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A CONJUGATION-FREE GEOMETRIC
PRESENTATION OF FUNDAMENTAL GROUPS OF

ARRANGEMENTS II: EXPANSION AND SOME
PROPERTIES

MEITAL ELIYAHU1, DAVID GARBER AND MINA TEICHER

Abstract. A conjugation-free geometric presentation of a funda-
mental group is a presentation with the natural topological gener-
ators x1, . . . , xn and the cyclic relations:

xik
xik−1

· · ·xi1
= xik−1

· · ·xi1
xik

= · · · = xi1
xik

· · ·xi2

with no conjugations on the generators.
We have already proved in [13] that if the graph of the arrange-

ment is a disjoint union of cycles, then its fundamental group has a
conjugation-free geometric presentation. In this paper, we extend
this property to arrangements whose graphs are a disjoint union
of cycle-tree graphs.

Moreover, we study some properties of this type of presentations
for a fundamental group of a line arrangement’s complement. We
show that these presentations satisfy a completeness property in
the sense of Dehornoy, if the corresponding graph of the arrange-
ment is triangle-free. The completeness property is a powerful
property which leads to many nice properties concerning the pre-
sentation (as the left-cancellativity of the associated monoid and
yields some simple criterion for the solvability of the word problem
in the group).

1. Introduction

The fundamental group of the complement of plane curves is a very
important topological invariant, which can be also computed for line
arrangements. We count here some applications of this invariant.
Chisini [6], Kulikov [20, 21] and Kulikov-Teicher [22] have used the

fundamental group of complements of branch curves of generic pro-
jections in order to distinguish between connected components of the
moduli space of smooth projective surfaces, see also [15].
Moreover, the Zariski-Lefschetz hyperplane section theorem (see [24])

stated that:
π1(CP

N \ S) ∼= π1(H \ (H ∩ S)),

1Partially supported by the Israeli Ministry of Science and Technology.
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where S is an hypersurface and H is a generic 2-plane. Since H ∩ S is
a plane curve, the fundamental groups of complements of curves can
be used also for computing the fundamental groups of complements of
hypersurfaces in CPN .
A different need for fundamental groups’ computations is for obtain-

ing more examples of Zariski pairs [31, 32]. A pair of plane curves
is called a Zariski pair if they have the same combinatorics (to be
exact: there is a degree-preserving bijection between the set of ir-
reducible components of the two curves C1, C2, and there exist reg-
ular neighbourhoods of the curves T (C1), T (C2) such that the pairs
(T (C1), C1), (T (C2), C2) are homeomorphic and the homeomorphism
respects the bijection above [3]), but their complements in P

2 are not
homeomorphic. For a survey, see [5].
It is also interesting to explore new finite non-abelian groups which

serve as fundamental groups of complements of plane curves in general,
see for example [1, 2, 12, 31].

An affine line arrangement in C2 is a union of copies of C1 in C2.
Such an arrangement is called real if the defining equations of all its
lines can be written with real coefficients, and complex otherwise. Note
that the intersection of a real arrangement with the natural copy of R2

in C2 is an arrangement of lines in the real plane, called the real part
of the arrangement.
Similarly, a projective line arrangement in CP2 is a union of copies

of CP1 in CP
2. Note that the realization of the MacLane configuration

[23] is an example of a complex arrangement, see also [4, 28].
For real and complex line arrangements L, Fan [14] defined a graph

G(L) which is associated to its multiple points (i.e. points where more
than two lines are intersected). We give here its version for real ar-
rangements (the general version is more delicate to explain): Given a
real line arrangement L, the graph G(L) of multiple points lies on the
real part of L. It consists of the multiple points of L, with the segments
between the multiple points on lines which have at least two multiple
points. Note that if the arrangement consists of three multiple points
on the same line, then G(L) has three vertices on the same line (see
Figure 1(a)). If two such lines happen to intersect in a simple point
(i.e. a point where exactly two lines are intersected), it is ignored (i.e.
the lines do not meet in the graph). See another example in Figure
1(b) (note that Fan’s definition gives a graph different from the graph
defined in [18, 29]).

In [13] we introduce the notion of a conjugation-free geometric pre-
sentation of the fundamental group of an arrangement:
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(a) (b)

Figure 1. Examples for G(L)

Definition 1.1. Let G be a fundamental group of the affine or projec-
tive complements of some line arrangement with n lines. We say that
G has a conjugation-free geometric presentation if G has a presentation
with the following properties:

• In the affine case, the generators {x1, . . . , xn} are the meridians
of lines at some far side of the arrangement, and therefore the
number of generators is equal to n.

• In the projective case, the generators are the meridians of lines
at some far side of the arrangement except for one, and there-
fore the number of generators is equal to n− 1.

• In both cases, the relations are of the following type:

xikxik−1
· · ·xi1 = xik−1

· · ·xi1xik = · · · = xi1xik · · ·xi2 ,

where {i1, i2, . . . , ik} ⊆ {1, . . . , m} is an increasing subsequence
of indices, where m = n in the affine case and m = n − 1
in the projective case. Note that for k = 2 we get the usual
commutator.

Note that in usual geometric presentations of the fundamental group,
most of the relations have conjugations.

The importance of this family of arrangements is that the funda-
mental group can be read directly from the arrangement or equivalently
from its incidence lattice (where the incidence lattice of an arrangement
is the partially-ordered set of non-empty intersections of the lines, or-
dered by inclusion, see [27]) without any computation. Hence, for this
family of arrangements, the incidence lattice determines the fundamen-
tal group of the complement (this is based on Cordovil [7] too).

We start with the easy fact that there exist arrangements whose fun-
damental groups have no conjugation-free geometric presentation: The
fundamental group of the Ceva arrangement (also known as the braid
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arrangement, appears in Figure 2) has no conjugation-free geometric
presentation (see [13]).

Figure 2. Ceva arrangement

Note also that if the fundamental groups of two arrangements L1,L2

have conjugation-free geometric presentations and the arrangements
intersect transversally, then the fundamental group of L1 ∪ L2 has a
conjugation-free geometric presentation too. This is due to the impor-
tant result of Oka and Sakamoto [26]:

Theorem 1.2. (Oka-Sakamoto) Let C1 and C2 be algebraic plane
curves in C2. Assume that the intersection C1 ∩C2 consists of distinct
d1 · d2 points, where di (i = 1, 2) are the respective degrees of C1 and
C2. Then:

π1(C
2 − (C1 ∪ C2)) ∼= π1(C

2 − C1)⊕ π1(C
2 − C2)

The main result of [13] is:

Proposition 1.3. The fundamental groups of following family of ar-
rangements have a conjugation-free geometric presentation: a real ar-
rangement L, where G(L) is a disjoint union of cycles of any length,
and the multiplicities of the multiple points are arbitrary.

In this paper, we continue the investigation of the family of arrange-
ments whose fundamental groups have conjugation-free geometric pre-
sentations in two directions. First, we extend this property to real
arrangements whose graphs are a disjoint union of cycle-tree graphs,
where an example for a cycle-tree graph is presented in Figure 3 (see
Definition 2.4 below).
In the second direction, we study some properties of this type of pre-

sentations for a fundamental group of a line arrangement’s complement.
We prove:



CONJUGATION-FREE GEOMETRIC GROUPS OF ARRANGEMENTS II 5

Figure 3. An example of a cycle-tree graph

Proposition 1.4. Let L be a real arrangement whose fundamental
group has a conjugation-free geometric presentation and its graph G(L)
is triangle-free (i.e. contains no cycles of length 3). Then, the presen-
tation of the corresponding monoid is complete (and complemented).

The completeness property is a powerful property which leads to
many nice properties concerning the presentation (as the left-
cancellativity of the associated monoid and yields some simple criterion
for the solvability of the word problem in the group and for Garside
groups).

The paper is organized as follows. In Section 2, we prove that ar-
rangements whose graphs are a disjoint union of cycle-tree graphs have
a conjugation-free geometric presentation of the fundamental group of
the complement. In Section 3, we prove that conjugation-free geomet-
ric presentations are complemented presentations. Section 4 deals with
complete presentations, and includes the proof of Proposition 1.4.

2. Adding a line through a single point preserves the

conjugation-free geometric presentation

We start with the following obvious observation, which is based on
the Oka-Sakamoto decomposition theorem (see Theorem 1.2 above):

Observation 2.1. Let L be an arrangement whose fundamental group
has a conjugation-free geometric presentation. Let L be a line which
intersects L transversally. Then: L ∪ L is also an arrangement whose
fundamental group has a conjugation-free geometric presentation.

In this section, we prove the following proposition, which is the next
step:

Proposition 2.2. Let L be a real arrangement whose affine fundamen-
tal group has a conjugation-free geometric presentation. Let L be a line
not in L, which passes through one intersection point P of L. Then:
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L ∪ L is also an arrangement whose affine fundamental group has a
conjugation-free geometric presentation.

Proof. We can assume that the point P is the leftmost and lowest
point of the arrangement L and all the intersection points of the line
L (except for P ) are to the left of all the intersection points of the
arrangement L (except for P ). We can also assume that the highest
line in L (with respect to the global numeration of the lines) passes
through P . See Figure 4 for an illustration, where the arrangement L
is in the dashed rectangle.

L

P

Figure 4. An illustration of the real part of L ∪ L

The above assumption is due to the following reasons: First, one can
rotate a line that participates in only one multiple point as long as it
does not unite with a different line (by Results 4.8 and 4.13 of [17]).
Second, moving a line that participates in only one multiple point over
a different line (see Figure 5) is permitted in the case of a triangle due
to a result of Fan [14] that the family of configurations with 6 lines
and three triple points is connected by a finite sequence of smooth
equisingular deformations. Moreover, by Theorem 4.11 of [17], one can
assume that the point P is the leftmost point of the arrangement L.

3

3 3

3

3 3

Figure 5. Moving a line that participates in only one
multiple point over a different line
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Let n be the number of lines in L and let m be the multiplicity of P
in L. So, the list of Lefschetz pairs of the arrangement L is

([a1, b1], [a2, b2], . . . , [aq−1, bq−1], [1, m]),

where the Lefschetz pair [1, m] corresponds to the point P (for the the-
ory used here for computing the fundamental group of the complements
of arrangements, see [13, 16, 19, 25]). Since we have that π1(C

2 − L)
has a conjugation-free geometric presentation, then we know that all
the conjugations in the relations induced by the van Kampen theorem
[19] (see also [13]) can be simplified.
Now, let us deal with the arrangement L ∪ L. By our assumptions,

its list of Lefschetz pairs is (we write in small brackets the name of the
corresponding point):

([a1 + 1, b1 + 1](p1), [a2 + 1, b2 + 1](p2), . . . , [aq−1 + 1, bq−1 + 1](pq−1),

[1, m+1](pq), [m+1, m+2](pq+1), [m+2, m+3](pq+2), . . . , [n, n+1](pq+(n−m))).

We start with the relations induced from intersection points on the
line L. We first choose a set of n+1 generators of the fundamental group
of its complement corresponding to its lines, namely {x1, . . . , xn+1}.
By the Moishezon-Teicher algorithm [16, 25] (see also [13]), we now
compute the skeletons corresponding to the points on the line L (i.e.
the points pj, where q ≤ j ≤ q + n−m). Note that:

∆〈a1 + 1, b1 + 1〉∆〈a2 + 1, b2 + 1〉 · · ·∆〈aq−1 + 1, bq−1 + 1〉 = ∆〈2, n+ 1〉∆−1〈2, m+ 1〉,

since given an arrangement, the multiplication of all the halftwists
based on its Lefschetz pairs is equivalent to a unique halftwist of all
the lines. By this observation, we get the skeletons in Figure 6.

p  :q

p     :q+j
1 n−m+2−j n+1

1 n+1n−m+2 n−m+3

Figure 6. The skeletons of the points pq+j where
0 ≤ j ≤ n−m

Hence, we get the following relations:

For the point pq:

xn+1xn · · ·xn−m+2x1 = x1xn+1xn · · ·xn−m+2 =

= · · · = xn · · ·xn−m+2x1xn+1

For the points pj, where q + 1 ≤ j ≤ q + n−m:

xn−m+2−jx1 = x1xn−m+2−j
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These relations are obviously without conjugations.

Now, we move to the relations induced from points appearing in
the original arrangement L. The only change in the level of the Lef-
schetz pairs is an addition of one index in all the pairs, due to the line
L. Therefore, the induced braid monodromy and the relations will be
changed by adding 1 to every index, i.e. if we have a relation which
involves the generators xi1 , . . . , xik , then after adding the line, we have
the same relation but with generators xi1+1, . . . , xik+1, respectively.
Now, we know that the fundamental group of L has a conjugation-

free geometric presentation, hence we have that by a simplification
process, one can reach a presentation without conjugations. If we im-
itate the simplification process of the presentation of the fundamental
group of L for the presentation of the fundamental group of L∪L, the
cases in which we need to use the relations induced from the point P
are the relations that have been simplified by using the relations in-
duced from P before adding the line. As above, the original relations
induced from P are:

Rp : xnxn−1 · · ·xn−m+1 = xn−1 · · ·xn−m+1xn =

= · · · = xn−m+1xn · · ·xn−m+2,

while the new ones are:

R̃p : xn+1xn · · ·xn−m+2x1 = x1xn+1xn · · ·xn−m+2 =

= · · · = xn · · ·xn−m+2x1xn+1.

We can divide the relations induced from L before adding the line L
into two subsets:

(1) Relations that during the simplification process contain the sub-
word x−1

n−m+2 · · ·x
−1
n−1xnxn−1 · · ·xn−m+2.

(2) Relations that do not contain the above subword during its
simplification process.

For the second subset, the simplification process will be identical be-
fore adding the line L and after it, since all the other relations induced
by L have not been changed by adding the line L (except for adding 1
to the indices).
For the first subset, let us denote the relation by R. Except for

applying the relations induced from P , the rest of simplification process
is identical to the one before adding the line (again, except for adding
1 to the indices). The only change is in the step of applying Rp. In this
step, before adding the line L, the generator x1 has not been involved
in Rp, but after adding the line L, it appears in R̃p. Hence, for applying

R̃p, we have to conjugate relation R by x1, and using the commutative
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relations which x1 is involved in, we can diffuse x1 into the relation R,
so we can use the relation R̃p instead of Rp.
Hence, we can simplify all the conjugations in all the relations, so

we have a conjugation-free geometric presentation, as needed. �

Remark 2.3. Note that adding a line which closes a cycle in L might
not preserve the conjugation-free geometric presentation property. For
example, adding a line to an arrangement of 5 lines which creates the
Ceva arrangement (see Figure 2) is not an action which preserves the
conjugation-free geometric presentation property.

Hence, we can extend the family of arrangements whose fundamental
groups have a conjugation-free geometric presentation. We start with
the following definition:

Definition 2.4. A cycle-tree graph is a graph which consists of a cycle,
where each vertex of the cycle can be a root of a tree, see Figure 7. It
is possible that there exist some vertices also in the middle of an edge
of the cycle or the trees.

Figure 7. An example of a cycle-tree graph

Corollary 2.5. Let L be a real line arrangement whose graph is a
disjoint union of cycle-tree graphs. Then the fundamental group of L
has a conjugation-free geometric presentation.

Proof. We start by proving that a real arrangement whose graph is
a cycle-tree graph has a fundamental group which has a conjugation-
free geometric presentation. We already have from [13] that a real
arrangement whose graph is a cycle, has a fundamental group which has
a conjugation-free geometric presentation. By Proposition 2.2, adding
a line which is either transversal to an arrangement or passes through
one intersection point, preserves the property that the fundamental
group has a conjugation-free geometric presentation. One can easily
construct an arrangement whose graph is a cycle-tree graph from an
arrangement whose graph is a cycle by inductively adding a line which
is either transversal to the arrangement or passes through one of its
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intersection points. Hence, we get that an arrangement whose graph is
a cycle-tree graph has a fundamental group which has a conjugation-
free geometric presentation.
In the next step, using the theorem of Oka and Sakamoto [26] (see

Theorem 1.2 above), we can generalize the result from the case of one
cycle-tree graph to the case of a disjoint union of cycle-tree graphs. �

3. Complemented presentations

A semigroup presentation (S,R) consists of a nonempty set S and
a family of pairs of nonempty words R in the alphabet S. The corre-
sponding monoid (S,R) is 〈S|R〉+ ∼= (S∗/ ≡+

R).
Dehornoy [8] has defined the notion of a complemented presentation

of a semigroup:

Definition 3.1. A semigroup presentation (S,R) is called comple-
mented if, for each s ∈ S, there is no relation s . . . = s . . . in R and,
for s, s′ ∈ S, there is at most one relation s . . . = s′ . . . in R.

Our type of presentations satisfies this property:

Lemma 3.2. A conjugation-free geometric presentation is a comple-
mented presentation.

Proof. Any pair of lines intersect exactly once, hence their correspond-
ing generators appear as prefixes in exactly one relation. Since there
are no conjugations, this is their unique appearance as a pair of pre-
fixes. �

Remark 3.3.

(1) This property does not hold for presentations of fundamental
groups in general (due to the conjugations in the relations).

(2) This property does not hold in the homogeneous minimal pre-
sentations introduced by Yoshinaga [30].

4. Complete presentations

In this section, we will study which cases of conjugation-free geomet-
ric presentations are also complete in the sense of Dehornoy [10]. The
completeness property is a very important and powerful property. In
Section 4.1, we supply some background on this property. In Section
4.2, we count some important consequences and applications arising
from the completeness property. In Section 4.3, we present our results
in this direction.
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4.1. Background on complete presentations. We follow the sur-
vey of Dehornoy [11]. We start by defining the notion of a word revers-
ing:

Definition 4.1. For a semigroup presentation (S,R) and
w,w′ ∈ (S ∪ S−1)∗, w reverses to w′ in one step, denoted by w y1

R w′,
if there exist a relation sv′ = s′v of R and u, u′ satisfying:

w = us−1s′u′ and w′ = uv′v−1u′.

We say that w reverses to w′ in k steps, denoted by w yk
R w′, if there

exist words w0, . . . , wk satisfying w0 = w,wk = w′ and wi y1
R wi+1

for each i. The sequence (w0, . . . , wk) is called an R-reversing sequence
from w to w′.
We write w y w′, if w yk

R w′ holds for some k ∈ N.

Definition 4.2. A semigroup presentation (S,R) is called complete
if, for all words w,w′ ∈ S∗:

w ≡+
R w′ ⇒ w−1w′

yR ε.

where ε is the empty word.

In the next definition, we define the cube condition, which is a useful
tool for verifing the completeness property:

Definition 4.3. Let (S,R) be a semigroup presentation, and
u, u′, u′′ ∈ S∗. We say that (S,R) satisfies the cube condition for
(u, u′, u′′) if:

u−1u′′u′′−1u′
yR v′v−1 ⇒ (uv′)−1(vu′) yR ε.

For X ⊆ S∗, we say that (S,R) satisfies the cube condition on
X if it satisfies the cube condition for every triple (u, u′, u′′) where
u, u′, u′′ ∈ X.

u

u’’

u’

v

v’

u’’

u

v’

u’ v

Figure 8. An illustration of the cube condition
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Definition 4.4. A semigroup presentation (S,R) is said to be homo-
geneous if there exists an ≡+

R-invariant mapping λ : S∗ → N satisfying,
for s ∈ S and w ∈ S∗,

λ(sw) > λ(w).

A typical case of an homogeneous presentation is where all relations
in R preserve the length of words, i.e. they have the form v′ = v where
v′ and v have the same length.
Dehornoy [10] has proved the following result:

Proposition 4.5. Assume that (S,R) is a homogeneous semigroup
presentation. Then: (S,R) is complete if and only if it satisfies the
cube condition on S.

The next definition is needed for introducing an operation used in
an equivalent condition for the cube condition:

Definition 4.6. For a complemented semigroup presentation (S,R)
and w,w′ ∈ S∗, the R-complement of w′ in w, denoted w\w′, (“w
under w′”), is the unique word v′ ∈ S∗ such that w−1w′ reverses to
v′v−1 for some v ∈ S∗, if such a word exists.

Dehornoy [10] has proved that the cube condition is equivalent to
some expression involving the complement operation:

Proposition 4.7. Assume that (S,R) is a complemented semigroup
presentation. Then, for all words u, u′, u′′ ∈ S∗, the following are equiv-
alent:

(1) (S,R) satisfies the cube condition on {u, u′, u′′}.
(2) either (u\u′)\(u\u′′) and (u′\u)\(u′\u′′) are R-equivalent or

they are not defined, and the same holds for all permutations of
u, u′, u′′.

4.2. Consequences of complete presentations.
In this section, we survey some important consequences and appli-

cations arising from the completeness property.

Proposition 4.8 ([10], Proposition 6.1). Every monoid that admits
a complete complemented presentation is left-cancellative (i.e. xy =
xz ⇒ y = z).

Proposition 4.9 ([10], Proposition 6.10). Assume that (S,R) is a
complete semigroup presentation. If (S,R) is complemented, then the
monoid 〈S|R〉+ admits least common multiples.

Proposition 4.10 ([10], Proposition 7.7). Assume that (S,R) is a

complete semigroup presentation and there exists Ŝ ⊆ S∗ that includes
S and satisfies the following conditions:
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(1) For all u, u′ ∈ Ŝ, there exist v, v′ ∈ Ŝ such that u−1u′ yR v′v−1.

(2) For all u, u′ ∈ Ŝ and for all v, v′ ∈ S∗, we have:

u−1u′
yR v′v−1 ⇒ v, v′ ∈ Ŝ.

Then, every R-reversing sequence leads in finitely many steps to a

positive–negative word. If Ŝ is finite, then the word problem of the pre-
sented monoid 〈S|R〉+ is solvable in exponential time, and in quadratic
time if (S,R) is complemented.
If, in addition, the monoid 〈S|R〉+ is right-cancellative, the word

problem of the presented group 〈S|R〉 is solvable in exponential time,
and in quadratic time if (S,R) is complemented.

Definition 4.11. [9] A monoid M is called Garside, and its group of
fractions is called a Garside group, if it satisfies the following condi-
tions:

(1) M is cancellative.
(2) M contains no invertible elements except ε.
(3) Any two elements of M admit a left and right least common

multiples and greatest common divisors.
(4) There exists an element ∆ ∈ M , called the Garside element,

such that the sets of left and right divisors of ∆ coincide, gen-
erate M , and are finite in number.

Dehornoy [9] proved the following proposition with respect to the
Garside element:

Proposition 4.12. Let (S,R) be a complemented presentation of a
monoid M . Then the Garside element, if exists, is the longest element
in the smallest set of words that includes S and is closed under the
complement and right-lcm operations.

4.3. Completeness of conjugation-free geometric presentations.
In this section, we prove that a conjugation-free geometric presentation
is complete if its corresponding graph is triangle-free:

Proposition 4.13. Let L be a real arrangement whose fundamental
group has a conjugation-free geometric presentation and its graph G(L)
is triangle-free (i.e. contains no triangles). Then, the presentation of
the corresponding monoid is complete (and complemented).

Proof. It is obvious that the conjugation-free geometric presentations
are homogeneous (since all the words in the same relation are of the
same length). Hence, we prove this proposition by verifying the equiv-
alent version of the cube condition (for any triple (u, u′, u′′) ∈ (S∗)3,
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the words (u\u′)\(u\u′′) and (u′\u)\(u′\u′′) are R-equivalent) case-by-
case.

Case 1: The three generators correspond to three lines ℓi, ℓj, ℓk inter-
secting in three simple points, see Figure 9.

i j

k

Figure 9. Case 1

In this case, the relations induced by the three simple points
are: [xi, xj ] = [xi, xk] = [xj , xk] = e, where xi, xj, xk are the
generators of the lines ℓi, ℓj, ℓk respectively. So, we have:

(xi\xj)\(xi\xk) = xk = (xj\xi)\(xj\xk),

which are indeed R-equivalent.
By symmetry, this holds to any permutation of xi, xj , xk as

needed.

Case 2: The three generators correspond to three lines ℓi, ℓj, ℓk passing
through the same multiple point, see Figure 10. For this case,
we have two subcases: in the first case, the corresponding lines
appear consecutively in the intersection point. In the second
case, the corresponding lines appear separately in the intersec-
tion point.

ji

k

ji
1

k

2

3

(b)(a)

Figure 10. Case 2

Case 2a: The lines appear consecutively in the intersection point:
Without loss of generality, we can assume that the multi-
ple point has multiplicity 4, see Figure 10(a). Hence, the
relations induced by this multiple point are:

xxkxjxi = xkxjxix = xjxixxk = xixxkxj,
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where xi, xj, xk, x are the generators of the lines ℓi, ℓj, ℓk, ℓ
respectively. Hence, we have:

(xi\xj)\(xi\xk) = e = (xj\xi)\(xj\xk),

which are indeed R-equivalent.
Any other permutation of xi, xj, xk yields e at both sides
of the condition, so the condition is satisfied for any per-
mutation.

Case 2b: The lines do not appear consecutively in the intersection
point: Without loss of generality, we can assume that the
multiple point has multiplicity 6, see Figure 10(b). Hence,
the relations induced by this multiple point are:

zxkyxjxxi = xkyxjxxiz = yxjxxizxk = xjxxizxky =

= xxizxkyxj = xizxkyxjx,

where xi, xj , xk, x, y, z are the generators of the lines ℓi,ℓj,
ℓk,ℓ1,ℓ2,ℓ3 respectively. Hence, we have:

(xi\xj)\(xi\xk) = e = (xj\xi)\(xj\xk),

which are indeed R-equivalent.
Any other permutation of xi, xj, xk yields e at both sides
of the condition, so the condition is satisfied for any per-
mutation.

Case 3: The three generators correspond to three lines ℓi, ℓj, ℓk, where
two of the lines ℓi, ℓj pass through the same multiple point, and
the third line ℓk intersects them transversally, see Figure 11.
In this case also, we have two subcases: in the first case, the
two lines involved in the multiple point appear consecutively in
the intersection point. In the second case, these lines appear
separately in the multiple point.

i j

k

i
j

2

1

3 4

k

(b)(a)

1

Figure 11. Case 3
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Case 3a: The two lines appear consecutively in the multiple point:
Without loss of generality, we can assume that the multi-
ple point has multiplicity 3, see Figure 11(a). Hence, the
relations induced by this multiple point are:

xxjxi = xjxix = xixxj .

Moreover, we have: [xi, xk] = [xj , xk] = e, where xi, xj , xk, x
are the generators of the lines ℓi, ℓj , ℓk, ℓ respectively. Hence,
we have:

(xi\xj)\(xi\xk) = xk = (xj\xi)\(xj\xk),

and in case there exists another line ℓ1 (whose generator is
y) which passes through the intersection point of the lines
ℓk and ℓ, we have:

(xi\xj)\(xi\xk) = yxk = (xj\xi)\(xj\xk),

which are R-equivalent too.
Any other permutation of xi, xj , xk satisfies the condition
as well.

Case 3b: The two lines do not appear consecutively in the multiple
point: Without loss of generality, we can assume that the
multiple point has multiplicity 4, see Figure 11(b). Hence,
the relations induced by this multiple point are:

yxjxxi = xjxxiy = xxiyxj = xiyxjx.

Moreover, we have: [xi, xk] = [xj , xk] = e, where xi, xj, xk,
x, y are the generators of the lines ℓi, ℓj, ℓk, ℓ1, ℓ2 respec-
tively. Now, we have three different situations:

(i) If ℓ3 and ℓ4 both do not exist, then we have:

(xi\xj)\(xi\xk) = xk = (xj\xi)\(xj\xk).

(ii) If ℓ3 exists (and its corresponding generator is z) but
ℓ4 does not exist, then we have:

(xi\xj)\(xi\xk) = zxk = (xj\xi)\(xj\xk).

(iii) If ℓ4 exists (and its corresponding generator is u) but
ℓ3 does not exist, then we have:

(xi\xj)\(xi\xk) = uxk = (xj\xi)\(xj\xk).

All are R-equivalent (note that it is impossible that both
ℓ3 and ℓ4 exist, since in that case we get a triangle in the
graph). Hence, in all cases, the condition is satisfied.
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Any other permutation of xi, xj , xk satisfies the condition
as well.

Case 4: The three generators correspond to three lines ℓi, ℓj, ℓk, where
the line ℓi passes through two multiple points, the line ℓj passes
through the first multiple point, and the line ℓk passes through
the other multiple point, see Figure 12. In this case too, we have
two subcases: in the first case, the two lines ℓi and ℓj involved in
the first multiple point appear consecutively in the intersection
point. In the second case, these lines appear separately in the
multiple point (actually there are two more cases which are
related to the intersection point of the lines ℓi and ℓk, but they
can be treated similar to the cases appeared here).

i j

k

2

i
j

2

1

k

3
(b)(a)

1

Figure 12. Case 4

Case 4a: The lines ℓi and ℓj appear consecutively in the first multiple
point: Without loss of generality, we can assume that this
multiple point has multiplicity 3, see Figure 12(a). Hence,
the relations induced by this multiple point are:

xxjxi = xjxix = xixxj .

Moreover, we have: yxkxi = xkxiy = xiyxk and [xj , xk] =
e, where xi, xj , xk, x, y are the generators of the lines ℓi, ℓj,
ℓk, ℓ1, ℓ2 respectively. Hence, we have:

(xi\xj)\(xi\xk) = yxk = (xj\xi)\(xj\xk),

which is R-equivalent too.
Any other permutation of xi, xj , xk satisfies the condition
as well.

Case 4b: The lines ℓi and ℓj do not appear consecutively in the first
multiple point: Without loss of generality, we can assume
that the multiple point has multiplicity 4, see Figure 12(b).
Hence, the relations induced by this multiple point are:

yxjxxi = xjxxiy = xxiyxj = xiyxjx.



18 ELIYAHU, GARBER, TEICHER

Moreover, we have: zxkxi = xkxiz = xizxk and [xj , xk] =
e, where xi, xj , xk, x, y, z are the generators of the lines
ℓi, ℓj, ℓk, ℓ1, ℓ2, ℓ3 respectively. Hence, we have:

(xi\xj)\(xi\xk) = zxk = (xj\xi)\(xj\xk),

which is R-equivalent too.
Any other permutation of xi, xj , xk satisfies the condition
as well.

Hence, we have verified the equivalent version of the cube condition
((u\u′)\(u\u′′) and (u′\u)\(u′\u′′) are R-equivalent) for any triple of
generators u, u′, u′′ in any case that the graph is triangle-free, so we are
done. �

Hence, we have the following corollary:

Corollary 4.14. Let L be a real arrangement whose fundamental group
has a conjugation-free geometric presentation and its graph G(L) is
triangle-free. Then, the corresponding monoid is cancellative and has
least common multiples.

Remark 4.15. The condition that the graph is triangle-free is essen-
tial, since if we take a line arrangement whose graph contains triangles,
and its fundamental group has a conjugation-free geometric presenta-
tion, we can find a triple of generators for which the cube condition is
not satisfied anymore.
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