations is not clear.

To conclude this section, the following immediate frequentist result gives the
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distribution of Y〈φ〉 under PF0 :

Y〈φ〉 ∼ N
(
F〈φ〉, σ

2
nΣ
)
.

3 Nonparametric Bernstein-von Mises Theorems

The proofs of our nonparametric results are delayed to section 6.

3.1 With Gaussian priors

We consider here a centered, normal prior distribution W which is isotropic on
〈φ〉, so that W = N

(
0, τ2nΣ

)
for some sequence τn. Essentially the only as-

sumption needed in this case is that the prior becomes flat enough as n grows.
‖Q−Q′‖TV denotes the total variation norm between two probability distribu-
tions Q and Q′.

Theorem 1. Assume that σn = o(τn), ‖F0‖ = o(τ2n/σn) and kn = o(τ4n/σ
4
n).

Then
E
∥∥W (dF |Y )−N

(
Y〈φ〉, σ

2
nΣ
)∥∥

TV
→ 0 as n→ ∞.

Since the support of W is included in 〈φ〉, we can equivalently state

E
∥∥∥W̃ (dθ|Y )−N

(
θY , σ

2
n(Φ

TΦ)−1
)∥∥∥

TV
→ 0 as n→ ∞.

Theorem 1 does not deal with the modeling bias introduced by taking a prior
restricted to 〈φ〉. This is an important question in nonparametric statistics, and
kn has to be chosen in order to achieve the bias-variance tradeoff. In most cases
this bias has already been studied in frequentist papers on sieve approximation.

As an example, let us consider an usual regression framework with F0 =
(f(xi))1≤i≤n, where f is some function and (xi)1≤i≤n some design. If σn does

not depend on n, both conditions ‖F0‖ = o(τ2n/σn) and kn = o(τ4n/σ
4
n) are

verified for instance if f is bounded and n1/4 = o(τn). These conditions can be
read in the other way: τ4n must be large enough with respect to ‖F0‖ and kn.

3.2 With smooth priors

We consider now more general priors. We get an abstract result, but with
powerful applications.

Theorem 2. Suppose that W is induced by a distribution on θ admitting a den-
sity w(θ) with respect to Lebesgue measure. If there exists a sequence (Mn)n≥1

such that

1. sup
hTΦT Φh≤σ2

nMn,gTΦTΦg≤σ2
nMn

w(θ0 + h)

w(θ0 + g)
→ 1 as n→ ∞.

2. kn ln kn = o(Mn)

3. max

(
0, ln

(√
det(ΦTΦ)

σkn
n w(θ0)

))
= o(Mn)
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Then
E
∥∥W (dF |Y )−N

(
Y〈φ〉, σ

2
nΣ
)∥∥

TV
→ 0 as n→ ∞.

Since the support of W is included in 〈φ〉, we can equivalently state

E
∥∥∥W̃ (dθ|Y )−N

(
θY , σ

2
n(Φ

TΦ)−1
)∥∥∥

TV
→ 0 as n→ ∞.

With Condition 1 we ask for a sufficiently flat prior in a given neighborhood
of θ0. By Conditions 2 and 3 we insure that this neighborhood has enough
prior weight. This kind of assumptions is quite common in the literature dealing
with the concentration of posterior distributions. These assumptions are needed
together in order to get the Gaussian shape of the posterior distribution. Several
of our applications illustrate that priors known to induce the posterior minimax
convergence rate may not be flat enough to get the Gaussian shape with the
asymptotic variance σ2

nΣ.
Our main applications, to the Gaussian sequence model, and to the re-

gression model using trigonometric polynomials and splines, are developed in
section 5. We now present two remarks about the parametric case and the
comparison with the pioneer work of Ghosal [7].

The parametric case. Consider the regression of a function f defined on

[0, 1], with a fixed number k of regressors. Set a design (x
(n)
i )n≥1,1≤i≤n, with

x
(n)
i ∈ [(i− 1)/n, i/n] for any n ≥ 1, and F0 =

(
f(x

(n)
i )
)
1≤i≤n

. Choose a finite

number of piecewise continuous and linearly independent regressors (ϕj)1≤j≤k

on [0, 1], and set φj =
(
ϕj

(
x
(n)
i

))
1≤i≤n

for 1 ≤ j ≤ k. f , kn = k, σn = σ, and

W do not depend on n.
We would like to compare Theorem 2 with the usual Bernstein-von Mises The-
orem for parametric models, applied to such a regression framework. In that
setting, let us suppose that w is continuous and positive, and that f is bounded.
Then Condition 1 becomes Mn = o(n), while Condition 3 reduces to lnn =
o(Mn). Clearly, there exist such sequences (Mn)n≥1, and Theorem 2 applies.
The rescaling by

√
n of the Bernstein-von Mises Theorem for parametric models

is here hidden in the asymptotic posterior variance σ2(ΦTΦ)−1 of the parameter
θ. Indeed, (1/n) ΦTΦ is a Riemann sum, and converges towards the Gramian
matrix of the collection (ϕj)1≤j≤k in L

2([0, 1]).

Proof. We have ‖Φθ0‖ ≤ ‖F0‖ ≤ √
n‖f‖∞, and ‖θ0‖2 ≤

∥∥(ΦTΦ)−1
∥∥ ‖Φθ0‖2 ≤∥∥n(ΦTΦ)−1

∥∥ ‖f‖2∞. (1/n) ΦTΦ converges towards the Gramian matrix of the
collection (ϕj)1≤j≤k in L

2([0, 1]), and its smallest eigenvalue is lower bounded
for n large enough. Therefore θ0 is bounded, and we can consider it lies in
some compact set on which w is uniformly continuous and lower bounded by a
positive constant. The rest follows.

Comparison with Ghosal’s conditions. The Bernstein-vonMises Theorem
in a regression setting when the number of parameters goes to infinity has been
first studied by Ghosal [7] as an early step in the development of frequentist
nonparametric Bayesian theory. In his paper the errors εi are not supposed to
be Gaussian. Under the Gaussianity assumption, we get improved results. In
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particular our condition for the prior smoothness is simpler, and the growth
rate of the dimension kn is much less constrained.

• [7] does not admit a modeling bias between F0 and Φθ0. In the present
work the normality of the errors permits to take F0 6= Φθ0 without any
cost, as it appears in the core of the proof (Lemma 7).

• In [7] σn is constant, which does not allow the application to the Gaussian
sequence model.

• At last, [7] restricts the growth of the dimension kn to k4n ln kn = o(n) (see
below). It is then not possible to obtain the applications to the Gaussian
sequence model or to the regression model for Sobolev or Cα classes.

Let δ2n = ‖(ΦTΦ)−1‖ be the operator norm of (ΦTΦ)−1 for the ℓ2 metric,
and let η2n be the maximal value on the diagonal of Σ. With our notations, the
remaining assumptions of [7] become

(A3) There exists η0 > 0 such that w(θ0) > ηkn

0 . Moreover

| lnw(θ) − lnw(θ0)| ≤ Ln(C)‖θ − θ0‖, (6)

whenever ‖θ − θ0‖ ≤ Cδnkn
√
ln kn, where the Lipschitz constant Ln(C)

is subject to some growth restriction (see assumption A4).

(A4)

∀C > 0, Ln(C)δnkn
√
ln kn → 0 and ηnk

3/2
n

√
ln kn → 0. (7)

Further the design satisfies a condition on the trace of ΦTΦ:

tr(ΦTΦ) = O(nkn). (8)

Since Σ is an orthogonal projection matrix on a kn-dimensional space, tr(Σ) =
kn and η2n ≥ kn/n. Consequently the last part of (7) entails k4n ln kn = o(n).

If we add the normality of the errors and a slight technical condition lnn =
o(kn ln kn), these assumptions entail ours. Indeed, setMn = C2k2n ln kn for some
arbitrary value of C. Our condition 2 is immediate. Condition 1 is got from (6)
and the first part of (7). The beginning of (A3) entails − lnw(θ0) = O(kn) =
o(Mn). Using the concavity of the ln function and (8), we get ln det(ΦTΦ) ≤
kn ln tr(Φ

TΦ)−kn ln kn = O(kn lnn) = o(Mn). Therefore our condition 3 holds.

4 Semiparametric Bernstein-von Mises Theorems

We consider two kinds of functionals of F : linear and non-linear ones. These
results can be easily adapted to functionals of θ, using the maps θ 7→ Φθ and
F 7→ (ΦTΦ)−1ΦTF .

4.1 The linear case

For linear functionals of F , we have the following corollary:
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Corollary 1. Let p ≥ 1 fixed, and G be a R
p × R

n-matrix. Suppose that the
conditions of either Theorem 1 or Theorem 2 are verified. Then

E
∥∥W (d(GF )|Y )−N

(
GY〈φ〉, σ

2
nGΣG

T
)∥∥

TV
→ 0 as n→ ∞.

Further, the distribution of GY〈φ〉 is N
(
GF〈φ〉, σ2

nGΣG
T
)
.

Corollary 1 is just a linear transform of the preceding Theorems, and of the
distribution of Y〈φ〉.

An example of application is given in subsection 5.2, in the context of the
regression on Fourier’s basis.

4.2 The nonlinear case

Let p ≥ 1 fixed, andG : Rn 7→ R
p be a twice continuously differentiable function.

For F ∈ R
n, let ĠF denote the Jacobian matrix of G at F , and D2

FG(·, ·) the
second derivative of G, as a bilinear function on R

n. For any F ∈ 〈φ〉 and a > 0,
let

BF (a) = sup
h∈〈φ〉:‖h‖2≤σ2

na

sup
0≤t≤1

∥∥D2
F+thG(h, h)

∥∥ . (9)

where ‖ · ‖ denotes the Euclidean norm of Rp.
We also consider the following nonnegative symmetric matrix

ΓF = σ2
nĠFΣĠ

T
F . (10)

In the following, ‖Γ−1
F ‖ denotes the Euclidean operator norm of Γ−1

F , which is
also the inverse of the smallest eigenvalue of ΓF .

Let I be the collection of all intervals in R, and for any I ∈ I, let ψ(I) =
P (Z ∈ I), where Z is a N (0, 1) random variable.

Theorem 3. Let G : Rn 7→ R
p be a twice continuously differentiable function,

and let ΓF be as just defined. Suppose that ΓF〈φ〉 is nonsingular, and that there
exists a sequence (Mn)n≥1 such that kn = o(Mn) and

B2
F〈φ〉

(Mn) = o

(∥∥∥Γ−1
F〈φ〉

∥∥∥
−1
)
. (11)

Suppose further that the conditions of either Theorem 1 or Theorem 2 are veri-
fied. Then, for any b ∈ R

p,

E


sup
I∈I

∣∣∣∣∣∣
W


 bT

(
G(F )−G(Y〈φ〉)

)
√
bTΓF〈φ〉b

∈ I

∣∣∣∣∣∣
Y


− ψ(I)

∣∣∣∣∣∣


→ 0 as n→ ∞.

Under the same conditions,

sup
I∈I

∣∣∣∣∣∣
P


b

T
(
G(Y〈φ〉)−G(F〈φ〉)

)
√
bTΓF〈φ〉b

∈ I


− ψ(I)

∣∣∣∣∣∣
→ 0 as n→ ∞. (12)

supI∈I |Q(I)−Q′(I)| is the Levy-Prokhorov distance between two distribu-
tions Q and Q′ on R. The Levy-Prokhorov distance metricizes the convergence
in distribution. So, when p = 1 (12) says that the Levy-Prokhorov distance

between the distribution of
bT (G(Y〈φ〉)−G(F〈φ〉))

√

bTΓF〈φ〉b
and N (0, 1) goes to 0 in mean.

An application of Theorem 3 is given in subsection 5.2, in the context of the
regression on Fourier’s basis. The proof is delayed to subsection 6.3.
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5 Applications

We present now the three applications announced in section 2. The models
studied and the collections of regressors used have been defined there.

5.1 The Gaussian sequence model

We consider the model (2). Here the MLE is only the projection θY = (Yj)1≤j≤kn
.

The nonparametric case corresponds to the estimation of θ0. Under the
assumption that θ0 is in some regularity class, we obtain a Bernstein-von Mises
Theorem with the posterior convergence rate already obtained in previous works.
On the contrary, for some priors known to achieve this rate, the centering point
and the asymptotic variance of the posterior distribution do not fit with the ones
expected in a Bernstein-von Mises Theorem. We also look at the semiparametric
estimation of the squared ℓ2 norm of θ0.

5.1.1 The nonparametric estimation of θ0

Proposition 1. Suppose that
∑kn

j=1(θ
0
j )

2 is bounded. This is verified in par-

ticular when θ0 is an element of ℓ2(N) non depending on n. With a prior

W̃ = N
(
0, τ2nIkn

)
such that n−1/4 = o(τn), we have whatever kn ≤ n,

E

∥∥∥∥W̃ (dθ|Y )−N
(
θY ,

1

n
Ikn

)∥∥∥∥
TV

→ 0 as n→ ∞.

and the convergence rate of θ towards θ0 is
√

kn

n : for every λn → ∞,

E

[
W̃

(
‖θ − θ0‖ ≥ λn

√
kn
n

∣∣∣∣∣Y
)]

→ 0.

Proof. The beginning is an immediate corollary of Theorem 1. For the conver-
gence rate, let λn → ∞. Since θY − θ0 ∼ N

(
0, 1

nIkn

)
,

P

(
‖θY − θ0‖ ≥ λn

2

√
kn
n

)
→ 0.

In the same way

E

[
W̃

(
‖θ − θY ‖ ≥ λn

2

√
kn
n

)]
≤ E

∥∥∥∥W̃ (dθ|Y )−N
(
θY ,

1

n
Ikn

)∥∥∥∥
TV

+N
(
0,

1

n
Ikn

)({
h : ‖h‖ ≤ λn

2

√
kn
n

})

→ 0.

Therefore

E

[
W̃

(
‖θ − θ0‖ ≥ λn

√
kn
n

)]
→ 0.

10



However in such a general setting we have no information about the bias
between θ0 and its projection θ0. Several authors add the assumption that the
true parameter belongs to a Sobolev class of regularity α > 0, defined by the
relation

∑∞
j=1 |θ0j |2j2α < ∞. In this setting we show that for some priors the

induced posterior may achieve the nonparametric convergence rate but with a
centering point and a variance different from what is expected in the Bernstein-
von Mises Theorem. Then we exhibit priors for which both the Bernstein-von
Mises Theorem and the nonparametric convergence rate hold.

From now on, we suppose that
∑∞

j=1 |θ0j |2j2α <∞. In this setting [10, §7.6]
considers a prior W̃ such that θ1, θ2,. . . are independent, and θj is normally
distributed with variance σ2

j,kn
. Further, the variances are supposed to verify

c/kn ≤ min{σ2
j,kn

j2α : 1 ≤ j ≤ kn} ≤ C/kn (13)

for some positive constants c and C. Suppose that α ≥ 1/2 and there exists
constants C1 and C2 such that C1n

1/(1+2α) ≤ kn ≤ C2n
1/(1+2α). Then [10,

Theorem 11] proved that the posterior converges at the rate n−α/(1+2α).
In order to get n−1Ikn

as asymptotic variance, we need more stringent condi-
tions on kn, or a flatter prior. As a counterexample consider, for kn ≈ n1/(1+2α),
the following choices of σj,kn

:

σ2
j,kn

=

{
k−1
n if 1 ≤ j ≤ kn/2,

22α/n if j > kn/2.

Then min{σ2
j,kn

j2α : 1 ≤ j ≤ kn} ≈ k−1
n , and [10, Theorem 11] applies.

In this case we can perform an explicit calculus of the posterior distribution,
similar to the one made in the proof of Theorem 1. The coordinates are inde-
pendent, and

W̃ (dθj |Y ) = N
(

σ2
j,kn

σ2
n + σ2

j,kn

Yj ,
σ2
nσ

2
j,kn

σ2
n + σ2

j,kn

)
.

For j > kn/2,
σ2
j,kn

σ2
n+σ2

j,kn

= 4α

1+4α , and therefore
∥∥∥W̃ (dθj |Y )−N

(
Yj , σ

2
n

)∥∥∥
TV

is

bounded away from 0.
On the contrary with an isotropic prior, flat in all directions, we obtain

the centering point and the asymptotic variance we expected, and the same
convergence rate as previously.

Proposition 2. Suppose that θ0 belongs to the Sobolev class of regularity α > 0.
Choose a prior W̃ = N

(
0, τ2nIkn

)
such that n−1/4 = o(τn), which insures the

asymptotic normality of the posterior distribution as in Proposition 1.
If further kn ≈ n1/(1+2α), then the convergence rate of θ towards θ0 and towards
θ0 is n−α/(1+2α): for every λn → ∞,

E
[
W̃
(
‖θ − θ0‖ ≥ λnn

−α/(1+2α)
∣∣∣Y
)]

→ 0.

Proof. We consider θ and θ0 as elements of ℓ2(N) by setting θj = θ0,j = 0 for j ≥
kn+1. The convergence rate towards θ0 has already been established in Propo-

sition 1. Since θ0,j = θ0j for 1 ≤ j ≤ kn, ‖θ0 − θ0‖ ≤ k−α
n

√∑∞
j=kn+1(θ

0
j )

2j2α =

O (k−α
n ). Therefore the convergence rate of θ towards θ0 is also n−α/(1+2α).

11



5.1.2 Semiparametric theorem for the ℓ2 norm of θ0

We still consider the same prior distribution as before, but now we look at the
posterior distribution of ‖θ‖2. To get the asymptotic normality with variance
n−1/2, we just need kn = o(

√
n). To control the bias term we need α > 1/2,

and in this case we get an adaptive Bayesian estimator.

Proposition 3. Let α > 1/2 and suppose that θ0 belongs to the Sobolev class of

regularity α. Choose a prior W̃ = N
(
0, τ2nIkn

)
such that n−1/4 = o(τn). Then,

for any choice of kn such that kn = o(
√
n) and

√
n = o(k2αn ),

E

[
sup
I∈I

∣∣∣∣∣W̃
(√

n
(
‖θ‖2 − ‖θY ‖2

)

2‖θ0‖ ∈ I

∣∣∣∣∣Y
)

− ψ(I)

∣∣∣∣∣

]
→ 0 as n→ ∞

and

√
n
(
‖θY ‖2 − ‖θ0‖2

)

2‖θ0‖ → N (0, 1) in distribution, as n → ∞. Further, the

bias is negligible with respect to the square root of the variance:

√
n
(
‖θ0‖2 − ‖θ0‖2

)

2‖θ0‖ = o(1).

In particular the choice kn =
√
n/ lnn is adaptive in α.

Proof. The conditions of Theorem 1 are fulfilled, as in Proposition 1.
Here G(θ) = θT θ, Ġθ = 2θT and G̈θ = 2Ikn

. Therefore Bθ0(Mn) = 2Mn/n,
while Γθ0 = 4‖θ0‖2/n.

Let us choose (Mn)n≥1 such that kn = o(Mn) and Mn = o(
√
n). Such

sequences exist and fulfill the conditions of Theorem 3.
Since ‖θ0‖2 → ‖θ0‖2, we can substitute the variance Γθ0 by 4‖θ0‖2/n and

get the two asymptotic normality results.
Eventually ‖θ0‖2−‖θ0‖2 = ‖θ0−θ0‖2 = O

(
k−2α
n

)
, as in the proof of Propo-

sition 2. If
√
n = o(k2αn ), we get

√
n
(
‖θ0‖2 − ‖θ0‖2

)
= o(1).

5.2 Regression on Fourier’s basis

Now we consider the regression model (3) with a function f in a Sobolev
class W(α,L), and use Fourier’s basis (4). For any θ ∈ R

kn , we define fθ =∑kn

j=1 θjϕj . We also denote by θ0 ∈ ℓ2(N) the sequence of Fourier’s coefficients

of f : f =
∑∞

j=1 θ
0
jϕj .

The following useful Lemma about our collection of regressors can be found
for instance in [17] (we slightly modified it to take into account the case n even):

Lemma 1. Suppose either that n is odd and kn ≤ n, or n is even and kn ≤ n−1.
Consider the collection (φj)1≤j≤kn

defined before, and Φ the associated matrix.
Then

ΦTΦ = nIkn
.

This makes the regression on Fourier’s basis very close to the Gaussian se-
quence model, and the result we obtain are similar.

We consider first the nonparametric estimation of f in a Sobolev class,
for which we get a Bernstein-von Mises Theorem and the frequentist minimax
n−α/(1+2α) posterior convergence rate for the L2 norm.

12



Then we consider two semiparametric settings: the estimation of a linear
functional of f , and the estimation of the L2 norm of f . We get the adaptive√
n convergence rate for any α > 1/2.

5.2.1 Nonparametric Bernstein-von Mises Theorem in Sobolev classes

Proposition 4. Suppose that f belongs to some Sobolev class W(α,L) for L > 0

and α > 1/2. Let kn ≈ n1/(1+2α) and W̃ = N (0, γnIkn
) be the prior on θ, for

a sequence (γn)n≥1 such that 1/
√
n = o(γn). Then

E

∥∥∥∥W̃ (dθ|Y )−N
(
θY ,

σ2

n
Ikn

)∥∥∥∥
TV

→ 0 as n→ ∞

and the convergence rate relative to the euclidean norm for fθ is n−α/(1+2α):
for every λn → ∞,

E
[
W̃
(
‖fθ − f‖ ≥ λnn

−α/(1+2α)
∣∣∣Y
)]

→ 0.

Proof. The conditions of Theorem 1 are fulfilled: with τ2n = nγn, we have
n = o(τ4n). The first assertion follows.

Because of the orthogonal nature of Fourier’s basis, ‖fθ − f‖ = ‖θ − θ0‖ in
ℓ2(N). We use the decomposition ‖θ − θ0‖2 ≤ ‖θ − θ0‖2 + ‖θ0 − θ0‖2. In the
same way as in the proof of Proposition 1, for any λn → ∞,

E

[
W̃

(
‖θ − θ0‖ ≥ λn

√
kn
n

)]
→ 0.

Going back to Definition 1, we have

‖θ0 − θ0‖2 =
∞∑

j=kn+1

(θ0j )
2 ≤ k−2α

n

∞∑

j=kn+1

a2αj (θ0j )
2 = O(k−2α

n ).

This permits to get

E
[
W̃
(
‖θ − θ0‖ ≥ λnn

−α/(1+2α)
∣∣∣Y
)]

→ 0.

5.2.2 Linear functionals of f

Let g : [0, 1] → R be a function in L
2([0, 1]). We want to estimate F(f) =

∫ 1

0
fg,

and we approximate it by

1

n

n∑

i=1

g(i/n)f(i/n) = GF0

where G = (g(i/n)/n)
T
1≤i≤n. The plug-in MLE estimator of GF0 in the misspec-

ified model 〈φ〉 is GY〈φ〉. More generally, we consider the functional F 7→ GF .
The following result is adaptive, in the sense that the same choice kn =

⌊n/ lnn⌋ entails the convergence rate n−1/2 for all values of α > 1/2.

13



Proposition 5. Suppose f is bounded, and let W be the prior induced by the
N (0, γn Ikn

) distribution on θ, for a sequence (γn)n≥1 such that 1/
√
n = o(γn).

Then

1.
E
∥∥W (d(GF )|Y )−N

(
GY〈φ〉, σ

2GΣGT
)∥∥

TV
→ 0

and the distribution of GY〈φ〉 is N
(
GF〈φ〉, σ2GΣGT

)
.

2. Suppose further that f and g belong to some Sobolev class W(α,L) for

L > 0 and α > 1/2. Then GΣGT ∼ 1
n

∫ 1

0
g2,

E

∥∥∥∥∥∥
W


d

√
n(GF −GY〈φ〉)

σ
√∫ 1

0 g
2

∣∣∣∣∣∣
Y


 −N (0, 1)

∥∥∥∥∥∥
TV

→ 0,

and

√
n(GY〈φ〉 −GF〈φ〉)

σ
√∫ 1

0
g2

→ N (0, 1) in distribution, as n→ ∞.

3. Suppose that f and g belong to some Sobolev class W(α,L) for L > 0 and
α > 1/2, and suppose further that kn is large enough so that n = o(k2αn ).
Then the bias is negligible with respect to the square root of the variance:

√
n
(
GF〈φ〉 −F(f)

)

σ
√∫ 1

0
g2

= o(1).

Before the proof we give two lemmas, proved in Appendix B, about the error
terms of the approximation of a Sobolev class by a sieve build on Fourier’s basis,
and of the approximation of an integral by a Riemann sum.

Lemma 2. Let α > 1/2 and L > 0. We suppose n odd or kn < n. If f ∈
W(α,L),

‖F0 − F〈φ〉‖ ≤ (1 + o(1))

√
2L

πα

√
n

kαn
.

Further, ‖F0‖ ∼
√
n
∫ 1

0
f2 and ‖F0 − F〈φ〉‖ = O(k−α

n ‖F0‖).

Lemma 3. Let two functions f ∈ W(α,L) and g ∈ W(α′, L′) for some α, α′ >
1/2 and two positive numbers L and L′. Then

∣∣∣∣∣
1

n

n∑

i=1

f(i/n)g(i/n)−
∫ 1

0

fg

∣∣∣∣∣ = O
(
n− inf(α,α′)

)
.

Proof of Proposition 5. 1. The first assertion is just Corollary 1. The condi-
tions of Theorem 1 are fulfilled, as in the proof of Proposition 4.

2. If g ∈ W(α,L) for L > 0 and α > 1/2, GΣGT = ‖ΣGT ‖2 ∼ ‖GT ‖2
by Lemma 2. In the meantime ‖GT ‖2 = 1

n2

∑n
i=1 g

2(xi) ∼ 1
n

∫ 1

0 g
2 by

Lemma 3. So GΣGT ∼ 1
n

∫ 1

0
g2, and the variance in the formulas of

Corollary 1 can be substituted with 1
n

∫ 1

0
g2.
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3. We decompose the bias into two terms, |GF0 −F(f)| and |GF〈φ〉 −GF0|,
and show that both are o(n−1/2). The first term is controlled by Lemma 3.
For the last one, |GF〈φ〉 −GF0| ≤ ‖GT ‖ ‖F〈φ〉 − F0‖. ‖GT ‖ = O(n−1/2),
‖F〈φ〉−F0‖ = O(k−α

n ‖F0‖) by Lemma 2, and ‖F0‖ = O(
√
n). We conclude

thanks to the assumption n = o(k2αn ).

5.2.3 L2-norm of f

Suppose that we want to estimate F(f) =
∫ 1

0 f
2. We can consider the plug-in

MLE estimator

G(Y〈φ〉) =
1

n

∥∥Y〈φ〉
∥∥2 =

1

n

n∑

i=1




kn∑

j=1

θY,jϕj(i/n)




2

.

More generally we define, for any F ∈ R
n,

G(F ) =
1

n
‖F‖2. (14)

With a Gaussian prior, we obtain the following result, which is also adaptive:
the same kn = ⌊√n/ lnn⌋ is suitable whatever α > 1/2.

Proposition 6. Let G(F ) = ‖F‖2/n. Suppose that f ∈ W(α,L) for some
L > 0 and α > 1/2. Let W be the prior induced by the N (0, γn Ikn

) distribution
on θ, for a sequence (γn)n≥1 such that 1/

√
n = o(γn). The sequence (kn)n≥1

can be chosen such that kn = o(
√
n) and

√
n = o(k2αn ), and with such a choice,

E

[
sup
I∈I

∣∣∣∣∣W
(√

n
(
G(F )−G(Y〈φ〉)

)

2σ
√
F(f)

∈ I

∣∣∣∣∣Y
)

− ψ(I)

∣∣∣∣∣

]
→ 0 as n→ ∞

and

√
n
(
G(Y〈φ〉)−G(F〈φ〉)

)

2σ
√
F(f)

→ N (0, 1) in distribution, as n → ∞. Further,

the bias is negligible with respect to the square root of the variance:
√
n
(
G(F〈φ〉)−F(f)

)

2σ
√
F(f)

= o(1).

A similar corollary can be stated for a non-Gaussian prior.

Proof. First, let us note that the conditions of Theorem 1 are fulfilled, as in the
proof of Proposition 4. Lemma 10 in Appendix B insures that f is bounded.

In this setting ĠF = (2/n)FT and D2
FG(h, h) = (2/n) ‖h‖2 for any F ∈ R

n

and any h ∈ R
n. Therefore BF (a) = 2σ2a/n, and ΓF = 4(σ2/n2) ‖F‖2. By

Lemma 2, ‖F〈φ〉‖2 ∼ ‖F0‖2 ∼ nF(f). Thus ΓF〈φ〉 = 4(1 + o(1))F(f)/n.

Let us choose (Mn)n≥1 such that kn = o(Mn) and Mn = o(
√
n). Such

sequences exist and fulfill the conditions of Theorem 3. We can substitute the
variance ΓF〈φ〉 by 4F(f)/n and get the two asymptotic normality results.

Let us now consider the bias term.

F(f)−G(F〈φ〉) ≤
‖F0‖2 − ‖F〈φ〉‖2

n
+

(∫ 1

0

f2 − 1

n

n∑

i=1

f2(i/n)

)
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We use Lemma 2 to control ‖F0‖2 − ‖F〈φ〉‖2, and Lemma 3 for the other term:
∣∣F(f)−G(F〈φ〉)

∣∣ = O
(
k−2α
n

)
+O

(
n−α

)
.

This is a o(1/
√
n) under the assumptions of Corollary 6.

5.3 Regression on splines

Here we consider the regression model for functions in Cα[0, 1] with α > 0, using
splines. The problem has been set in section 2. We first develop further the
framework and the assumptions used here, and recall the previous result of [10,
§7.7.1] which obtains the posterior concentration at the frequentist minimax
rate. Then we present two Bernstein-von Mises Theorems: the first one with
the same prior as [10] but a stronger condition on kn (or equivalently on α); the
second one with a flatter prior, for which we retrieve the minimax convergence
rate in addition to the asymptotic Gaussianity of the posterior distribution.

For any θ ∈ R
kn , we define fθ =

∑kn

j=1 θjBj . The B-splines basis has the
following approximation property: for any α > 0, there exist Cα > 0 such that,
if f ∈ Cα[0, 1], there exists θ∞ ∈ R

kn verifying

‖f − fθ∞‖∞ ≤ Cαk
−α
n ‖f‖α. (15)

We need the design
(
x
(n)
i

)
n≥1,1≤i≤n

to be sufficiently regular but, as stressed

in [10], the spacial separation property of B-splines permits to express the precise
condition in terms of the covariance matrix ΦTΦ. We suppose that there exist
positive constants C1 and C2 such that, as n increases, whatever θ ∈ R

kn ,

C1
n

kn
‖θ‖2 ≤ θTΦTΦθ ≤ C2

n

kn
‖θ‖2. (16)

A norm ‖f‖n =
√

1
n

∑n
i=1 |f(xi)|2 is associated to the design. Note that

√
n‖fθ‖n = ‖Φθ‖ if θ ∈ R

kn . Under condition (16) we have a relation between
‖ · ‖n and the euclidean norm on the parameter space: for every θ1 and θ2

C1‖θ1 − θ2‖ ≤
√
kn ‖fθ1 − fθ2‖n ≤ C2‖θ1 − θ2‖.

With these conditions [10, Theorem 12] gets the posterior concentration at

the minimax rate. Take α ≥ 1/2, let W̃ = N (0, Ikn
) be the prior on the

spline coefficients, and suppose there exists constants C3 and C4 such that
C3n

1/(1+2α) ≤ kn ≤ C4n
1/(1+2α). Then the posterior concentrates at the mini-

max rate n−α/(1+2α) relative to ‖ · ‖n: for every λn → ∞,

E
[
W̃
(
‖fθ − f‖n ≥ λnn

−α/(1+2α)
∣∣∣Y
)]

→ 0.

This is equivalent to a convergence rate n
1−2α

2(1+2α) relative to the euclidean norm
for θ:

E
[
W̃
(
‖θ − θ0‖ ≥ λnn

1−2α
2(1+2α)

∣∣∣Y
)]

→ 0.

Indeed (15) and the projection property entail

‖fθ0 − f‖n ≤ ‖fθ∞ − f‖n ≤ ‖fθ∞ − f‖∞ ≤ Cα‖f‖αk−α
n .

With modified assumptions we get also the Bernstein-von Mises Theorem in
two different settings. First, with the same prior as [10]:
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Proposition 7. Assume that f is bounded, kn = o
((

n
lnn

)1/3)
, and (16) holds.

Let W̃ = N (0, Ikn
) be the prior on the spline coefficients. Then

E
∥∥∥W̃ (dθ|Y )−N

(
θY , σ

2(ΦTΦ)−1
)∥∥∥

TV
→ 0 as n→ ∞

and the convergence rate relative to the euclidean norm for θ is kn√
n
.

We need α > 1 to get the Gaussian shape with the same convergence rate as
in [10]. The conditions of Proposition 7 are verified in particular if there exists
constants C3 and C4 such that C3n

1/(1+2α) ≤ kn ≤ C4n
1/(1+2α). In this case

the convergence rate for θ is n
1−2α

2(1+2α) .

Proof. We apply Theorem 2. We can chooseMn such that kn lnn = o(Mn) and

Mn = o
(

n
k2
n

)
. Assumption 2 is then trivially verified.

From (16) we get
∥∥ΦTΦ

∥∥ ≤ C2
n
kn

and
∥∥(ΦTΦ)−1

∥∥ ≤ C−1
1

kn

n . We have

also ln det(ΦTΦ) ≤ kn lnC2 + kn ln
(

n
kn

)
= O(kn lnn) = o(Mn). Since θ0 =

Φ(ΦTΦ)−1F0,

‖θ0‖2 ≤ kn
C1n

‖F0‖2 ≤ ‖f‖∞
C1

kn.

Therefore − lnw(θ0) = O(1) + 1
2‖θ0‖2 = O(kn) = o(Mn), and assumption 3

holds.
Let h ∈ R

kn such that hTΦTΦh ≤ σ2Mn. We have ‖h‖2 ≤
∥∥(ΦTΦ)−1

∥∥ ‖Φh‖2 ≤
σ2knMn

C1n
= o

(
k−1
n

)
. Therefore

sup
hTΦTΦh≤σ2Mn

∣∣∣∣ln
w(θ0 + h)

w(θ0)

∣∣∣∣ ≤ sup
hTΦT Φh≤σ2Mn

‖h‖2 + 2‖h‖‖θ0‖
2

= o(1) (17)

and assumption 1 follows.
Let us now prove the convergence rate. Let λn → ∞. Then

P

(
‖θY − θ0‖ ≥ λnkn

2
√
n

)
≤ P

(
‖Φ(θY − θ0)‖2 ≥ C1λ

2
nkn
4

)
→ 0

since ‖Φ(θY − θ0)‖2 ∼ σ2χ2(kn). In the same way

E

[
W̃

(
‖θ − θY ‖ ≥ λnkn

2
√
n

)]
≤ E

∥∥∥W̃ (dθ|Y )−N
(
θY , σ

2(ΦTΦ)−1
)∥∥∥

TV

+N
(
0, σ2(ΦTΦ)−1

)({
h : ‖h‖ ≤ λnkn

2
√
n

})

→ 0.

Therefore

E

[
W̃

(
‖θ − θ0‖ ≥ λnkn√

n

)]
→ 0.

The situation is similar to the one we encountered with the Gaussian se-
quence model. To get the Bernstein-von Mises Theorem with the same conver-
gence rate as [10] for α ≤ 1, we need a flatter prior:
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Proposition 8. Assume that f is bounded and (16) holds. Let W̃ = N
(
0, τ2nIkn

)

be the prior on the spline coefficients, with the sequence τn verifying

k2n lnn

n
= o(τ2n) and

k3n lnn

n
= o(τ4n).

Then
E
∥∥∥W̃ (dθ|Y )−N

(
θY , σ

2(ΦTΦ)−1
)∥∥∥

TV
→ 0 as n→ ∞

and the convergence rate relative to the euclidean norm for θ is kn√
n
.

When α > 0 and kn is of order n1/(1+2α), the conditions reduce to n
2−2α
1+2α lnn =

o(τ4n). So we retrieve the convergence rate of [10] in addition to the Gaussian
shape with the same kn, even for α ≤ 1, but with a different prior.

Proof. The proof is essentially the same as for Proposition 7. Mn can be chosen

such as kn lnn = o(Mn), Mn = o
(

nτ2
n

kn

)
, and Mn = o

(
nτ4

n

k2
n

)
. These last two

conditions are the ones needed to obtain the same upper bounds as in (17).

6 Proofs

6.1 Proof of Theorem 1

In the present setting all distributions are explicit and admit densities with
respect to the corresponding Lebesgue measure. We decompose any y ∈ R

n in
two orthogonal components y = Φθy + y′, with ΦT y′ = 0. Then

dPθ(y) = c1 exp

{
− 1

2σ2
n

(
‖Φθ‖2 + ‖Φθy‖2 + ‖y′‖2 − 2θTΦTΦθy

)}

dW̃ (θ) = c2 exp

{
− 1

2τ2n
‖Φθ‖2

}

dPθ(y) dW̃ (θ) = c1c2 exp

{
−σ

2
n + τ2n
2σ2

nτ
2
n

∥∥∥∥Φ
(
θ − τ2n

σ2
n + τ2n

θy

)∥∥∥∥
2

− 1

2(σ2
n + τ2n)

‖Φθy‖2 −
1

2σ2
n

‖y′‖2
}

where c1 = (2π)−n/2σ−n
n and c2 = (2π)−kn/2τ−kn

n det(ΦTΦ)−1.

Using the Bayes rule, we get the density of W̃ (dθ|Y ), in which we recognize
the normal distribution

W̃ (dθ|Y ) = N
(

τ2n
σ2
n + τ2n

θY ,
σ2
nτ

2
n

σ2
n + τ2n

(ΦTΦ)−1

)
. (18)

At that point, we have got an exact expression of W̃ (dθ|Y ), but nor the cen-
tering nor the variance correspond to the limit distribution given in Theorem 1.
Therefore we make use of the triangle inequality, with intermediate distribution

Q = N
(

τ2
n

σ2
n+τ2

n
θY , σ

2
n(Φ

TΦ)−1
)
. We first deal with the change in the variance.
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Let αn = τn
σn

√
ln
(
1 +

σ2
n

τ2
n

)
, and f and g be respectively the density functions

of N (0, Ikn
) and N

(
0,

τ2
n

σ2
n+τ2

n
Ikn

)
. Let U be a random variable following the

chi-square distribution with kn degrees of freedom χ2(kn). Then

∥∥∥W̃ (dθ|Y )−Q
∥∥∥
TV

=

∥∥∥∥N (0, Ikn
)−N

(
0,

τ2n
σ2
n + τ2n

Ikn

)∥∥∥∥
TV

=

∫

Rkn

(g − f)+ =

∫

‖x‖≤√
knαn

g(x)− f(x) dnx

= P (U ≤ knα
2
n)− P

(
U ≤ σ2

n + τ2n
τ2n

knα
2
n

)

= P

(
α2
n ≤ U

kn
≤ σ2

n + τ2n
τ2n

α2
n

)
.

As n goes to infinity, U
kn

converges towards N (0, 1) in distribution. Since σn =

o(τn), both
σ2
n+τ2

n

τ2
n

and αn go to 1. As a consequence,
∥∥∥W̃ (dθ|Y )−Q

∥∥∥
TV

goes

to zero as n goes to infinity.
Let us now deal with the centering term.

Lemma 4. Let U be a standard normal random variable, let k ≥ 1, and let
Z ∈ R

k. Then

‖N (0, Ik)−N (Z, Ik)‖TV = P (|U | ≤ ‖Z‖/2) ≤ ‖Z‖/
√
2π.

Proof. Let g be the density of N (0, Ik). Then

‖N (0, Ik)−N (Z, Ik)‖TV =

∫

Rk

(g(x)− g(x− Z))+ dkx

=

∫

{2xTZ≤‖Z‖2}
(g(x)− g(x− Z)) dkx

= P (U ≤ ‖Z‖/2)− P (U + ‖Z‖ ≤ ‖Z‖/2)
≤ ‖Z‖/

√
2π.

The last line comes from the density of N (0, 1) being bounded by 1/
√
2π.

Let
√
ΦTΦ be a square root of the matrix ΦTΦ. Then

∥∥N
(
θY , σ

2
n(Φ

TΦ)−1
)
−Q

∥∥
TV

=

∥∥∥∥N (0, Ikn
)−N

(
σn

τ2n + σ2
n

√
ΦTΦθY , Ikn

)∥∥∥∥
TV

≤ 1√
2π

σn
(τ2n + σ2

n)
‖ΦθY ‖

≤ 1√
2π

σn
(τ2n + σ2

n)

(
‖F0‖+

√
εTΣε

)
.

εTΣε is a random variable following σ2
nχ

2(kn) distribution. Therefore

E
∥∥N

(
θY , σ

2
n(Φ

TΦ)−1
)
−Q

∥∥
TV

≤ 1√
2π

σn
τ2n + σ2

n

(
‖F0‖+ σn

√
kn

)
.

This goes to zero under the assumptions of Theorem 1.
To conclude the proof, let us just note that we deduce the results onW (dF |Y )

from the ones on W̃ (dθ|Y ), by the linear relation F = Φθ.
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6.2 Proof of Theorem 2.

We make the proof for W̃ (dθ|Y ). Then the result for W (dF |Y ) is immediate.
Our method is adapted from [2].

For M > 0, consider the ellipsoid

Eθ0,Φ(M) =
{
θ ∈ R

kn : (θ − θ0)
TΦTΦ(θ − θ0) ≤ σ2

nM
}
. (19)

To any probability measure P on R
kn , we associate the probability

PM =
P (· ∩ Eθ0,Φ(M))

P (Eθ0,Φ(M))
(20)

with support in Eθ0,Φ(M). It can be easily checked that

∥∥P − PM
∥∥
TV

= P
(
Ec
θ0,Φ(M)

)
. (21)

Then the calculus is divided in three parts, Mn being used as a threshold to
truncate the queues of the probability distributions. Gathered, these lemmas
give Theorem 2.

Lemma 5. If kn < 4Mn, then

E
∥∥N

(
θY , σ

2
n(Φ

TΦ)−1
)
−NMn

(
θY , σ

2
n(Φ

TΦ)−1
)∥∥

TV
≤ 2e−

(√Mn−2
√

kn)
2

8 .

If kn = o(Mn), for n large enough, this bound can be replaced by exp(−Mn/9).

Proof. Two cases occur, depending on whether θY is near or far from θ0:

∥∥N
(
θY , σ

2
n(Φ

TΦ)−1
)
−NMn

(
θY , σ

2
n(Φ

TΦ)−1
)∥∥

TV

= N
(
θY , σ

2
n(Φ

TΦ)−1
) (

Ec
θ0,Φ(Mn)

)

≤ 1(θY −θ0)TΦT Φ(θY −θ0)>σ2
nMn/4

+N
(
θ0, σ

2
n(Φ

TΦ)−1
) (

Ec
θ0,Φ(Mn/4)

)

Let U a random variable following the χ2(kn) distribution. Taking the expec-
tation in the last line we get

E
∥∥N

(
θY , σ

2
n(Φ

TΦ)−1
)
−NMn

(
θY , σ

2
n(Φ

TΦ)−1
)∥∥

TV
≤ 2P (U > Mn/4).

To conclude we use Cirelson’s inequality [13]:

P (
√
U >

√
kn +

√
2x) ≤ exp(−x) (22)

Lemma 6. If sup
hTΦT Φh≤σ2

nMn,gTΦTΦg≤σ2
nMn

w(θ0 + h)

w(θ0 + g)
→ 1 as n→ ∞, then

E
∥∥∥W̃Mn(dθ|Y )−NMn

(
θY , σ

2
n(Φ

TΦ)−1
)∥∥∥

TV
→ 0 as n→ ∞.
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Proof. Let us first note that, for every θ and τ in R
kn , for every Y ∈ R

n,

dPθ(Y )

dPτ (Y )
= exp

{−‖Φθ‖2 + ‖Φτ‖2 − 2Y TΦ(τ − θ)

2σ2
n

}
=
dN

(
θY , σ

2
n(Φ

TΦ)−1
)
(θ)

dN (θY , σ2
n(Φ

TΦ)−1) (τ)
.

(23)
In the following we mainly use the convexity of x 7→ (1 − x)+. We abbreviate
NMn

(
θY , σ

2
n(Φ

TΦ)−1
)
into NMn . Then

∥∥∥W̃Mn(dθ|Y )−NMn

∥∥∥
TV

=

∫ (
1− dNMn(θ)

dW̃Mn(θ|Y )

)

+

dW̃Mn(θ|Y )

=

∫ 
1−

dNMn(θ)
∫ w(τ)

dNMn (τ) dPτ (Y ) dNMn(τ)

w(θ) dPθ(Y )




+

dW̃Mn(θ|Y )

≤
∫ ∫ (

1− w(τ) dNMn (θ) dPτ (Y )

w(θ) dNMn (τ) dPθ(Y )

)

+

dNMn(τ) dW̃Mn(θ|Y )

=

∫ ∫ (
1− w(τ)

w(θ)

)

+

dNMn(τ) dW̃Mn (θ|Y )

≤ 1− inf
hTΦTΦh≤σ2

nMn,gT ΦTΦg≤σ2
nMn

w(θ0 + h)

w(θ0 + g)
.

Proposition 9 (Posterior concentration). Suppose that Condition 1, Condi-
tion 2, and Condition 3 of Theorem 2 hold. Then

E
∥∥∥W̃ (dθ|Y )− W̃Mn(dθ|Y )

∥∥∥
TV

= E
[
W̃
(
EC
θ0,Φ(Mn)

∣∣Y
)]

→ 0 as n→ ∞.

Proposition 9 is proved in Appendix A, using the important following Lemma.

Lemma 7. Let a ∈ R
n such that ΦTa = 0. Then, for any y ∈ R

n, W (·|Y =
y) =W (·|Y = y + a).

Lemma 7 states that the distribution W (·|Y ) is invariant by any translation
of Y orthogonal to 〈φ〉. As a consequence, proving Proposition 9 in the case
F0 = Φθ0 is enough.

Proof. We decompose any y ∈ R
n in two orthogonal components y = Φθy + y′,

with ΦT y′ = 0. The density of Pθ is equal to

dPθ(y) =
1(

σn
√
2π
)n exp

{
−‖Φθy + y′ − Φθ‖2

2σ2
n

}

=
1(

σn
√
2π
)n exp

{
−‖y′‖2

2σ2
n

}
exp

{
−‖Φθy − Φθ‖2

2σ2
n

}
.
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On the same way,

dPθ(y + a) =
1(

σn
√
2π
)n exp

{
−‖y′ + a‖2

2σ2
n

}
exp

{
−‖Φθy − Φθ‖2

2σ2
n

}

= exp

{
−‖y′ + a‖2 − ‖y′‖2

2σ2
n

}
dPθ(y).

Therefore

dPW (y + a) =

∫
dPθ(y + a)w(θ) dθ

= exp

{
−‖y′ + a‖2 − ‖y′‖2

2σ2
n

}
dPW (y)

and

W̃ (dθ|Y = y + a) =
dPθ(y + a)w(θ) dθ

dPW (y + a)

= W̃ (dθ|Y = y).

6.3 Proof of Theorem 3.

Let us consider the following Taylor expansion:

G(F )−G(Y〈φ〉) = ĠF〈φ〉(F − Y〈φ〉)

+
1

2

∫ 1

0

(1− t)D2
F〈φ〉+t (F−F〈φ〉)

G(F − F〈φ〉, F − F〈φ〉) dt

− 1

2

∫ 1

0

(1− t)D2
F〈φ〉+t (Y〈φ〉−F〈φ〉)

G(Y〈φ〉 − F〈φ〉, Y〈φ〉 − F〈φ〉) dt.

Suppose that F ∈ 〈φ〉, ‖F−F〈φ〉‖2 ≤ σ2
nMn, and ‖Y〈φ〉−F〈φ〉‖2 ≤ σ2

nMn. Then,
for any b ∈ R

p,

∣∣∣bT
(
G(F ) −G(Y〈φ〉)− ĠF〈φ〉(F − Y〈φ〉)

)∣∣∣ ≤ ‖b‖BF〈φ〉(Mn).

On the other hand,
√
bTΓF〈φ〉b ≥

√∥∥∥Γ−1
F〈φ〉

∥∥∥
−1

‖b‖. Moreover

∥∥∥∥∥∥
W


d

bT ĠF〈φ〉(F − Y〈φ〉)√
bTΓF〈φ〉b

∣∣∣∣∣∣
Y


−N (0, 1)

∥∥∥∥∥∥
TV

≤
∥∥W (dF |Y )−N

(
Y〈φ〉, σ

2
nΣ
)∥∥

TV
.

Let ηn =

√∥∥∥Γ−1
F〈φ〉

∥∥∥BF〈φ〉(Mn), which tends to 0 by hypothesis. Let also

Iηn
= {x ∈ R : ∃x′ ∈ I, |x− x′| ≤ ηn}.
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Note that ψ (Iηn
) ≤ ψ(I) +

√
2
πηn.

Gathering all this information, we can get the upper bound

W


 bT

(
G(F )−G(Y〈φ〉)

)
√
bTΓF〈φ〉b

∈ I

∣∣∣∣∣∣
Y


 ≤ ψ(I) +

√
2

π
ηn

+
∥∥W (dF |Y )−N

(
Y〈φ〉, σ

2
nΣ
)∥∥

TV

+ 1‖Y〈φ〉−F〈φ〉‖2>σ2
nMn

+W
(
‖F − F〈φ〉‖2 > σ2

nMn

∣∣Y
)
.

A lower bound is obtained in the same way. Taking the expectation,

E

∣∣∣∣∣∣
W


 bT

(
G(F )−G(Y〈φ〉)

)
√
bTΓF〈φ〉b

∈ I

∣∣∣∣∣∣
Y


− ψ(I)

∣∣∣∣∣∣

≤ o(1) + P (‖Y〈φ〉 − F〈φ〉‖2 > σ2
nMn)

+ E
[
W
(
‖F − F〈φ〉‖2 > σ2

nMn

∣∣Y
)]
.

But ‖Y〈φ〉 − F〈φ〉‖2 follows the σ2
nχ

2(kn) distribution, and since kn = o(Mn),

P (‖Y〈φ〉 − F〈φ〉‖2 > σ2
nMn) = o(1).

To conclude the proof of the Bayesian part of Theorem 3, we use the follow-
ing:

Lemma 8. Suppose that the conditions of either Theorem 1 or Theorem 2 are
verified. Then

E
[
W
(
‖F − F〈φ〉‖2 > σ2

nMn

∣∣Y
)]

→ 0 as n→ ∞.

Proof. For smooth priors, this is an immediate corollary of Proposition 9. Let
us suppose we are under the conditions of Theorem 1.

Let Z be a N
(
0,

σ2
nτ

2
n

σ2
n+τ2

n
(ΦTΦ)−1

)
random vector in R

n independent on Y ,

and U a random variable following χ2(kn). Using (18), we get

W
(
‖F − F〈φ〉‖2 > σ2

nMn

∣∣Y
)

= P

(∥∥∥∥Z +
τ2n

σ2
n + τ2n

Y〈φ〉 − F〈φ〉

∥∥∥∥
2

> σ2
nMn

)

≤ P

(
‖Z‖ > σn

√
Mn −

∥∥∥∥
τ2n

σ2
n + τ2n

Y〈φ〉 − F〈φ〉

∥∥∥∥
)

≤





1 if
∥∥∥ τ2

n

σ2
n+τ2

n
Y〈φ〉 − F〈φ〉

∥∥∥ > 2σn

√
Mn

3

P
(
U >

σ2
n+τ2

n

τ2
n

Mn

9

)
otherwise.

Since kn = o(Mn), P (U > Mn/9) = o(1). On the other hand,
∥∥∥∥

τ2n
σ2
n + τ2n

Y〈φ〉 − F〈φ〉

∥∥∥∥ =

∥∥∥∥Σ
(

τ2n
σ2
n + τ2n

ε+
σ2
n

σ2
n + τ2n

F0

)∥∥∥∥

≤ ‖Σε‖+ σn√
σ2
n + τ2n

‖F0‖
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Since ‖F0‖ = o(τ2n/σn),
σ2
n‖F0‖2

σ2
n+τ2

n
= o(1) < Mn

9 for n large enough. ‖Σε‖2 is a

χ2(kn) variable. Therefore, for n large enough,

E
[
W
(
‖F − F〈φ〉‖2 > σ2

nMn

∣∣Y
)]

≤ 2P (U > Mn/9) = o(1).

The frequentist assertion (12) is proved in a similar way from Taylor’s ex-
pansion

G(Y〈φ〉)−G(F〈φ〉) = ĠF〈φ〉(Y〈φ〉 − F〈φ〉)

+
1

2

∫ 1

0

(1− t)D2
F〈φ〉+t (Y〈φ〉−F〈φ〉)

G(Y〈φ〉 − F〈φ〉, Y〈φ〉 − F〈φ〉) dt.
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A Posterior Consistency

Here we prove Proposition 9. Lemma 7 allows us to suppose F0 = Φθ0. Let U a
random variable following the χ2(kn) distribution. Proceeding as in [2, 18], we
introduce a test

Tn = 1(θY −θ0)TΦTΦ (θY −θ0)>σ2
nMn/4. (24)

Note that ETn = P (U > Mn/4) = o(1). Then

E
[
W̃
(
EC
θ0,Φ(Mn)

∣∣Y
)]

≤ ETn + E
[
(1− Tn)W̃

(
EC
θ0,Φ(Mn)

∣∣Y
)]
.

Next, let (rn)n≥1 be a sequence of positive numbers such that rn goes to 0
and − ln(rn) = o(Mn/kn) as n goes to infinity. We replace the distribution Pθ0

by the mixture distribution PW
θ0,rn

with density

dPW
θ0,rn(y) =

∫

Eθ0,Φ(rn)

dPθ(y)W̃
rn(dθ). (25)

where W̃ rn is the rescaled restriction of W̃ to Eθ0,Φ(rn), as in (20). The following
Lemma illustrates the link between Pθ0 and PW

θ0,rn
.

Lemma 9. Using the preceding notations,

∥∥PW
θ0,rn − Pθ0

∥∥
TV

≤
√
rn
2π

= o(1).
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Proof. We use convexity, and Lemma 4 since Pθ = N
(
Φθ, σ2

nIn
)
:

∥∥PW
θ0,rn − Pθ0

∥∥
TV

≤ sup
hTΦTΦh≤σ2

nrn

‖Pθ0+h − Pθ0‖TV ≤
√
rn√
2π
.

At that point, the Bayes rule and the Fubini Theorem give

EW
θ0,rn

[
(1− Tn)W̃

(
EC
θ0,Φ(Mn)

∣∣Y
)]

=
1

W̃ (E(rn))

∫

E(rn)

(∫

Rn

[
(1 − Tn)

∫

EC(Mn)

dPτ (Y )w(τ) dτ∫
Rkn

dPη(Y )w(η) dη

]
dPθ(Y )

)
w(θ) dθ

=
1

W̃ (E(rn))

∫

EC(Mn)

Eτ

[
(1− Tn)W̃ (E(rn)|Y )

]
w(τ) dτ

≤ 1

W̃ (Eθ0,Φ(rn))
sup

hTΦTΦh>σ2
nMn

Eθ0+h(1− Tn)

≤ 1

W̃ (Eθ0,Φ(rn))
sup

hTΦTΦh>σ2
nMn

Pθ0+h

(
‖Φ (θY − θ0 − h)‖2 > σ2

nMn/4
)

=
P (U > Mn/4)

W̃ (Eθ0,Φ(rn))
.

Let Bk(0, 1) be the unit ball in R
k. We make use of the following relation

(see for instance [1, Lemma 2])

− ln vol (Bk(0, 1)) = ln
Γ(1 + k/2)

πk/2
∼

k→∞
k

2
ln k

together with a control on the volume of the ellipsoid Eθ0,Φ(rn)

W̃ (Eθ0,Φ(rn)) ≥
(

inf
hTΦTΦh≤σ2

nrn

w(θ0 + h)

w(θ0)

)
σkn
n w(θ0)√
det(ΦTΦ)

rkn/2
n vol (Bkn

(0, 1)) .

Next we can use Cirelson’s inequality (22) as in Lemma 5 and get, for n
large enough,

ln
(
EW

θ0,rn

[
(1− Tn)W̃ (Eθ0,Φ(Mn)|Y )

])

≤ ln

(√
det(ΦTΦ)

σkn
n w(θ0)

)
− Mn

9
− kn

2
ln(rn)− ln vol (Bkn

(0, 1)) + o(1)

∼ −Mn

9

which goes to minus infinity as n goes to infinity.

B Sobolev classes

We begin with a simple lemma, then we prove Lemma 2 and Lemma 3
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Lemma 10. Let α > 1/2, L > 0, and θ ∈ Θ(α,L). Then

∞∑

j=1

|θj | <∞.

As a consequence, f is the uniform limit of the series
∑∞

j=1 θjϕj and f is
continuous.

Proof of Lemma 10. We have a simple control on the sum of the coefficients

∞∑

j=2

|θj | ≤
√∑

j≥2

a−2
j

√∑

j≥2

a2jθ
2
j ≤ L

πα

√∑

j≥1

j−2α <∞.

Since all functions ϕj are continuous and bounded by
√
2, the other points

follow.

Proof of Lemma 2. F〈φ〉 is the orthogonal projection of F0 on the convex span
of the first kn vectors of the orthogonal basis (φj)1≤j≤n of Rn. So

‖F0 − F〈φ〉‖2 =

n∑

j=kn+1

(FT
0 φj)

2 = n

n∑

j=kn+1

(
1

n

n∑

i=1

f(i/n)ϕj(i/n)

)2

.

Following [17], we set ζj =
1
n

∑n
i=1 f(i/n)ϕj(i/n)− θ0j for 1 ≤ j ≤ n. Then

‖F0 − F〈φ〉‖2 = n

n∑

j=kn+1

(
ζj + θ0j

)2 ≤ 2n




n∑

j=1

ζ2j +

n∑

j=kn+1

(θ0j )
2


 .

Using Lemma 1, for any 1 ≤ j ≤ n,

ζj =
1

n

n∑

i=1

( ∞∑

m=1

θ0mϕm(i/n)

)
ϕj(i/n)− θ0j

=
1

n

n∑

i=1

( ∞∑

m=n+1

θ0mϕm(i/n)

)
ϕj(i/n).

So, using Lemma 1 again,

n∑

j=1

ζ2j ≤ 1

n

n∑

i=1

( ∞∑

m=n+1

θ0mϕm(i/n)

)2

.

We recognize a Riemann sum of the function
(∑∞

m=n+1 θ
0
mϕm

)2
, which is con-

tinuous according to Lemma 10. Therefore

n∑

j=1

ζ2j ≤ (1 + o(1))

∫ 1

0

( ∞∑

m=n+1

θ0mϕm

)2

=
∞∑

m=n+1

(θ0m)2
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and

‖F0 − F〈φ〉‖2 ≤ (2n+ o(n))

∞∑

m=kn+1

(θ0m)2

≤ 2n+ o(n)

a2kn+1

∞∑

m=kn+1

a2m(θ0m)2

≤ 2L2

π2α

n+ o(n)

k2αn
.

On the other hand, f is continuous, and (1/n) ‖F0‖2 is a Riemann sum of f2.

Therefore (1/n) ‖F0‖2 goes to
∫ 1

0 f
2 as n goes to infinity.

Proof of Lemma 3. Let (θ′j)j≥1 the Fourier coefficients of g. As in the previous

proof, we set ζj =
1
n

∑n
i=1 f(i/n)ϕj(i/n)− θ0j and ζ′j =

1
n

∑n
i=1 g(i/n)ϕj(i/n)−

θ′j for 1 ≤ j ≤ n. We have F0 =
∑n

j=1(ζj + θ0j )φj , so

1

n

n∑

i=1

f(i/n)g(i/n) =
n∑

j=1

(ζj + θ0j )(ζ
′
j + θ′j).

In the meantime ∫ 1

0

fg =

∞∑

j=1

θ0jθ
′
j .

So
∣∣∣∣∣
1

n

n∑

i=1

f(i/n)g(i/n)−
∫ 1

0

fg

∣∣∣∣∣ =

∣∣∣∣∣∣

n∑

j=1

ζjζ
′
j +

n∑

j=1

ζjθ
′
j +

n∑

j=1

θ0j ζ
′
j −

∞∑

j=n+1

θ0j θ
′
j

∣∣∣∣∣∣

≤

√√√√
n∑

j=1

ζ2j

√√√√
n∑

j=1

ζ′j
2 +

√√√√
n∑

j=1

ζ2j

√√√√
n∑

j=1

θ′j
2

+

√√√√
n∑

j=1

ζ′j
2

√√√√
n∑

j=1

(θ0j )
2 +

√√√√
∞∑

j=n+1

(θ0j )
2

√√√√
∞∑

j=n+1

θ′j
2.

As in the proof of Lemma 2, we have
n∑

j=1

ζ2j ∼
∞∑

j=n+1

(θ0j )
2 ≤ L2

π2αn2α

and on the other hand,
n∑

j=1

(θ0j )
2 ≤

∫ 1

0

f2 = ‖f‖2.

Thus∣∣∣∣∣
1

n

n∑

i=1

f(i/n)g(i/n)−
∫ 1

0

fg

∣∣∣∣∣ ≤ (1 + o(1))

(
LL′

πα+α′nα+α′ +
L′‖f‖
πα′nα′ +

L‖g‖
παnα

)

= O
(
n− inf(α,α′)

)
.
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