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Abstract

Lasso and other regularization procedures are attractive methods for variable

selection, subject to a proper choice of shrinkage parameter. Given a set of

potential subsets produced by a regularization algorithm, a consistent model

selection criterion is proposed to select the best one among this preselected

set. The approach leads to a fast and efficient procedure for variable selec-

tion, especially in high-dimensional settings. Model selection consistency of

the suggested criterion is proven when the number of covariates d is fixed.

Simulation studies suggest that the criterion still enjoys model selection con-

sistency when d is much larger than the sample size. The simulations also

show that our approach for variable selection works surprisingly well in com-

parison with existing competitors. The method is also applied to a real data

set.
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1 Introduction

Variable selection is probably the most fundamental and important topic in linear
regression analysis. We consider the case where a large number (even larger than the
sample size) of candidate covariates are introduced at the initial stage of modeling.
One then has to select a smaller subset of the covariates to fit/interpret the data.
If the number of potential covariates is not so large (as small as 30), one may use
subset selection to select significant variables (Miller, 1990). However, with a large
number of covariates, searching on model space is computationally infeasible. Lasso
(Tibshirani, 1996) and other regularization procedures (e.g., the adaptive lasso of
Zou (2006), SCAD of Fan and Li (2001)) are successful methods to overcome this
problem. A Lasso-type procedure estimates the regression coefficient vector β by
minimizing the sum of the squared error and a regularization term

‖y −Xβ‖2 + λT (β), (1)

where X is an (n×d) non-random design matrix, y is an n−vector of responses,
and λ≥0 is a shrinkage parameter that controls the amount of regularization. The
regularization function T (β) can take different forms according to different regu-
larization procedures. The original and most popular one used in Lasso is the l1
norm T (β) =

∑d
j=1|βj|. As λ increases, the coefficients are continuously shrunk

towards 0. When λ is sufficiently large, some coefficients are shrunk to exact 0,
thus leading to sparse solutions. This feature makes the Lasso-type procedures very
attractive for variable selection. Indeed, their model selection consistency has been
shown (Zhao and Yu, 2006; Meinshausen and Buhlmann, 2006; Fan and Li, 2001):
Under some conditions, there exists a “proper” sequence of shrinkage parameters
{λn} under which

{j : β̂λn
j 6= 0} = ST w.p.1 when sample size n is large enough, (2)

where β̂λn
=(β̂λn

1 ,...,β̂λn

d )⊤ is the regularized estimator of β with shrinkage parameter
λn, and ST is the true model, i.e., ST is the index set of true covariates. Therefore,
it is convenient to use the Lasso-type procedures for variable selection purposes.

The remaining problem in practice is how to choose such proper λn.
A widely-used criterion is the generalized cross-validation criterion (GCV)
(Craven and Wahba, 1979; Tibshirani, 1996). However, theoretical properties of
GCV for choosing λ for the purpose of variable selection have not been in-
vestigated yet. Furthermore, for choosing shrinkage parameter for the SCAD
method (Fan and Li, 2001), a regularization method closely related to Lasso, GCV
seems to be likely to choose shrinkage parameters that produce overfitted models
(Wang et al., 2007). Zou et al. (2007) showed that the number of nonzero coeffi-
cients is an unbiased estimate for the degrees of freedom of the lasso. As a result,
popular model selection criteria - like AIC, BIC and Cp - can be used for selecting λ.
However, theoretical properties of the selected model remain unknown. The main
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contribution of this paper is to propose a criterion for selecting shrinkage parameters
in order for regularization procedures to produce the true model. (Throughout this
paper, the true model is assumed to exist. We note, however, that whether or not
the true model exists is still a controversial issue in the model selection literature,
see Burnham and Anderson (2002)).

Although regularization procedures can be used for simultaneous variable selec-
tion and estimation, it seems to be impossible to tune the shrinkage parameter to
achieve both model selection consistency and optimal estimation at the same time.
For an orthogonal design, Leng et al. (2006) showed that the Lasso estimator that
is optimal in terms of estimation does not give consistent model selection. This fact
was also shown by Poetscher and Leeb (2009) for other regularized estimators. We
are in this paper primarily concerned with the problem of variable selection, i.e., we
use a Lasso-type procedure to produce a set of potential subsets and then select the
best one among this preselected set using a model selection criterion. It was brought
to our attention by a reviewer that the idea of using Lasso as a “selector” was also
briefly mentioned in Friedman (2008); Efron et al. (2004). They discussed an ap-
proach to reduce estimation bias on the non-zero estimated coefficients in which
the Lasso (with some method for choosing the shrinkage parameter) is used as a
subset selector and then a different unpenalized procedure is used to estimate the
coefficients w.r.t. the selected covariates. Our approach is to select the best subset
of covariates - using a model selection criterion as the stopping rule - among a prese-
lected set of potential subsets produced by a Lasso-type procedure. The preselected
set consists of at most d subsets rather than 2d possible subsets if using subset selec-
tion. After selecting the best subset, we of course can use an unpenalized procedure
to estimate the coefficients in order to reduce estimation bias.

The model selection criterion we use is derived from the loss rank principle
(LoRP), a general-purpose principle for model selection, introduced recently by
Hutter (2007); Hutter and Tran (2010). LoRP selects a model that has the smallest
loss rank. The loss rank of a model is defined as the number of other “fictitious”
data that fit the model better than the training data (see Section 2 for a formal
introduction). It was shown by Hutter and Tran (2010) that minimizing the loss
rank is a suitable criterion for model selection, since it trades off between the qual-
ity of fit and the model complexity. LoRP seems to be a promising principle with
enormous potential, leading to a rich field. Tran (2009) demonstrated the use of
LoRP for selecting the ridge parameter in ridge regression. Tran and Hutter (2010)
adapted the idea of LoRP for model selection in a classification context and showed
its close connection with excellent model selection techniques based on Rademacher
complexities (Koltchinskii, 2001; Bartlett et al., 2002). In this paper, we shall show
that LoRP also successfully applies to selecting the shrinkage parameter for the
purpose of variable selection.

The main contribution of this paper is to propose a criterion, called the loss
rank (LR) criterion, for selecting shrinkage parameters for variable selection pur-
poses. As long as the regularization procedure in use has the consistency property
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(2), the shrinkage parameter selected by the LR criterion will produce the true model
asymptotically with probability 1. This model selection consistency of the proposed
criterion will be proven theoretically in the case where the number of covariates d is
fixed and smaller than n. For cases with d≫n, our simulation study suggests that
this property still holds. The simulation also shows that our method for variable
selection works surprisingly well. Benefiting from fast l1-regularization algorithms,
our method is able to correctly identify significant variables from thousands of can-
didates in several CPU seconds.

The paper is organized as follows. The main idea of LoRP is briefly reviewed in
Section 2. The LR criterion is derived and its model selection consistency is proven
in Section 3. Simulation studies and real-data application are presented in Section
4. Section 5 contains the conclusions and outlook. The proofs are relegated to the
appendix.

2 The loss rank principle

In this section, we give a brief review of the loss rank principle (LoRP). The reader
is referred to Hutter (2007); Hutter and Tran (2010) for the details.

Let us consider a training data set D= (x,y) = {(x1,y1),...,(xn,yn)} ∈ (X×Y)n

from a regression model
yi = f(xi) + ǫi.

We first consider discrete Y . Suppose that we use a model M to fit the data
D, e.g., M is a linear regression model with d covariates, or M is a k-nearest
neighbors regression model. Imagine that in experiment situations we can conduct
the experiment many times with fixed design points x. We then would get many
other (fictitious) output y′. Observe that if the model M is complex/flexible (large
d, small k), then M fits the training data (x,y) well and it also fits (x,y′) well (with
respect to some loss function). Here, for simplicity, we only consider the squared
loss LossM(y|x)=‖y−ŷ‖2=∑n

1 (yi−ŷi)
2 where ŷ is the fitted vector under model

M . Therefore the loss rank of M defined by

RankM(D) := #{y′ ∈ Yn : LossM(y′|x) ≤ LossM(y|x)}

will be large for complex M . Conversely, as argued by Hutter and Tran (2010), if
M is small/rigid, that both LossM(y|x) and LossM(y′|x) are large also leads to a
large loss rank. Thus, it is natural to choose a model with the smallest loss rank as
a good model. By doing this, we trade off between the fit and the model complexity.

In the case of continuous Y , say for instance Y = R, it is natural to use the
concept of volume instead of the counting measure in the definition of loss rank, i.e.,

RankM(D) := Vol{y′ ∈ Rn : LossM(y′|x) ≤ LossM(y|x)}.

Consider the case of linear models where the fitted vector ŷ is linear in y, i.e.,
ŷ=M(x)y where the regression matrix M =M(x) depends only on x (using the
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same symbol M for both model and regression matrix will not cause any confusion
in the following). Then LossM(y|x)=‖y−My‖2=y⊤Ay with A=(In−M)⊤(In−M)
and the loss rank is

RankM(D) = Vol{y′ ∈ Rn : y′⊤Ay′ ≤ L} where L := y⊤Ay.

Suppose at the moment that det(A) 6=0. The set {y′∈Rn :y′⊤Ay′≤L} is an ellipsoid
in Rn, so that its volume is

RankM(D) =
vnL

n/2

√
detA

where vn=πn/2/Γ(n
2
+1) is the volume of the unit sphere in Rn. Because the loga-

rithm is monotone increasing and vn depends only on n, it is equivalent to consider

LRM(D) = n
2
log(y⊤Ay)− 1

2
log detA. (3)

Principle 1. Given a class of linear models M={M}, the best model among M is
the one with the smallest loss rank

M best = argminM∈M{n
2
log(y⊤Ay)− 1

2
log detA} (4)

where A=(In−M)⊤(In−M), provided that detA>0.

Now we consider the case where detA= 0 (e.g., projective regression) or A is
nearly singular (e.g., ridge regression when the ridge parameter is very close to 0).
In such cases, RankM(D) is infinity or extremely large. Following the principle of
ridge regression, we add, in order to prevent the loss rank from being infinity or
extremely large, a small penalty α‖y‖2 to the loss

LossαM(y|x) := ‖ŷ − y‖2 + α‖y‖2 = y⊤Sαy, Sα = A+ αIn

where α>0 is a small number to be determined later. Now, Sα being not singular
yields

RankαM(D) = Vol{y′ ∈ Rn : y′⊤Sαy
′ ≤ L} =

vnL
n/2

√
detSα

where L := y⊤Sαy.

Taking logarithm and neglecting a constant independent of M , we define the loss
rank of model M (dependent on α) as

LRα
M(D) = n

2
log(y⊤Sαy)− 1

2
log detSα. (5)

How do we deal with the extra parameter α? We are seeking a model of smallest
loss rank, so it is natural to minimize LRα

M(D) in α (see Hutter and Tran (2010) for
a more detailed interpretation). Therefore, we finally define the loss rank of model
M as

LRM(D) = inf
α>0

LRα
M(D) = inf

α>0
{n
2
log(y⊤Sαy)− 1

2
log det Sα}. (6)
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Principle 2. (Hutter and Tran, 2010) Given a class of linear models M= {M},
the best model among M is the one with the smallest loss rank

M best = argminM∈MLRM(D) = argminM∈M inf
α>0

{n
2
log(y⊤Sαy)− 1

2
log detSα} (7)

where Sα=A+αIn=(In−M)⊤(In−M)+αIn.

Many attractive properties of LoRP have been pointed out: LoRP reduces to
Bayesian model selection in some special cases and has an interpretation in terms
of MDL principle (Hutter and Tran, 2010); in the classification context, LoRP has
a close connection with (and works in some cases better than) model selection tech-
niques based on Rademacher complexities (Tran and Hutter, 2010). By virtue of
LoRP, the loss rank criterion for selecting the Lasso parameter will be derived in
the next section.

3 The LR criterion

Let us go back to the variable selection problem in linear regression analysis. We
build on the notation of Hutter and Tran (2010). Given a (large) set of d potential
covariates X1,...,Xd and a response variable Y , we consider the problem of choosing
the important covariates for explaining Y as a linear function of X1,...,Xd. It is as-
sumed as usual that the covariates are linearly independent and that E(Y |X1,...,Xd)
is a linear combination of X1,...,Xd with some of the coefficients are zero. We are
primarily interested in identifying the non-zero coefficients.

Suppose that the response vector y and the design matrix X have been centered,
so that the intercept is omitted from models. Denote by ST = {j∗1 ,...j∗d∗} and S =
{j1,...jd0} the true model and a candidate model, respectively. Under model S, we
can write

y = XβS + σǫ

where E(ǫ)=0, cov(ǫ)=In, σ>0. We shall consider βS=(βS1,...,βSd)
⊤ as a point in

Rd with βSj=0 if j 6∈S. Denote by Θ(S) :={θS =(βS ,σ
2)∈Rd×R+} the parameter

space of model S and by XS the (n×d0) design matrix obtained from X by removing
the jth column for all j 6∈S.

3.1 The LR criterion

Let β̂λ = (β̂λ
1 ,...,β̂

λ
d )

⊤ be the regularized estimator of β w.r.t. a certain shrinkage
parameter λ, i.e., β̂λ is the solution of (1). Denote by Sλ = {j : β̂λ

j 6=0} the index
set corresponding to the non-zero coefficients, by dfλ= |Sλ| the number of non-zero
coefficients, and by XSλ

the design matrix corresponding to the selected covariates.
We assume at the moment that dfλ≤n and further assume that matrices XSλ

are
full rank. The case where dfλ>n will be dealt with later on.
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Fitting model Sλ by least squares, we denote the OLS estimator and the variance
estimator by

β̂Sλ
= (X⊤

Sλ
XSλ

)−1X⊤
Sλ
y ; σ̂2

Sλ
= 1

n
‖y −XSλ

β̂Sλ
‖2,

respectively. The fitted vector under model Sλ

ŷSλ
= XSλ

β̂Sλ
= MSλ

y with MSλ
:= XSλ

(X⊤
Sλ
XSλ

)−1X⊤
Sλ

is, conditionally on Sλ, linear
1 in y. Then from (5), the loss rank of model Sλ with

parameter α is

LRα
λ ≡ LRα

Sλ
= n

2
log(y⊤Sλ

αy)− 1
2
log det(Sλ

α)

where Sλ
α = (I−MSλ

)⊤(I−MSλ
)+αI = (1+α)I−MSλ

. Because projection matrix
MSλ

has dfλ eigenvalues 1 and n−dfλ eigenvalues 0, Sλ
α has dfλ eigenvalues α and

n−dfλ eigenvalues 1+α. Thus, detSλ
α=αdfλ(1+α)n−dfλ . Let ρλ :=‖y−ŷSλ

‖2/‖y‖2,
we have

LRα
λ = n

2
log y⊤y + n

2
log(ρλ + α)− dfλ

2
logα− n−dfλ

2
log(1 + α).

Taking derivative w.r.t α, it is easy to see that LRα
λ is minimized at αm= ρλdfλ

(1−ρλ)n−dfλ
provided that 1−ρλ>dfλ/n. This condition is ensured by Assumption (A3) below.
Finally, after some algebra, the loss rank of model Sλ as defined in (6) can be
explicitly expressed as

LRλ = LRαm

λ = n
2
log ‖y‖2 − n

2
KL(dfλ

n
‖1− ρλ). (8)

where KL(p‖q) = plog p
q
+(1−p)log 1−p

1−q
is the Kullback-Leibler divergence between

the Bernoulli distributions with parameters p,q∈ (0,1). The optimal shrinkage pa-
rameter(s) λ (for variable selection purposes) chosen by the LR criterion will be

λ̂LR ∈ argminλ≥0LRλ = argmaxλ≥0KL(dfλ
n
‖1− ρλ). (9)

Often, LRλ reaches its minimum in an interval (λ̂l,λ̂u) (see Figure 1). Any λ in
this interval produces the same model. This can be explained as follows. When
λ increases from 0 to infinity, the number of non-zero coefficients of β̂λ will be a
non-increasing step function of λ (Efron et al., 2004); in other words, the covariates
are in turn removed from the models. As a result, by its definition LRλ is also a step
function. Note that our emphasis is on variable selection rather than on coefficient
estimation.

1Strictly speaking, ŷSλ
is not linear in y because Sλ depends on y. However, we can consider

preselected subsets Sλ as fixed models. If instead we first derive the LR criterion for a general

fixed model S and then apply to Sλ, we get the same results.
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3.2 Model selection consistency for fixed d

In order to prove the model selection consistency of the LR criterion, we assume in
this section that d is fixed and d≤n. We need the following assumptions

(A1) There exists a deterministic sequence of reference shrinkage parameters λn

such that Sλn →ST w.p.1.

(A2) ǫ is Gaussian N(0,In).

(A3) For each candidate λ, ρλ is bounded away from 0 and 1, i.e., there are constants
c1, c2 such that 0<c1≤ρλ≤c2<1 w.p.1.

Comments. ρλ=‖y−ŷSλ
‖2/‖y‖2 is a measure of fit. In extreme cases where the

resulting model Sλ is too big or too small, ρλ will be close to 0 and 1, respectively.
Therefore, it is reasonable to consider only λ in which ρλ is bounded away from 0
and 1. Note that for every Sλ we have that

ρλ =
‖y − ŷSλ

‖2
‖y − ŷSλ

‖2 + ‖ŷSλ
‖2 =

σ̂2
Sλ

σ̂2
Sλ

+ ‖ŷSλ
‖2/n.

For λ such that Sλ is the true model ST , (A3) follows from a mild sufficient condition

0 < lim inf
n→∞

( 1
n
‖ŷST

‖2) ≤ lim sup
n→∞

( 1
n
‖ŷST

‖2) < ∞ and σ̂2
ST

→ σ2 > 0 w.p.1

where ŷST
is the fitted vector under the true model. Moreover, if the intercept is

included in the models, we have that n(ȳ)2≤‖ŷSλ
‖2≤‖y‖2. (A3) then follows from

a very mild condition

0 < lim inf
n→∞

(ȳ)2 ≤ lim sup
n→∞

( 1
n
‖y‖2) < ∞ and σ̂2

S → constant > 0 ∀S w.p.1.

Assumption (A1) is satisfied by some regularization procedures, for example, Lasso
(Zhao and Yu, 2006) and SCAD (Fan and Li, 2001). Normality assumption (A2) is
not a necessary condition for consistency. This assumption can be relaxed, but then
a more complicated proof technique is needed.

We have the following lemma.

Lemma 3. The loss rank of model Sλ can be rewritten as

LRλ = n
2
log(nσ̂2

Sλ
) + n

2
H(dfλ

n
) + dfλ

2
log 1−ρλ

ρλ
(10)

where H(p):=−plogp−(1−p)log(1−p) is the entropy of p. Under Assumption (A3),
the loss rank LRλ has the form

LRλ = n
2
log σ̂2

Sλ
+ dfλ

2
logn + n

2
log n+OP(1), (11)

where OP(1) denotes a bounded random variable w.p.1.
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Proof. With ρλ =nσ̂2
Sλ
/‖y‖2, rearranging terms in (8) we get (10). The fact that

H(p)
p

+logp→1 as p→0 implies that (note that dfλ≤d and d is fixed)

n
2
H(dfλ

n
) = dfλ

2
log n+ dfλ

2
(1− log dfλ) + o(1).

Under Assumption (A3), the last term of (10) is bounded. This completes the
proof.

The above lemma is used to prove model selection consistency of the LR criterion.

Theorem 4 (Model selection consistency of the LR criterion). Assume that d is
fixed. Under Assumptions (A1)-(A3), the shrinkage parameter selected by the LR
criterion will produce the true model w.p.1 when n is large enough, i.e.,

P(Sλ̂LR
= ST ) → 1

where λ̂LR is determined in (9).

The idea of the proof is to bound the probabilities of picking under- and overfitted
models. A model S is said to be underfitted if S misses at least one true covariate
(i.e., S 6⊇ ST ), overfitted if S contains all true covariates and at least one untrue
(i.e., S )ST ). There is a finite number of such S, so it is sufficient to prove that
P(Sλ̂LR

=S)→0 for each of them. The detailed proof is relegated to the appendix.
We can of course use other model selection criteria rather than LoRP for choosing

the best subset among the preselected set produced by the regularization procedure.
The most widely-used selection criteria in statistics are probably AIC (Akaike, 1973)
and BIC (Schwarz, 1978). AIC is asymptotically optimal in terms of loss efficiency
but likely to select overfitted models, while BIC is asymptotically optimal in terms
of model selection consistency; see Shao (1997); Yang (2005). Therefore one may
use BIC as another stopping rule besides LoRP. The shrinkage parameter chosen by
BIC will be

λ̂BIC ∈ argminλ≥0BICλ where BICλ := n
2
log σ̂2

Sλ
+ dfλ

2
log n. (12)

We see from Lemma 3 that, up to a constant, the LR criterion is asymptotically
equivalent to BIC. It follows from the proof of Theorem 4 that using BIC also leads
to the same model selection consistency, i.e., P(Sλ̂BIC

=ST )→1 as n→∞. However,
finite-sample simulation studies in the next section show that the LR criterion works
better than BIC, especially when d≫n.

3.3 Large d small n

High-dimensional variable selection problems in which d≫ n is currently of great
interest to scientists. In order for such a problem to be solvable, an essential as-
sumption needed is that it is d∗−sparse (Candes and Tao, 2007), i.e., the number
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of true covariates d∗ must be smaller than n. Under this solvability assumption, it
is clear that we can safely ignore irrelevant cases in which the number of covariates
dfλ under consideration is larger than n. Then the LR criterion (8) is still valid.
In practice, therefore, we propose to ignore those λ under which dfλ>n and apply
the LR criterion as usual. A theoretically rigorous treatment is beyond the scope
of the present paper, which we intend to do in a future paper. However, a system-
atic simulation study in the next section suggests that the LR criterion still works
surprisingly well and enjoys model selection consistency.

4 Numerical examples

In this section, we present simulation studies for the LR criterion, compare the LR
criterion to other methods, and also apply it to a real data set. The regularization
procedure we use is Lasso. The Lasso solution paths are computed by the LARS
algorithm of Efron et al. (2004). A widely-used method for choosing the Lasso
parameter is GCV (Craven and Wahba, 1979; Tibshirani, 1996)

GCVλ =
1

n

‖y −Xβ̂λ‖2
(1− 1

n
DFλ)2

where DFλ := tr[X(X⊤X+λW−)−1X⊤y], W = diag(|β̂λ
j |) and W− is a generalized

inverse of W . Another one is the BIC-type criterion of Wang et al. (2007) (although
its variable selection consistency requires the oracle property, a property not enjoyed
by Lasso)

B̃ICλ = log
‖y −Xβ̂λ‖2

n
+DFλ

logn

n
.

Note that β̂λ 6=β̂Sλ
. The former is the Lasso estimator whereas the latter is the OLS

estimator resulting from fitting model Sλ by least squares. Our proposed criteria
(8) and (12) are constructed based on β̂Sλ

, not β̂λ. This is the essential difference
between our approach and the others.

Example 1: small d. We consider the following example which is taken from
Tibshirani (1996):

y = x⊤β + σǫ

where β= (3, 1.5, 0, 0, 2, 0, 0, 0)⊤, xi are marginally N(0,1) with the correlation
between xi and xj equal to 0.5|i−j|, ǫ∼N(0,1). We compare the performance of LR

and BIC criterion to that of GCV and B̃IC. The performance is measured by the
frequency of underfitting, overfitting and correct fitting and average number of zero
coefficients over 100 replications.

Table 1 summarizes the simulation results for various factors n and σ. Although
B̃IC works slightly better than GCV, it still produces overfitted models most of the
time. BIC does a good job and LR outperforms the others.
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Table 1: The small-d case
σ n Method Under- Correctly Overfitted(%) Ave. No.

fitted(%) fitted(%) of zeros

1 100 GCV 0 0 100 1.57

B̃IC 0 3 97 2.32
BIC 0 89 11 4.88
LR 0 97 3 4.97

200 GCV 0 0 100 1.64

B̃IC 0 0 100 1.81
BIC 0 94 6 4.93
LR 0 100 0 5

3 100 GCV 0 0 100 1.34

B̃IC 0 0 100 1.53
BIC 1 70 29 4.22
LR 1 77 22 4.37

200 GCV 0 0 100 1.69

B̃IC 0 0 100 2.09
BIC 0 91 9 4.89
LR 0 91 9 4.90

Example 2: large d. We consider cases of large d in this example with d=300
and n = 100, 200, 500. We set up a sparse recovery problem in which most of
coefficients are zero except β30=β60= ...=β300=10. The design matrix is simulated
as in Example 1. Table 2 summarizes the simulation results for various factors
n=100, 200, 500 and σ=1, 3. The LR criterion works surprisingly well in comparison
with BIC and the others.

Let us take a closer look at the simulation results in Tables 1-2. Although the
LR and BIC criteria are asymptotically equivalent to each other, the finite-sample
simulation study shows that the LR criterion works better than BIC. A similar
situation was also observed in Hutter and Tran (2010) for subset selection. This
is probably because, contrarily to the BIC criterion, the penalty term of the LR
criterion is data-adaptive. Some results in the model selection literature show that
selection criteria with data-adaptive penalties are more encouraging than those with
deterministic penalties; see Yang (2005) and references therein. We see that BIC
seems to break down for the cases d > n as it always produces overfitted models,
but starts working well when n> d. The OP(1) term in (11) plays an important
role here: it serves as a “corrector” to BIC. Note that BIC is just an approximation
to the logarithm of posterior model probability (Schwarz, 1978), the approximation
might be inaccurate if n is not large enough relative to d.

Example 3: Prostate cancer data. We consider a real data set in this example.

11



Table 2: The large-d case

σ n Method Under- Correctly Overfitted(%) Ave. No.
fitted(%) fitted(%) of zeros

1 100 GCV 0 0 100 90.20

B̃IC 0 0 100 95.8
BIC 0 0 100 202.01
LR 0 30 70 288.24

200 GCV 0 0 100 87.51

B̃IC 0 0 100 89.45
BIC 0 0 100 102.02
LR 0 86 14 289.83

500 GCV 0 0 100 97.51

B̃IC 0 0 100 104.45
BIC 0 40 60 287.30
LR 0 100 0 290

3 100 GCV 0 0 100 78.35

B̃IC 0 0 100 87.40
BIC 0 0 100 202.04
LR 0 18 82 287.51

200 GCV 0 0 100 92.02

B̃IC 0 0 100 96.51
BIC 0 0 100 102.01
LR 0 58 42 289.29

500 GCV 0 0 100 93.31

B̃IC 0 0 100 96.52
BIC 0 35 65 288.35
LR 0 80 20 289.75

Stamey et al. (1989) studied the correlation between the level of prostate antigen
(lpsa) and a number of clinical measures in men: log cancer volume (lcavol), log
prostate weight (lweight), age, log of the amount of benign prostatic hyperplasia
(lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason score
(gleason), and percentage of Gleason scores 4 or 5 (pgg45). Following Tibshirani
(1996), we assume a linear regression model between the response lpsa and the 8
covariates. We want to select a parsimonious model for the sake of scientific insight
into the response-covariate relationship.

The data set of size 97 is standardized so that the intercept β0 is excluded.
Figure 1 presents the curves GCVλ, B̃ICλ, LRλ (1000 values of λ ranging from 0.01
to 10 in increments of .01 were used to search for the optimal λ). The λ selected

by GCV, B̃IC are .5 and 1.1, and the corresponding models are {1, 2, 3, 4, 5, 7, 8},

12
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Figure 1: Prostate cancer data: LRλ, B̃ICλ and GCVλ.

{1, 2, 3, 4, 5, 8}, respectively. The LR criterion is minimized in the interval (3.1,5.9).
Any value in this interval produces the same model SLR = {1, 2, 5}. The BIC of
these models are −19.20, −21.38, −25.19, respectively. That means the BIC also
supports the choice of the LR criterion. (Note however that this does not mean that
the BIC is an optimal criterion).

5 Conclusions and outlook

Regularization procedures are efficient methods for variable selection, subject to a
proper choice of shrinkage parameter. By virtue of LoRP, a general-purpose principle
for model selection, the LR criterion for variable selection in linear regression analysis
was proposed. Variable selection consistency of the suggested criterion was pointed
out theoretically and experimentally. Both theoretical and experimental results show
that the proposed criterion is a very encouraging procedure for variable selection
problem, especially in high-dimensional settings. Regularization procedures have
now been extended to genaralized linear models and beyond, we intend to extend
our approach to such frameworks in future work.

———————

M. N. Tran, Department of Statistics and Applied Probability, National University
of Singapore, Singapore 117546.
E-mail: ngoctm@nus.edu.sg
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Appendix

Proof of Theorem 4. The main idea of the proof is taken from Chambaz (2006). Let
us denote by zi = (xi1,...,xid,yi) the i-th observation and by γ(.,m,σ2) the density
of the Gaussian distribution with mean m and variance σ2. Under model S, the
density of zi is pθS (zi)=γ(yi,

∑
j∈Sβjxij ,σ

2). The log-likelihood is

ln(θS) =

n∑

i=1

log pθS(zi) = −n
2
log(2π)− n

2
log σ2 − 1

2σ2

n∑

i=1

(yi −
∑

j∈S

βjxij)
2.

It is easy to see that

sup
θ∈Θ(S)

ln(θ) = −n
2
log σ̂2

S − n
2
(1 + log(2π)).

By (11), the loss rank of model Sλ now can be written as

LRλ = − sup
θ∈Θ(Sλ)

ln(θ) +
dfλ
2
logn + C(n) +OP(1)

where the constant term C(n)= n
2
logn− n

2
(1+log(2π)) is independent of Sλ.

No underestimation. It is sufficient to prove that P(Sλ̂LR
=S)→0 for each S 6⊇ST ,

as there is only a finite number of such S.

P(Sλ̂LR
= S) = P(Sλ̂LR

= S,LRλ̂LR
≤ LRλn)

= P
(

1
n

sup
θ∈Θ(S

λ̂LR
)

ln(θ)− 1
n

sup
θ∈Θ(Sλn )

ln(θ) ≥ logn
2n

(dfλ̂LR
− dfλn) + oP(1), Sλ̂LR

= S
)

≤ P
(

1
n

sup
θ∈Θ(S)

ln(θ)− 1
n

sup
θ∈Θ(Sλn)

ln(θ) ≥ logn
2n

(|S| − dfλn) + oP(1)
)

≤ P
(

1
n

sup
θ∈Θ(S)

ln(θ)− 1
n

sup
θ∈Θ(ST )

ln(θ) ≥ logn
2n

(|S| − d∗) + oP(1)
)
+ P (Sλn 6= ST )

≤ P
(

1
n

sup
θ∈Θ(S)

ln(θ)− 1
n
ln(θ

∗) ≥ logn
2n

(|S| − d∗) + oP(1)
)
+ P (Sλn 6= ST ) (13)

where θ∗ ∈ ST denotes the true parameter. By the law of large numbers for the
supremum of the likelihood ratios (see, e.g., Lemma B1 of Chambaz (2006))

1
n

sup
θ∈Θ(S)

ln(θ)− 1
n
ln(θ

∗) → − inf
θ∈Θ(S)

KL(pθ∗‖pθ) w.p.1.

Because S 6⊇ST , infθ∈Θ(S)KL(pθ∗‖pθ)>0. This, together with the fact that logn
2n

(|S|−
d∗)→0 and Assumption (A1), shows that the left-hand side term of (13) goes to 0
as n→∞.

No overestimation. Fix an overfitted model S)ST , let us denote by

H(θ) := KL(pθ∗‖pθ) = E[ 1
n
(ln(θ

∗)− ln(θ))] ≥ 0 ∀θ ∈ Θ(S)
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(H(θ) is not necessarily positive) and hn(θ) :=
ln(θ)−ln(θ∗)

H(θ)1/2
with convention 0

0
=0. For

every θ∈Θ(S)

ln(θ)− ln(θ
∗) + nH(θ) = ln(θ)− ln(θ

∗)−E[ln(θ)− ln(θ
∗)]

= H(θ)1/2(hn(θ)− Ehn(θ))

≤ H(θ)1/2 sup
ν∈Θ(S)

(hn(ν)−Ehn(ν)). (14)

By Θ(ST )⊂Θ(S) and the property of supremum, for every ǫ>0 there exists θ0∈Θ(S)
such that

sup
θ∈Θ(S)

(ln(θ)− ln(θ
∗)) ≤ ln(θ0)− ln(θ

∗) + ǫ (15)

and also

ln(θ0)− ln(θ
∗) ≥ 0. (16)

From (15) and (14)

sup
θ∈Θ(S)

(ln(θ)− ln(θ
∗)) ≤ H(θ0)

1/2 sup
θ∈Θ(S)

(hn(θ)− Ehn(θ)) + ǫ. (17)

From (16) and (14)

nH(θ0) ≤ ln(θ0)− ln(θ
∗) + nH(θ0) ≤ H(θ0)

1/2 sup
θ∈Θ(S)

(hn(θ)− Ehn(θ))

or

nH(θ0)
1/2 ≤ sup

θ∈Θ(S)

(hn(θ)− Ehn(θ)). (18)

Now, since ǫ>0 was chosen arbitrarily, (17) and (18) yield

sup
Θ(S)

ln(θ)− sup
Θ(ST )

ln(θ) ≤ sup
Θ(S)

{ln(θ)− ln(θ
∗)} ≤ 1

n

(
sup

θ∈Θ(S)

(hn(θ)− Ehn(θ))

)2

. (19)

We need the following bounded law of the iterated logarithm which is a consequence
of Theorem 4.1, Dudley and W.Philipp (1983) or Lemma B2, Chambaz (2006).

Lemma 5. There is a finite constant C so that

lim sup
n

supθ∈Θ(S) |hn(θ)− Ehn(θ)|√
n log log n

≤ C w.p.1.

Now for every overfitted model S ) ST , it is sufficient to prove that P(Sλ̂LR
=
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S)→0. In fact,

P(Sλ̂LR
= S) = P(Sλ̂LR

= S, LRλ̂LR
≤ LRλn)

≤ P

(
sup
Θ(S)

ln(θ)− sup
Θ(Sλn )

ln(θ) ≥ logn
2

(|S| − dfλn) +OP(1)

)

≤ P

(
sup
Θ(S)

ln(θ)− sup
Θ(ST )

ln(θ) ≥ logn
2

(|S| − d∗) +OP(1)

)
+ P(Sλn 6= ST )

= P

([ log log n
d∗

2
log n

][supΘ(S) ln(θ)− supΘ(ST ) ln(θ)

log logn

]
≥ |S|

d∗
− 1 + oP(1)

)
+ P(Sλn 6= ST )

≤ P

([ log log n
d∗

2
log n

][supΘ(S) |hn(θ)− Ehn(θ)|√
n log log n

]2
≥ |S|

d∗
− 1 + oP(1)

)
+ P(Sλn 6= ST )(20)

where the last inequality follows from (19). Observe that |S|>d∗ as S)ST . This,
together with Lemma 5 and the fact that loglogn/(d

∗

2
logn)→ 0, implies that the

first probability of (20) goes to zero. The second probability of (20) also goes to
zero because of Assumption (A1). This completes the proof.
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