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0. Introduction

We give a birational reduction of singularities for one dimensional foliations in
ambient spaces of dimension three. To do this, we first prove the existence of a
Local Uniformization in the sense of Zariski [19]. The reduction of singularities is
then obtained by a gluing procedure for Local Uniformization similar to Zariski’s
one in [20].

Let K be the field of rational functions of a projective algebraic variety M0 of
dimension n over an algebraically closed field k of characteristic zero. We prove the
following theorem

Theorem 1 (Local Uniformization). Assume that n = 3. Consider a k-valuation ν
of K and a foliation by lines L ⊂ DerkK. There is a composition of a finite sequence
of blow-ups with non singular centers M → M0 such that L is log-elementary at
the center Y ⊂M of ν.

A foliation by lines (or simply a foliation) is any 1-dimensional K-vector sub-
space L ⊂ DerkK. Recall that space of k-derivations DerkK is a n-dimensional
K-vector space. The notion of “log-elementary” comes from results in [4]. Let
us explain it. Take a regular point P in a projective model M . We know that
DerkOM,P ⊂ DerkK is a free OM,P -module of rank n generated by the partial
derivatives ∂/∂xi, i = 1, 2, . . . , n, for any regular system of parameters x1, x2, . . . , xn

of the local ring OM,P . Moreover

LM,P = L ∩DerkOM,P

is a free rank one sub-module of DerkOM,P that we call the local foliation induced
by L at M,P . We say that L is non-singular at P if LM,P 6⊂ MM,PDerkOM,P ,
whereMM,P ⊂ OM,P is the maximal ideal. We say that L is log-elementary at P
if there is a regular system of parameters z1, z2, . . . , zn, an integer 0 ≤ e ≤ n and
ξ ∈ LM,P of the form

ξ =

e∑

i=1

aizi
∂

∂zi
+

n∑

i=e+1

ai
∂

∂zi
, (ai ∈ OM,P , i = 1, 2, . . . , n)

with aj /∈ M2
M,P for at least one index j. If Y ⊂ M is an irreducible subvariety,

we say that L is non-singular at Y , respectively, log-elementary at Y , if it is so at
a generic point of Y . Note in particular that M must be non-singular at a generic
point of Y .
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Theorem 1 may be globalized as a consequence of a patching procedure developed
by O. Piltant [12], which is an axiomatic adaptation of the one given by Zariski in
the case of varieties [19]. We obtain the following birational result of reduction of
singularities of foliations in an ambient space of dimension three

Theorem 2. Assume that n = 3 and let L ⊂ DerkK be a foliation. Consider a
birational model M0 of K. There is a birational morphism M → M0 such that L
is log-elementary at all the points of M .

The reduction of singularities of foliations in an ambient space of dimension two
is proved in the classical Seidenberg’s paper [14]. In dimension three or higher
one would like to be able to obtain elementary singularities, that is singularities
with a non-nilpotent linear part. This is not possible in a birational way as an
example of F. Sanz and F. Sancho shows (see for instance the introduction of [11]).
There is no general result in dimension n ≥ 4, except for the case of absolutely
isolated singularities [3]. In dimension three Panazzolo [11] gives a global but non-
birational result over the real numbers, getting elementary singularities after doing
ramifications and blow-ups. There is also a preprint of Panazzolo and McQuillan,
where they announce and adaptation to the results in [11] to the language of stacks.
In [5] there is a local result, along a trajectory of a real vector field, obtained also
by the use of ramifications and blow-ups. Finally, in [4] there is a strategy to solve
by means of blow-ups a “formal version” of the local uniformization problem, where
formal non-algebraic centers of blow-up are allowed.

Let us give an outline of the proof of Theorem 1. We organize the proof by
taking account of the ranks and dimension of the valuation and of the existence of
“maximal contact” with a formal series.

In Part I, we consider the case of a real valuation ν : K \ {0} → R with residual
field κν = k. In the classical situations of Zariski’s Local Uniformization [19] this
one is considered to be the most difficult case. Note that since κν = k the center
of ν at any projective model is a closed point. Our first result is

Theorem 3. Assume that n = 3 and ν is a real k-valuation of K with residual
field κν = k. There is a finite composition of blow-ups with non-singular centers
M → M0 such that M is non-singular at the center P of ν at M and and one of
the following properties holds

(1) L is log-elementary at P .

(2) There is f̂ ∈ ÔM,P having transversal maximal contact with ν.

A formal series f̂ ∈ ÔM,P has transversal maximal contact with ν if it is the
Krull-limit of a sequence fi ∈ OM,P with strictly increasing values and moreover
we have the following property of transversality: there is a part of a regular system
of parameters x1, x2, . . . , xr of OM,P such that the values ν(x1), ν(x2), . . . , ν(xr)

are Z-independent, where r is the rational rank of ν, and x1, x2, . . . , xr, f̂ is a part

of a regular system of parameters of the complete local ring ÔM,P .
In order to prove Theorem 3, we work over the rational rank r of ν and we study

the three following cases in an ordered way:

(1) r = n. Here we get L elementary for any ambient dimension n. This
is a combinatorial case with few differences with respect to the classical
situations of varieties.
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(2) r = n− 1. The statement of Theorem 3 is valid for any n. We use Newton
Polygon technics to give the proof. If n = 2 the result is slightly stronger:
we get either maximal contact of a non-singular foliation. This will be
useful in the next case.

(3) r = 1, n = 3. This is the hardest situation. We have important difficulties
due to the fact that ν is not a discrete valuation.

We end Part I by giving a proof of

Theorem 4. Assume that n = 3. Let ν be a real k-valuation of K with residual

field κν = k and suppose that f̂ ∈ ÔM,P has transversal maximal contact with ν.
There is a finite composition of blow-ups with non-singular centers M → M0 such
that L is log-elementary at the center P of ν.

Part II is devoted to the remaining cases. We obtain many of the results by an
inductive use of the technics in Part I. In Part III we prove the validity of Piltant’s
patching axioms and hence we obtain the proof of Theorem 2.

Part 1. Zero dimensional arquimedean valuations

In all this part ν : K \ {0} → Γ denotes a valuation such that Γ ⊂ (R,+)
and κν = k. In other words, the (arquimedean) rank of ν is one and it is a zero-
dimensional k-valuation of K. We denote by r the rational rank of ν, that is, the
maximum number of Z-linearly independent elements in the value group of ν. We
know that 1 ≤ r ≤ n by Abhyankar’s inequality. In particular, for the case n = 3
we have the possibilities r = 3, r = 2 and r = 1.

1. Parameterized regular local models

A parameterized regular local model A = (O, z = (x,y)) for K, ν is a pair with
O = OM,P , where M is a projective model of K, the point P ∈M is the center of
ν in M and the sequence

(z1, z2, . . . , zn) = z = (x,y) = (x1, x2, . . . , xr, yr+1, yr+2, . . . , yn)

is a regular system of parameters of O such that ν(x1), ν(x2), . . . , ν(xr) are Z-
linearly independent values. We call x = (x1, x2, . . . , xr) the independent variables
and y = (yr+1, yr+2, . . . , yn) the dependent variables. The existence of parameter-
ized regular local models is a consequence of Hironaka’s reduction of singularities
[10]. More precisely, we have

Proposition 1. Given a projective model M0 of K, there is a composition of a
finite sequence of blow-ups with non-singular centers M →M0 such that the center
P of ν at M provides a local ring O = OM,P for a parameterized regular local model
A = (O, z = (x,y)).

Proof. By Hironaka’s reduction of the singularities (see [10]) of M0, we get a non-
singular projective model M ′ of K jointly with a birational morphism M ′ → M0

that is the composition of a finite sequence of blow-ups with non-singular centers.
Consider the local ring OM ′,P ′ of M ′ at the center P ′ of ν and chose elements
f1, f2, . . . , fr ∈ OM,P such that ν(f1), ν(f2), . . . , ν(fr) are Z-linearly independent.
Another application of Hironaka’s theorem gives a birational morphism M →M ′,
that is also a composition of a finite sequence of blow-ups with non-singular centers,
such thatf =

∏r
i=1 fi, is a monomial (times a unit) in a suitable regular system
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of parameters at any point of M and hence each of the fi, i = 1, 2, . . . , r is also a
monomial (times a unit) in that regular system of parameters. In particular, if P
is the center of ν at M there is a regular system of parameters z = (z1, z2, . . . , zn)
of OM,P such that

fi = Uiz
mi , Ui ∈ OM,P \MM,P , for i = 1, 2, . . . , n,

where mi = (mi,1,mi,2, . . . ,mi,n) ∈ Zn
≥0 and zmi = z

mi,1

1 z
mi,2

2 · · · z
mi,n

n . In terms

of values, we have ν(fi) =
∑n

j=1 mijν(zj). This implies that there are r variables
among the zj whose values are Z-linearly independent. �

1.1. Coordinate changes and blow-ups. Take a parameterized regular local
model A = (O, z). We will do “atomic” transformations of A of two types: coordi-
nate changes in the dependent variables and coordinate blow-ups with codimension
two centers. Our “basic” transformations, called Puiseux packages will be certain
sequences of coordinate changes and blow-ups.

Let us describe the two types of transformations. Each one produces a parame-
terized local model A′ = (O′, z′).

Coordinate changes in the dependent variables. Consider j with r + 1 ≤ j ≤ n.
A j-coordinate change is such that z′i = zi for i 6= j and y′j is one of the following

a) y′j = yj − cxa, ν(y′j) ≥ ν(yj), c ∈ k, a ∈ Zr
≥0.

b) y′j = yj + ys, for another s 6= j with r + 1 ≤ s ≤ n.

If r = n we do not do coordinate changes.
Coordinate blow-ups with codimension two centers. Take a pair i, j of distinct

indices with 1 ≤ i ≤ r and 1 ≤ j ≤ n. We say that A′ = (O, z′) is obtained from A
by an (i, j)-blow-up if the following holds. First z′s = zs for any s /∈ {i, j}. In order
two determine z′i, z

′
j we have three cases

(1) ν(xi) < ν(zj). We put x′
i = xi and z′j = zj/xi.

(2) ν(xi) > ν(zj). We put x′
i = xi/zj and z′j = zj .

(3) ν(xi) = ν(zj). Note that in this case we necessarily have that j ≥ r + 1
and hence zj = yj. Since κν = k, there is c ∈ k with ν(yj/xi − c) > 0. We
put x′

i = xi and y′j = yj/xi − c.

The first two cases above are called combinatorial and the third one corresponds
to a blow-up with translation. If xi, xj are independent variables, we have always a
combinatorial case, since ν(xi) 6= ν(xj).

The local ring O′ is the (algebraic) localization of O[z′] at the ideal (z′).
In the case that j ≥ r+1 the above blow-up will also be referred as a j-blow-up.

Remark 1. Let M be a projective model for K such that O = OM,P , where P is
the center of ν at M . There is a closed irreducible algebraic subvariety Y ⊂ M of
codimension two defined by the equations xi = zj = 0 that is non singular at P .
Let π : M ′ →M be the blow-up of M with center Y and let P ′ be the center of ν
at M ′. Then O′ = OM ′,P ′ .

1.2. Puiseux packages of blow-ups. LetA = (O, z = (x,y)) be a parameterized
regular local model. Consider a dependent variable yj. Then ν(yj) can be expressed
uniquely as a Q-linear combination of ν(x1), ν(x2), . . . , ν(xr). More precisely, there
are unique integer numbers d > 0 and p1, p2, . . . , pr such that

dν(yj) = p1ν(x1) + p2ν(x2) + · · ·+ prν(xr)
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and gcd(d; p1, p2, . . . , pr) = 1. In particular, the rational function

Φ = ydj /x
p, xp = xp1

1 xp2

2 · · ·x
pr

r ,

has value equal to zero. We call this function the j-contact rational function and
d is the j-ramification index for A. Note that there is a unique scalar c ∈ k such
that ν(Φ− c) > 0, since κν = k.

A coordinate (i, s)-blow-up is said to be j-admissible if either 1 ≤ s ≤ r with
pi 6= 0 6= ps or pi 6= 0 and s = j.

Remark 2. Assume thatA′ has been obtained fromA by a j-admissible coordinate
(i, s)-blow-up. There are two possibilities:

A) The blow-up is combinatorial. In this case Φ is also the j-contact rational
function for A′.

B) The blow-up has a translation. Then Φ = yj/xi and s = j. Moreover, we
have y′j = Φ− c.

Definition 1. A j-Puiseux package starting at A is a finite sequence

A = A0 → A1 → · · · → AN = A′

where At−1 → At is a combinatorial j-admissible blow-up for t = 1, 2, . . . , N − 1
and AN−1 → AN is a j-admissible blow-up with translation. In this situation, we
say that A′ has been obtained from A by a j-Puiseux package.

Note that y′j = Φ− c, in view of the above Remark.

Proposition 2. Given A and j, with r < j ≤ n, there is at least one j-Puiseux
package starting at A.

Proof. There are many known algorithms for doing this (see [10, 16, 15, 18, 2]). We
include a proof for the sake of completeness. Let us write

Φ =
ydjx

q

xr
,

where qi = −pi if pi < 0 and qi = 0, otherwise and, in the same way, we put ri = pi
if pi > 0 and ri = 0 otherwise. There are two possibilities: q 6= 0 or q = 0. Note
that we always have that r 6= 0, since ν(zs) > 0 for all s. Assume first that q 6= 0.
Let us choose indices 1 ≤ i, s ≤ r such that pips < 0. We do the (i, s)-blow-up.
The sum |pi|+ |ps| decreases. We continue and one of the independent variables xi

or xs disappears. In this way we get that q = 0. Now, we consider an index i with
pi 6= 0 and we do the (i, j)-blow-up. This blow-up is combinatorial except in the
case that Φ = yj/xi. If we are not in this case, then d+pi decreases and finally the
variable xi disappears. We obtain that Φ = yj/xi. The only possible j-admissible
coordinate blow-up is the (i, j)-blow-up. Moreover, ν(yj) = ν(xi) and hence it is a
coordinate blow-up with translation. �

Remark 3. We are interested in the following features of Puiseux packages. Let
us start with A = (O, z = (x,y)) and assume that A′ = (O′, z′ = (x′,y′)) has been
obtained from A by a j-Puiseux package. Let Φ = ydj /x

p be the j-contact function

and suppose that ν(Φ − c) > 0. For s /∈ {i; pi 6= 0} ∪ {j} we have that zs = z′s.
Moreover y′j = Φ− c and there are monomial expressions

zs =

(
r∏

i=1

x′
i
bsi

)
Φbsj ; s ∈ {i; pi 6= 0} ∪ {j}.
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This is proved by induction on the number of j-admissible coordinate blow-ups of
the j-Puiseux package.

1.3. Statements in terms of parameterized regular local models. Consider
a foliation by lines L ⊂ DerkK and a parameterized regular local model A = (O, z).
The local foliation induced by L at A is defined by

LA = L ∩DerkO.

Obviously LA = LM,P for any projective model M for K such that O = OM,P . In
the next sections we shall prove the following proposition

Proposition 3. Assume that n = 3. Let ν be a real k-valuation of K with κν = k
and take a foliation L ⊂ DerkK. Consider a parameterized regular local model
A = (O, z) for K, ν. There is a finite sequence of coordinate changes and blow-
ups such that the parameterized regular local model A′ = (O′, z′) obtained from A
satisfies one of the following properties:

(1) The foliation LA′ is log-elementary.

(2) There is f̂ ∈ Ô′ having transversal maximal contact with ν.

This result implies Theorem 3. Indeed, we already know that there is a birational
morphism M → M0, composition of blow-ups with nonsingular centers, such that
M is non-singular and the local ring OM,P of M at the center P of ν supports
a parameterized regular local model A. The sequence of blow-ups that gives A′

may be substituted, by Hironaka’s reduction of singularities, by another sequence
of blow-ups with non-singular centers, since the original blow-ups are non-singular
(in fact they are non-singular and two dimensional) at the corresponding centers of
the valuation at each projective model.

Next sections are devoted to proving Proposition 3.

2. The combinatorial case (r = n)

The following Proposition 4 implies Proposition 3 for the case of maximal ra-
tional rank. Let us note that in Proposition 4 there is no assumption about the
(arquimedean) rank of the valuation nor on the fact that κν = k. Indeed if n = r
we know that κν is an algebraic extension of k and thus κν = k since we assume
the base field k to be algebraically closed.

Proposition 4. Let ν be a k-valuation of K with maximal rational rank r = n.
Take a foliation L ⊂ DerkK and a parameterized regular local model A for K, ν.
There is a parameterized regular local model A′ obtained from A by a finite sequence
of coordinate blow-ups such that LA′ is elementary.

Let us recall that LA is elementary if there is a vector field ξ ∈ LA having a
non-nilpotent linear part. If ξ ∈ DerkO is singular, that is ξ(O) ⊂ M, the linear
part Lξ is intrinsically defined as the k = O/M-linear map

Lξ :M/M2 →M/M2

given by f +M2 7→ ξf +M2. Note that “elementary” implies “log-elementary”.
Note also that a vector field ξ ∈ DerkO of the form

(1) ξ =
n∑

i=1

fixi
∂

∂xi
, bi ∈ O,

has a non-nilpotent linear part if and only if one of the fi is a unit in O.
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2.1. Newton polyhedron. Note that z = x, since all the variables haveQ-linearly
independent values. Any element f ∈ O can be expanded in a formal series

f =
∑

fax
a; fa ∈ k.

The support of f is defined by Supp(f ;x) = {a; fa 6= 0} ⊂ Zn
≥0. For a vector field

ξ ∈ DerkO written as in formula (1), the support is

Supp(ξ;x) = ∪ni=1Supp(fi;x).

The Newton polyhedron N (ξ;x) is the convex hull in Rn of the set Supp(ξ;x)+Rn
≥0.

The local foliation LA contains a vector field ξ of the form (1) such that the
coefficients fi ∈ O have no common factor in O, that we call an x-generator of
LA. To see this, take any η ∈ LA, then (

∏n
i=1 xi)η is of the form (1) and now it is

enough to divide by the gcd of the fi.
We define the Newton polyhedron N (L;x) by N (L;x) = N (ξ;x), where ξ is an

x-generator of LA.

Remark 4. The Newton polyhedron N (L;x) has vertices in Zn
≥0. Since the co-

efficients fi have no common factor (and “a fortiori” they are free of a monomial
common factor) the only v ∈ Rn

≥0 such that

N (L;x) ⊂ v + Rn
≥0

is v = 0. Thus, if N (L;x) has only one vertex v, then v = 0 and the vector field ξ
has a non-nilpotent linear part. This implies that LA is elementary.

2.2. The effect of a blow-up. Let A′ = (O, z′) be obtained from A by an (i, s)-
blow-up. Recall that there are no dependent variables and hence it is a combinatorial
blow-up. If ν(xi) < ν(xs), we have x′

s = xs/xi and x′
s = xs, for s 6= j. Consider

the affine function σi
is : Rn → Rn defined by

σi
is(a)t =

{
ai + aj , if t = s
as, if t 6= s

Take v ∈ Rn
≥0 such that σi

ij (N (L;x)) is inscribed in the orthant v + Rn
≥0. Then

the Newton polyhedron N (L;x′) is obtained as

N (L;x′) =
(
σi
is (N (L;x)) − v

)
+ Rn

≥0.

In fact, the behavior of the Newton polyhedron is the same one as the behavior of
the Newton polyhedron of the ideal generated by the coefficients fi. In the case
ν(xi) > ν(xs), we do the same argument with the corresponding affine map σs

is.

2.3. End of the proof of Proposition 4. We can use the same idea as in the
proof of Proposition 2. Let N be the number of vertices of N (L;x). After doing
an (i, j)-blow-up, we obtain that N ′ ≤ N . If N = 1, we are done. Assume that
N ≥ 2. Take two distinct vertices a and b of N (L;x) and let v be the element in
Zn
≥0 such that the set {a,b} is inscribed in v+Rn

≥0. In other terms, the monomial

xv is the gcd of xa and xb. Put ã = a− v and b̃ = b−v. Note that for any index
t we have ãtb̃t = 0 and also ã 6= 0 6= b̃. Choose indices i, s with ãib̃s 6= 0. Do the
(i, s)-blow-up. Assuming that N ′ = N , the set of indices

{t; ãt 6= 0 or b̃t 6= 0}

is contained in the corresponding one after blow-up. If the two sets coincide, the
amount ãi + b̃s decreases strictly. This ends the proof.
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Remark 5. The same kind of combinatorial game, but using centers of any codi-
mension, with a “permissibility” additional condition, is called the Weak Hironaka’s
Game [15].

3. The Newton-Puiseux Polygon

Let us assume in this section that r = n− 1, κν = k and take a parameterized
regular local model A = (O, z = (x, y)). Note that since r = n − 1, there is only
one dependent variable y.

Consider an element f ∈ y−1O, that we write f =
∑∞

s=−1 hs(x)y
s, where hs(x)

is a formal series hs(x) ∈ k[[x]] ∩ O. The Newton-Puiseux support of f is the set

NPSup(f ;x, y) = {(ν(hs), s);hs 6= 0} ⊂ Γ× Z≥−1.

We denote by α(f ;x, y) the minimum abscissa of the Newton Puiseux support,
that is α(f ;x, y) = min{(ν(hs))}. The main height ~(f ;x, y) is the minimum of
the s such that ν(hs) = α(f ;x, y). Let δ(f ;x, y) be the minimum of the values
ν(hs) + sν(y). The critical segment C(f ;x, y) is the set of the s such that

ν(hs) + sν(y) = δ(f ;x, y).

The main height χ(f ;x, y) is the highest s in the critical segment. Let us note that
χ(f ;x, y) ≤ ~(f ;x, y).

Consider a finite list f = (f1, f2, . . . , ft) of elements fj ∈ y−1O. The Newton-
Puiseux support NPSup(f ;x, y) is the set of (u, s), where u is the minimum of the
uj such that (uj, s) ∈ NPSup(fj ;x, y), for j = 1, 2, . . . , t. We obtain in this way
a definition for α(f ;x, y), ~(f ;x, y) ,δ(f ;x, y) and χ(f ;x, y) since these invariants
depend only on the Newton-Puiseux support.

3.1. Newton-Puiseux Polygon of a foliation. Consider the free O-module
DerkO[log x] whose elements are the vector fields of the form

(2) ξ =

n−1∑

i=1

fi(x, y)xi
∂

∂xi
+ g(x, y)

∂

∂y

where g ∈ O, fi ∈ O, i = 1, 2, . . . , n − 1. Such vector fields will be called x-
logarithmic vector fields, or simply x-vector fields. Let us denote fn = g/y and
f = (f1, f2, . . . , fn). We define NPSup(ξ;x, y) = NPSup(f ;x, y) and

α(ξ;x, y) = α(f ;x, y); ~(ξ;x, y) = ~(f ;x, y)

δ(ξ;x, y) = δ(f ;x, y); χ(ξ;x, y) = χ(f ;x, y).

Given a foliation L ⊂ DerkK, we consider the local x-logarithmic foliation LA[logx]
at A defined by

(3) LA[logx] = L ∩DerkO[logx].

We define the main height ~(L;A), respectively the critical height χ(L;A), to be
the minimum of the ~(ξ;x, y), respectively χ(ξ;x, y), where ξ ∈ LA[logx]. Note
that

~(L;A) ≥ χ(L;A) ≥ −1.

These ones are the main invariants we shall use to control the singularity of L after
performing a Puiseux package.
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3.2. The initial parts. Consider an element h =
∑

m λmxm ∈ O ∩ k[[x]]. Since
the values ν(xi), i = 1, 2, . . . , n− 1 are Q-linearly independent, there is exactly one

exponent m0 such that ν(λm0
xm0) = ν(h). Moreover, if h̃ = h − λm0

xm0 then

ν(h̃) > ν(h). Take an element γ ∈ Γ with γ ≤ ν(h). We define the γ-initial form
Inγ(h) by Inγ(h) = 0 if γ < ν(h) and Inν(h)(h) = λm0

xm0 if γ = ν(h). Given
a list h = (h1, h2, . . . , hn) of elements hj = hj(x) ∈ k[[x]] ∩ O, and γ ∈ Γ with
γ ≤ min{ν(hj(x)); j = 1, 2, . . . , n} we put

Inγ(h;x) = (Inγ(h1;x), Inγ(h2;x), . . . , Inγ(hn;x)).

If we have a vector field of the form

η =

n−1∑

j=1

hj(x)xj
∂

∂xj
+ hn(x)y

∂

∂y

and γ ≤ min{ν(hj(x)); j = 1, 2, . . . , n} we put

Inγ(η;x) =

n−1∑

j=1

Inγ(hj ;x)xj
∂

∂xj
+ Inγ(hn;x)y

∂

∂y
.

Take an x-vector field ξ ∈ DerO[logx] that we write as in equation (2). Put
fj =

∑∞

s=−1 hjs(x)y
s, j = 1, 2, . . . , n. We have ξ =

∑n
s=−1 y

sηs, where

(4) ηs =

n−1∑

j=1

hjs(x)xj
∂

∂xj
+ hns(x)y

∂

∂y
; s = −1, 0, 1, . . . .

Put δ = δ(ξ;x, y) = minj,s{ν(yshjs(x))}. We define the initial form In(ξ;x, y) as

In(ξ;x, y) =
∞∑

s=−1

ysInδ−sν(y)(ηs;x).

Let us note that if ξ̃ = ξ − In(ξ;x, y), then δ(ξ̃;x, y) > δ(ξ;x, y). Note also that
if χ = χ(ξ;x, y) is the critical height, then Inδ−sν(y)(ηs;x) = 0 for s > χ and
Inδ−χν(y)(ηχ;x) 6= 0. In particular In(ξ;x, y) is a finite sum

In(ξ;x, y) =

χ∑

s=−1

ysInδ−sν(y)(ηs;x).

Now we are going to give a particular expression of In(ξ;x, y) in terms of the contact
rational function Φ = yd/xp.

Let us take an index s such that Inδ−sν(y)(ηs;x) 6= 0 and in particular s ≤ χ.

Write Inδ−sν(y)(ηs;x) = xq(s)Λs, where Λs is the linear vector field

Λs =
n−1∑

j=1

λjsxj
∂

∂xj
+ λnsy

∂

∂y

and q(s) ∈ Zn−1
≥0 . Put r(s) = q(s)− q(χ). We have

ν(xr(s)) = (χ− s)ν(y) =
χ− s

d
ν(xp),

this implies that ((χ − s)/d)p = r(s) and thus ((χ − s)/d)p ∈ Zn−1. Since the
coefficients p1, p2, . . . , pn−1 have no common factor, we have that (χ − s)/d ∈ Z.
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Put t = (χ − s)/d ∈ Z≥0; note that t ≤ ̺, where ̺ ∈ Z≥0 is the biggest integer
bounded above by (χ+ 1)/d.

We may write In(ξ;x, y) as follows:

(5) In(ξ;x, y) = xq(χ)yχ
χ∑

s=−1

1

Φ(χ−s)/d
Λs = xq(χ)yχ

∑̺

t=0

1

Φt
Λχ−dt.

In order to simplify the notation, let us rename ∆t = Λχ−dt. Then

(6) x−q(χ)y−χΦ̺In(ξ;x, y) =
∑̺

t=0

Φ̺−t∆t.

We recall that ∆0 6= 0.

3.3. The expression of the derivatives after a Puiseux package. Assume
that A′ = (O′, z′ = (x′, y′)) has been obtained from A = (O, z = (x, y)) by a
Puiseux package. Let Φ = yd/xp be the contact rational function. By remark 3 we
have that y′ = Φ− c and there is a matrix B = (bsi ) with determinant 1 or −1 and
positive integer coefficients such that

zs =

(
n−1∏

i=1

x′
i
bsi

)
Φbsn ; s = 1, 2, . . . , n.

Moreover if ps = 0 we know that xs = x′
s, that is b

s
i = 0 if i 6= s and bss = 1. This

implies that

x′
i

∂

∂x′
i

=

n−1∑

s=1

bsixs
∂

∂xs
+ bni y

∂

∂y
; i = 1, 2, . . . , n− 1,(7)

Φ
∂

∂y′
=

n−1∑

s=1

bsnxs
∂

∂xs
+ bnny

∂

∂y
(8)

Let B−1 = (b̃is) be the inverse matrix of B = (bsi ). We obtain

xs
∂

∂xj
=

n−1∑

i=1

b̃isx
′
i

∂

∂x′
i

+ b̃nsΦ
∂

∂y′
; s = 1, 2, . . . , n− 1,(9)

y
∂

∂y
=

n−1∑

i=1

b̃inx
′
i

∂

∂x′
i

+ b̃nnΦ
∂

∂y′
(10)

Note that the b̃si are integer (may be negative) numbers. Moreover, we have

(11) b̃nn =
1

Φ
y
∂

∂y
(Φ) = d 6= 0.

Finally, a given linear vector field ∆ =
∑n

i=1 µizi∂/∂zi, we have

(12) ∆ =

{
n−1∑

i=1

µ̃ix
′
j

∂

∂x′
j

+ µ̃ny
′ ∂

∂y′

}
+ cµ̃n

∂

∂y′
.

where (µ̃1, µ̃2, . . . , µ̃n) = (µ1, µ2, . . . , µn)B
−1.
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4. Rational co-rank one

In this section we also assume that r = n− 1, κν = k. We take a parameterized
regular local model A = (O, z = (x, y)) and a foliation L ⊂ DerkK. We will prove
the following result

Proposition 5. There is a a parameterized regular local model A′ obtained from A
by a finite sequence of coordinate changes in the dependent variable and coordinate
blow-ups with codimension two centers, such that one of the following properties
holds:

(1) There is f̂ ∈ Ô′ having transversal maximal contact with ν.
(2) The local foliation LA′ is non-singular if n = 2 and elementary if n ≥ 3.

Now, Proposition 5 is a consequence of the following five lemmas.

Lemma 1. Assume that A′ has been obtained from A by a coordinate change in
the dependent variable. Then ~(L;A′) = ~(L;A).

Proof. Left to the reader. �

Lemma 2. Assume that A′ has been obtained from A by a Puiseux package. Then
~(L;A′) ≤ χ(L;A). Moreover, we have

~(L;A′) < χ(L;A)

if χ(L;A) ≥ 1 and d(A) ≥ 2, where d(A) is the the ramification index of A.

Lemma 3. Assume that ~(L;A) ∈ {−1, 0}. We have the following properties

(1) If ~(L;A) = −1, after performing a finite sequence of coordinate blow-ups
in the independent variables, we obtain A′ such that LA′ is non-singular.

(2) If ~(L;A) = 0, after performing a finite sequence of coordinate blow-ups in
the independent variables, we obtain A′ such that LA′ is elementary.

Lemma 4. If n = 2, after performing a finite sequence of Puiseux packages we

obtain A′ such that either LA′ is non-singular or there is f̂ ∈ Ô′ having transversal
maximal contact with ν.

Lemma 5. Assume that ~(LA) ≥ 1 and that the following property holds:

“After any finite sequence of coordinate blow-ups in the independent
variables, Puiseux packages and coordinate changes in the depen-
dent variable we have that d(A) = 1 and ~(LA′) = ~(LA)”.

Then there is f̂ ∈ Ô having transversal maximal contact with ν.

In order to show that Lemmas 1, 2, 3, 4 and 5 imply Proposition 5, let us only
recall that χ(L;A) < ~(L;A). So, unless we have a transversal maximal contact,
we arrive to the situation of Lemma 3 by a repeated application of Lemma 2 and
we are done.

Let us prove the above lemmas.

4.1. The effect of a Puiseux package. Let us consider A′ = (O′, z′ = (x′, y′))
obtained from A by a Puiseux package. Take an x-vector field ξ ∈ LA[logx] such
that χ(ξ;x, y) = χ(L;A) and let us write ξ =

∑n
s=−1 y

sηs as in equations (2)
and (4). In order to simplify the notation, put χ = χ(ξ;x, y) and δ = δ(ξ;x, y).
Moreover, we denote d = d(A) the ramification index associated to A. Let us write

ξ̃ = ξ − In(ξ;x, y). We recall that δ(ξ̃;x, y) > δ.
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Next we express In(ξ;x, y) and ξ̃ in terms of the coordinates z′ = (x′, y′).

Lemma 6. α(ξ̃;x′, y′) > δ.

Proof. Left to the reader. �

Let us consider now In(ξ;x, y) and let us express it in the coordinates z′. Let us
recall equation 6, where x−q(χ)y−χΦ̺In(ξ;x, y) =

∑̺
t=0 Φ

̺−t∆t and

∆t = Λχ−dt =

n∑

i=1

λi,χ−dtzi∂/∂zi =

n∑

i=1

µitzi∂/∂zi,

with ∆0 6= 0. Let us put ζ =
∑̺

t=0 Φ
̺−t∆t. We can write ζ =

∑
s≥β′ y′sϑs, where

ϑβ′ 6= 0 and all the ϑs are z′-linear vector fields ϑs =
∑n

j=1 αjsz
′
j∂/∂z

′
j.

Lemma 7. We have β′ ≤ χ. If χ ≥ 1 and d ≥ 2, then β′ < χ.

Proof. Looking at the equation 12, we see that ζ =
∑̺

t=0(y
′ + c)̺−t∆t and

∆t =

n∑

j=1

µ̃jtz
′
j

∂

∂z′j
+ cµ̃nt

∂

∂y′
; (µ̃1t, µ̃2t, . . . , µ̃nt) = (µ1t, µ2t, . . . , µnt)B

−1.

Let ς = max{t; ∆t 6= 0} ≤ ̺. Then ζ = Φ̺−ς
∑ς

t=0 Φ
ς−t∆t. Recalling that

Φ = y′+c, and dividing the above expression by Φ̺−ς , we obtain β′ ≤ ς . Remember
that ̺ is the greatest integer bounded above by (χ+1)/d. Then, if d ≥ 2 and χ ≥ 2,
or d ≥ 3 and χ = 1 we obtain β′ ≤ ς ≤ ̺ < χ. If χ = 0 and d ≥ 2 we have ̺ = 0
and then β′ ≤ 0. It remains to study the cases with d = 1, the case d = 2, χ = 1
and the case χ = −1.

The case χ = −1. In this case ̺ = ς = 0. In particular ζ = ∆0. Moreover
∆0 = Λ−1 = µn0y∂/∂y. Recalling that b̃nn = d in view of equation 11, we have

ζ = µn0y∂/∂y = µn0

n∑

j=1

b̃jnz
′
j

∂

∂z′j
+ µn0dc

∂

∂y′
.

This implies that αn,−1 = µn0dc 6= 0 and thus β′ = −1.
Cases with d = 1, χ ≥ 0. We reason by contradiction, assuming that β′ ≥ χ+1.

This implies that ς = ̺ = χ+1. In particular, we have ∆χ+1 6= 0 and ∆χ+1 = Λ−1.
Note that Λ−1 = µy∂/∂y, where µ = µn,χ+1 = λn,−1. Now, our contradiction
hypothesis β′ ≥ χ+ 1 implies that ζ(y′) is divisible by y′χ+2. We have

ζ(y′) =

χ+1∑

t=0

Φχ+1−t∆t(y
′) =

= Φ
(
Φχ+1µ̃n0 +Φχµ̃n1 + Φχ−1µ̃n2 + · · ·+Φµ̃nχ + µ̃n,χ+1

)
.

Recall that Φ = y′ + c, then we necessarily have that ζ(y′) = µ̃n0y
′χ+2, since the

biggest possible power of y′ in the above expression is y′χ+2 and its coefficient is
µ̃n0. Moreover we also have that Φ = y′ + c divides ζ′(y′). The only possibility is
that ζ(y′) = 0 and hence all the coefficients µ̃nt are zero, for t = 1, 2, . . . , χ + 1.

This is a contradiction, since µ̃n,χ+1 = b̃nnµ = dµ 6= 0.
Case d = 2, χ = 1. Let us reason by contradiction, assuming that β′ ≥ χ. Then

ς = ̺ = χ = 1. We have ζ = Φ∆0 +∆1 and y′2 must divide ζ(y′). That is

ζ(y′) = Φ (Φµ̃n0 + µ̃n1) = y′2µ̃n0.
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We deduce as above that ζ(y′) = 0 and thus µ̃n1 = µ̃n0 = 0. Note that 0 6= ∆1,
since ς = 1. Moreover, in our case ∆t = Λ1−2t and thus ∆1 = Λ−1 = µy∂/∂y 6= 0.
Now we have µ̃n1 = 2µ and we obtain that µ̃n1 6= 0 and µ̃n1 = 0 simultaneously,
contradiction. �

Lemma 8. ~(L;A′) ≤ β′.

Proof. It is enough to show that β′ = ~(ξ;x′, y′). We have β′ = ~(ζ;x′; y′) and
α(ζ;x′; y′) = 0. Recall that In(ξ;x, y) = xq(χ)yχΦ−̺ζ, where

ν(xq(χ)yχΦ−̺) = ν(xq(χ)yχ) = δ.

Moreover, in view of Remark 3, we have that

xq(χ)yχΦ−̺ = x′q
′

Φr′ , and ν(x′q
′

) = δ.

Noting that In(ξ;x, y) = x′q
′

Φr′ζ, we deduce that α(In(ξ;x, y);x′, y′) = δ and
~(In(ξ;x, y);x′, y′) = ~(ζ;x′, y′) = β′. Moreover, by Lemma 6, we have

δ = α(In(ξ;x, y);x′, y′) < α(ξ̃;x′, y′).

Recalling that ξ = In(ξ;x, y) + ξ̃, we have that α(ξ;x′, y′) = δ and

~(ξ;x′, y′) = ~(In(ξ;x, y);x′, y′) = β′.

This ends the proof. �

Remark 6. Lemma 1 follows from Lemma 7, in view of Lemma 8.

Before giving a proof of Lemma 3, we explain the effect of the blow-ups in the
independent variables in the following result.

Lemma 9. Given A and L, after performing finitely many coordinate blow-ups in
the independent variables with centers of codimension two, we can obtain A′ such
that α(L;A′) = 0. Moreover ~(L;A′) ≤ ~(L;A).

Proof. Write ξ =
∑∞

s=−1 y
sηs with ηs =

∑n
j=1 hjs(x)zj∂/∂zj. Let us do a blow-up

in the independent variables and let x′, y be the obtained variables. Then the same
decomposition as above acts in this new set of variables, that is ξ =

∑∞

s=−1 y
sηs

where we can write

ηs =

n∑

j=1

h′
jsz

′
j

∂

∂z′j
; h′

js ∈ k[[x′]].

Moreover the ideal I ′s ⊂ k[[x′]] generated by {h′
js}

n
j=1 is I ′s = Isk[[x]], where Is is

the ideal of k[[x]] generated by {hjs}nj=1. This already implies that

α(ηs;x) = α(ηs;x
′); s = −1, 0, 1, . . . .

In particular we have that ~(ξ;x, y) = ~(ξ;x′, y).
Moreover, the ideal I ′ =

∑∞

s=−1 I
′
s ⊂ k[[x′]] is also given by I ′ = Ik[[x′]],

where I =
∑∞

s=−1 Is ⊂ k[[x]]. Thus, we can apply classical results of reduction of
singularities under combinatorial blow-ups, that can be proved as in Proposition 4
(see also [7]) to assure that after a finite number of blow-ups in the independent
variables with centers of codimension two, the ideal I is generated by a single

monomial, say x′q
′

. We obtain an x′-vector field ξ′ = x′−q′

ξ ∈ LA′ [logx′] such
that α(ξ′;x′, y) = 0. �
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Remark 7. In the above lemma we have ~(L;A′) = ~(L;A′). Anyway, we do not
need to use this fact.

We obtain an immediate proof of Lemma 3. By Lemma 9, we may suppose that
there is ξ ∈ LA[logx] such that ~(ξ;x, y) = ~(L;A) and α(ξ;x, y) = 0. Now, it is
evident that

(1) If ~(ξ;x, y) = −1, then ξ is non-singular.
(2) If ~(ξ;x, y) = 0, then ξ is elementary (or non-singular).

4.2. Getting a formal hypersurface of transversal maximal contact. Let
us give a proof of Lemma 5. In view of Lemma 9, after performing finitely many
blow-ups in the independent variables, we can assume that there is ξ ∈ LA[logx]
such that ~(ξ;x, y) = ~(L;A) and α(ξ;x, y) = 0. Moreover, we also have that

χ(ξ;x, y) = ~(ξ;x, y),

since otherwise, an application of Lemma 2 allows us to decrease ~(L;A). Moreover,
in view of our hypothesis, we have d(A) = 1 and ~(L;A) ≥ 1.

Lemma 10. Let Φ = y/xp be the contact rational function. We have p ∈ Zn−1
≥0 .

Proof. Let us keep the notations of subsection 3.2. Recall that

In(ξ;x, y) =

χ∑

s=−1

ysxq(s)Λs.

Since α(ξ;x, y) = 0 and χ(ξ;x, y) = ~(ξ;x, y), we have q(χ) = 0. Thus, for any s
such that Λs 6= 0 we have

ν(xq(s)) = (χ− s)ν(y)

and hence (χ − s)p = q(s). Noting that q(s) ∈ Zn−1
≥0 , it is enough to show that

there is at least an index s < χ such that Λs 6= 0. Assume the contrary. Then

In(ξ) = yχΛχ,

where χ = ~(ξ;x; y) ≥ 1. Let us do a Puiseux package, taking the notations of the
proof of Lemma 7, we obtain ς = 0 and hence χ′ ≤ β′ ≤ ς = 0. Contradiction. �

In this situation, we have ν(y − cxp) > ν(y). Let us do the coordinate change
y′ = y − cxp. The situation repeats. In this way we can produce a sequence of
elements y(j) ∈M \M2, such that y(0) = y and

y(j) = y(j−1) − cjx
p(j); ν(y(j)) > ν(y(j−1)), j = 1, 2, . . . .

Taking f̂ = limj y
(j), we obtain the desired formal hypersurface.

4.3. The case of dimension two. The statement of Lemma 4 is a consequence
of Seidenberg’s reduction of singularities in dimension two [14]. Let us see this.
Assuming that we do not get non-singular points, after finitely Puiseux packages,
we obtain a “simple singularity” in the sense of Seidenberg. It is given by an
x-vector field of the form

ξ = (λ+ a(x, y))x
∂

∂x
+ (αx+ µy + b̃(x, y))

∂

∂x
; a(0, 0) = 0, b̃(x, y) ∈M2

where, (λ, µ) 6= (0, 0) and if λ 6= 0 then µ/λ /∈ Q>0. Such singularity has exactly

two formal invariant curves: x = 0 and f̂ = 0, where f̂ = y − φ̂(x). They are
non-singular and transversal one to the other. After doing one more blow-up, the
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exceptional divisor is invariant and we obtain exactly two simple singularities, one
of them corresponds to the strict transform of x = 0, it is a corner, and the other one

is in the strict transform of f̂ = 0. This shows that blowing-up a corner produces
only corners as singularities, thus, since the valuation has rational rank one and we
have nontrivial Puiseux packages, we necessarily do blow-ups outside the corners.

Hence we follow the infinitely near points of f̂ = 0. “A fortiori”, we obtain that

f̂ is non-algebraic (otherwise the value of f̂ would be infinite) and has maximal
contact with ν.

5. Etale Puiseux packages

5.1. Review on etale neighborhoods. Let us recall the definition of a local etale
morphism as one can see in [1]. Let us fix the local ring O = OM,P of a projective
model M of K at the center P in M of the k-valuation ν of K and assume that P
is a regular point of M . Here we assume that ν is a real valuation with κν = k.

Consider a morphism O → Õ of local rings. We say that O → Õ is local-etale

or that Õ is a local-etale extension of O if we have the following properties:

(1) The local rings O and Õ have the same residual field.

(2) Õ is the localization at a prime ideal of an etale O-algebra.

An etale O-algebra is an O-algebra of the type B = O[t1, t2, . . . , tn]/(f1, f2, . . . , fn),
where the Jacobian matrix of the fi is invertible in B. This is equivalent to say

that B is a finitely generated A-flat algebra and Ω1
AB = 0. Note that Õ is also a

regular local ring and its fraction field K̃ is a finitely generated algebraic extension

of K. Recall also that Õ ⊂ Oh ⊂ Ô, where Oh is the henselian closure of O.
We say that the pair (Õ, ν̃) is a local etale extension of (O, ν) if Õ is a local-etale

extension of O and ν̃ is a k-valuation of K̃ centered at Õ such that ν̃|K = ν. Note
that ν̃ is a real k-valuation and κν̃ = k.

In the following proposition, we summarize the properties that allow us to work
“up to local-etale extensions”.

Proposition 6. Consider a foliation L ⊂ DerkK and a real k-valuation ν of K

such that κν = k. Let (Õ, ν̃) is a be a local etale extension of (O, ν) and denote

L̃ = K̃L ⊂ DerkK̃ the induced foliation on K̃. Assume that we respectively have:

(1) The foliation L̃ is log-elementary at Õ.

(2) There is a formal f̂ ∈ Ô with transversal maximal contact relatively to Õ.

Then, up to perform a finite sequence of local blow-ups of O we respectively have:

(1) The foliation L is log-elementary at O.

(2) There is a formal f̂ ∈ Ô with transversal maximal contact relatively to O.

Proof. Let x̃1, x̃2, . . . , x̃n be a regular system of parameters of Õ. Consider h̃ =∏n
i=1 x̃i. The ideal h̃Õ gives a principal ideal hO = O ∩ h̃Õ. We can do the local

uniformization of h by using centers that respect the fact that L̃ is log elementary
(relatively to x̃) (see [4] to the definition of permissible centers and the needed
properties). Finally we get that h is a monomial and we are done. �

5.2. Etale Puiseux packages. We introduce here an etale version of Puiseux
packages for the case r = 1. It has the same effect over a foliation as the Puiseux
packages introduced in Section 1, but it will allow us to do an accurate control of
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the foliation. Indeed, the study of the case n = 3, r = 1 will be done under the use
of etale Puiseux packages.

We assume that ν is a valuation with rational rank r = 1 and κν = k.
Let A = (O, z = (x,y)) be a regular parameterized model. Consider a dependent

variable yj. Let Φ = ydj /x
p be the contact rational function and c ∈ k such that

ν(Φ− c) > 0. Recall that d is the yj-ramification index of A.

Remark 8. In the case that d = 1, all the blow-ups in a Puiseux package are “in
the first chart” in the sense that we always have ν(yj) ≥ ν(x).

Let us consider the ring O♮ = O[T ]/(T d−x) = O[t], where T is an indeterminate

and let K̃ be the fraction field of O♮. We know [17] that there are k-valuations ν̃

of K̃ such that Rν̃ ∩K = Rν . Note that all the ν̃ have the same group of values.
Let us choose one of them, say ν̃. The ring O♮ is a regular local ring that supports
a parameterized regular local model

A♮ = (O♮, z♮ = (t,y))

relative to K̃ and ν̃. We have k ⊂ O ⊂ O♮ and M♮ ∩ O =M. Moreover, k = κν̃

and td = x. Let us note that ν̃(y/tp) = 0. In particular d(Ã) = 1. Let c̃ ∈ k be
such that ν̃(y/tp − c̃) > 0, we see that c̃d = c.

Definition 2. We say that (Ã, ν̃) has been obtained from (A, ν) by an etale j-

Puiseux package if and only if Ã has been obtained from A♮ by a j-Puiseux package.

Proposition 7. Assume that Ã = (Õ, z̃ = (t, ỹ)) has been obtained from A by an
etale j-Puiseux package. There is A′ = (O′, z′ = (x′,y′)) obtained from A by a

j-Puiseux package such that (Õ, ν̃) is a local-etale extension of (O′, ν).

Proof. Consider the j-Puiseux package A♮ 7→ Ã. Put Φ = ydj /x
p and Φ̃ = yj/t

p,

the respective contact rational functions for A and A♮. Note that Φ̃d = Φ. Let
c, c̃ ∈ k be such that ν̃(Φ̃− c̃) > 0 and c̃d = c. We have

ỹj = Φ̃− c̃; y′j = Φ− c.

Moreover ỹj is a simple root of a polynomial over O′ as the following relation shows

y′j = (ỹj + c̃)d − c.

Now t̃ is of the form t̃ = x′P (ỹj), where P (0) 6= 0. This is enough to obtain the
conclusion. �

Remark 9. If Ã = (Õ, z̃ = (t, ỹ)) has been obtained from A = (O, z = (x,y)) by

an etale Puiseux package, then O ⊂ Õ and td = x.

Definition 3. We say that (A, ν) 7→ (Ã, ν̃) is an etale standard transformation if

and only if (Ã, ν̃) has been obtained from (A, ν) by an etale Puiseux Package or by
a coordinate change in the dependent variables.

6. Rational rank one

We end here the proof of Theorem 3. To do this we consider the following
proposition
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Proposition 8. Let L ⊂ DerkK be a foliation over K, where n = 3. Take a
k-valuation ν of K of rational rank one and such that κν = k. Assume that A is a
parameterized regular local model for K and ν. Then, there is a finite sequence of
etale standard transformations

(A, ν) = (A0, ν0) 7→ (A1, ν1) 7→ · · · 7→ (AN , νN ) = (A′, ν′)

such that either the transformed foliation L′ is log-elementary in A′ or there is

f̂ ∈ O′ having transversal maximal contact.

Proposition 8 gives the end of the proof of Proposition 3 and hence it completes
the proof of Theorem 3. Indeed, by propositions 4 and 5 we obtain Proposition 3
for rational rank r = 2, 3. For the case of rational rank r = 1 and n = 3, we obtain
Proposition 3 from Proposition 8 in view of propositions 6 and 7.

This section is devoted to the proof of Proposition 8. In all this section we
assume implicitly that we do not get a formal transversal maximal contact.

Recall that we in this section we have n = 3, the rational rank of ν is equal to
one and κν = k. We start with a parameterized regular local model A = (O; z =
(x,w, y)) and a foliation L ⊂ DerkK.

6.1. The independent coefficient. Let ξ be an O-generator of LA[log x]. Let us
put H = ξ(x)/x ∈ O. Consider an etale standard transformation (A, ν) 7→ (A, ν′)
where

A′ = (O′, z′ = (t, w′, y′)).

Recall that td = x, for d ≥ 1. We know that L′A′ [log t] is generated by a germ of
vector field of the form ξ′ = tqξ where q ∈ Z. Moreover, we have that

ξ(t)/t = λ′ξ(x)/x,

where λ′ = 1/d ∈ Q>0. This implies that

(13) H ′ = ξ′(t)/t = λ′tqH ∈ O′.

In particular, the coefficient H is transformed essentially “as a function” under the
etale standard transformations. This allows us to obtain the following result

Proposition 9. After finitely many etale standard transformations we can chose
an O-generator ξ of LA[log x] such that ξ(x)/x = λxm, where λ ∈ Q>0.

Proof. We apply to H the usual local uniformization for functions. We obtain that
H = xmU , where U is a unit. Now we divide ξ by U . �

Moreover, the above form of H is persistent under etale standard transforma-
tions. This justifies the next definition.

Definition 4. We say that L is x-prepared relatively toA if there is an O-generator
ξ of LA[log x] such that ξ(x)/x = λxq, for 0 6= λ ∈ Q. Such generators ξ will be
called x-privileged generators.

In view of Proposition 9 we can obtain that L is x-prepared after a finite number
of etale-standard transformations and this property is persistent under new etale-
standard transformations.
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6.2. Invariants from the Newton Puiseux Polygon. Take f ∈ w−1k[[x,w]]
that we write f =

∑∞

t=−1 w
tft(x). We put

(14) λ(f ;x,w) = min
t
{ν(ft(x)) + tν(w)}; α(f ;x,w) = min

t
{ν(ft(x))}.

Consider a vector field η of the form

(15) η = a(x,w)x
∂

∂x
+ b(x,w)

∂

∂w
+ c(x,w)y

∂

∂y
.

We denote

λ(η;x,w) = min{λ(a;x,w), λ(b/w;x,w), λ(c;x,w)}(16)

α(η;x,w) = min{α(a;x,w), α(b/w;x,w), α(c;x,w)}(17)

Let us note that α(b/w;x,w) = α(b;x,w). We also write

(18) Λ(η;x,w) = λ(η;x,w) − α(η;x,w).

Note that Λ(η;x,w) ≥ −ν(w).

Remark 10. We can draw a Newton-Puiseux polygon N for f , or for η, by consid-
ering the support {(ν(ft(x), t))} ⊂ Γ×Z≥−1 ⊂ R×Z≥−1. Then α is the abscissa of
the highest vertex and λ corresponds to the smallest value a+ ν(wb), where (a, b)
is in the support. In particular, we have that Λ = −ν(w) if and only if N has the
single vertex (α,−1).

Consider a vector field ξ =
∑∞

s=−1 y
sηs ∈ DerkO[log x], where

(19) ηs = as(x,w)x
∂

∂x
+ bs(x,w)

∂

∂w
+ cs(x,w)y

∂

∂y
.

We denote α(ξ;A) = α(ξ;x,w, y) = min∞s=−1{α(ηs;x,w)}. Let us note that
α(ξ;A) = 0 when ξ is a generator of LA[log x], since x is not a common factor
of the coefficients. The main height ~(ξ;A) is the minimum of the s such that
α(ηs;x,w) = α(ξ;A). When ξ is a generator of L, we put ~(L,A) = ~(ξ,A).

Denote δ(ξ;A) = min∞
s=−1{α(ηs;x,w) + sν(y)}. We say that s belongs to the

critical segment C(ξ;A) if α(ηs;x,w) + sν(y) = δ(ξ;A). The critical height χ(ξ;A)
is the greatest s ∈ C(ξ;A). Note that χ(ξ;A) ≤ ~(ξ;A).

Remark 11. We can draw a Newton-Puiseux polygon N (ξ;A) ⊂ R × Z≥−1 by
taking as support the set

{(α(ηs;x,w), s); s = −1, 0, 1, . . .}.

Then (α(ξ;x,w, y), ~(ξ;x,w, y)) is the main vertex of the Newton-Puiseux polygon.
We also have that δ(ξ;x,w, y) is the smallest value a + ν(yb), where (a, b) is in
the support. Nevertheless, this Newton-Puiseux polygon needs to be prepared by
performing preliminary transformations in the variables x,w in order to be a useful
tool in the control of the transformations in the variables x, y.

The invariants in three variables make sense also for f(x,w, y) =
∑

s y
sfs(x,w).

Thus, we write

(20) α(f ;x,w, ) = min
s
{ν(fs;x,w)}; δ(f, x, w, y) = min

s
{ν(fs;x,w) + sν(y)}.
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6.3. Prepared situations in two variables. Take a vector field η as in equation
(15). We say that η is (x,w)-prepared if there is q ∈ Z≥0 such that

(a, b, c) = xq(ã(x,w), b̃(x,w), c̃(x,w)); (b̃(0, 0), c̃(0, 0)) 6= (0, 0).

We say that η is dominant if b̃s(0, 0) 6= 0 and recessive if b̃(0, 0) = 0, c̃(0, 0) 6= 0.

Remark 12. The condition Λ(η;x,w) = −ν(w) is equivalent to say that η is
prepared-dominant. If η is prepared-recessive, then 0 ≥ Λ(η;x,w) > ν(w).

Definition 5. Take η as in equation (15). We say that η is strongly (x,w)-prepared
if there is a decomposition

(21) η = xρU(x,w)θ + xτV (x,w)y
∂

∂y
; θ = xh(x,w)x

∂

∂x
+

∂

∂w

satisfying the following properties

(1) ρ, τ ∈ Z ∪ {+∞}, with ρ 6= τ . Here ρ = +∞, respectively or τ = +∞,
indicates that U(x,w), respectively V (x,w), is identically zero.

(2) We can write U = λ + xf(x,w) and V = µ + xg(x,w), where λ, µ ∈ k.
Moreover, if ρ 6= +∞ then λ 6= 0 and if τ 6= +∞ then µ 6= 0.

Let us note that “strongly prepared” implies “prepared”. The dominant case
corresponds to r < t and the recessive case to r > t.

6.4. Effect of etale w-Puiseux packages. Let us perform an etale w-Puiseux
package and let (t, w′, y) be the obtained coordinates. Recall that td = x and
ν(w/tp) = 0, where p, d are without common factor. Moreover, we have w′ =
w/tp − c, with c 6= 0, and hence

(22) x
∂

∂x
=

1

d

{
t
∂′

∂t
− p(w′ + c)

∂′

∂w′

}
;

∂

∂w
=

1

tp
∂′

∂w′
;

∂

∂y
=

∂′

∂y
.

Consider η as in equation (15) and write

η = a′(t, w′)t
∂′

∂t
+ b′(t, w′)

∂′

∂w′
+ c′(t, w′)y

∂′

∂y

in the coordinates t, w′, y. Then we have

(23)
a′ = η(t)/t = (1/d)a
b′ = η(w′) = (w′ + c){b/w − (p/d)a} = t−p{b− (p/d)tp(w′ + c)a}
c′ = η(y)/y = c.

From these considerations, we obtain the following results:

Lemma 11. Consider f =
∑∞

ℓ=−1 w
ℓfℓ(x) ∈ w−1k[[x,w]]. We have

α(f ; t, w′) = λ(f ;x,w).

As a consequence, we also have that α(η; t, w′) = λ(η;x,w).

Proof. Take a monomial waxb. Note that waxb = tap+bd(w′ + c)a where (w′ + c)a

is a unit, hence

λ(waxb;x,w) = ν(waxb) =

= ν(tap+bd(w′ + c)a) = ν(tap+bd) = α(waxb; t, w′).

Note that both λ(−;x,w) and α(−; t, w
′) have the usual valuative properties. This

gives in particular that α(f ; t, w′) ≥ λ(f ;x,w), as a consequence of the above
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property for monomials. Put λ = λ(f ;x,w) and let us decompose f = L(f) + f∗,
where λ(f∗;x,w) > λ and L(f) is of the form

L(f) =
∑

ν(waxb)=λ

µabw
axb.

Now it is enough to prove that α(L(f);x′, w′) = λ. We know that if ν(waxb) = λ
then m = ad+ bp is independent of (a, b), since ν(tm) = ν(xawb). We have

L(f) = tm
∑

µab(w
′ + c)a 6= 0.

Then α(L; t, w′) = λ. The last statement comes from the above arguments and the
equations 23. �

Corollary 1. Consider η as in equation (15). We have

α(η; t, w′) ≥ α(η;x,w) − ν(w),

and the equality holds exactly when η is (x,w)-prepared and dominant.

Proof. We know that α(η; t, w′) = λ(η;x,w) by Lemma 11. Now, it is a direct
consequence of the definitions that λ(η;x,w) ≥ α(η;x,w)− ν(w), and the equality
holds exactly when η is (x,w)-prepared and dominant, in view of Remark 12. �

Lemma 12. Consider η as in equation (15). We have

(1) If Λ(η;x,w) < 0, then Λ(η; t, w′) = −ν(w) and hence η is (t, w′)-prepared
and dominant.

(2) If η is (x,w)-prepared and dominant, then η is also (t, w′)-prepared and
dominant.

(3) If Λ(η;x,w) = 0, then Λ(η; t, w′) ≤ 0.
(4) If η is (x,w)-prepared and recessive, then η is (t, w′)-prepared.

Proof. Write η = xmη′, where ν(xm) = α(η;x,w). If we substitute η by η′ we
can assume without loss of generality that α(η;x,w) = 0 and thus Λ(η;x,w) =

λ(η;x,w). Let us put b = b/w =
∑∞

ℓ=−1 bℓ(x)w
ℓ. Consider first the case that

λ(η;x,w) < 0. This implies that

(24) η = b−1(x)
∂

∂w
+ η∗ = xrU(x)

∂

∂w
+ η∗, U(0) 6= 0,

where 0 ≤ ν(b−1(x)) = ν(xr) = ν(trd) < ν(w) = ν(tp) and η∗ has the form

η∗ =

∞∑

ℓ=0

wℓ

{
aℓ(x)x

∂

∂x
+ bℓ(x)w

∂

∂w
+ cℓ(x)y

∂

∂y

}

By equations (22) we see that α(η∗; t, w′) ≥ 0 and

xrU(x)
∂

∂w
= trd−pU(td)

∂

∂w′
.

Note that rd − p < 0. We obtain

Λ(η; t, w′) = −ν(w′)

and thus η is (t, w′)-prepared and dominant. This proves statement 1. Now, state-
ment 2 is a direct consequence of statement 1.

Assume that Λ(η;x,w) = 0. Write η as in Equation (24), where ν(xr) ≥ ν(w)
(we accept the case r = +∞ to denote that w divides η(w)). If ν(xr) = ν(w),
by the same argument as above we obtain that Λ(η; t, w′) = −ν(w′), hence η is
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(t, w′)-prepared and dominant. If ν(xr) > ν(w), we have λ(η∗;x,w) = 0. Thus, we
can write

η =

(
µ1x

∂

∂x
+ µ2w

∂

∂w
+ µ3y

∂

∂y

)
+ η∗∗,

where (µ1, µ2, µ3) 6= (0, 0, 0) and λ(η∗∗;x,w) > 0. By equations (23) we have

η − η∗∗ =
µ1

d
x′ ∂

′

∂x′
+

dµ2 − pµ1

d
(w′ + c)

∂′

∂w′
+ µ3y

∂

∂y
,

where α(η∗∗; t, w′) = λ(η∗∗; t, w′) > 0. We obtain

0 = α(η − η∗∗; t, w′) = α(η; t, w′)(25)

0 ≥ λ(η − η∗∗; t, w′) = λ(η; t, w′).(26)

This ends the proof of statement 3. Note that if dµ2 − pµ1 6= 0 then η is (t, w′)-
prepared and dominant. If dµ2 − pµ1 = 0 and µ3 6= 0, we have that η is (t, w′)-
prepared and recessive. Now, if η where (x, y)-prepared and recessive, then µ3 6= 0.
This proves statement 4. �

Proposition 10. Consider η as in equation (15). After performing finitely many
etale w-Puiseux packages, either we get transversal formal maximal contact or we
obtain one of the following properties:

a) The vector field η is strongly (x,w)-prepared dominant and this property
persists under new etale w-Puiseux packages.

b) The vector field η is strongly (x,w)-prepared recessive and this property
persists under new etale w-Puiseux packages.

Proof. By the two dimensional desingularization for vector fields [14] and since we
do not get maximal contact, we can obtain η written down as

η = f(x,w)θ + g(x,w)y
∂

∂y
; θ = xh(x,w)x

∂

∂x
+

∂

∂w
.

Under new etale w-Puiseux packages, this form persist. Let us see it. First, we
know that

θ =
1

d

{
tdh′(t, w′)t

∂′

∂t
+

(
d

td
− p(w′ + c)tdh′(t, w′)

)
∂′

∂w′

}

where h′(t, w′) = h(td, tp(w′+c)). This allows us to write θ = t−dW (t, w′)θ′, where

W (t, w′) = 1− t2d(p/d)(w′ + c)h′(t, w′)

is a unit and θ′ has the same form as θ. Note that W (t, w′) − 1 is divisible by t.
Now, we write

η = f ′(t, w′)t−dW (t, w′)θ′ + g′(t, w′)y
∂

∂y
,

where f ′(t, w′) = f(td, tp(w′ + c)) and g′(t, w′) = g(td, tp(w′ + c)). By the standard
desingularization of functions, we can perform new etale w-Puiseux packages to
obtain that

f = xρU(x,w); g = xτV (x,w),

where U, V and ρ, τ satisfy to the properties in Definition 5 (note that it is possible
that ρ or τ are negative; to recover a non-meromorphic vector field we can multi-
ply by a suitable power of x). By performing new etale w-Puiseux packages, the
difference ν(xτ ) − ν(xρ) increases the positive amount ν(w). If this difference is
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positive, we are in case a), if it is always negative, we obtain case b). If it is zero,
in the next step it is positive. �

Remark 13. The above proof also shows that if η is strongly (x,w)-prepared and
dominant, it is so with respect to (t, w′). Nevertheless, it is not always true that if
η is strongly (x,w)-prepared and recessive the same holds with respect to (t, w′).
We start with ρ > τ , by it can happen that ρ′ ≤ τ ′ and in this case, after a new
etale w-Puiseux package we would obtain a dominant situation.

Remark 14. Assume that we are in one of the situations a) or b) described in
Proposition 10. Let us perform an etale w-Puiseux package. Then we have

α(η; t, w′) =

{
α(η;x,w) − ν(w) dominant case a)
α(η;x,w) recessive case b)

To see this, the only difficulty is the recessive case. Note that since the recessive
situation is stable under any finite sequence of etale w-Puiseux packages, we have
ν(xρ−τ ) > ν(w), and this is enough to assure the above formula.

6.5. Preparations in three variables. Consider a vector field ξ ∈ DerkO[log x],
that we write ξ =

∑∞

s=−1 y
sηs where the ηs are like in equation (19).

Definition 6. Let h = ~(ξ;A) be the main height. We say that ξ is main-vertex
prepared with respect to A when ηh is (x,w)-prepared and dominant. If in addition
ηh is strongly (x,w)-prepared, we say that ξ is strongly main-vertex prepared. We
say that L is well prepared with respect to A if there is ξ ∈ LA[log x] that is
x-prepared and strongly main-vertex prepared.

Remark 15. If ξ is main-vertex prepared, we have ~(ξ;A) ≥ 0. Moreover, if
α(ξ;A) = 0 and ξ is main-vertex prepared with ~(ξ;A) = 0, then ξ is a non-
singular vector field.

Proposition 11. Assume that ξ is x-prepared and strongly main-vertex prepared
with respect to A. Let us perform an etale w-Puiseux package to obtain A′ =
(O′, (t, w′, y)). Then ξ is t-prepared, strongly main-vertex prepared with respect to
A′ and the main height does not vary, that is ~(ξ;A′) = ~(ξ;A).

Proof. The fact that ξ is t-prepared has been proved in subsection 6.1. The decom-
position ξ =

∑∞

s=−1 y
sηs is the same one with respect to x,w, y and with respect to

t, w′, y. Let us put h = ~(L;A). By hypothesis ηh is strongly (x,w)-prepared and
dominant and hence it is also strongly (t, w′)-prepared and dominant, in view of
Remark 13. Now we have only to show that h is also the main height ~(ξ; t, w′, y)
relatively to A′. By Corollary 1 we have

α(ηh; t, w
′) = α(ηh;x,w)− ν(w),

since ηh is (x,w)-prepared and dominant. For any other index s we have

α(ηs; t, w
′) ≥ α(ηs;x,w) − ν(w),

and this is enough to see that ηh gives the main height for ξ with respect to A′. �

Proposition 12. Assume that ξ =
∑∞

s=−1 y
sηs is x-prepared and strongly main-

vertex prepared with respect to A. Let us put h = ~(ξ;x,w, y). By performing
finitely many etale w-Puiseux packages we have the following properties:
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(1) For any s < h, the vector field ηs is strongly (x,w)-prepared and this is
stable, with the same character dominant or recessive, under any new finite
sequence of etale w-Puiseux packages.

(2) The critical segment C(ξ;A) does not vary under any new finite sequence
of etale w-Puiseux packages, and all the levels s ∈ C(ξ;A) have the same
character dominant or recessive.

Proof. The first statement is a corollary of Proposition 10. Let us prove the second
statement, assuming that statement 1 holds. Let us perform an etale w-Puiseux
package. In view of Remark 14 we have

α(ηs; t, w
′) =

{
α(ηs;x,w)− ν(w) dominant case
α(ηs;x,w) recessive case

Thus, the critical segment thus not vary if ηs is dominant for all s ∈ C(ξ;A). If
there is an s0 ∈ C(ξ;A) such that ηs0 is dominant, then all the recessive s in the
critical segment disappear under a new w-Puiseux package and we are in the first
case. Finally, if under any finite sequence of etale w-Puiseux packages there is
no dominant ηs that appears in the critical segment, the elements in the critical
segment are also stable. �

Definition 7. We say that ξ =
∑∞

s=−1 y
sηs is completely prepared with respect to

A if it is x-prepared, strongly main-vertex prepared and the properties 1 and 2 of
Proposition 12 hold. We have two possible situations:

a) Dominant critical segment. The ηs corresponding to s in the critical seg-
ment are strongly (x,w)-prepared and dominant.

b) Recessive critical segment. The ηs corresponding to s in the critical segment
are strongly (x,w)-prepared and recessive.

Remark 16. Assume that ξ =
∑∞

s=−1 y
sηs is completely prepared with respect to

A. Let χ = χ(ξ;A) be the critical height and h = ~(ξ;A) the main height. We
have χ ≤ h. Moreover, since ηh is strongly (x,w)-prepared and dominant, in the
case of a recessive critical segment we have χ ≤ h− 1.

6.6. Critical initial part and critical polynomial. Let us consider a vector
field ξ =

∑∞
s=−1 y

sηs ∈ Derk(O)[log x] and write it as

ξ =
∞∑

s=−1

∑

j

ysxj

{
asj(w)x

∂

∂x
+ bsj(w)

∂

∂w
+ csj(w)y

∂

∂y

}
.

We know that

δ(ξ;x,w, y) = min
{
ν(xjys); (asj(w), bsj(w), csj(w)) 6= (0, 0, 0)

}
.

Put δ = δ(ξ;x,w, y). We define the critical initial part of ξ by

(27) Crit(ξ;x,w, y) =
∑

ν(xjys)=δ

ysxj

{
asj(w)x

∂

∂x
+ bsj(w)

∂

∂w
+ csj(w)y

∂

∂y

}
.

Obviously, if we put ξ∗ = ξ − Crit(ξ;x,w, y) we have δ(ξ∗;x,w, y) > δ(ξ;x,w, y).

Definition 8. Take δ ∈ Γ. A monic polynomial P (x, y) ∈ k[x, y] given by

P (x, y) = ym + λm−1x
n1ym−1 + λm−2x

n2ym−2 + · · ·+ λ0x
nm

is called ν-homogeneous or degree δ if and only if ν(xnjym−j) = ν(ym) = δ for any
j such that λj 6= 0. It is called a Tchirnhausen polynomial if λm−1 = 0.
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Remark 17. Let us perform an etale y-Puiseux package, to obtain coordinates
t, w, y′ such that td = x and y′ = y/tp − c. Consider a monic ν-homogeneous
polynomial P = P (x, y) or degree δ. Then

P = P (td, tp(y′ + c)) = tq
′

P (1, y′ + c),

where ν(tq
′

) = δ and P (1, y′ + c) is a monic polynomial of degree m in the variable

y′. Write P (1, y′+c) = y′h
′

Q(y′), where Q(0) 6= 0. We have h′ ≤ m. Moreover, the
only possibility to have m = h′ is that P (x, y) = (y − cxn1)m. This cannot occur
when P (x, y) is a Tchirnhausen polynomial. Hence if P (x, y) is a Tchirnhausen
polynomial we have h′ < m. This argument is crucial in most of the procedures of
reduction of singularities in characteristic zero.

Lemma 13. Assume that ξ =
∑∞

s=−1 y
sηs is completely prepared relatively to A.

Then, the critical initial part ξ0 = Crit(ξ;x,w, y) satisfies that

(1) ξ0(x) = ξ0(y) = 0, in the case of dominant critical segment.
(2) ξ0(x) = ξ0(w) = 0, in the case of recessive critical segment.

More precisely, the critical initial part ξ0 takes one of the following forms

ξ0 = λxq

χ∑

s=0

λsy
sxqs

∂

∂w
; dominant critical segment case(28)

ξ0 = λxq

χ∑

s=−1

λsy
sxqsy

∂

∂y
; recessive critical segment case(29)

where λ 6= 0, λχ = 1 and ν(ysxqs) = δ − ν(xq) for each s with λs 6= 0.

Proof. Put h = ~(ξ;x,w, y). Recall that for any s ≤ h the vector field

ηs =
∑

j

xj

{
asj(w)x

∂

∂x
+ bsj(w)

∂

∂w
+ csj(w)y

∂

∂y

}
=
∑

j

xjηsj

is (x,w)-strongly prepared. Put αs = α(ηs;x,w) and let us take rs such that
ν(xrs) = αs. Write ηs = xrs η̃s. In view of definition 5, we have that

η̃s =

{
µs∂/∂w + xηs (dominant case)
µsy∂/∂y+ xηs (recessive case)

We end by putting λs = µs/λ if s is in the critical segment and λs = 0 otherwise. �

Definition 9. In the situation of Lemma 13, we define the critical polynomial
Pξ(x, y) of ξ with respect to x,w, y to be

Pξ(x, y) =

{
ξ0(w)/λx

q =
∑χ

s=0 λsy
sxqs (dominant critical segment)

ξ0(y)/λx
q =

∑χ
s=−1 λsy

s+1xqs (recessive critical segment)

(It is a ν-homogeneous monic polynomial of ν-degree χν(y), respectively (χ+1)ν(y),
in the case of a dominant, respectively recessive critical segment.)

Remark 18. The critical initial part is obtained from the critical polynomial by
the formula

Crit(ξ;x,w, y) =

{
λxqPξ(x, y)∂/∂w (dominant critical segment)
λxqPξ(x, y)∂/∂y (recessive critical segment)
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6.7. Stability of the main height. Dominant critical segment. In this sub-
section we start to study the effect of an etale y-Puiseux package on the main
height. Let us consider ξ ∈ DerkO[log x] and denote

h = ~(ξ;x,w, y); χ = χ(ξ;x,w, y); δ = δ(ξ;x,w, y); ξ0 = Crit(ξ;x,w, y).

Let us perform an etale y-Puiseux package, to obtain t, w, y′ such that td = x and
y′ = y/tp − c. We recall that

(30) x
∂

∂x
=

1

d

{
t
∂′

∂t
− p(y′ + c)

∂′

∂y′

}
;

∂

∂w
=

∂′

∂w
; y

∂

∂y
= (y′ + c)

∂′

∂y′
.

Lemma 14. α(ξ; t, w, y′) ≥ δ = δ(ξ;x,w, y).

Proof. In view of the valuative behavior of the invariant α(−;x,w) and because of
the “monomial” definition of δ(−;x,w), it is enough to verify the case that ξ is of
one of the following monomial types

ξ = ysxmwnx
∂

∂x
; ξ = ysxmwn ∂

∂w
; ξ = ysxmwny

∂

∂y
,

where ν(ysxm) ≥ δ. Note that

ysxmwn = x′sp+dm(y′ + c)wn,

where ν(x′sp+dm) = ν(ysxm) ≥ δ. Now, in view of the equations 30 we have that
ξ = x′sp+dmξ∗, where α(ξ∗; t, w, y′) ≥ 0 and we are done. �

Proposition 13. Assume that ξ is completely prepared with a dominant critical
segment and h ≥ 1. Let us perform an etale y-Puiseux package. After performing
finitely many subsequent etale w-Puiseux packages, we obtain A′ such that ξ is
completely prepared with respect to A′ and h′ = h(ξ;A′) ≤ χ. Moreover, if the
critical polynomial Pξ(x, y) is a Tchirnhausen polynomial, we have h′ < χ ≤ h.

Proof. Denote ξ = ξ0 + ξ∗. We know that δ(ξ∗;x,w, y) > δ and hence, by Lemma
14 we have α(ξ∗; t, w, y) > δ. On the other hand ξ0 = λxqPξ(x, y)

∂
∂w . After

performing the etale y-Puiseux package, we obtain

ξ0 = λx′q′Pξ(1, y
′ + c)

∂′

∂w

where ν(tq
′

) = δ. If ξ∗′ = λ−1t−q′ξ∗, we have α(ξ∗′; t, w, y′) > 0. Write

(31) ξ′ = λ−1t−q′ξ = Pξ(1, y
′ + c)

∂′

∂w
+ ξ∗′,

Then α(ξ′; t, w, y′) = 0. Let h′ ≤ χ be such that

Pξ(1, y
′ + c) = y′h

′

χ∑

s=h′

λ′
sy

′s−h′

; λ′
h′ 6= 0.

It is obvious that h′ ≤ χ ≤ h and, in view of Remark 17, we have that h′ < χ ≤ h
in the case that Pξ(x, y) is a Tchirnhausen polynomial. Moreover, we see that
h′ = ~(ξ′;A′) = ~(ξ;A′). Write ξ =

∑∞

s=−1 y
′sη′s, as usual, with

η′s = a′s(t, w)x
′ ∂

∂′t
+ b′s(t, w)

∂′

∂w
+ c′s(t, w)y

′ ∂
′

∂y′
.

Then η′h′ is (t, w)-prepared and dominant in view of Equation 31. By performing
new etale w-Puiseux packages to obtain a completely prepared ξ, the main height
h′ is not modified and we are done. �
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6.8. Stability of the main height. Recessive critical segment. Take here
the situation and notations of the previous Subsection 6.7.

Let us assume that ξ is completely prepared with respect to A with a recessive
critical segment and h ≥ 1. Recall that χ ≤ h− 1 in view of Remark 16. We also
have ξ = ξ0 + ξ∗ where

ξ0 = λxqPξ(x, y)
∂

∂y
= λxq Pξ(x, y)

y
y
∂

∂y
,

where Pξ(x, y) = yχ+1 +
∑χ−1

s=−1 λsy
s+1xqs is the critical polynomial. After per-

forming an etale y-Puiseux package, we have

ξ0 = λtq
′

Pξ(1, y
′ + c)

∂′

∂y′

where ν(tq
′

) = δ. Write ξ∗′ = λ−1t−q′ξ∗, as in the proof of Proposition 13. We
have α(ξ∗′; t, w, y′) > 0 and

(32) ξ′ =
1

λtq′
ξ = Pξ(1, y

′ + c)
∂

∂y′
+ ξ∗′ = ξ′0 + ξ∗′.

Let −1 ≤ h′ ≤ χ be such that

Pξ(1, y
′ + c) = y′h

′+1

χ∑

s=h′

λ′
sy

′s−h′

= y′h
′+1Q(y′); Q(0) 6= 0.

It is obvious that h′ ≤ χ ≤ h−1. Moreover, if Pξ(x, y) is a Tchirnhausen polynomial
we have h′ < χ ≤ h− 1, in view of Remark 17.

Remark 19. We have that h′ = ~(ξ′; t, w, y′), but the main vertex is not dominant.
For this reason, we will do a coordinate change in the dependent variables of the
type w′′ = w + y′.

Let us do a coordinate change w′′ = w+ y′ to obtain A′′ = (O′, z′′ = (t, w′′, y′)).
We have

(33) ξ′0 = Pξ(1, y
′ + c)

∂′

∂y′
= y′h

′+1Q(y′)

{
∂′′

∂w′′
+

∂′′

∂y′

}
.

Let us write ξ′ =
∑∞

s=−1 y
′sη′′s , where

η′′s = a′′s (x
′, w′′)x′ ∂

′′

∂x′
+ b′′s (x

′, w′′)
∂′′

∂w′′
+ c′′s (x

′, w′′)y′
∂′′

∂y′
.

Recalling that ξ′ = ξ′0 + ξ∗′ and α(ξ∗′;x′, w′′, y′) > 0, we see from Equations 33
that α(η′′h′+1;x

′, w′′, y′) = 0 and η′′h′+1 is dominant and prepared with respect to
(t, w′′, y′). In particular ~(ξ′; t, w′′, y′) ≤ h′ + 1.

As a consequence, by performing new etale w′′-Puiseux packages, we obtain Ã
such that ξ′ is completely prepared and h(ξ′; Ã) ≤ h′ + 1. Now, recalling that
h′ ≤ χ ≤ h − 1 and in the case of a Tchirnhausen critical polynomial we have
h′ < χ ≤ h− 1, we have proved the following statement:

Proposition 14. Let ξ be completely prepared with a recessive critical segment
and assume h = ~(ξ;A) ≥ 1. Let us perform an etale y-Puiseux package. After
performing a coordinate change in the dependent variables and finitely many sub-
sequent etale w-Puiseux packages, we obtain Ã such that ξ is completely prepared
with respect to Ã and h̃ = ~̃(ξ; Ã) ≤ χ+1 ≤ h. Moreover, if the critical polynomial

Pξ(x, y) is a Tchirnhausen polynomial, we have h̃ < χ+ 1 ≤ h.
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6.9. The condition of Tchirnhaus. Let ξ ∈ DerkO[log x] be completely prepared
with respect to A. Put h = h(ξ;A), χ = χ(ξ;A) and assume h ≥ 1. We have the
following possible cases:

A) The critical polynomial is not Tchirnhausen and the critical segment is
dominant with χ = h.

B) The critical polynomial is not Tchirnhausen and the critical segment is
recessive with χ = h− 1.

C) We have one of the following properties:
(a) The critical polynomial is Tchirnhausen.
(b) The critical segment is recessive and χ < h− 1.
(c) The critical segment is dominant and χ < h.

The last case C corresponds to a winning situation in the sense of the following
proposition

Proposition 15. Assume we are in case C above. Let us perform an etale y-
Puiseux package. By performing a subsequent coordinate change in the dependent
variables (if it is necessary) and finitely many etale w-Puiseux packages, we obtain

Ã such that ξ is completely prepared with respect to Ã and h̃ = h(L̃; Ã) < h.

Proof. Direct consequence of Propositions 13 and 14. �

Next subsections are devoted to the study of situations B and A.

6.10. Tchirnhausen preparation. Recessive case. In this subsection we in-
troduce a recessive Tchirnhausen preparation algorithm in order to deal with the
case B of the preceding subsection. This algorithm is based on the following two
definitions.

Definition 10. Let ς > 0 be a positive element of the value group Γ ⊂ R. Consider
A = (O, (x,w, y)). We say that (x,w) is recessive for ς if and only if we have

ς >
∑N

i=0 ν(wi) for any finite sequence of etale w-Puiseux Packages

A = A0 7→ A1 7→ · · ·AN ,

where (xi, wi, y) is the coordinate system in Ai, i = 0, 1, . . . , N .

An example of this situation is obtained if we are in the case B of Subsection
6.9. More generally, let ξ be completely prepared with recessive critical segment
and put h = ~(ξ;x,w, y), χ = χ(ξ;x,w, y). Let (α, h) be the main vertex and (β, χ)
the “critical” vertex. Then (x,w) is recessive for ς = (h− χ)ν(y)− β + α.

Remark 20. Assume that ξ and A are in the situation of case B of Subsection
6.9. Then, there is an integer number p ∈ Z>0 such that ν(y) = ν(xp). Indeed, this
is always true when we have a ν-homogeneous Tchirnhausen polynomial, that we
write

P (x, y) = ym + λ1x
n1ym−1 + · · ·+ λmxnm

since λ1 6= 0 implies that ν(y) = ν(xn1).

Definition 11. Consider a vector field ξ ∈ Derk(O)[log x] and A with coordinates
(x,w, y). Write ξ = xq̃ξ′, where α(ξ′;x,w, y) = 0. Consider two elements ǫ, γ0 of
the value group Γ and take h ∈ Z≥1. Let us do the decomposition ξ′ =

∑∞
s=−1 y

sη′s
associated to (x,w, y). We say that (ξ;A; ǫ, γ0, h, p) is a recessive preparation step
of order p ∈ Z≥0 if the following properties hold
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(1) h = ~(ξ;x,w, y) and γ0 ≤ ν(y).
(2) There is q ∈ Z≥1 such that ǫ = ν(xq) and (x,w) is recessive for γ0 − ǫ .
(3) γ0 ≤ ν(xp)
(4) There are units U(x,w), V (x,w) such that the levels η′h, η′h−1, and η′h−2

take the forms

(34)
η′h = U(x,w){∂/∂w + xch(x,w)y∂/∂y},
η′h−1 = xqV (x,w){xah−1(x,w)x∂/∂x+ xbh−1(x,w)∂/∂w + y∂/∂y},
η′h−2 = ah−2(x,w)x∂/∂x + bh−2(x,w)∂/∂w + xq+pch−2(x,w)y∂/∂y,

We say that (ξ;A; ǫ, γ0, h, p) is a final recessive step if in addition we have that
ν(y) < ν(xp).

Remark 21. Assume that ξ and A are in the situation of case B of Subsection
6.9. Take p ∈ Z>0 such that ν(y) = ν(xp) and γ0 = ν(y). Let (α, h) be the main
vertex and (β, h − 1) the critical vertex and put ǫ = β − α. Then (ξ;A; ǫ, γ0, h, p)
is a (non-final) recessive preparation step or order p.

Proposition 16. Assume that (ξ,A; ǫ, γ0, h, p) is a recessive preparation step of
order p. There is a coordinate change y∗ = y−xpg(x,w) such that (ξ,A∗; ǫ, γ0, h, p

∗)
is a recessive preparation step of order p∗ > p.

Proof. Take g(x,w) in the Hensel closure of O and let us write y∗ = y− xpg(x,w).
Note that γ0 ≤ ν(y∗) since γ0 ≤ ν(y) and γ0 ≤ ν(xpg(x, y)). The property that
(x,w) is recessive for γ0 − ǫ does not depend on y∗. We have

x
∂

∂x
= x

∂∗

∂x
+ xp

(
pg(x,w) + x

∂g(x,w)

∂x

)
∂∗

∂y∗
(35)

∂

∂w
=

∂∗

∂w
+ xp ∂g(x,w)

∂w

∂∗

∂y∗
(36)

y
∂

∂y
= y∗

∂∗

∂y∗
+ xp ∂∗

∂y∗
(37)

Let us decompose ξ′ =
∑∞

s=−1 y
∗sη′

∗
s as usual with respect to (x,w, y∗). Noting

that q < p since ǫ = ν(xq) < γ0 ≤ ν(xp), it is a straightforward computation from
equations 35, 36 and 35 that ~(ξ′;x,w, y∗) = h and η′

∗
h, η

′∗
h−1 and η′

∗
h−2 take the

forms

η′
∗
h = U∗(x,w){∂/∂w + xc∗h(x,w)y∂/∂y},

η′
∗
h−1 = xqV ∗(x,w){xa∗h−1(x,w)x∂/∂x + xb∗h−1(x,w)∂/∂w + y∂/∂y},

η′
∗
h−2 = a∗h−2(x,w)x∂/∂x + b∗h−2(x,w)∂/∂w + xq+pc∗h−2(x,w)y∂/∂y

where U∗(0, 0) 6= 0 and V ∗(0, 0) 6= 0. In order to end our proof it is enough to show
that g(x,w) may be chosen in such a way that x divides c∗h−2.Let us put

(38)
F = ξ′(y) =

∑∞
s=0 y

sFs(x,w) =
∑∞

s=0 y
∗sF ∗

s (x,w)
H = ξ′(xpg(x,w)) =

∑∞

s=0 y
sHs(x,w) =

∑∞

s=0 y
∗sH∗

s (x,w)
G = ξ′(y∗) = F −H =

∑∞

s=0 y
∗sG∗

s(x,w)

We have to prove that G∗
h−1(x,w) is divisible by xq+p+1 after a suitable choice of

g(x,w). Let us decompose

(39)
F = F̃ + F ; F̃ = yh−1Fh−1 + yhFh

H = H̃ +H ; H̃ = yh−1Hh−1 + yhHh
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We have that F
∗

h−1 and H
∗

h−1 are divisible by xq+p+1, since they are is divisible by
x2p and 2p ≥ p+ q + 1. Note also that

H̃ = J +K; J = yh−1η′h−1(x
pg(x,w)), K = yhη′h(x

pg(x,w)).

Moreover, J is divisible by xq+p+1 in view of form of η′h−1 in Definition 11. We

also have that x2p divides K∗
h−1 and 2p > p+ q + 1.

Thus, we have only to prove that after a suitable choice of g(x,w) we can obtain

that F̃ ∗
h−1 is divisible by xq+p+1. Recall that F̃ = yh−1(yFh + Fh−1) where

(40)
yFh = η′h−1(y) = yV (x,w)xq

Fh−1 = η′h−2(y)/y = xq+pch−2(x,w).

Now, write ch−1(x,w) = f0(w) + xf1(x,w). If we put g(x,w) = −f0(w)/V (x,w)
we are done. �

Let us show how to obtain a final recessive step. We start with ξ completely
prepared with respect to A in the case B of Subsection 6.9. Thus we have a
recessive preparation step (ξ,A; ǫ, γ0, h, p) of order p, where γ0 = ν(y) = ν(xp).
Since ν(xp) = ν(y), it is not a final recessive step. We do a coordinate change
y1 = y− xpg1(x,w) as in Proposition 16 to obtain a new recessive preparation step
(ξ,A1; ǫ, γ0, h, p1) with p1 > p. We repeat to obtain

yj+1 = yj − xpjgj(x,w),

where (x,w, yj) are the coordinates for a recessive preparation step (ξ;Aj ; ǫ, γ0, h, pj)
of order pj and pj+1 > pj . There are two possibilities:

(1) We have ν(yj) ≥ ν(xpj ) for all j. In this case we obtain a transversal formal

maximal contact element f̂ ∈ Ô as the limit of the yj .
(2) There is an index j0 such that ν(yj0) < ν(xpj0 ). In this case we obtain a

final recessive step (ξ;Aj0 ; ǫ, γ0, h, pj0).

Proposition 17. Assume that we have a final recessive step (ξ;A; ǫ, γ0, h, p). After
performing finitely many w-Puiseux packages we obtain A′ such that ξ is completely
prepared with respect to A′ and we are in the winning situation C of Subsection 6.9.

Proof. Note that if U(x,w, y) is a unit, then (U(x,w, y)ξ;A; ǫ, γ0, h, p) is still a final
recessive step.

Let us perform an etale w-Puiseux package to obtain A1 whose coordinates are
(t, w1, y), where t

d = x and w1 = w/tp̃− c. In view of Equations 34 we see that ξ is
main-vertex prepared with respect to (x,w, y) and hence the main height h is not
changed under the etale w-Puiseux package. The form of Equations 34 persists,
with the following observations:

(1) The parameter ǫ is transformed into ǫ1 = ǫ + ν(w). Anyway, we still have
that (t, w1) is recessive for γ0 − ǫ1 (see Definition 10).

(2) The order p is transformed into p1 = pd.

In particular (ξ;A1; ǫ1, γ0, h, p1) is a final recessive preparation step.
Thus, we can multiply by a unit ξ an do successive etale w-Puiseux packages in

order to obtain that in addition ξ is completely prepared with respect to A. Let us
look at Equations 34. Let us put

αh−1 = α(η′h−1;x,w) αh−2 = α(η′h−2;x,w).
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From the form of η′h−1 in Equations 34 we have that αh−1 = ν(xq) = ǫ. Since
ǫ < γ0 ≤ ν(y) we see that χ < h. In particular, if we are in the case of a dominant
critical segment, we are in one of the winning situations C. Assume that χ = h− 1
and we have a recessive critical segment. Recall that

η′h−2 = ah−2(x,w)x∂/∂x + bh−2(x,w)∂/∂w + xq+pch−2(x,w)y∂/∂y

and we are assuming moreover that η′h−2 is prepared. If this level h−2 is dominant
we are in a winning situation C, since it cannot be in the critical segment and thus
the critical polynomial is a Tchirnhausen polynomial. If the level h− 2 is recessive,
from the above form of η′h−1 we deduce that αh−2 = ν(xq+p) = ǫ+ ν(xp). But we
know that ν(xp) > ν(y) and thus the level h− 2 cannot be in the critical segment.
This ends the proof. �

6.11. Tchirnhausen preparation. Dominant case. In this Subsection we as-
sume we are in case A of Subsection 6.9. That is, we have ξ completely prepared
with respect to A, the critical segment is dominant with χ = h and the critical
polynomial is not Tchirnhausen. We also assume that h ≥ 2 since the cases h ≤ 1
correspond to log-elementary singularities.

Proposition 18. We can perform a coordinate change y∗ = y − xpg(x,w), with
ν(xp) = ν(y) to obtain A∗ is such a way that after performing finitely many etale
w-Puiseux packages, we get A′ such that ξ is completely prepared with respect to A′

with h = ~(ξ;A′) and we are in one of the situations B or C of 6.9.

Proof. Since the critical polynomial is not Tchirnhaus, we have that ν(y) = ν(xp)
for some p ∈ Z≥0. Up to multiply ξ by a power of x, let us assume without loss of
generality that α(ξ;x,w, y) = 0. Denote F = ξ(w) =

∑∞

s=0 y
sFs(x,w). We know

that Fh(0, 0) 6= 0. Moreover, in view of our hypothesis, we have Fh−1(x,w) =
xpGh−1(x,w), where Gh−1(0, 0) 6= 0. By an argument like in Proposition 16, we
can find a coordinate change of the form y∗ = y − xpg(x,w) such that

F ∗(x,w, y∗) = F (x,w, y∗ + xpg(x,w)) =

∞∑

s=0

y∗sF ∗
s (x,w)

satisfies that F ∗
h−1 = 0. This condition eliminates the level h − 1 from the critical

segment if we persist in the situation A after subsequent etale w-Puiseux packages.
�

7. Maximal contact

In this section we prove Theorem 4. Recall that we consider the case when n = 3
and ν is a valuation of arquimedean rank one with κν = k. We have a projective
model M0 of K, where P0 is the center of ν at M0. We assume that P0 is a regular

point of M0 and there is f̂ ∈ ÔM0,P0
that has transversal maximal contact with

ν. The rational rank r can be supposed to be r = 1 or r = 2, since if r = 3 the
definition of transversal maximal contact makes no-sense (see the Introduction).

The computations in this section are essentially contained in the paper [5], but
we include them for the sake of completeness.



32 F. CANO; C. ROCHE; M. SPIVAKOVSKY

7.1. Maximal contact with rational rank two. Take a regular system of pa-
rameters (x1, x2, y) of OM0,P0

such that ν(x1), ν(x2) are Z-linearly independent
and

f̂ = y +
∑

i,j

λijx
i
1x

j
2.

Since ν is arquimedian, we may write f̂ as the Krull limit f̂ = limµ→∞ fµ, where

fµ = y +
∑

iν(x1)+jν(x2)≤µ

λijx
i
1x

j
2 ∈ OM0,P0

.

Note that ν(fµ) > µ and, more precisely we have

ν(fµ) = min{ν(xi
1x

j
2);λij 6= 0, ν(xi

1x
j
2) > µ}.

In this paragraph we denote Y0 = {P0}, Y1 = {x1 = f̂ = 0} and Y2 = {x2 = f̂ = 0}.
The next Lemma 15 may be proved by standard computations in terms of blow-

ups and valuations and we leave the verification to the reader:

Lemma 15. Let π : M ′ → M0 be the blow-up of M0 with one of the centers
Y0, Y1 or Y2 and assume that if we use Y1, respectively Y2, as a center, then

f̂(0, x2, y) ∈ OM0,P0
, respectively f̂(x1, 0, y) ∈ OM0,P0

. Let P ′ ∈ M ′ be the center

of ν at M ′. Then P ′ belongs to the strict transform of f̂ = 0. More precisely , we
have the following cases:

T-01: The center is Y0 and µ = ν(x1) < ν(x2). In this case P1 is in the

strict transform of the formal curve x2 = f̂ = 0 and there is a regular
system of parameters (x′

1, x
′
2, y

∗) at OM ′,P ′ such that x′
1 = x1, x

′
2 = x2/x1,

y∗ = f̂µ/x1. Moreover

f̂ ′ = f̂/x1 = y∗ +
∑

iν(x1)+jν(x2)>µ

λijx
′i+j−1
1 x′j

2 ∈ OM ′,P ′

has transversal maximal contact with ν.
T-02: The center is Y0 and µ = ν(x2) < ν(x1). Similar to T-01.
T-1: The center is Y1, where µ = ν(x1). In this case P1 is the only point

over P0 in the strict transform of f̂ = 0 and there is a regular system
of parameters (x′

1, x
′
2, y

∗) at OM ′,P ′ such that x′
1 = x1, x′

2 = x2, y∗ =

(fµ + ĥµ(0, x2))/x1, where ĥµ(x1, x2) = f̂ − fµ. Moreover

f̂ ′ = f̂ /x1 = y∗ +
∑

ν(xi
1
xj
2
)>µ; i≥1

λijx
′i−1
1 x′j

2 ∈ OM ′,P ′

has transversal maximal contact with ν.
T-2: The center is Y2, where µ = ν(x2). Similar to T-1.

Take a generator ξ0 of LM0,P0
[log x1x2]. Define the formal vector field ξ̂ to be

ξ̂ = ξ0 if f̂ divides ξ0(f̂) (this corresponds to saying that f̂ = 0 defines a formal

invariant hypersurface) and ξ̂ = f̂ξ0 if f̂ does not divide ξ0(f̂). Let us write

ξ̂ = â1x1
∂

∂x1
+ â2x2

∂

∂x2
+ b̂f̂

∂

∂f̂
.
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Note that â1, â2, b̂ have no common factors. The adapted (or logarithmic) order of

L at P0 with respect to x1x2f̂ is

LogOrd(L,OM0,P0
;x1x2f̂) = ord

M̂M0,P0

(â1, â2, b̂) ∈ Z≥0,

where ord
M̂M0,P0

(−) means the M̂M0,P0
-adic order (see also [4]).

Put ζ = LogOrd(L,OM0,P0
;x1x2f̂). We say that Y1 is permissible for L adapted

to x1x2 if the two following properties hold:

(1) f̂(0, x2, y) ∈ OM0,P0
. (Hence Y1 is a subvariety of M0)

(2) ord(x1,f̂)
(â1, â2, b̂) = ζ.

We give a symmetric definition for Y2 being permissible. By definition Y0 is always
permissible.

Remark 22. If ζ ≥ 2, the condition 2 above implies condition 1, since in this case,
the curve Y1 must be contained in the locus

ξ0(x1)/x1 = ξ0(x1)/x2 = ξ0(y) = 0.

If ζ = 1 and ξ̂ = ξ0, the same argument holds.

Lemma 16. Let π : M ′ →M0 be the blow-up of M0 with a permissible center Y0,
Y1 or Y2. Let P ′ ∈M ′ be the center of ν at M ′. Then

LogOrd(L,OM0,P0
;x1x2f̂) ≥ LogOrd(L,OM ′,P ′ ;x′

1x
′
2f̂

′).

Proof. We may assume that either the center of the blow-up is Y1 or it is Y0 and
ν(x1) < ν(x2) (the other cases follow from these by interchanging the roles of

x1, x2). Then we have f̂ ′ = f̂ /x1 and ξ̂′ = x−ζ
1 ξ̂ where

â′1 = x−ζ
1 â1; b̂

′ = x−ζ
1 (b̂− â′1),

and â′2 = x−ζ
1 (â2− â1) if Y0, â

′
2 = x−ζ

1 â2 if Y1. The rest of the proof is given by the
standard results on the blow-up of equimultiple centers. �

We proceed by induction on ζ. First, consider the case ζ ≥ 2.
We now define Hironaka’s characteristic polygons (see for instance [8]). Take

an element ĝ =
∑

s f̂
sgijsx

i
1x

j
2 ∈ ÔM0,P0

= k[[x1, x2, f̂ ]] and an integer η ∈ Z>0.

The Hironaka’s characteristic polygon ∆(ĝ;x1, x2, f̂ ; η) is the positive convex hull
in R2

≥0 of the points of the form (i/(η − s), j/(η − s)), where gijs 6= 0 and s < η.

Given a list {ĝl} we define ∆({ĝl};x1, x2, f̂ ; η) to be the convex hull of the union

of the ∆(ĝl;x1, x2, f̂ ; η). Now, we define

∆(L;x1, x2, f̂ ; η) = ∆({â1, â2, b̂};x1, x2, f̂ ; η).

Let us list the properties of ∆η = ∆(L;x1, x2, f̂ ; η), similar to those used by Hiron-
aka in his Bowdoin College Memoir [8]:

(1) ∆η 6= ∅. Otherwise â1, â2, b̂ would be divisible by f̂ .
(2) ∆η ⊂ {(u, v); u+ v ≥ 1} iff ζ ≥ η.
(3) ∆ζ ⊂ {(u, v); u ≥ 1} iff condition 2 of permissibility holds for Y1.
(4) ∆ζ ⊂ {(u, v); v ≥ 1} iff condition 2 of permissibility holds for Y2.
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The characteristic polygon behaves under blow-up as in the classical case of vari-
eties, as we show in the next Lemma 17. To see this, let us introduce the linear
mappings σ01, σ02, σ1, σ2 defined as follows

σ01(u, v) = (u + v − 1, v), σ1(u, v) = (u− 1, v),
σ02(u, v) = (u, u+ v − 1), σ2(u, v) = (u, v − 1).

Lemma 17. Keep notations as in Lemma 15. Let π : M ′ →M0 be the blow-up of
M0 with a permissible center Y0, Y1 or Y2. Let P ′ ∈ M ′ be the center of ν at M ′.

Put ∆ = ∆(L; (x1, x2, f̂); ζ). Then the characteristic polygon ∆(L; (x′
1, x

′
2, f̂

′); ζ) is
the positive convex hull of

σ01(∆), σ02(∆), σ1(∆), σ2(∆)

if we are respectively in the cases T-01, T-02, T-1 and T-2 of Lemma 15.

Proof. Let I ⊂ ÔM0,P0
be the ideal generated by â1, â2, f̂ . Then the ideal I ′ ⊂

Ô′
M0,P0

generated by â′1, â
′
2, f̂

′ is I ′ = x−ζ
1 I, respectively I ′ = y−ζ

1 I if we are in

the cases (01), (1), respectively (02), (2). Now we apply the classical remarks of
Hironaka in his Bowdoin College seminar [8]. �

Now, we choose the following strategy to blow up. We select the blow-up center
Y0 until the characteristic polygon has only one vertex, this occurs after finitely
many steps. Then, since we are in the case ζ ≥ 2, at least one of the centers Y1, Y2

is permissible, since it is equimultiple. Blow-up this curve. After finitely many
operations the characteristic polygon intersects {(u, v); u + v < 1} and hence the
logarithmic order drops. We arrive in this way to the case ζ ≤ 1.

Assume now that ζ ≤ 1. If ζ = 0 and ξ̂ = ξ0, we get an elementary singularity

and if ξ̂ = f̂ ξ0 the foliation is in fact non-singular. Assume that ζ = 1. By Remark

22, the case ξ̂ = ξ0 can be handled as before. So we consider only the case ξ̂ = f̂ ξ0.
Blowing-up the origin (that is, we take the center Y0 each time), we get as above
that the characteristic polygon has exactly one vertex of integer coordinates, say
(α, β) ∈ Z2

≥0, where α+ β ≥ 1. Assume that α+ β ≥ 2; since ζ = 1, we have either

ordx1,x2,f̂
(ξ0(x1), ξ0(x2)) = 0 or b̂(0, 0, f̂) = f̂U(f̂), with U(0) 6= 0. In both cases ξ0

is non-nilpotent and we obtain an elementary singularity. It remains to study the
case α + β = 1. We have two possibilities (α, β) = (1, 0) and (α, β) = (0, 1), that
can be treated in a similar way. Consider, for instance, the case (α, β) = (1, 0),
if ν(x1) > ν(x2), we are done by blowing-up the origin, since we get ζ = 0; if
ν(x1) < ν(x2) the situation repeats itself, but this cannot occur infinitely many
times, since we are dealing with an arquimedian valuation ν.

This ends the proof of Theorem 4 in the case of rational rank r = 2.

7.2. Maximal contact with rational rank one. Take a regular system of pa-
rameters (x,w, y) of OM0,P0

such that

f̂ = y +
∑

i,j

λijx
iwj .

In this paragraph we denote Y0 = {P0} and Y1 = {x1 = f̂ = 0}. The next Lemma
18 may be proved by standard computations in terms of blow-ups and valuations
and we left the verification to the reader:
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Lemma 18. Let π : M ′ →M0 be the blow-up of M0 with one of the centers Y0 or

Y1 and assume that if we use Y1 as a center, then f̂(0, w, y) ∈ OM0,P0
. Then, the

center P ′ ∈M ′ of ν at M ′ belongs to the strict transform of f̂ = 0. More precisely,
we have the following cases:

T01: The center is Y0 and µ = ν(x) < ν(w). In this case P1 is in the strict

transform of the formal curve w = f̂ = 0 and there is a regular system of

parameters (x′, w′, y∗) of OM ′,P ′ such that x′ = x, w′ = w/x, f̂ ′ = f̂/x has
transversal maximal contact with ν and has the form

f̂ ′ = y∗ +
∑

i,j

λ′
ijx

′iw′j .

T02: The center is Y0 and µ = ν(w) < ν(x). Similar to the previous case, by
the roles of x,w interchanged.

T01, c: The center is Y0 and µ = ν(x) = ν(w). Take a parameter c ∈ k such
that ν(w − cx) > ν(x). We do the coordinate change w∗ = w − cx and we
proceed as in the case (01).

T1: The center is Y1. In this case P1 is in the strict transform of f̂ = 0
and there is a regular system of parameters (x′, w′, y∗) of OM ′,P ′ such that

x′ = x, w′ = w, f̂ ′ = f̂ /x has transversal maximal contact with ν and it is
written as

f̂ ′ = y∗ +
∑

i,j

λ′
ijx

′iw′j .

We define an {x,w, y, f̂}-formal Puiseux package to be a sequence of blow-ups

M0 ←M1 ← · · · ←MN = M ′

such that:

(1) Each blow-up has center at the center Pi ∈ Mi of the valuation in the
projective model Mi.

(2) We get (xi, wi, yi, f̂i) at each Pi, obtained as in Lemma 18, starting from

(x0, w0, y0, f̂0) = (x,w, y, f̂).
(3) Each blow-up is given by T01 or T02, except the last blow-up that is given

by (T01, c), with c 6= 0.

A {x,w, y, f̂}-formal Puiseux package exists and is unique. More precisely, if we
put ν(wd/xp) = 0 and c is such that ν(wd/xp − c) > 0, the sequence of blow-ups is

the reduction of singularities of the formal curve wd − cxp = f̂ = 0.
Now, let us consider a generator ξ0 of LM0,P0

[log x], that we write a follows:

ξ0 = a(x,w, f̂ )x
∂

∂x
+ b(x,w, f̂)

∂

∂w
+ ĥ(x,w, f̂ )

∂

∂f̂
,

where a = ξ0(x)/x, b = ξ0(w), ĥ = ξ0(f̂). Note that a, b and ĥ have no common
factors. There are two cases that we will consider separately

(1) The formal hypersurface f̂ = 0 is invariant by ξ0. Then f̂ divides ĥ and we

can put ĥ = ĝf̂ .

(2) The formal hypersurface f̂ = 0 is not invariant by ξ0. Then f̂ does not

divide ĥ and thus f̂a, f̂ b, ĥ have no common factors.
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Let us put ξ̂0 = ξ̂0 if f̂ = 0 is invariant and ξ̂0 = f̂ ξ0 if f̂ is not invariant. In both
cases we denote

â0 = ξ̂0(x)/x; b̂0 = ξ̂0(w); ĝ0 = ξ̂0(f̂)/f̂ .

Then â0, b̂0, ĝ0 have no common factors. Define the logarithmic order as

LogOrd(L;xf̂ ) = ord
M̂0

(â0, b̂0, ĝ0).

Lemma 19. Let π : M ′ →M0 be given by the {x,w, y, f̂}-formal Puiseux package

and let (x′, w′, y′, f̂ ′) be the resulting list at the center P ′ of ν in M ′. Then

LogOrd(L;x′f̂ ′) ≤ LogOrd(L;xf̂ ).

Proof. The result is true under each of the blow-ups of the sequence given by the

{x,w, y, f̂}-formal Puiseux package. This is a standard verification which is also a
part of the proof of the vertical stability of the adapted order given in [4]. �

Consider an expansion ξ̂ =
∑

s≥0 f̂
sη̂s(x,w), where

η̂s(x,w) = âs(x,w)x
∂

∂x
+ b̂s(x,w)

∂

∂w
+ ĝs(x,w)f̂

∂

∂f̂
.

We say that η̂s is formally strongly prepared if we can write

(41) η̂s = xρÛ(x,w)θ + xτ V̂ (x,w)f̂
∂

∂f̂
; θ = xĥ(x,w)x

∂

∂x
+

∂

∂w

satisfying the same properties as in Definition 5, that is

(1) ρ, τ ∈ Z ∪ {+∞}, with ρ 6= τ .

(2) Û = λ+x(· · · ) and V̂ = µ+x(· · · ), where λ, µ ∈ k\{0}. (Except if ρ = +∞

or τ =∞, that indicates that Û , respectively V̂ is identically zero)

By the same proof as in 10, we have

Proposition 19. Assume that η̂s 6= 0, then after finitely many formal Puiseux
packages we obtain η̂s that is formally strongly prepared.

Let us work by induction on ̺ = LogOrd(L;xf̂). If ̺ ≤ 1 we have a log-
elementary singularity. Assume that ̺ ≥ 2. By Proposition 19, after finitely many

formal Puiseux packages, the vector field ξ̂ can be written as ξ̂ =
∑

0≤s f̂
sη̂′s(x,w),

where

η̂s = xρs Ûs(x,w)θs + xτs V̂s(x,w)f̂
∂

∂f̂
; θs = xĥs(x,w)x

∂

∂x
+

∂

∂w

is formally strongly prepared for any s ≤ ̺. Let us put ms = min{ρs, τs}. let us
also define

δ = min

{
ms

̺− s
; s < ̺

}
.

It is clear that 1 ≤ δ <∞, since the adapted order is ̺.

Consider the ideal (x, f̂). Since ̺ ≥ 2, this ideal gives a curve in the singular
locus of L. Thus we can blow-up it. After blowing-up, we get that ̺′ ≤ ̺ and
δ′ = δ − 1 if ̺′ = ̺. This ends the proof of Theorem 4.
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Part 2. Higher rank and higher dimensional valuations

In this part we complete the proof of Theorem 1 by considering valuations of
higher arquimedean rank or of dimension bigger than zero. In fact these cases
correspond to situations simpler than in Part 1, since they are “essentially” of
ambient dimension two.

8. Higher rank valuations

In this section we assume that n = 3 and κν = k but ν has rank bigger than one,
that is, the value group Γ is not arquimedean. If the rational rank r = 3, there is
no difference with the computations in the case of an arquimedean valuation done
in Section 2. The only remaining situation is r = 2. Let us consider this situation.

We can work in terms of parameterized regular local models A = (O, z = (x, y))
as in the case of a real valuation of rational rank two (Sections 3-4). Let us consider
the following statement

TRI: Trivial ramification index assumption: After perform-
ing any finite sequence of y-Puiseux packages, coordinate blow-
ups in the independent variables and coordinate changes in the
dependent variable, we obtain A = (O, z = (x, y)) such that the
ramification index is equal to one. That is ν(y) = ν(xp1

1 xp2

2 ) for
(p1, p2) ∈ Z2.

Following the same arguments as in Sections 3-4 we obtain

Proposition 20. Assume that the Trivial Ramification Index Assumption does not
hold after performing any finite sequence of y-Puiseux packages, coordinate blow-
ups in the independent variables and coordinate changes in the dependent variable.
Then we can obtain a log-elementary LA after performing such a finite sequence of
transformations.

Thus, we assume that TRI holds. We can work by induction on the main height
h = ~(ξ;x, y) of a generator of L. By the same arguments in Sections 3-4, if the
critical polynomial is not Thchirnhaus, we can win. So, we find an element at the
level h−1 corresponding to the critical polynomial. This means that (p1, p2) ∈ Z2

≥0,

since this point of the support is associated to a monomial xp1

1 xp2

2 appearing in the
coefficients of ξ. Now, we can do the coordinate change

y1 = y − c1x
p1

1 xp2

2 ; ν(y1) > ν(y).

The situation repeats. We obtain a formal element f̂ = y −
∑

cix
pi1

1 xpi2

2 . Now we

can apply to f̂ the same arguments as in Subsection 7.1.

9. Higher dimensional valuations

In this section we assume that n = 3 and κν 6= k. We look for a projective
model M of K and a birational morphism M → M0 such that the center Y of ν
at M has dimension ≥ 1 and a generic point of Y is a regular point of M which
is log-elementary for L. Since k is algebraically closed, the assumption κν 6= k
implies that dim ν ≥ 1, where dim ν is the transcendence degree of κν/k. Applying
Hironaka’s reduction of singularities to M0, we may assume that all the points in
M0 are nonsingular. Also by classical results on reduction of singularities, we obtain
the following statement:
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Lemma 20. There is a birational morphism M →M0 such that the center Y of ν
at M has dimension equal to dim ν.

Proof. See for instance Vaquié’s paper [17]. �

Thus we may assume that M0 is non-singular and the center Y0 of ν at M0 has
dimension equal to dim ν. If dim ν = 2, then Y0 is a hypersurface and a generic
point of Y0 is always nonsingular for L, since the singular locus of L has codimension
at least 2 in any nonsingular ambient space.

Consider the case dim ν = dimY0 = 1. We blow-up M0 with center Y0 to get
M1 → M0. The new center Y1 of ν at M1 is a curve that applies surjectively over
Y0. We repeat the procedure to get an infinite sequence

M0 ←M1 ←M2 ← · · ·

where the center Yi of ν at Mi is a curve that applies surjectively over Yi−1. In this
situation we can apply the equireduction arguments in [5], (see also [13]) to obtain
an elementary L at a generic point of Yi for i >> 0. These arguments are actually
of two-dimensional nature and the invoked equireduction results are very similar to
the original Seidenberg’s result in [14].

Part 3. Globalization

In this Part 3 we prove the global result stated in Theorem 2. To do this we will
apply the axiomatic version of the Zariski’s Patching of Local Uniformizations [19]
that has been developed by O. Piltant in [12].

Let us state the axiomatic version of the patching of local uniformizations that
we need to use. Fix a field of rational functions K/k of transcendence degree three
over k. We take k an algebraically closed field of characteristic zero, even if Piltant’s
result is more general than that. Assume that we have an assignation

M 7→ RegP(M) ⊂M

that chooses a nonempty Zariski open subset RegP(M) ⊂ M for each projective
model M of K. This map can be thought of by saying that RegP(M) is the set of
points of M that satisfy the property “P”. Let us introduce now a list of axioms for
globalization.

Axiom I. For each projective model M of K the set RegP(M) is
a nonempty Zariski open set contained in the set of regular points
Reg(M) of M . Moreover the definition of RegP(M) is local in the
sense that given two projective models M and M ′, two Zariski open
sets U ⊂ M and U ′ ⊂ M ′ and an isomorphism φ : U → U ′, then
φ(RegP(M) ∩ U) = RegP(M ′) ∩ U ′.

The next axiom says that RegP(M) has a good behavior under blow-up.

Axiom II. Let Y ⊂ M be an irreducible algebraic subvariety of M
such that Y ∩ RegP(M) 6= ∅. Let π : M ′ → M be the blow-up
with center Y . There is a nonempty Zariski open subset VY of
Y ∩RegP(M) defined by the property that π−1(VY ) ⊂ RegP(M ′).

In what follows we take VY to be the largest possible between the subsets V ⊂
Y ∩ RegP(M) such that π−1(V ) ⊂ RegP(M ′). This determines VY uniquely. As
a consequence of Axiom II, if we blow-up a point P ∈ RegP(M) then we have
π−1(P ) ⊂ RegP(M ′). The open set VY is called set of permissibility for Y . We say
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that Y is permissible if VY = Y . We need also the notion of strong permissibility.
If Y ⊂M is a point or a hypersurface that cuts RegP(M), we define the open set of
strong permissibility WY as WY = VY . Assume that Y is an irreducible curve and
let P ∈ VY . We say that Y is strongly permissible at P iff the following property
holds

Let M = M0 ← M1 ← M2 ← · · · ← MN be a finite sequence of
blow-ups centered at points Pi ∈ Mi, such that P0 = P and Pi

projects over Pi−1 and is in the strict transform Yi of Y . Then YN

is permissible at PN (that is PN ∈ VYN
).

We denote by WY ⊂ VY the set of points where Y is strongly permissible and we
say that Y is strongly permissible iff WY = Y .

Axiom III. Let Y be a curve in M such that Y ∩ RegP(M) 6= ∅.
There is a finite sequence

M = M0 ←M1 ←M2 ← · · · ←MN = M ′

of blow-ups with center in closed points such that the strict trans-
form Y ′ of Y is strongly permissible.

In fact, the centers in Axiom III can be chosen in Y −WY at each step; this also
shows that WY is a nonempty open set of Y .

We also need another axiom (of principalization), that can be seen as a result
on conditionated desingularization

Axiom IV [Principalization]. Given a (normal) projective model
M0 ofK and an ideal sheaf I ⊂ OM0

, there is a projective birational
morphism π : M →M0 such that
(1) IOM is locally principal in π−1(RegP(M0)).
(2) π−1(RegP(M0)) ⊂ RegP(M).
(3) The induced map π−1(RegP(M0)∩U)→ RegP(M0)∩U is an

isomorphism where U is the open set of the points p of M0

such that Ip is principal.

The last axiom states the existence of Local Uniformization.

Axiom V [Local Uniformization]. Let ν be a k-valuation of K.
There is a projective model M of K such that the center Y of ν in
M cuts RegP(M), that is Y ∩ RegP(M) 6= ∅.

With this axioms, it is possible to reproduce Zariski’s arguments in [20] for the
patching of local uniformizations and we can state the following result

Theorem 5 (Piltant). Assume that the assignation M 7→ RegP(M) satisfies to the
axioms I,II,III, IV and V above. Consider a projective model M0 of K. Then there
is a birational projective morphism M →M0 such that RegP(M) = M .

This statement is slightly more restrictive that the result proved by Piltant in
[12]. It is the result we need to get our global statement for the case of foliations.
Now, in order to prove Theorem 2, we just need to prove the following statement

Proposition 21. Let us consider a foliation L ⊂ DerkK. The assignation

M 7→ RegLogL(M) = {P ∈M ;P is log-elementary }

satisfies to the axioms I,II,III,IV and V.
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The Local Uniformization Axiom is given by Theorem 1. The first axiom is
evident from the local definition of log-elementary points, let us just point that
RegLogL(M) is non-empty since the non singular points of L in Reg(M) are in the
complement of a closed subset of codimension bigger or equal than two.

The axioms II and III come from the general computations done in [4] concerning
the definition and properties of permissible centers in terms of the adapted multi-
plicity. More precisely, in theorem 3.1.4. of [4] is proved the stability of the adapted
order under blow-up (the log-elementary singularities are defined to have adapted
order less or equal to one). The permissibilyzing and permissibility properties come
from the results on stationary sequences in the section 3.3. of [4].

Finally axiom IV of principalization has been explicitly proved for the case
RegP(M) = RegLogL(M) by Piltant in [12], Proposition 4.2.

Now, Theorem 2 is a consequence of Proposition 21 and Theorem 5.
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