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1 Introduction

Let c1, c2, c3 be distinct rational numbers. Let Γ be the elliptic curve defined
by the equation

y2 = (x− c1)(x− c2)(x − c3).

We makes the additional technical assumption that none of the (ci−cj)(ci−ck)
are squares. This is equivalent to saying that Γ is an elliptic curve over Q with
complete 2-torsion and no cyclic subgroup of order 4 defined over Q. For b a
square-free number, let Γb be the twist defined by the equation

y2 = (x− bc1)(x− bc2)(x− bc3).

Let S be a finite set of places of Q including 2,∞ and all of the places at which
Γ has bad reduction. Let D be a positive integer divisible by 8 and by the
primes in S. Let S2(Γb) denote the 2-Selmer group of the curve Γb. We will
be interested in how the rank varies with b and in particular in the asymptotic
density of b’s so that S2(Γb) has a given rank.

The parity of dim(S2(Γb)) depends only on the class of b in
∏

ν∈S Q∗
ν/(Q

∗
ν)

2.
We claim that for exactly half of these values this dimension is odd and exactly
half of the time it is even.

Lemma 1. For exactly half of the classes c in (Z/D)∗/((Z/D)∗)2, if we pick b
a positive representative of the class c then dim(S2(Γb)) is even.

Let b = p1p2 . . . pn where pi are distinct primes relatively prime to D.
The rank of S2(Γb) is easily seen to depend only on the images of the pi in
(Z/D)∗/2(Z/D)∗ and upon which pi are quadratic residues modulo which pj .

There are 2n|S|+(n2) possible sets of values for these. Let πd(n) be the fraction
of this set of possibilities that cause S2(Γb) to have rank exactly d. Then the
main Theorem of [4] together with Lemma 1 implies that:

Theorem 2.

lim
n→∞

πd(n) = αd.

where α0 = α1 = 0 and αn+2 = 2n∏
n
j=1

(2j−1)
∏

∞

j=0
(1+2−j) .
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This tells us information about the asymptotic density of twists of Γ whose
2-Selmer group has a particular rank. Unfortunately, this asymptotic density
is taken in a somewhat awkward way by letting the number of primes dividing
b go to infinity. In this paper we prove the following more natural version of
Theorem 2:

Theorem 3.

lim
N→∞

#{b ≤ N : b square-free, (b,D) = 1 and dim(S2(Γb)) = d}
#{b ≤ N : b square-free and (b,D) = 1} = αd.

Applying this to twists of Γ by divisors of D and noting that twists by
squares do not affect the Selmer rank we have that

Corollary 4.

lim
N→∞

#{b ≤ N : dim(S2(Γb)) = d}
N

= αd.

and

Corollary 5.

lim
N→∞

#{−N ≤ b ≤ N : dim(S2(Γb)) = d}
2N

= αd.

Our technique is fairly straightforward. Our goal will be to prove that the
average moments of the size of the Selmer groups will be as expected. As it turns
out, this will be enough to determine the probability of seeing a given rank. In
order to analyze the Selmer groups we follow the method described in [4]. Here
the 2-Selmer group of Γb can be expressed as the intersection of two Lagrangian
subspaces, U and W , of a particular symplectic space, V , over F2. Although
U, V and W all depend on b, once the number of primes dividing b has been
fixed along with its congruence class modulo D, these spaces can all be written
conveniently in terms of the primes, pi, dividing b, which we think of as formal
variables. Using the formula |U ∩W | = 1√

|V |

∑

u∈U,w∈W (−1)u·w, we reduce our

problem to bounding the size of the “characters” (−1)u·w when averaged over
b. These “characters” turn out to be products of Dirichlet characters of the pi
and Legendre symbols of pairs of the pi. The bulk of our analytic work is in
proving these bounds.

In Section 2 we introduce some basic concepts that will be used throughout.
In Section 3 we will prove the necessary character bounds. We use these bounds
in Section 4 to establish the average moments of the size of the Selmer groups.
Finally in Section 5 we explain how these results can be used to prove our main
Theorem.

2 Preliminaries

For an integer m, let ω(m) be the number of prime divisors of m. Recall that
among numbers m ≤ N that ω(m) is concentrated around log logN . In partic-
ular the fraction of such numbers that have |ω(m)− log logN | ≤ (log logN)3/4
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goes to 1 as N → ∞. We will make use of this fact throughout noting that we
only need to deal with b with ω(b) roughly log logN .

3 Character Bounds

Our main purpose in this section will be to prove the following Propositions:

Proposition 6. Fix positive integers D,n,N with 4|D, n = Θ(log logN), D =
O(1). Let c > 0 be a constant. Let di,j , ei,j ∈ Z/2 for i, j = 1, . . . , n with

ei,j = ej,i, di,j = dj,i, ei,i = di,i = 0 for all i, j. Let χi be a quadratic character

with modulus dividing D for i = 1, . . . , n. Let m be the number of indices i so
that at least one of the following hold:

• ei,j = 1 for some j or

• χi has modulus not dividing 4 or

• χi has modulus exactly 4 and di,j = 0 for all j.

Let ǫ(p) = (p− 1)/2. Then if m > 0
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

∏

i

χi(pi)
∏

i<j

(−1)ǫ(pi)ǫ(pj)di,j

∏

i<j

(

pi
pj

)ei,j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= O (Ncm) . (1)

Note that m is the number of indices i so that no matter how we fix the
values of pj for the j 6= i that the summand on the left hand side of Equation
1 still depends on pi.

Essentially we are summing over all b =
∏

i pi with ω(b) = n and b ≤ N ,
where the summand is a “character” defined by the χi, di,j and ei,j. The 1

n!
accounts for the different possible reorderings of the pi.

Proposition 7. Let n,N,D be positive integers with D = O(1), n = Θ(log logN).
Let G = ((Z/D)∗/2(Z/D)∗)n. Let f : G → C be a function with |f |∞ ≤ 1. Then

1

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

f(p1, . . . , pn) (2)

=





1

|G|
∑

g∈G

f(g)























1

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

1



















+O

(

N(log log logN)2

log logN

)

.
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Note that again, the sum can be thought of as a sum over all b =
∏

i pi with
b ≤ N and ω(b) = n.

We begin with a Proposition that gives a more precise form of Proposition
6 in the case when the ei,j are all 0.

Proposition 8. Let D,n,N be integers with 4|D. Let C > 0 be a constant.

Let di,j ∈ Z/2 for i, j = 1, . . . , n with di,j = dj,i, di,i = 0. Let χi be a quadratic

character of modulus dividing D for i = 1, . . . , n. Suppose that no Dirichlet

character of modulus dividing D has an associated Siegel zero larger than 1−β−1.

Let B = max(e3Cβ log logN , e(logD)2(log logN)4). Suppose that Bn <
√
N . Let m

be the number of indices i so that either:

• χi does not have modulus dividing 4 or

• χi has modulus exactly 4 and di,j = 0 for all j.

Then
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

∏

i

χi(pi)
∏

i<j

(−1)ǫ(pi)ǫ(pj)di,j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= N

(

O

(

log logB

n

)m

+O(logN)−C

)

.

(3)

Note once again that m is the number of i so that if the values of pj for j 6= i
are all fixed, the resulting summand will still depend on pi.

Proof. We proceed by induction on n. If m = 0, we can bound the left hand
side of Equation 3 by N . This is because there are at most N possible values
of p1 · · · pn, each such product shows up n! times and thus contributes at most
1 to the left hand side.

For m > 0 we proceed as follows. We pick a pi that is contributing to the
value of m. In other words, we pick a pi so that either χi does not have modulus
dividing 4 or so that the modulus of χi is exactly 4 and di,j = 0 for all j.

We break the sum into parts based on whether pi is larger than B. For
pi > B we will argue based on standard results about sums of characters. For
pi < B this will not be sufficient since the range of possible values of pi is too

small. Instead we note that that only a O
(

log logB
log logN

)

proportion of terms have

pi in this range, and that after fixing a value of pi we are left with a similar sum
only with n and m reduced.

First we handle the case where pi > B. We begin by partitioning (B,N ]
into intervals Iℓ of the form (A,A(1 + Θ(log(M)−C))]. We begin by throwing
away all terms in our summation in which if pi were replaced by the largest
prime in its interval the resulting value of p1 · · · pn would exceed N . We note
that for such terms it must be the case that p1 · · · pn ≥ N(1 − O(logN)−C).
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Since there are at most NO(logN)−C such products the sum over such terms
is at most NO(logN)−C . To bound the remaining terms, we fix pj for all
j 6= i and fix the interval in which pi lies. We are left with a sum over all
primes p ∈ I (with possibly n exceptions coming from the pj) of χ(p), where
χ(p) = χi(p)

∏

j 6=i(−1)ǫ(p)ǫ(pj)di,j . It should be noted that χ is a non-trivial
Dirichlet character of modulus dividing D. [2] Theorem 5.27 implies that for
any X that

∑

n≤X

χ(n)Λ(n) = XO

(

X−β−1

+ exp

(

−c
√

log(X)

logD

)

(logD)4

)

for some absolute constant c. Using standard techniques this implies that our
sum over pi is

AO

(

A−β−1

+ exp

(

−c
√

log(A)

logD

)

(logD)4

)

.

Using the fact that A ≥ B ≥ e3Cβ log logN , e(logD)2(log logN)4 , this is

AO

(

e−3C log logN + e−c(log logN)2(logD)4 +
logN

B

)

.

Note that unless logD = O(logN) that B > e(logD)2 > N and this case is
trivial. Hence the above quantity is at most

AO((logN)−3C).

Notice that for each of these terms there are at most N
A possible values for

∏

j 6=i pj . Each of these products is represented (n−1)! times. Hence after fixing
the interval in which pi lies our sum is at most

(

1

n!

)(

N(n− 1)!

A

)

AO
(

(logN)−3C
)

≤ NO((logN)−3C).

Noticing that there are O((logN)C+1) intervals to deal with we find that the
sum of these terms is NO((logN)−C).

Next we consider the contribution from terms where pi ≤ B. We notice that
after fixing pi we are left with a sum similar to the one with started with with
a few exceptions. Namely:

• N is now smaller by a factor of p.

• n is smaller by 1.

• There is an additional factor of 1
n in front of the summation.

• χj(p) is replaced by χj(p)(−1)di,jǫ(pi)ǫ(p).
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• m may change, but is at least its old value minus 1.

Having fixed this pi, we now have a bound of

N

npi
E

where E is

O

(

log logB

n

)m−1

+O((logN)−C).

Summing over pi prime less than B we get

NO(log logB)

n
E = N

(

O

(

log logB

log logN

)m

+O((logN)−C)

)

.

Unfortunately we need to be a little more careful since when we fix pi the
remaining values of n,N,B are no longer the same. On the other hand, the
value of B only decreases and the value of N never shrinks below NB−n >

√
N .

Hence we may think of all of ourO(logN)−C andO(log logB) terms as using the
original N and B. Then a straightforward computation of our errors produces
a bound of N times

O(logN)−C
m−1
∑

k=0

O(log logB)k

n(n− 1) · · · (n− k + 1)
+

O(log logB)m

n(n− 1) · · · (n−m+ 1)

≤ O(logN)−C
m
∑

k=0

O

(

log logB

n

)k

+O

(

log logB

n

)m

≤ nO(logN)−C + nO(logN)−CO

(

log logB

n

)m

+O

(

log logB

n

)m

.

Noting that the assumption Bn <
√
N implies that n = O(logN) and replacing

C by C + 1, we get the desired bound.
Note that this argument can be made into a rigorous induction by introduc-

ing a new variable, M , equal to the “original” value on N . We then set B =
max(e3Cβ log logM , e(logD)2(log logM)4) and require that N ≤ M ≤ (B−nN)2. We
allow for a set, S (of size at most O(logM)) of disallowed primes corresponding
to primes that have already been fixed, allow m to be an integer smaller than
the value we specify and prove a bound of the form:

N

(

O(logM)−C
m−1
∑

k=0

O(log logB)k

n(n− 1) · · · (n− k + 1)
+

O(log logB)m

n(n− 1) · · · (n−m+ 1)

)

.

We are now prepared to prove Proposition 7

6



Proof. First note that we can assume that 4|D. This is because if that is not
the case, we can split our sum up into two cases, one where none of the pi are
2, and one where one of the pi is 2. In either case we get a sum of the same
form but now can assume that D is divisible by 4. We assume this so that we
can use Proposition 8.

It is clear that the error in Equation 2 is

1

|G|



















∑

χ∈Ĝ\{1}



















1

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

χ(p1, . . . , pn)























∑

g∈G

f(g)χ(g)























.

Using Cauchy-Schwartz we find that this is at most

1

|G|
√

|G||f |2
∑

χ∈Ĝ\{1}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

χ(p1, . . . , pn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

We note that |f |2 ≤
√

|G| and hence that 1
|G|

√

|G||f |2 ≤ 1. Bounding the

character sum using Proposition 8 we get

∑

χ∈Ĝ\{1}

O

(

log log logN

log logN

)2·<Number of components on which χ is non-trivial>

.

Since each component of χ can either be trivial or have one of finitely many non-
trivial values (which gives a contribution ofO((log log logN)2/(log logN)2)) and
this can be chosen independently for each component we get that this is

(

1 +O

(

log log logN

log logN

)2
)n

− 1 = exp

(

O

(

(log log logN)2

log logN

))

− 1

= O

(

(log log logN)2

log logN

)

.

In order to prove Proposition 6 we will need the following Lemma:

Lemma 9. Let Q and N be positive integers with Q2 ≥ N . Let a : {1, 2, . . . , N} →
C be a function supported on square-free numbers. Then we have that

∑

χ quadratic character
of modulus ≤Q

∣

∣

∣

∣

∣

N
∑

n=1

anχ(n)

∣

∣

∣

∣

∣

2

= O
(

Q
√
N |a|2

)
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where |a|2 =
∑N

n=1 |an|2 is the squared L2 norm.

Proof. Let M be a positive integer so that Q2 ≤ NM2 ≤ 4Q2. Let b :
{1, 2, . . . ,M2} → C be the function bn2 = 1

M and b = 0 on non-squares. Let c =
a∗b be the multiplicative convolution of a and b. Note that since a is supported
on square-free numbers and b supported on squares that |c|2 = |a|2|b|2 = |a|2/M .
Applying the multiplicative large sieve inequality (see [2] Theorem 7.13) to c we
have that

∑

q≤Q

q

φ(q)

∗
∑

χ mod q

∣

∣

∣

∣

∣

∑

n

cnχ(n)

∣

∣

∣

∣

∣

2

≤ (Q2 +NM2 − 1)|c|2. (4)

Now the right hand side is easily seen to be O(Q2)|a|2/M = O(Q2|a|2/(
√

Q2/N)) =

O(Q
√
N |a|2). For the left hand side we may note that it only becomes smaller

if we remove the q
φ(q) or ignore the characters that are not quadratic. For

quadratic characters χ note that

∑

n

cnχ(n) =

(

∑

n

anχ(n)

)(

∑

n

bnχ(n)

)

=
∑

n

anχ(n).

Where the last equality above follows from the fact that χ is 1 on squares. Hence
the left hand side of Equation 4 is at least

∑

χ quadratic character
of modulus ≤Q

∣

∣

∣

∣

∣

N
∑

n=1

anχ(n)

∣

∣

∣

∣

∣

2

.

This completes our proof.

We are now prepared to prove Proposition 6

Proof. Our proof will be similar to the proof of Proposition 8. Again we will use
induction on n, this time using Proposition 8as our base case. Unfortunately, for
this application to work, we will need to pay closer attention to the possibility
of Siegel zeroes. First pick a C so that cn ≪ (logN)−C (we can do this since
n = O(log logN)). Let Q be the modulus of the quadratic character of modulus

between logC N and e(log logN)4 , (which is bigger than Den(log logN)2) with the
largest Siegel zero among such characters (if any exist). Notice that the sum
over terms where Q|D∏i pi is O(N/Q) = O(N log−C(N)) and can thus be
ignored. Notice that by [2] Theorem 5.28 that any other quadratic character

of modulus less than Den(log logN)2 does not have any Siegel zero larger than
1−Ω((logN)−ǫ), for any ǫ > 0, where the implied constant in the Ω depends on
C and ǫ but not N . We now throw out all terms in the sum in which Q|D∏i pi.

We proceed by induction on n. If ei,j = 0 for all i, j we use Proposition 8.
Otherwise we pick an i, j so that ei,j = 1. As in the proof of Proposition 8 we
break our sum into cases based on whether or not pi and pj are greater than
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B = e(log logN)2 . As before, if either pi is small, we fix the value of pi and are
left with a similar looking sum over the remaining primes. This time though if
both pi and pj are large, we use Lemma 9 to provide our bound.

We first deal with the case where both pi and pj are greater than B. We
partition (B,N ] into intervals of the form (A,A(1 + Θ(logM)−C))]. We break
our sum up by conditioning which of these intervals pi and pj land in. Suppose
that pi lands in Ii and pj lands in Ij . Next we throw away all terms in our
sum where replacing pi and pj with the largest primes in Ii and Ij respectively
would cause

∏

k pk > N . This only happens when the current value of
∏

k pk is
at least N(1 − Θ(log(N))−C) and hence the sum of these terms contributes a
total of O(N(logN)−C) and may be ignored. If we are not in this case, fixing
all of the pk for k 6= i, j we are left with a sum over all pairs of primes (pi, pj)
in Ii × Ij except for those where

• pi or pj equals one of the other pk,

• pi or pj is the remaining prime factor in Q not in D
∏

k 6=i,j pk or

• pipj is exactly the pair of prime factors of Q missing from D
∏

k 6=i,j pk.

Assuming without loss of generality that either i < j , the summand is

χi(pi)χj(pj)(−1)ǫ(pi)ǫ(pj)di,j

(

pi
pj

)

.

Notice that the first two of the excluded cases rule out O(log logN) possible
values for pi and pj . The last only excludes a single term and can thus be
ignored. Suppose that Ii starts at Ai and Ij starts at Aj . Let Si be the set
of primes in Ii not excluded by the above and Sj the set of primes in Ij not
excluded by the above. We wish to bound:

∑

pi∈Si,pj∈Sj

χi(pi)χj(pj)(−1)ǫ(pi)ǫ(pj)di,j

(

pi
pj

)

. (5)

Suppose without loss of generality that Aj ≥ Ai (otherwise we can switch
i and j using quadratic reciprocity). Let a be the function supported on Si

defined by a(pi) = χi(pi). Let b be the function sending quadratic characters to

complex numbers so that if χ is the character χ(n) = (−1)ǫ(n)ǫ(pj)di,j

(

n
pj

)

for

some pj ∈ Sj then b(χ) = χj(pj), and b(χ) = 0 if χ is not of that form. Then
the expression in Equation 5 equals

∑

χ

b(χ)
∑

n

anχ(n).

Noting that b is supported on characters of modulus at most 5Aj , by Cauchy-
Schwartz this is at most

(

∑

χ

|b(χ)|2
)1/2









∑

χ quadratic character
of modulus at most 5Aj

∣

∣

∣

∣

∣

∑

n

anχ(n)

∣

∣

∣

∣

∣

2









1/2

.
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Applying Lemma 9 to the second sum we get that this is at most

O
(

|Sj |Aj

√

Ai|Si|
)1/2

= O(AjA
3/4
i ).

After fixing Ii and Ij the number of possible products
∏

k 6=i,j pk is at most
N

AiAj
. Hence the number of ways of picking those terms is at most (n−2)!N

AiAj
.

Therefore the value of 1
n! times our sum in these cases is at most

N

AiAj
O(AjA

3/4
i ) = O(NA

−1/4
i ) = O(N(logN)−5C).

The number of intervals in our partition is O((logN)C+1), hence summing over
all pairs of these the contribution from these terms is O(N(logN)−C).

Next we bound the terms in the sum where pi ≤ B. We note that after
fixing this pi we are left with a sum similar to the one we started with but with
the following modifications:

• N is reduced by a factor of pi

• The values of the χj are changed.

• D is increased by a factor of pi

• n is decreased by 1

• m is changed but is at least its old value minus 1

• We have an additional factor of 1
n out front

We suspect that after fixing pi the remaining sum gives a contribution of at

most O
(

Ncm−1

npi

)

. Summing over pi ≤ B we get O
(

Ncm−1(log log logN)
n

)

. We get

a similar bound for the sum of terms with pj ≤ B, and for the sum of terms

with both pi and pj at most B we get the bound O
(

Ncm−2(log log logN)2

n2

)

. Hence

by inclusion-exclusion the sum of the terms where either pi or pj is less than B
should be at most

O

(

Ncm−1 log log logN

n

)

.

So as long as we have at least one non-zero value of ei,j we can relate our

sum to similar ones with smaller n. We get NO((logN)−C) plus O
(

log log logN
n

)

times an appropriate average of simpler sums. As in the proof of Proposition 8
we need to be careful since our values of N,B and D change at each iteration.
Note that N gets smaller at each step but will never shrink by a factor of more
than Bn = exp(O(log logN)3). D will always increase, but will not increase by
more than a similar factor.

At some point we will find ourselves reduced to a case where all of the
ei,j are 0. At this point we obtain a bound using Proposition 8. Since we
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have arranged things so that no character with modulus dividing D has a
Siegel 0 more than 1 − Ω(logN)−ǫ, we may apply Proposition 8 with logB =
O(max(3C(logN)ǫ log logN, (log logN)10)). Hence log logB = o(log logN).
This gives us a final bound of N times

O((logN)−C)
n
∑

k=0

O(log log logN)k

n(n− 1) · · · (n− k + 1)
+

m
∑

k=0

o(log logN)m−kO(log log logN)k

n(n− 1) · · · (n−m+ 1)

≤ O((logN)−C) +

(

o(log logN)

n

)m

≤ cm.

In order to make the above into a rigorous induction, we need to do a few
things. We first throw away all terms in our sum where Q|D∏i pi. Next we
need a new variable M to represent our “original” value of N . We want that
N ≤ M ≤ NDnen

2(log logM)2 . We relax our bound on D subject still to the
equation in the last sentence. We allow for m to be any positive integer as long
as it is at most the one specified, and require that n −m = Ω(log logM). We
change where we split our cases so that now we split the sum based on which
of pi and pj are more than e(log logM)2 . Lastly we prove a bound of the form

N

(

O((logM)−C)

n
∑

k=0

O(log log logM)k

n(n− 1) · · · (n− k + 1)
+

m
∑

k=0

o(log logM)m−kO(log log logM)k

n(n− 1) · · · (n−m+ 1)

)

instead of the old bound. But this is largely a more complicated recasting of
the argument above to make it fit the mold of a formal induction.

4 Average Sizes of Selmer Groups

Here we use the results from the previous section to prove the following Propo-
sition:

Proposition 10. Let Γ be an elliptic curve as described above. Let S be a finite

set of places containing 2,∞ and all of the places where Γ has bad reduction. Let

x be either −1 or a power of 2. Let ω(m) denote the number of prime factors

of m. Say that (m,S) = 1 if m is an integer not divisible by any of the finite

places in S. Then

lim
N→∞

∑

b≤N square-free

|ω(b)−log logN |<(log logN)3/4

(b,S)=1

xdim(S2(Γb))

∑

b≤N square-free

|ω(b)−log logN |<(log logN)3/4

(b,S)=1

1
=
∑

n

xnαn.

This says that the kth moment of S2(Γb) averaged over b ≤ N with |ω(b)−
log logN | ≤ (log logN)3/4 is what you would expect it to be by Theorem 3, and
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that averaged over the same b’s that the rank of the Selmer group is odd half of
the time. The latter part of the Proposition follows from Lemma 1, which we
prove now:

proof of Lemma 1. First we replace Γ by a twist so that ci − cj are pairwise
relatively prime integers. It is now the case that Γ has everywhere good or mul-
tiplicative reduction, and we are now concerned with dim(S2(Γdb)) for some con-
stant d|D. By [1] Theorem 2.3, and [3] Corollary 1 we have that dim(S2(Γbd)) ≡
dim(S2(Γ)) (mod 2) if and only if (−1)xχbd(−N) = 1 where x is the number
of primes dividing d, N is the product of the primes not dividing d at which
Γ has bad reduction, and χbd is the quadratic character corresponding to the
extension Q(

√
bd). From this the Lemma follows immediately.

In order to prove the rest of Proposition 10 we will need to come up with
a way to talk about the Selmer groups of twists of Γ. We follow the treatment
given in [4]. Let b = p1 · · · pn where pi are distinct primes relatively prime to S
(we leave which primes unspecified for now). Let B = S ∪{p1, . . . , pn}. For ν ∈
B let Vν be the subspace of (u1, u2, u3) ∈ (Q∗

ν/(Q
∗
ν)

2)3 so that u1u2u3 = 1. Note

that Vν has a symplectic form given by (u1, u2, u3) · (v1, v2, v3) =
∏3

i=1(ui, vi)ν ,
where (ui, vi)ν is the Hilbert Symbol. Let V =

∏

ν∈B Vν be a symplectic F2-
vector space of dimension 2M .

There are two important Lagrangian subspaces of V . The first, which we
call U , is the image in V of (o∗B/(o

∗
B)

2)3. The other, which we call W , is given
as the product of Wν over ν ∈ B, where Wν consists of points of the form
(x− bc1, x− bc2, x− bc3) for (x, y) ∈ Γb. Note that we can write W = WS ×Wb

where WS =
∏

ν∈S Wν and Wb =
∏

ν|b Wν . The the Selmer group is given by

S2(Γb) = U ∩W.

Let U ′ be the F2-vector space generated by the symbols ν, ν′ for ν ∈ S
and pi, p

′
i for 1 ≤ i ≤ n. There is an isomorphism f : U ′ → U given by

f(∞) = (−1,−1, 1), f(∞′) = (1,−1,−1), f(p) = (p, p, 1), f(p′) = (1, p, p).
Note also that Wpi is generated by ((c1 − c2)(c1 − c3), b(c1 − c2), b(c1 − c3))

and (b(c3−c1), b(c3−c2), (c3−c1)(c3−c2)). If we define W
′ to be the F2-vector

space generated by the symbols pi, p
′
i for 1 ≤ i ≤ n, then there is an isomorphism

g : W ′ → Wb given by g(pi) = ((c1 − c2)(c1 − c3), b(c1 − c2), b(c1 − c3)) ∈ Wpi

and g(p′i) = (b(c3 − c1), b(c3 − c2), (c3 − c1)(c3 − c2)) ∈ Wpi .
Let G =

∏

ν∈S\∞ o
∗
ν/(o

∗
ν)

2. Note that if b is positive WS is determined
by the restriction of b to G. So for c ∈ G let WS,c be WS for such b. Let
W ′

c = WS,c × W ′. Then we have a natural map gc : W ′
c → V that is an

isomorphism between W ′
c and W if b restricts to c.

We are now ready to prove Proposition 10.

Proof. For x = −1 this Proposition just says that the parity is odd half of
the time, which follows from Lemma 1. For x = 2k this says something about
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the expected value of |S2(Γb)|k. For x = 2k we will show that for each n ∈
(log logN − (log logN)3/4, log logN + (log logN)3/4) that

∑

b≤N
b square-free
ω(b)=n
(b,S)=1

|S2(Γb)|k =



















∑

b≤N
b square-free
ω(b)=n
(b,S)=1

1



















(
∑

m

αm(2k)m + δ(n,N)) +O

(

N(log log logN)2

log logN

)

.

Where δ(n,N) is some function so that limN→∞ δ(n,N) = 0. Summing over
n and noting that there are Ω(N) values of b ≤ N square-free with |ω(b) −
log logN | < (log logN)3/4, and (b, S) = 1 gives us our desired result.

In order to do this we need to better understand |S2(Γb)| = |U ∩ W |. For
v ∈ V we have since U is Lagrangian of size 2M ,

1

2M

∑

u∈U

(−1)u·v =

{

1 if v ∈ U⊥

0 else

=

{

1 if v ∈ U

0 else
.

Hence

|S2(Γb)| = |U ∩W |
= #{w ∈ W : w ∈ U}

=
∑

w∈W

1

2M

∑

u∈U

(−1)u·w

=
1

2M

∑

u∈U,w∈W

(−1)u·w

=
1

2M

∑

u∈U ′,w∈W ′

b

(−1)f(u)·gb(w)

=
1

2M

∑

c∈G

1

|G|
∑

χ∈Ĝ

χ(bc)
∑

u∈U ′,w∈W ′

c

(−1)f(u)·gc(w)

=
1

2M |G|
∑

c∈G,χ∈Ĝ
u∈U ′,w∈W ′

c

χ(bc)(−1)f(u)·gc(w).

If we extend f and gc to fk : (U ′)k → Uk, gkc : (W ′
c)

k → V k, and extend the
inner product on V to an inner product on V k, we have that

|S2(Γb)|k =
1

2kM |G|k
∑

c∈G,χ∈Ĝ

u∈(U ′)k,w∈(W ′

c)
k

χ(bc)(−1)f
k(u)·gk

c (w). (6)
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Notice that once we fix values of c, χ, u, w in Equation 6 the summand (when
treated as a function of p1, . . . , pn) is of the same form as the “characters”
studied in Section 3.

We want to take the sum over all b ≤ N square-free, ω(b) = n, (b, S) = 1, of
|S2(Γb)|k. If we let D be 8 times the product of the finite odd primes in S, we
note that each such b can be expressed exactly n! ways as a product p1, . . . , pn
with pi distinct, (pi, D) = 1. Therefore this sum equals

1

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

1

2kM |G|k
∑

c∈G,χ∈Ĝ

u∈(U ′)k,w∈(W ′

c)
k

∏

i

χ(pi)χ(c)(−1)f
k(u)·gk

c (w).

Interchanging the order of summation gives us

1

2kM |G|k
∑

c∈G,χ∈Ĝ

u∈(U ′)k,w∈(W ′

c)
k

χ(c)

n!

∑

p1,...,pn

distinct primes
(D,pi)=1∏

i pi≤N

(

∏

i

χ(pi)

)

(−1)f
k(u)·gk

c (w).

Now the inner sum is exactly of the form studied in Proposition 6.
We first wish to bound the contribution from terms where this inner sum

has terms of the form
(

pi

pj

)

, or in the terminology of Proposition 6 for which

not all of the ei,j are 0. In order to do this we will need to determine how many
of these terms there are and how large their values of m are. Notice that terms

of the form
(

pi

pj

)

show up here when we are evaluating the Hilbert symbols of

the form (p, b(ca− cb))p, (p, b(ca− cb))q , (q, b(ca− cb))p, (q, b(ca− cb))q and in no
other places.

Let Ui ⊂ U ′ be the subspace generated by pi and p′i. For u ∈ U ′ let ui be its
component in Ui in the obvious way. Let Wi ⊂ W ′ be Wpi . For w ∈ W ′

c let wi be
its component inWi. Let U0 be the F2-vector space with formal generators p and
p′. We have a natural isomorphism between U0 and Ui sending p to pi and p′ to
p′i. We will hence often think of ui as an element of U0. Similarly let W0 be the
F2-vector space with formal generators ((c1−c2)(c1−c3), b(c1−c2), b(c1−c3)) and
(b(c3−c1), b(c3−c2), (c3−c1)(c3−c2)). We similarly have natural isomorphisms
between Wi and W0 and will often consider wi as an element of W0 instead of
Wi.

Additionally, we have a bilinear form U0 ×W0 → F2 defined by:

p·((c1 − c2)(c1 − c3), b(c1 − c2), b(c1 − c3))

= p′ · ((c1 − c2)(c1 − c3), b(c1 − c2), b(c1 − c3))

= p · (b(c3 − c1), b(c3 − c2), (c3 − c1)(c3 − c2))

= p′ · (b(c3 − c1), b(c3 − c2), (c3 − c1)(c3 − c2))

= 1.
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We notice that if u ∈ U ′ and w ∈ W ′
c, then the exponent of

(

pi

pj

)

that appears

in (−1)f(u)·gc(w) is (ui + uj) · (wi + wj). Similarly if u ∈ (U ′)k, w ∈ (W ′
c)

k, the

exponent of
(

pi

pj

)

that appears in (−1)f
k(u)·gk

c (w) is (ui + uj) · (wi +wj), where

u∗, w∗ are thought of as elements of Uk
0 and W k

0 .
We define a symplectic form on T = Uk

0 ×W k
0 by (u,w)·(u′, w′) = u·w′+u′·w.

Also define a quadratic form q on T by q(u,w) = u · w. We claim that given
some set of ti = (ui, wi)i∈I ∈ T that (ui+uj) · (wi+wj) = 0 for all pairs i, j ∈ I
only if all of the (ui, wi) lie in a translate of a Lagrangian subspace of T . First
note that for t = (u,w), t′ = (u′, w′) that (u+u′) · (w+w′) = t · t′ + q(t)+ q(t′).
We need to show that for all i, j, k ∈ I that (ti + tj) · (ti + tk) = 0. This is true
because

(ti + tj) · (ti + tk)

= ti · ti + ti · tk + tj · ti + tj · tk
= ti · tk + tj · ti + tj · tk
= ti · tk + tj · ti + tj · tk + 2q(ti) + 2q(tj) + 2q(tk)

= (ti · tj + q(ti) + q(tj)) + (ti · tk + q(ti) + q(tk)) + (tk · tj + q(tk) + q(tj))

= 0.

So suppose that we have some u ∈∏n
i=1 U

k
i and w ∈ ∏n

i=1 W
k
i , and suppose

that we have a set of ℓ indices in {1, 2, . . . , n}, which we call active indices, so

that (−1)f
k(u)·gk(w) has terms of the form

(

pi

pj

)

only for i, j both are active,

and suppose furthermore that each active index shows up as either i or j in at
least one such term. Let ti = (ui, wi) ∈ T . We claim that ti takes fewer than
2k different values on non-active indices, i.

Since ti · tj + q(ti) + q(tj) = 0 for any two non-active indices ti and tj , all of
these must lie in a translate of some Lagrangian subspace of T . Therefore ti can
take at most 2k values on non-active indices. Suppose for sake of contradiction
that all of these values are actually assumed by some non-active index. Then
consider tj for j an active index. The ti for i either non-active or equal to j
must similarly lie in a translate of a Lagrangian subspace. Since such a space is
already determined by the non-active indices and since all elements of this affine
subspace are already occupied, tj must equal ti for some non-active i. But this
means that every tj is assumed by some non-active index which implies that no

terms of the form
(

pi

pj

)

survive, yielding a contradiction.

Now consider the number of such u,w so that there are at most ℓ active
indices and so that at least one of these terms survive. Once we fix the values ti
that are allowed to be taken by the non-active indices (which can only be done
in finitely many ways), there are

(

n
ℓ

)

ways to choose the active indices, at most
2k − 1 ways to pick ti for each non-active index, and at most 22k ways for each
active index. Hence the total number of such u,w with exactly ℓ active indices
is

O

((

n

ℓ

)

(

2k − 1
)n−ℓ (

22k
)ℓ
)

.
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By Proposition 6, the value of the inner sum for such a (u,w) is at most
O
(

N(2−2k−1)ℓ
)

. Hence summing over all ℓ > 0 and recalling the 2−Mk out
front we get a contribution of at most

N2−nkO

(

∑

ℓ

(

n

ℓ

)

(

2k − 1
)n−ℓ

(

1

2

)ℓ
)

= N2−nkO
(

(2k − 1/2)n
)

= NO
(

(1− 2−k−1)n
)

= NO
(

(logN)−2−k−2
)

.

Therefore we may safely ignore all of the terms in which a
(

pi

pj

)

shows

up. Notice also by the above analysis, that the number of remaining terms
must be O(2Mk). Additionally, for these terms we may apply Proposition 7.
Therefore because of the 2−Mk factor out front we have that up to an error

of O
(

(log log logN)2

log logN

)

that the sum over b = p1 · · · pn, square free, at most N ,

relatively prime to D, of |S2(Γb)|k is the number of such b times the average

over all possible values of pi ∈ G,
(

pi

pj

)

, of |S2(Γb)|k. Furthermore our work

shows that this average is bounded in terms of k independently on n.
On the other hand, recalling the notation from Theorem 2, this average is

just
∑

d

πd(n)2
kd.

Using the fact that this is bounded for k + 1 independently of n, we find that
πd(n) = O(2−(k+1)d) where the implied constant depends on k but not d or n.
In order to complete the proof of our Proposition we need to show that

lim
n→∞

∑

d

(πd(n)− αd)2
kd = 0.

But this follows from the fact that

∑

d>X

(πd(n)− αd)2
kd = O

(

∑

d>X

2−d

)

= O(2−X)

independently of n, and that πd(n) → αd for all d by Theorem 2.

5 From Sizes to Ranks

In this section we turn Proposition 10 into a proof of Theorem 3, but first we
must do some computations with the αi.

Note that

αn+2 =

(

1
∏∞

j=0(1 + 2−j)

)

2−(
n
2)

n
∏

j=1

(1 − 2−j)−1.
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Now
∏n

j=1(1 − 2−j)−1 is the sum over partitions, P , into parts of size at most

n of 2−|P |. Equivalently we could sum over partitions P of at most n parts.

Multiplying by 2−(
n
2) we get the sum over partitions P with n distinct parts

(possibly a part of size 0) of 2−|P |. Therefore we have that

F (x) =

∞
∑

n=0

αnx
n =

x2
∏∞

j=0(1 + 2−jx)
∏∞

j=0(1 + 2−j)
.

This implies in particular that
∑∞

n=0 αn equals 1 as it should.
Let Cd(N) equal

#{b ≤ N square-free, (b,D) = 1, |ω(b)− log logN | < (log logN)3/4, dim(S2(Γb)) = d}
#{b ≤ N square-free, (b,D) = 1, |ω(b)− log logN | < (log logN)3/4} .

Let C(N) = (C0(N), C1(N), . . .) ∈ [0, 1]ω. Theorem 3 is equivalent to showing
that

lim
N→∞

C(N) = (α0, α1, . . .).

Lemma 11. Suppose that some subsequence of the C(N) converges to (β0, β1, . . .) ∈
[0, 1]ω. Let G(x) =

∑

n βnx
n. Then G(x) has infinite radius of convergence and

F (x) = G(x) for x = −1 or x equals a power of 2. Also β0 = β1 = 0.

This Lemma says that if the C(N) have some limit that the naive attempt
to compute moments of the Selmer groups from this limit would succeed.

Proof. The last claim follows from the fact that since Γb has full 2-torsion, its
2-Selmer group always has rank at least 2. Notice that

∑

d Cd(N)xd is equal
to the average size of xdim(S2(Γb)) over b ≤ N square-free, relatively prime to
D with |ω(b) − log logN | < (log logN)3/4. This has limit F (x) as N → ∞ by
Proposition 10 if x is −1 or a power of 2. In particular it is bounded. Therefore
there exists an Rk so that

∑

d

Cd(N)2kd ≤ Rk

for all N . Therefore Cd(N) ≤ Rk2
−kd for all d,N . Therefore βd ≤ Rk2

−kd.
Therefore G has infinite radius of convergence.

Furthermore if we pick a subsequence, Ni → ∞ so that Cd(Ni) → βd for all
d, we have that

F (2k) = lim
i→∞

∑

d

Cd(Ni)2
dk

= lim
i→∞

∑

d≤X

Cd(Ni)2
dk +O

(

∑

d>X

Rk+12
−d

)

= lim
i→∞

∑

d≤X

Cd(Ni)2
dk +O(Rk+12

−X)

=
∑

d≤X

βd2
dk +O(Rk+12

−X).
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So
lim

X→∞

∑

d≤X

βd2
dk = F (2k).

Thus G(2k) = F (2k). For x = −1 the argument is similar but comes from the
equidistribution of parity rather than expectation of size.

Lemma 12. Suppose that G(x) =
∑

n βnx
n is a Taylor series with infinite

radius of convergence. Suppose also that βn ∈ [0, 1] for all n and that G(x) =
F (x) for x equal to −1 or a power of 2. Suppose also that β0 = β1 = 0. Then

βn = αn for all n.

Proof. First we wish to prove a bound on the size of the coefficients of G. Note
that

F (2k) =
22k(1 + 2k)(1 + 2k−1) · · ·
(1 + 20)(1 + 2−1) · · · = 22k

k
∏

j=1

(1 + 2k) = O
(

22k+k(k+1)/2
)

.

Now
2nkβn ≤ G(2k) = F (2k) = O

(

22k+k(k+1)/2
)

.

Therefore
βn = O

(

22k+k(k+1)/2−kn
)

.

Setting k = n we find that

βn = O
(

2−n2/2+5n/2
)

= O
(

2−(
n−2

2 )
)

.

The same can be said for F . Now consider F − G. This is an entire function

whose xn coefficient is bounded by O
(

2−(
n−2

2 )
)

. Furthermore F − G vanishes

to order at least 2 at 0, and order at least 1 at -1 and at powers of 2. The
bounds on coefficients imply that

|F (x) −G(x)| ≤ O

(

∑

n

2−(
n−2

2 )|x|n
)

.

The terms in the above sum clearly decay rapidly for n on either side of log2(|x|).
Hence

|F (x)−G(x)| = O
(

2(− log
2
(|x|)2+5 log

2
(|x|))/2+log

2
(|x|)2

)

= O
(

2(log2(|x|)
2+5 log

2
(|x|))/2

)

.

In particular F −G is a function of order less than 1. Hence it must equal

Cx2
∏

ρ

(1− x/ρ).

Where the product is over non-zero roots ρ of F −G. On the other hand, this
tells us that if C 6= 0 the average value of log2(|F −G|) on a circle of radius R
is

log2 |C|+ 2 log2 R+
∑

|ρ<R|

log2(R/|ρ|).
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Setting R = 2k and noting the contributions from ρ = −1 and ρ = 2j for j < k
we have

O(1) + 3k +
∑

j<k

(k − j) = O(1) + 3k +

(

k + 1

2

)

= O(1) +
k2 + 7k

2
>

k2 + 5k

2

which is the largest that |F −G| can be at this radius. This provides a contra-
diction.

We now prove Theorem 3.

Proof. Suppose that C(N) does not have limit (α0, α1, . . .). Then there is some
subsequence Ni so that C(Ni) avoid some neighborhood of (α0, α1, . . .). By
compactness, C(Ni) must have some subsequence with a limit (β0, β1, . . .). By
Lemmas 11 and 12, (α0, α1, . . .) = (β0, β1, . . .). This is a contradiction.

Therefore limN→∞ C(N) = (α0, α1, . . .). Hence limN→∞ Cd(N) = αd for
all d. The Theorem follows immediately from this and the fact the fraction of
b ≤ N square-free with (b,D) = 1 that have |ω(b)− log logN | < (log logN)3/4

approaches 1 as N → ∞.

It should be noted that our bounds on the rate of convergence in Theorem
3 are non-effective in two places. One is our treatment in this last Section.
We assume that we do not have an appropriate limit and proceed to find a
contradiction. We believe that this is not a serious non-effectivity and that a
more careful analysis could make this part of the Theorem effective. The more
serious problem comes in our proof of Proposition 6 where we make use of non-
effective bounds on the size of Siegel zeroes. This latter problem may well be
fundamental to our approach.
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