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Abstract

Testing and characterizing the difference between two data samples is of fundamen-
tal interest in statistics. Existing methods such as Kolmogorov-Smirnov and Cramer-
von-Mises tests do not scale well as the dimensionality increases and provides no easy
way to characterize the difference should it exist. In this work, we propose a theoret-
ical framework for inference that addresses these challenges in the form of a prior for
Bayesian nonparametric analysis. The new prior is constructed based on a random-
partition-and-assignment procedure similar to the one that defines the standard op-
tional Polya tree distribution, but has the ability to generate multiple random distri-
butions jointly. These random probability distributions are allowed to “couple”, that is
to have the same conditional distribution, on subsets of the state space. We show that
this “coupling optional Polya tree” prior provides a convenient and effective way for
both the testing of two sample difference and the learning of the underlying structure
of the difference. In addition, we discuss some practical issues in the computational
implementation of this prior and provide several numerical examples to demonstrate
its work.

1 Introduction

Two sample comparison is a fundamental problem in statistics. With two samples of data
at hand, one often wants to answer the question—“Are these two samples different?” In
slightly more statistical language, one is interseted in testing the null hypothesis that the
two data samples were generated from the same distribution. In addition, in the presence
of evidence for deviation between the two samples, one often hopes to learn the structure of
such difference in order to understand, for example, what factors could have played a role
in causing the difference. Hence two sample comparison is interesting both as a hypothesis
testing problem and as a data mining problem. In this work, we consider the problem from
both aspects, and develop a Bayesian nonparametric approach that can serve both the testing
and the learning purposes.
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Nonparametric hypothesis testing for two sample difference has a long history and rich
literature, and many methods have been proposed. Some well-known examples include
Wilcoxon test [12, p.243], Kolmogorov-Smirnov test [6, pp. 392–394] and Cramer-von-Mises
test [1]. Recently, this problem has also been investigated from a Bayesian nonparametric
perspective using the Polya tree prior [10].

Despite the success of these existing testing methods for one-dimensional problems, two
sample comparison in multi-dimensional spaces remains a challenging task. A basic idea
for many existing methods is to estimate the two underlying distributions, and then use
a distance metric to measure the dissimilarity between the two estimates. Tests such as
Kolmogorov-Smirnov (K-S) and Cramer-von-Mises (CvM) fall into this category. However,
reliably characterizing distributions in multi-dimensional problems, if computationally fea-
sible at all, often requires a prohibitively large number of data points. With even just a
moderate number of dimensions, the estimated distributional distance is often highly vari-
able or biased. This is true even when the underlying difference is structurally very simple
and can be accounted for by a relatively small number of dimensions in the space. This
so-called “curse of dimensionality” demonstrates itself in the Bayesian context as well.

One general approach to dealing with the curse of dimensionality when characterizing
distributions in a multi-dimensional space is to learn from the data a partition of the space
that best reflects the underlying structure of the distribution(s). A good partition of the
space overcomes the sparsity of the data by placing true neighbors together, and it reduces
computational burden by allowing one to focus on the relevant blocks in the space. Hence
it can be very helpful in multi-dimensional, and especially high-dimensional, settings to
incorporate the learning of a representative partition of the space into the inference proce-
dure. Wong and Ma [18] adopted this idea and introduced the optional Polya tree (OPT)
prior as such a method under the Bayesian nonparametric framework. Through optional
stopping and randomized splitting of the state space, a recursive partitioning procedure is
incorporated into the parametrization of this prior, thereby allowing the data to suggest
parsimonious divisions of the space. Althought the OPT prior deals with only one data
sample, similar ideas can also be utilized for problems involving more than one sample as
will be demonstrated in this work.

Besides the difficulty in handling multidimensional problems, existing nonparametric
methods for two sample comparison are also unsatisfactory in that they provide no easy
way to learn the underlying structure of the difference should it exist. Tests such as K-S
and CvM provide statistics with which to test for the existence of a difference, but does
not allow one to characterize the difference—for example what variables are involved in
the difference and how. One has to resort to methods such as logistic regression that rely
on strong modelling assumptions to investigate such structure. Similarly, a Bayes factor
computed using nonparametric priors such as Dirichlet process mixture and the Polya tree
prior also sheds no light on where the evidence for difference has arisen.

In this work, we introduce a new prior called “coupling optional Polya tree” (co-OPT)
designed for Bayesian nonparametric inference on the two sample problem. This new prior
jointly generates two random distributions through a random-partitioning-and-assignment
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procedure similar to the one that gives rise to the OPT prior [18]. The co-OPT framework
allows both hypothesis testing on the null hypothesis and posterior learning of the distri-
butional difference in terms of a partition of the space that “best” reflects the difference
structure. The ability to make posterior inference on a partition of the space also enhances
the testing power for multi-dimensional problems.

This paper is organized as follows. In Section 2 we review the construction of the OPT
distribution. In Section 3 we generalize the definition of the OPT distribution by replacing
the “uniform base measure” (defined later) with a general absolutely continuous distribution,
and show that this generalized prior can be used for investigating the goodness-of-fit of the
data to the base distribution. In Section 4 we introduce the co-OPT prior and show how
Bayesian inference can be carried out using this prior. In addition, we discuss the practical
issues in implementing inference using this prior. In Section 5 we provide several numerical
examples to illustrate inference on the two sample comparison problem using this prior.
Then in Section 6 we present a method for inferring two common distributional distances,
L1 and Hellinger, between the two sample distributions using a co-OPT prior and provide
two more numerical examples. Section 7 concludes with a few remarks.

We close this introduction with a few words on the recent development in the Bayesian
nonparametric literature on related topics. In the past 15 years, several methods have been
proposed for testing the one sample goodness-of-fit, in particular, for non-parametric alter-
natives against a parametric null. For some examples see [7, 5, 4, 3, 9, 14, 17]. As for two
sample comparison, Holmes et. al. [10] introduced a way to compute the Bayes factor for
testing the null through the marginal likelihood of the data with Polya tree priors. Under
the null, they model the two samples to have come from a single random measure distributed
as a Polya tree, while under the alternative from two separate Polya tree distributions. In
contrast, our new prior allows the two distributions to be generated jointly through one
prior even when they are different. It is this joint generation that allows both the testing of
the difference and the learning of the structure simultaneously. There are other approaches
to joint modeling of multiple distributions in the Bayesian nonparametric literature. For
example, one idea is to use “dependent Dirichlet processes” [13]. For some notable exam-
ples developed in this framework see [15, 16, 8], among many others. Compared to these
methods based on Dirichlet processes, our method, based on the optional Polya tree, al-
lows the resolution of the inference to be adaptive to the data structure and handles the
sparsity in multidimensional settings using random partitioning [18]. Moreover, our method
allows direct inference on the distributional difference without relying on inferring the two
distributions per se, making it particularly suited for comparison across multiple samples.
This point will be further discussed in Section 4.2 and illustrated in the examples given in
Sections 5 and 6.

2 Optional Polya trees and Bayesian inference

Wong and Ma [18] introduced the optional Polya tree (OPT) distribution as an extension to
the Polya tree prior that allows optional stopping and randomized partitioning of the state
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space Ω, where Ω is either finite or a rectangle in an Euclidean space. One can think of this
prior as a procedure for generating random probability measures on Ω that consists of two
components—(1) random partitioning of the space and (2) random probability assignment
into the parts of the space produced by the partitioning.

We first review how the OPT prior randomly partitions the space. Let R denote a
partition rule function which, for any subset A of Ω, defines a number of ways to partition
A into a finite number of smaller sets. For example, for Ω = [0, 1], the diadic split rule R
is that R(A)={ cutting A in the middle of its range } if A is an non-empty interval and =
∅ otherwise. We call a rule function R finite if ∀A ⊂ Ω, we have M(A) := |R(A)| < ∞,
in which case we can say A can be divided in M(A) ways in the usual sense. In the rest of
the paper, we will only consider finite partition rules. Let Kj(A) be the number of children
specified by the jth way to partition A under R(A), and let Aj

i denote the ith child set of
A in that way of partitioning. We can write R(A) as

R(A) = {{A1
1, A

1
2, . . . A

1
K1}, {A2

1, A
2
2, . . . , A

2
K2}, . . . {AM

1 , AM
2 , . . . AM

KM}} =
{

{Aj
i}

Kj

i=1

}M

j=1
,

where for simplicity we suppressed notation by writing M for M(A) and K for K(A).
A partition rule function R does not specify any particular partition on Ω but rather

a collection of possible partitions over which one can draw random samples. The OPT
prior samples from this collection of partitions in the following sequential way. Starting
from the whole space A = Ω. If M(A) = 0, then A is not divisible under R and we
call A an atom (set). In this case the partitioning of A is completed. If M(A) > 0, that
is, A is divisible, then a Bernoulli(ρ(A)) random variable S(A) is drawn. If S(A) = 1,
we stop partitioning A. Hence S(A) is called the stopping variable for A, and ρ(A) the
stopping probability. If S(A) = 0, A is divided in the J(A)th of the M(A) available ways for
partitioning A under R(A), where J(A) is a random variable taking values 1, 2, . . . ,M(A)

with probabilities λ1(A), λ2(A), . . . , λM(A)(A) respectively, and
∑M(A)

j=1 λj(A) = 1. J(A) is
hence called the (partition) selector variable, and λ(A) = (λ1(A), λ2(A), . . . , λM(A)(A)) the

(partition) selector probabilities. If J(A) = j, we partition A into {Aj
1, A

j
2, . . . A

j

Kj(A)
}, and

then apply the same procedure to each of the children. In addition, if A is reached from Ω
after k steps (or levels) of such nested recursive partitioning (NRP), then we say that Aj

i is
reached after k + 1 steps (or levels) of NRP. (To complete this inductive definition, we say
that the space Ω is reached after 0 steps of NRP.)

The first question that naturally arises is whether this sequential procedure will eventually
“stop” and produce a well defined partition on Ω. Given that the stopping probability
ρ(A) > δ for some δ and all A, this is indeed true in the following sense. If we let µ be the
natural measure on Ω—the Lebesgue measure if Ω is a rectangle in an Euclidean space or
the counting measure if Ω is finite, then µ(T k

1 ) → 0 with probability 1, where T k
1 is the part

of Ω that is still not stopped after k steps of NRP. In other words, the partitioning procedure
will stop almost everywhere on Ω.

The second component of the OPT prior is random probability assignment. The prior
assigns probability mass into the randomly generated parts of the space in the following
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manner. Starting from A = Ω, assign Q(A) = 1 total probability to A. If A is stopped or is
an atom, then let the conditional distribution within A be uniform. That is, Q(·|A) = u(·|A),
where u denotes the uniform density (w.r.t. µ) and this completes the probability assignment
on A. If instead A has children {Aj

1, A
j
2, . . . A

j

Kj(A)}, (this occurs when S(A) = 0 and J(A) =

j,) a random vector (θj1(A), θ
j
2(A), . . . , θ

j

Kj(A)
(A)) on the Kj(A) − 1 dimensional simplex is

drawn from a Dirichlet(αj
1(A), α

j
2(A), . . . , α

j

Kj(A)(A)) distribution, and we assign to each child

Aj
i probability mass Q(Aj

i ) = Q(A)θji (A). We call θj(A) = (θj1(A), θ
j
2(A), . . . , θ

j

Kj(A)(A)) the

(probability) assignment vector, and α
j(A) = (αj

1(A), α
j
2(A), . . . , α

j

Kj(A)
(A)) the pseudo-

count parameters. Then we go to the next level and assign probability mass within each of
the children in the same way.

Theorem 1 in [18] shows that if ρ(A) > δ for some δ > 0 and all A, then with probability
1 this random partitioning and assignment procedure will give rise to a probability measure
Q on Ω that is absolutely continuous with respect to µ. This random measure Q is said to
have an OPT distribution with (partition rule R and) parameters ρ, λ and α, which can
be written as OPT (R; ρ,λ,α). In addition, Wong and Ma [18] also show that under mild
conditions, this prior has large support—any L1 neighborhood of an absolutely continuous
distribution (w.r.t. µ) on Ω has positive prior probability.

Two key features of the prior are demonstrated from the above constructive description.
The first is self-similarity. If a set A is reached as a node during the procedure, then the
continuing partitioning and assignment within A, which specifies the conditional distribution
on A, is just an OPT procedure with Ω = A. The second feature is the prior’s implicit
hierarchical structure. To see this, we note that the random distribution that arises from
such a prior is completely determined by the partition and assignment variables S, J , and θ,
while the prior parameters ρ, λ and α specify the distributions of these “middle” variables.

These two features allow one to write down a recursive formula for the likelihood under
a random distribution arising from such a prior. To see this, first let Q (with density q) be a
distribution arising from an OPT (R; ρ,λ,α) distribution, and for A ⊂ Ω, let q(·|A) be the
conditional density on A. Let S, J , and θ be the corresponding partition and assignment
variables for Q (or q). Suppose one has n i.i.d. observations, x1, x2, . . . , xn, on Ω from
q(·|Ω). Define

x(A) = {x1, x2, . . . , xn} ∩A,

the observations falling in A, and n(A) = |x(A)|, the number of observations in A. Then for
any A that is a node reached in the recursive partitioning process determined by the S and
J variables, the likelihood of observing x(A) conditional on A is

q (x(A)|A) = Su (x(A)|A) + (1− S)





KJ
∏

i=1

(

θJi
)n(AJ

i )









KJ
∏

i=1

q
(

x
(

AJ
i

) ∣

∣AJ
i

)



 , (2.1)

where u(x(A)|A) = 1
µ(A)n(A) is the likelihood under the uniform distribution on A, S = S(A),

J = J(A), KJ = KJ(A)(A), and θJi = θ
J(A)
i (A). (Note that for this formula to hold we need

to define q (∅|A) := 1.) From now on we will always suppress the “(A)” notation for the
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random variables and the parameters where this adds no confusion. Similarly, we will use
q(x|A) and u(x|A) to mean q(x(A)|A) and u(x(A)|A), respectively.

Integrating out S, J , and θ in (2.1), we get the corresponding recursive representation
of the marginal likelihood

P (x|A) = ρu(x|A) + (1− ρ)

M
∑

j=1

λj

D(nj +α
j)

D(αj)

Kj
∏

i=1

P
(

x|Aj
i

)

, (2.2)

where P (x|A) = P (x(A)|A), n
j = n

j(A) = (n(Aj
1), n(A

j
2), . . . , n(A

j

Kj(A)
)), and D(t) =

Γ(t1) . . .Γ(tk)/Γ(t1 + · · ·+ tk). This provides a recipe for computing the marginal likelihood
conditional on A, P (x|A), for all potential tree nodes A determined by R.

The final result we review in the section is the conjugacy of the OPT prior. More
specifically, given the i.i.d. observations x, the posterior distribution of Q is again an OPT
distribution with

1. Stopping probability:
ρ(A|x) = ρ(A)u(x|A)

/

P (x|A)

2. Selection probabilities:

λj(A|x) ∝ λj(A)
D(nj +α

j)

D(αj)

Kj
∏

i=1

P
(

x|Aj
i

)

for j = 1, . . . ,M(A)

3. Probability assignment pseudo-counts:

αj
i (A|x) = αj

i (A) + n(Aj
i )

for j = 1, . . . ,M(A) and i = 1, 2, . . . , Kj(A)

where again A is any potential node determined by the partition rule function R on Ω.

3 Optional Polya trees with general base measures

In the constructive procedure for an OPT distribution described above, whenever a node
A is stopped, the conditional distribution within it is generated from that of a baseline
distribution, namely the uniform u(·|A). For this reason, we say that the collection of
conditional uniform distributions, {u(·|A) : A is a potential node under R}, are the local
base measures. With uniform local base measures, the stopping probability ρ for a region A
represents the probability that the distribution is “flat” within A. Accordingly, the posterior
OPT concentrates probability mass around partitions that best captures the “non-flatness”
in the density of the data distribution. Such a partitioning criterion is most natural in the
context of density estimation.
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One can extend the original OPT construction by adopting different local base measures
or stopping criteria for the nodes. More specifically, we can replace u(·|A) with any absolutely
continuous measuremA(·) on node A in the probability assignment step. That is, when a tree
nodeA is stopped, we let the conditional distribution inA bemA(·). With this generalization,
the recursive constructive procedure for the OPT distribution and the recipe for Bayesian
inference described in the previous section still follow through.

One choice of the mA measures is of particular interest. Specifically, we can let mA(·) =
q0(·|A) for some absolutely continuous distribution Q0 with density q0 on Ω. For this special
case, we have the following definition.

Definition 1. The random probability measure Q that arises from the random-partitioning-
and-assignment (RPAA) procedure described in the previous section, with u replaced by
q0, the density (w.r.t. µ) of an absolutely continuous distribution Q0, is said to have an
optional Polya tree distribution on R with parameters λ, α, ρ, and (global) base measure
(or distribution) Q0. We denote this distribution by OPT (R;λ,α, ρ;Q0).

The next theorem shows that by choosing an appropriate partitioning rule R and/or
suitable pseudocount parameters α, one can enforce the random distribution Q to “center
around” the base measure Q0.

Theorem 1. If Q ∼ OPT (R; ρ,λ,α;Q0), where δ < ρ(A) for some δ and all potential tree
nodes A, then ∀ Borel set B,

EQ(B) = Q0(B),

provided that for all A, j = 1, 2, . . . ,M(A) and i = 1, 2, . . . , Kj(A), we have

αj
i (A)/

Kj(A)
∑

h=1

αj
h(A) = Q0(A

j
i )/Q0(A).

Proof. Consider the RPAA procedure described in the previous section with the uniform
base distribution u replaced by q0. So under this new procedure of generating a random
measure Q, whenever a region A gets stopped, the conditional distribution of Q within A is
set to be Q0(·|A). Let Q

(k) be the corresponding random distribution that is forced to stop
after k levels of nested partitioning. In other words, for all non-stopped nodes A reached
after k levels of nested partitioning, we stop dividing A regardless of the stopping variable
S(A) and force a conditional distribution Q0(·|A) on it to obtain Q(k). (For more detail see
the proof of Theorem 1 in [18].)

We first show that if αj
i (A)/

∑Kj(A)
h=1 αj

h(A) = Q0(A
j
i )/Q0(A), then EQ(k)(B) = Q0(B) for

all k. For k ≥ 0, let J (k) be the collection of all partition random variables S and J drawn
in the first k levels of partitioning, and let A(J (k)) be the collection of all leaf nodes after k
levels of random partitioning—those are the nodes that are either just reached in the kth step
or are reached earlier but stopped. We prove by induction that E

(

Q(k)(B)|J (k)
)

= Q0(B).
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For k = 0, J (k) = ∅, A(J (k)) = {Ω}, and Q(0) = Q0 and so E
(

Q(k)(B)|J (k)
)

= Q0(B) holds
trivially. Now for k ≥ 1, suppose this holds true for 1, 2, . . . , k − 1. By construction,

Q(k)(B) =
∑

A∈A(J (k))

Q(k)(A)
Q0(B ∩ A)

Q0(A)
.

Let Ap ∈ A(J (k−1)) be the parent node of A, that is, the node whose division gives rise to

A. Then by the condition that αj
i (A)/

∑Kj(A)
h=1 αj

h(A) = Q0(A
j
i )/Q0(A), we have

E(Q(k)(A)/Q(k)(Ap)|J (k)) = Q0(A)/Q0(A
p),

and so

E
(

Q(k)(B)|J (k)
)

= E





∑

A∈A(J (k))

Q(k)(A)
Q0(B ∩ A)

Q0(A)

∣

∣

∣
J (k)





=
∑

A∈A(J (k))

Q0(B ∩A)

Q0(A)
E

(

Q(k)(A)
∣

∣

∣
J (k)

)

=
∑

A∈A(J (k))

Q0(B ∩A)

Q0(A)
E

(

Q(k)(A)

Q(k)(Ap)
Q(k)(Ap)

∣

∣

∣
J (k)

)

=
∑

A∈A(J (k))

Q0(B ∩A)

Q0(A)

Q0(A)

Q0(Ap)
E

(

Q(k)(Ap)
∣

∣

∣
J (k)

)

=
∑

A∈A(J (k))

Q0(B ∩A)

Q0(Ap)
E

(

Q(k−1)(Ap)
∣

∣

∣
J (k)

)

=
∑

A∈A(J (k))

Q0(B ∩A) = Q0(B).

This shows that E
(

Q(k)(B)|J (k)
)

= Q0(B) and thus EQ(k)(B) = Q0(B) for all k. But since

|Q(k)(B) − Q(B)| → 0 a.s. (see the proof of Theorem 1 in [18]), by bounded convergence
theorem, we have E|Q(k)(B)−Q(B)| → 0, and so EQ(B) = Q0(B).

Remark: If we have equal pseudocounts, that is, αj
1(A) = αj

2(A) = · · · = αj

Kj(A)
(A) for all

potential nodes A and all j, then the condition for the theorem becomes Q0(A
j
i )/Q0(A) =

1/Kj(A). Therefore one can choose a partition rule R on Ω based on the base measure to
center the prior.

Bayesian inference using the OPT prior with general base measures can be carried out
just as before. More specifically, the recursive likelihood equation (2.1) becomes

q (x|A) = Sq0 (x|A) + (1− S)





KJ
∏

i=1

(

θJi
)n(AJ

i )









KJ
∏

i=1

q
(

x
∣

∣AJ
i

)



 , (3.1)
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and (2.2) becomes

P (x|A) = ρ q0(x|A) + (1− ρ)

M
∑

j=1

λj

D(nj +α
j)

D(αj)

Kj
∏

i=1

P
(

x|Aj
i

)

(3.2)

where q0(x|A) =
∏

x∈x(A) q0(x|A), the likelihood of observing x(A) on A under q0(·|A). The
posterior parameter values are also same as before with u replaced by q0.

An important fact is that a random distribution with this prior has positive probability
to be exactly the same as the base distribution, which is also the mean of the OPT under the
condition given in Theorem 1. Therefore, one can think of the inferential procedure for the
OPT prior as a sequence of recursive comparison steps to the base measure. More specifi-
cally, the partitioning decision on each node A is determined by comparing the conditional
likelihood of the data within A under Q0 to the composite of M(A) composite alternatives.
The partition of each node A stops when the observations in A “fits” the structure of the
base measure, and the posterior values of the partitioning variables capture the discrepancy,
if any, between the data and the base. Consequently, this framework can be used to recur-
sively test for the goodness-of-fit and learn its structure. For each elementary region A, the
posterior stopping probability is the probability that the data distribution coincides with the
base distribution conditional on A. In particular, the posterior stopping probability for the
whole space Ω, ρ(Ω), measures how well the observed data fit the base overall. The posterior
values of the other partitioning and pseudocount variables reflect where and how the data
distribution differs from the base.

4 Coupling optional Polya trees and two sample comparison

In this section we consider the case when two i.i.d. samples are observed and one is interested
in testing and characterizing the potential difference between the underlying distributions.
From now on, we let Q1 and Q2, with densities q1 and q2, be the two distributions from
which the two samples have come from.

4.1 Coupling optional Polya trees

A conceptually simple way to compare Q1 and Q2 is to proceed in two steps—first estimate
the two distributions separately, and then use some distance metric to quantify the difference.
For example, one can place an OPT prior on each of Q1 and Q2 and use the posteriors to
estimate the densities [18]. (Other density estimators can also be used for this purpose.)
With the density estimates available, one can then compute standard distance metrics such
as L1, and in turn use this as a statistic for testing the difference. (This approach provides
no easy way to characterize how the two distributions are different.)

However, this two-step method is undesirable in multidimensional, and especially high-
dimensional, settings. The main reason is that reliably estimating multidimensional distri-
butions is a very difficult problem, and in fact often a much harder problem than comparing
distributions. This difficulty in turn translates into either high variability or large bias in the
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distance estimates, and thus low statistical power. Using this approach, one is essentially
making inference on the distributional difference indirectly, through the inference on a large
number of parameters that characterize the two distributions per se but have little to do
with their difference.

Following this reasoning, it is favorable to make direct inference on “parameters” that
capture the distributional difference. But such direct inference requires (from a Bayesian
perspective) that the two distributions be generated from a joint prior. This prior should be
so designed that in the corresponding joint posterior, information regarding the distributional
difference can be extracted directly. We next introduce such a prior.

Our proposed method for generating the two distributions Q1 and Q2 is again based on
a procedure that randomly partitions the space Ω and assigns probability masses into the
parts, similar to the one that defines the OPT prior. What differs from the procedure for
the OPT is that we add in an extra random component—the conditional coupling of the
two measures Q1 and Q2 within the tree nodes. We next explain this construction in detail.
Starting from the whole space A = Ω, we draw a random variable

C(A) ∼ Bernoulli(γ(A)),

which we call the coupling variable. If C(A) = 1, then we force Q1 and Q2 to be coupled
conditional on A—that is, Q1(·|A) = Q2(·|A)—and we achieve this by generating a common
conditional distribution from a stanford OPT on A. That is

Q1(·|A) = Q2(·|A) ∼ OPT|A(R; ρ,λb,αb),

where the “b” superscript stands for “base”, and the “|A” notation should be understood
as the restriction to A of the partition rule R, the stopping variables ρ, the partition selec-
tor variables λ

b, and the assignment pseudo-count variables α
b. (For A = Ω, there is no

restriction.) If C(A) = 0, then we draw a partition selector variable

J(A) ∈ {1, 2, . . . , n} with P (J(A) = j) = λj(A).

If J(A) = j, then we partition A under the jth way according to R(A). Then draw two
independent assignment vectors

θ
j
1(A) = (θj11(A), θ

j
12(A), . . . , θ

j

1Kj(A)
(A)) ∼ Dirichlet(αj

11(A), α
j
12(A), . . . , α

j

1Kj(A)
(A))

θ
j
2(A) = (θj21(A), θ

j
22(A), . . . , θ

j

2Kj(A)(A)) ∼ Dirichlet(αj
21(A), α

j
22(A), . . . , α

j

2Kj(A)(A)),

and let
Q1(A

j
i ) = Q1(A)θ

j
1i(A) and Q2(A

j
i ) = Q2(A)θ

j
2i(A)

for each child Aj
i of A. We call θj

1(A) and θ
j
2(A) the assignment vectors for Q1 and Q2 (in

the uncoupled state). Then we go down one level and repeat the entire procedure for each
Aj

i , starting from the drawing of the coupling variable.

10



Again, the first natural question to ask is whether this procedure will actually stop and
give rise to two random probability measures (Q1, Q2). The answer is positive under very
mild conditions, and this is formalized in Theorem 2. The statement of the theorem uses
the notion of “forced coupling”, which is similar to the idea of “forced stopping” used in
the proof of Theorem 1 and which we describe next. Let (Q

(k)
1 , Q

(k)
2 ) denote the pair of

random distributions arising from the above random-partitioning-and-assignment procedure
with forced coupling after k-levels of recursive partitioning. That is, if after k levels of
partitioning a node A is reached and the two measures are not coupled on it, then force
them to couple on A and generate Q

(k)
1 (·|A) = Q

(k)
2 (·|A) from OPT|A(R; ρ,λb,αb). We do

this for all such nodes to get (Q
(k)
1 , Q

(k)
2 ).

Theorem 2. In the random-partitioning-and-assignment procedure for generating a pair of
measures described above, if γ(A), ρ(A) > δ for some δ > 0 and all potential tree nodes A

defined by the partition rule R, then with probability 1, (Q
(k)
1 , Q

(k)
2 ) converges to a pair of

absolutely continuous (w.r.t. µ) random probability measures (Q1, Q2) in the following sense.

supE∈B|Q
(k)
1 (E)−Q1(E)|+ |Q(k)

2 (E)−Q2(E)| → 0,

where B is the collection of Borel sets.

Definition 2. This pair of random probability measures (Q1, Q2) is said to have a coupling
optional Polya tree (co-OPT) distribution with partition rule R, coupling parameters λ, α1,
α2, γ, and base parameters λb, αb, ρ, and can be written as coOPT (R;λ,α1,α2, γ;λ

b,αb, ρ).

Proof of Theorem 2. We first claim that with probability 1, Q
(k)
1 and Q

(k)
2 respectively con-

verge in total variational distance to two absolutely continuous random probability measures
Q1 and Q2, and thus for any Borel set E,

|Q
(k)
1 (E)−Q1(E)|+ |Q

(k)
2 (E)−Q2(E)|

≤ supE1∈B|Q
(k)
1 (E1)−Q1(E1)|+ supE2∈B|Q

(k)
1 (E2)−Q1(E2)| → 0, w.p.1.

To prove the claim, we note that the marginal procedure that generates Q1, for instance, is
simply an OPT with random local base measures that arise from standard OPT distributions.
To see this, we can think of the generative procedure of Q1 as consisting of the following two
steps.

1. For each potential tree node A under R, we draw an independent random measure QA
0

from OPT|A(R, ρ,λb,αb).

2. Generate Q1 from the standard random-partitioning-and-random-assignment proce-
dure for an OPT, treating {C(A)} as the stopping variables, {J(A)} as the partition

selector variables, and {θ
J(A)
1 (A)} as the probability assignment variables, and with

{QA
0 } being the local base measures. That is, when a node A is stopped, the condi-

tional distribution Q1(·|A) is set to be QA
0 (·).

11



By Theorem 1 in [18], for each potential node A, with probability 1, QA
0 is an absolutely

continuous distribution. Because the collection of all potential tree nodes A under R is
countable, with probability 1, this simultaneously holds for all QA

0 . Therefore, with proba-
bility 1, the marginal procedure for producing Q1 is just that for an OPT with local base
measures {QA

0 }. The same argument for proving Theorem 1 in [18] (with µ(·|A) replaced
by QA

0 (·)) shows that with probability 1, an absolutely continuous measure Q1 exists as the

limit of Q
(k)
1 in total variational distance. The same argument proves the claim for Q2 as

well.

Similar to the OPT prior, the co-OPT distribution has large support under the L1 metric.
This is formulated in the following theorem.

Theorem 3. Let Ω be a bounded rectangle in R
p. Suppose that the condition of Theorem 2

holds along with the following two conditions:

(1) Under the partition rule R, the diameters of the elementary regions uniformly decreases
to 0 with their levels.

(2) The coupling probabilities γ(A), stopping probabilities ρ(A), coupling selector probabil-
ities λj(A), base selection probabilities λb

j(A), as well as the assignment probabilities

αj
1i(A)/(

∑

l α
j
1l(A)), α

j
2i(A)/(

∑

l α
j
2l(A)), and αbj

i (A)/(
∑

l α
bj
l (A)) for all i, j and all

potential elementary regions are uniformly bounded away from 0 and 1.

Let q1 = dQ1/dµ and q2 = dQ2/dµ, then for any two density functions f1 and f2, and any
τ > 0, we have

P

(
∫

|q1(x)− f1(x)|dµ < τ and

∫

|q2(x)− f2(x)|dµ < τ

)

> 0.

Proof. Because any density function on Ω can be arbitrarily approximated in L1 by uniformly
continuous ones, without loss of generality, we can assume that f1 and f2 are uniformly
continuous. Let

δ1(ǫ) = sup
|x−y|<ǫ

|f1(x)− f1(y)| and δ2(ǫ) = sup
|x−y|<ǫ

|f2(x)− f2(y)|.

By uniform continuity, we have δi(ǫ) ↓ 0 as ǫ ↓ 0 for i = 1, 2. Also, by Condition (1), for any
ǫ > 0, there exists an integer k, such that for all nodes of level k or deeper, their diameters
are less than ǫ. Let Ω = ∪I

i=1Ai be a partition of Ω that can be achieved by k steps of nested
partitioning. Then because the parameters of the coOPT are all bounded away from 0 and
1, there is a positive probability that the Ai’s are exactly the sets on which Q1 and Q2 first
couple. Now let qAi be the local base measure on each of Ai, we can write

q1(x) =
I
∑

i=1

Q1(Ai)q
Ai(x)1Ai

(x) and q2(x) =
I
∑

i=1

Q2(Ai)q
Ai(x)1Ai

(x).

12



Accordingly,
∫

|q1(x)− f1(x)|dµ(x)

=

I
∑

i=1

∫

Ai

|Q1(Ai)q
Ai(x)− f1(x)|dµ(x)

≤
I
∑

i=1

Q1(Ai)

∫

Ai

|qAi(x)− 1/µ(Ai)|dµ(x) +
I
∑

i=1

∫

Ai

|Q1(Ai)/µ(Ai)− f1(x)|dµ(x)

≤
I
∑

i=1

∫

Ai

|qAi(x)−1/µ(Ai)|dµ(x)+
I
∑

i=1

|Q1(Ai)−f i
1 µ(Ai)|+

I
∑

i=1

∫

Ai

|f i
1−f1(x)|dµ(x)

where f j
1 :=

∫

Ai
f1(x)dµ(x)/µ(Ai). By the exact same calculation we have

∫

|q2(x)− f2(x)|dµ(x)

≤
I
∑

i=1

∫

Ai

|qAi(x)−1/µ(Ai)|dµ(x)+
I
∑

i=1

|Q2(Ai)−f i
2 µ(Ai)|+

I
∑

i=1

∫

Ai

|f i
2−f2(x)|dµ(x)

where f j
2 :=

∫

Ai
f2(x)dµ(x)/µ(Ai). By the choice of Ai, we have that

∫

Ai
|f i

1− f1(x)|dµ(x) ≤

δ1(ǫ)µ(Ai) and
∫

Ai
|f i

2 − f2(x)|dµ(x) ≤ δ2(ǫ)µ(Ai). Thus,

I
∑

i=1

∫

Ai

|f i
1 − f1(x)|dµ(x) ≤ δ1(ǫ)µ(Ω) and

I
∑

i=1

∫

Ai

|f i
2 − f2(x)|dµ(x) ≤ δ2(ǫ)µ(Ω).

So by choosing ǫ small enough, we can have

max{δ1(ǫ), δ2(ǫ)}µ(Ω) < τ/3.

Next, because all the coupling parameters of the coOPT prior are uniformly bounded away
from 0 and 1, (conditional on the coupling partition) with positive probability, we have

|Q1(Ai)− f i
1 µ(Ai)| <

τ

3µ(Ω)
and |Q2(Ai)− f i

2 µ(Ai)| <
τ

3µ(Ω)

for all i = 1, 2, . . . , I. Similarly, because all the base parameters are also uniformly bounded
away from 0 and 1, by Theorem 2 in [18], (conditional on the coupling partition and proba-
bility assignments,) with positive probability we have

∫

Ai

|qAi(x)− 1/µ(Ai)|dµ(x) <
τ

3 · 2i

for all i = 1, 2, . . . , I. Placing the three pieces together, we have positive probability for
∫

|q1(x)− f1(x)|dµ < τ and
∫

|q2(x)− f2(x)|dµ < τ to hold simultaneously.
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4.2 Bayesian inference on the two sample problem using co-OPT prior

We next show that the co-OPT prior is conjugate and introduce the recipe for making in-
ference on the two sample problem using this prior. Suppose (Q1, Q2) is distributed as
coOPT (R;λ,α1,α2, γ;λ

b,αb, ρ), and we observe two i.i.d. samples x1 = (x11, x12, . . . , x1n1)
and x2 = (x21, x22, . . . , x2n2) from Q1 and Q2 respectively. For a node A reached dur-
ing the random partitioning steps in the generative procedure of (Q1, Q2), let x1(A) =
{x11, x12, . . . , x1n1} ∩ A and x2(A) = {x21, x22, . . . , x2n2} ∩ A be the observations from the
two samples in A, and let n1(A) = |x1(A)| and n2(A) = |x2(A)| be the sample sizes in A.
As before, we let q1 and q2 denote the densities of the two distributions and let qA0 denote
the density of the random local base measure QA

0 .
The likelihood of x1(A) on A under q1(·|A) and that for x2(A) under q2(·|A) are











q1(x1|A) = CqA0 (x1) + (1− C)
∏KJ

i=1(θ
J
1i)

n1(AJ
i )q1(x1|A

J
i )

q2(x2|A) = CqA0 (x2) + (1− C)
∏KJ

i=1(θ
J
2i)

n2(AJ
i )q2(x2|A

J
i )

(4.1)

where we have again suppressed the “(A)” notation for C(A), J(A), K(A)J(A), θ
J(A)
1i (A),

θ
J(A)
2i (A), x1(A) and x2(A). The joint likelihood of observing x1(A) and x2(A) conditional
on A is

q1(x1|A)q2(x2|A) = CqA0 (x1,x2) + (1− C)

KJ
∏

i=1

(θJ1i)
n1(AJ

i )(θJ2i)
n2(AJ

i )q1(x1|A
J
i )q2(x2|A

J
i ),

(4.2)

where qA0 (x1,x2) = qA0 (x1)q
A
0 (x2) is the standard OPT likelihood for the combined sample

x(A) = (x1(A),x2(A)) on A given by (2.1). Integrating out qA0 , C, J , θJ
1 and θ

J
2 from (4.2),

we get the conditional marginal likelihood

P (x1,x2|A) = γP0(x1,x2|A) + (1− γ)
M
∑

j=1

λj

D(nj
1 +α

j
1)D(nj

2 +α
j
2)

D(αj
1)D(αj

2)

Kj
∏

i=1

P (x1,x2|A
j
i ),

(4.3)

where n
j
h = (nh(A

j
1), nh(A

j
2), . . . , nh(A

j

Kj) and α
j
h = (αj

h1(A), α
j
h2(A), . . . , α

j

hKj(A)) for h =
1, 2, and P0(x1,x2|A) is the conditional marginal likelihood of the combined sample under
a standard OPT as given by (2.2). Equation (4.3) provides a recursive recipe for computing
the marginal likelihood term P (x1,x2|A) for each potential tree node A. (Of course, for this
recipe to be of use, one must also specify the terminal conditions for the recursion. We will
discuss ways to specify such conditions in the next subsection.)

From (4.3) one can tell that the posterior distribution of (Q1, Q2) is still a co-OPT distri-
bution through the following reasoning. The first term on the RHS of (4.3), γP0(x1,x2|A),
is the probability (conditional on A being a node reached in the partitioning) of the event

{Q1 and Q2 get coupled on A, observe x1(A) and x2(A)}.
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The second term, (1− γ)
∑M

j=1 λj
D(nj

1+α
j
1)D(nj

2+α
j
2)

D(αj
1)D(αj

2)

∏Kj

i=1 P (x1,x2|A), is the probability of

{Q1 and Q2 are not coupled on A, observe x1(A) and x2(A)}.

Each summand, λj
D(nj

1+α
j
1)D(nj

2+α
j
2)

D(αj
1)D(αj

2)

∏Kj

i=1 P (x1,x2|A), is the probability (given that C(A) =

0) of

{divide A in the jth way, observe x1(A) and x2(A)}.

Finally, given that C(A) = 0 and J(A) = j, the posterior distribution for θ
j
1 and θ

j
2 are

Dirichlet(nj
1 +α

j
1) and Dirichlet(nj

2 +α
j
2), respectively. This reasoning, together with The-

orem 3 in [18], shows that the co-OPT prior is conjugate, and simple applications of Bayes’
Theorem provide the formulae of the parameter values for the posterior. The results are
summarized in the next theorem.

Theorem 4. Suppose x1 = (x11, x12, . . . , x1n1) and x2 = (x21, x22, . . . , x1n2) are two indepen-
dent i.i.d. samples from Q1 and Q2. Let (Q1, Q2) have a coOPT (R;λ,α1,α2, γ;λ

b,αb, ρ)
prior that satisfies the conditions in Theorem 2. Then the posterior distribution of (Q1, Q2)
is still a coupling optional Polya tree with the following parameters.

1. Coupling probabilities:

γ(A|x1,x2) = γ(A)P0(x1,x2|A)/P (x1,x2|A).

2. Partition selection probabilities:

λj(A|x1,x2) ∝ λj(A)
D(nj

1 +α
j
1)D(nj

2 +α
j
2)

D(αj
1)D(αj

2)

Kj
∏

i=1

P (x1,x2|A), j = 1, 2, . . . ,M(A).

3. Probability assignment pseudo-counts:

αj
1i(A|x1,x2) = n1(A

j
i ) + αj

1i(A) and αj
2i(A|x1,x2) = n2(A

j
i ) + αj

2i(A),

for j = 1, 2, . . . ,M(A) and i = 1, 2, . . . , Kj(A).

4. Base stopping probabilities:

ρ(A|x1,x2) = ρ(A)u(x1,x2|A)/P0(x1,x2|A).

5. Base selection probabilities:

λb
j(A|x1,x2) ∝ λb

j(A)
D(nj

1 + n
j
2 +α

bj)

D(αbj)

Kj
∏

i=1

P0(x1,x2|A), j = 1, 2, . . . ,M(A).
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6. Base probability assignment pseudo-counts:

αbj
i (A|x1,x2) = n1(A

j
i ) + n2(A

j
i ) + αbj

i (A),

for j = 1, 2, . . . ,M(A) and i = 1, 2, . . . , Kj(A).

Two remarks: (1) All of the posterior parameter values can be computed exactly using the
above formulae, without the need of any Monte Carlo procedure. (2) The posterior coupling
parameters contain the information about the difference between the two underlying distri-
butions Q1 and Q2, while the posterior base parameters contain the information regarding
the underlying structure of the two measures. This naturally suggests that if one is only
interested in two sample comparison, one should only need the posterior distribution of the
coupling variables, and not those of the base variables. This will become clear in Sections 5
and 6 where we give several numerical examples.

4.3 Terminal conditions

As mentioned earlier, we need to specify the terminal conditions for the recursion used to
compute P (x1,x2|A). Depending on the nature of Ω and the prior specification, the recursion
formula (4.3) can terminate in several ways as demonstrated in the following two examples.

Example 1 (2p contingency table). Let Ω = {1, 2}×{1, 2}× · · ·×{1, 2}. For any rectangle
A in the table—a set of the form A1 × A2 × . . . Ap with A1, A2, . . . , Ap being non-empty
subsets of {1, 2}—let k1, k2, . . . , kM(A) be the “intact” dimensions of A, that is Akj = {1, 2}
for j = 1, 2, . . . ,M(A). Let R be the diadic cutting rule that allows A to be cut into two
halves on each intact dimension j. In our earlier notation,

R(A) =
{

{Aj
1, A

j
2}

M(A)
j=1

}

,

where Aj
1 = A1×A2×· · ·×Akj−1×{1}×Akj+1×· · ·×Ap and Aj

2 = A1×A2×· · ·×Akj−1×
{2} × Akj+1 × · · · × Ap. Suppose two i.i.d. samples x1 and x2 are observed. Assume that
(Q1, Q2) has a co-OPT prior with the following prior parameter values for each rectangle A:
λj(A) = λb

j(A) =
1

M(A)
, αj

i (A) = αbj
i (A) ≡

1
2
for i = 1, 2 and j = 1, 2, . . . ,M(A), and finally

γ(A) ≡ γ0, ρ(A) ≡ ρ0, where γ0 and ρ0 are constants in (0, 1).
In this example, there are three types of terminal nodes for P0(x1,x2|A) and they are

given in Example 3 of [18]. By a similar reasoning, there are also three types of terminal
nodes for P (x1,x2|A).

1. A contains no data point from either sample. In this case, P (x1,x2|A) = 1.

2. A is an atom, that is a single cell, containing any number observations. In this case,
P (x1,x2|A) = 1.

3. A contains a single observation (from either sample). In this case, P (x1,x2|A) =
2−M(A) = 1/µ(A). To see this, first we let

tM(A) = P (x1,x2|A).
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By Example 3 in [18], we have

P0(x1,x2|A) = 2−M(A).

Hence we have

tM(A) = γ02
−M(A) + (1− γ0)

(

1

M(A)

M
∑

j=1

B
(

3
2
, 1
2

)

B
(

1
2
, 1
2

)

)

· tM(A)−1

= γ02
−M(A) + (1− γ0)

1
2
tM(A)−1

= γ02
−M(A)

(

1− (1− γ0)
M(A)

)

1− (1− γ0)
+

(

1− γ0
2

)M(A)

= 2−M(A) = 1/µ(A).

Example 2 (Rectangle in R
p). Let Ω = I1× I2× . . .× Ip be a bounded rectangle in R

p. Let
R be the diadic partition rule such that for any rectangle A of the form A1 × A2 × . . . Ap

with A1, A2, . . . , Ap being non-empty subintervals of I1, I2, . . . , Ip respectively, A can be
divided in half in any of the p dimensions. Again, let x1 and x2 be the two samples,
and let (Q1, Q2) have a co-OPT prior with the following parameters: λj(A) = λb

j(A) ≡
1
p
,

αj
i (A) = αbj

i (A) ≡
1
2
, γ(A) ≡ γ0 and ρ(A) ≡ ρ0, for all A, i = 1, 2, and j = 1, 2, . . . ,M(A).

In this case there are two types of terminal nodes for P (x1,x2|A).

1. A contains no observations. In this case, P (x1,x2|A) = 1.

2. A contains a single observation (from either sample). Then P (x1,x2|A) = 1/µ(A).
We skip the derivation of this as it is similar to that used for Case 3 in Example 1.

Note that in this example we have implicitly assumed that no observations, from either sam-
ple, can be identical. With the assumption that Q1 and Q2 are absolutely continuous w.r.t.
the Lebesgue measure, the probability for any observations to be identical is 0. However this
situation can occur in real data due to rounding. This possibility can be dealt with in our
following discussion on technical termination of the recursion.

Other than the “theoretical” terminal nodes given in the previous two examples, in real
applications it is often desirable to set a technical lower limit on the size of the nodes to be
computed in order to save computation. For instance, in the R

p example, one can impose
that all nodes smaller than 1/1000 of the space Ω be stopped and coupled. That is to let
γ(A) = ρ(A) = 1 by design for all small enough A. The appropriate cutoff threshold of
the node size depends on the nature of the data, but typically there is a wide range of
values that work well. For most problems such a technical constraint should hardly have any
impact on the posterior parameter values for large nodes. It is worth emphasizing that for
real-valued data, which are almost always discretized (due to rounding), such a constraint
actually becomes useful also in preventing numerical anomalies. In such cases, a general rule
of thumb is that one should always adopt a cutoff size larger than the rounding unit relative
to the length of the corresponding boundary of the space.
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5 Numerical examples on two sample comparison

The two most fundamental questions to investigate in a two sample comparison problem are

1. Did the two samples come from the same underlying distribution?

2. If the two came from different distributions, how are the two distributions different?

If one place a co-OPT prior on the pair of distributions, then these questions can be answered
from the posterior co-OPT. In particular, the posterior coupling probability on the whole
space, γ(Ω|x1,x2), is exactly the posterior probability that the two distributions are identical.
In the presence of a small coupling probability on Ω, the coupling parameters reveal how
and where in the space the two distributions differ.

We next provide three numerical examples, Examples 3 through 5, to demonstrate infer-
ence on the two sample problem using the co-OPT prior. In these examples, the posterior
coupling probability of Ω serves as a statistic for testing whether the two samples have come
from the same distribution, which we will refer to as the co-OPT statistic. In Examples 3
and 4 we compare our method to other existing approaches, and in Example 5 we show how
the posterior values of the coupling variables can be used to learn the underlying structure
of the discrepancy between the two samples.

In Examples 3 and 4, whenever the underlying distributions have unbounded support,
we simply use the range of the data points in each dimension to define the rectangle Ω. Also,
in these three examples we use 1/1000 as the size cutoff for “technical” terminal nodes as
discussed in the previous section.

Example 3 (Two sample problem in R). We simulate the control and case samples under
the following three scenarios.

1. Locational shift: Sample 1 ∼ Beta(4,6) and Sample 2 ∼ 0.2 + Beta(4,6) with sample
sizes n1 = n2 = 20.

2. Local structure: Sample 1 ∼ Uniform[0,1] and Sample 2 ∼ 0.5 Beta(20,10) + 0.5
Beta(10,20) with n1 = n2 = 30.

3. Dispersion difference: Sample 1 ∼ N(0,0.5) and Sample 2 ∼ N(0,1) with n1 = n2 = 40.

We place a co-OPT prior on (Q1, Q2) as described in Example 2. (Because here there is
only one dimension, there is no choice of ways to split.) We compare the ROC curves of
four different statistics for testing the null hypothesis that the two samples have come from
the same distribution—namely the Kolmogorov-Smirnov (KS) statistic, Cramer-von-Mises
(CvM) statistic, Cramer-test statistic [2], and our co-OPT statistic. The results are presented
in Figure Figure 1. Our co-OPT statistic behaves worse than the other three tests under the
first scenario when there is a simple locational shift, better than CvM and Cramer tests and
comparable to K-S for the second scenario, slightly worse than the Cramer test but better
than the KS and CvM tests under the last scenario.
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Example 4 (Two sample problem in R
2). Again we simulate two samples under three

scenarios.

1. Locational shift:

Sample 1 ∼ BN

(

(

1
0

)

,

(

22 0
0 22

)

)

and Sample 2 ∼ BN

(

(

0
1

)

,

(

22 0
0 22

)

)

.

2. Dispersion difference:

Sample 1 ∼ BN

(

(

0
0

)

,

(

1 0
0 1

)

)

and Sample 2 ∼ BN

(

(

0
0

)

,

(

0.52 0
0 0.52

)

)

.

3. Local structure:

Sample 1 ∼ BN

(

(

0
0

)

,

(

1 0.52

0.52 1

)

)

, and

Sample 2 ∼ 0.5×BN

(

(

0.5
0.5

)

,

(

0.42 0
0 0.42

)

)

+ 0.5×BN

(

(

−0.5
−0.5

)

,

(

0.42 0
0 0.42

)

)

.

The sample sizes are n1 = n2 = 50 for each scenario. We place a co-OPT prior on (Q1, Q2)
as described in Example 2. We compare the ROC curve of our co-OPT statistic to that of
the Cramer test [2]. The results are presented in Figure Figure 2. Our test is again less
powerful than the Cramer test for locational shift, but more powerful under the other two
scenarios.

Our next example deals with retrospectively sampled data on a high-dimensional contin-
gency table. In this example, we not only demonstrate the power of our method to test for
two sample difference, but also show that the posterior co-OPT distribution can help learn
the underlying structure of the difference.

Example 5 (Retrospectively sampled data on a 215 contingency table). Suppose there are
15 binary predictors X1, X2, . . . , X15, and there is a binary response variable Y , e.g. disease
status, whose distribution is

Y ∼







Bernoulli(0.3) if X3 = 1 and X7 = 1
Bernoulli(0.3) if X7 = 0 and X10 = 0
Bernoulli(0.1) otherwise.

We simulate populations for joint observations of Xi’s and Y of size 20,000 under two sce-
narios

1. X1, X2, . . . , X15 ∼i.i.d. Bernoulli(0.5)

2. X1, X2, . . .X8 as a Markov Chain with X1 ∼ Bernoulli(0.5), and P (Xt = Xt−1|Xt−1) =
0.7, while X9, X10, . . .X15 ∼i.i.d Bernoulli(0.5) and are independent of X1, . . . , X8.
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Figure 1: Two simulated samples on R under three scenarios (rows). (1) Locational
shift: Sample 1 from ∼ Beta(4,6), and Sample 2 from ∼ 0.2 + Beta(4,6). Sample sizes:
n1 = n2 = 20. (2) Local structure: Sample 1 from ∼ Uniform[0,1], and Sample 2 from
∼ 0.5Beta(20, 10) + 0.5Beta(10, 20). Sample sizes: n1 = n2 = 30. (3) Dispersion difference:
Sample 1 from N(0, 0.5), and Sample 2 from N(0, 1). Sample sizes: n1 = n2 = 40. Left
panel: Density functions for the two samples. Right panel: ROC curves for four different
tests.
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Figure 2: ROC curves for two simulated samples on R
2 under the three scenarios given in

Example 4.
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For each scenario, we retrospectively sample controls (Y=0) and cases (Y=1). Our interest
is in (1) the power of our method in detecting the difference in the joint distribution of the
predictor variables between the two samples, and (2) whether the method can recover the
“interactive” structure among the three predictors X3, X7 and X10.

We place a co-OPT prior on (Q1, Q2) as described in Example 1. Figure Figure 3 presents
the ROC curves of co-OPT statistic for three different sets of sample sizes under Scenarios 1
and 2. As we can see, the correlation among the markers under the second scenario does
cost some of the power, but even then, just 500 data points in each sample are sufficient
for achieving high power. In addition to detecting the difference, the posterior co-OPT
captures the underlying structure of the difference. We find that with about 500 data points
in each sample for Scenario 1 and about 3500 data points in each sample for Scenario 2, the
underlying structure can be accurately recovered using the hierarchical maximum a posteriori
(hMAP) tree topology, which is a top-down stepwise posterior maximum likelihood tree.
(The construction of the hMAP tree as well as the motivation to choose it over the MAP tree
is discussed in detail in Section 4.2 of [18].) As one would expect, the correlation between
the predictor variables makes it much harder to recover the exact interactive relation. A
typical hMAP tree structure for the simulated populations with these sample sizes is given
in Figure Figure 4. We note that a sample from the posterior distribution of the tree structure
can be more informative than the hMAP tree, especially when the sample sizes are not large
enough. We use the hMAP here as a demonstration for its ease of visualization.

6 Inference on distributional distances between two samples

In some situations, one may be interested in a distance measure for the two sample distribu-
tions. For example, if we let d(Q1, Q2) denote the distance between the two sample distribu-
tions under some metric d, one may want to compute quantities such as P (d(Q1, Q2) > T )
where T is some constant. This can be achieved if one knows the posterior distribution
of d(Q1, Q2) or can sample from it. We next show that if (Q1, Q2) arises from a co-OPT
distribution, then for some common metrics, in particular L1 and Hellinger distances, it is
very convenient to sample from the distribution of d(Q1, Q2).

As before, let Q1 and Q2 (with densities q1 and q2 respectively) be the two distributions
of interest. Suppose (Q1, Q2) have a co-OPT distribution, and so they can be thought of as
being generated from the random-partitioning-and-assignment procedure introduced in the
previous section through the drawing of the variables C, J , θ1, θ2, C

b, J b and θ
b. Then we

have the following key proposition.

Proposition 5. Suppose (Q1, Q2) has a co-OPT distribution satisfying the conditions given
in Theorem 2. Let A(C, J) denote the (random) collection of all nodes on which Q1 and
Q2 first couple. (The notation indicates that it depends on the coupling variables C and J .)
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Figure 3: ROC curves of the co-OPT statistic for Example 5.
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Figure 4: A typical hMAP coupling tree that recovers the underlying interactive structure.

Also, let dL1 be the L1 distance, and dH2 the (squared) Hellinger distance. Then

dL1(Q1, Q2) =
∑

A∈A(C,J)

|Q1(A)−Q2(A)|

dH2(Q1, Q2) =
∑

A∈A(C,J)

(
√

Q1(A)−
√

Q2(A))
2.

Proof. We prove the result only for dL1 as the proof for dH2 is very similar. (All following
equalities and statements hold with probability 1.)

dL1(Q1, Q2) =

∫

Ω

|q1(x)− q2(x)|µ(dx)

=
∑

A∈A(C,J)

∫

A

|q1(x)− q2(x)|µ(dx) +

∫

Ω\∪A(C,J)

|q1(x)− q2(x)|µ(dx).

But for each A ∈ A(C, J), due to coupling we have q1(·|A) = q2(·|A), and so
∫

A

|q1(x)− q2(x)|µ(dx) =

∫

A

|Q1(A)−Q2(A)|q1(x|A)µ(dx)

= |Q1(A)−Q2(A)|.

On the other hand, Q1(Ω \ ∪A(C, J)) = Q2(Ω \ ∪A(C, J)) = µ(Ω \ ∪A(C, J)) = 0 w.p.1.
(See proof of Theorem 1 in [18].) Therefore,

dL1 =
∑

A∈A(C,J)

|Q1(A)−Q2(A)|.

24



This proposition provides a recipe for drawing samples from the distributions of dL1(Q1, Q2)
and dH2(Q1, Q2). More specifically, first draw the coupling variables C, J , θ1 and θ

2. Then
use C and J to find the collection of nodes A(C, J), and use θ

1 and θ
2 to compute, for each

A ∈ A(C, J), the corresponding measures Q1(A) and Q2(A). Finally, compute one draw
of dL1 (or dH2) by summing |Q1(A) − Q2(A)| (or (

√

Q1(A) −
√

Q2(A))
2) over all nodes in

A(C, J).
A particularly desirable feature of this procedure for sampling L1 and Hellinger distances

is that one does not need to draw samples for the two random distributions Q1 and Q2 to get
their distances. In fact, one only needs to draw the coupling variables, which characterize the
difference between the two distributions, without having to draw the base variables, which
characterize the fine structure of the two densities. Again, in multi-dimensional settings
where estimating densities is difficult, such a procedure can produce much less variable
samples for the distances.

We close this section with two more numerical examples, one in R and one in R
2. In

these two examples, again we use the observed range of the data in each dimension to define
the space Ω. Also, we use 1/10000 as the size cutoff for technical termination.

Example 6 (Two beta distributions). We simulate two samples from Beta(2,5) and Beta(20,15)
under three sets of sample sizes n1 = n2 =10, 100 and 1000. We place a co-OPT prior on the
two distributions with the diadic partition rule and the symmetric parameter values as spec-
ified in Example 2 with ρ0 = γ0 = 0.5, and compute the corresponding posterior co-OPT.
Then we draw 1000 samples for each of dL1(Q1, Q2) and dH2(Q1, Q2) from their posterior
distributions. The histograms of these samples are plotted in Figure Figure 5, where the
vertical lines indicate the actual L1 and Hellinger distances between the two distributions.

Example 7 (Bivariate normal and mixture of bivariate normal). We repeat the same thing
as in the previous example except now we simulate the two samples from the following
distributions in R

2.

Sample 1 ∼ BN

(

(

0
0

)

,

(

4 0
0 4

)

)

, and

Sample 2 ∼ 0.5× BN

(

(

1
1

)

,

(

1 0
0 1

)

)

+ 0.5× BN

(

(

−1
−1

)

,

(

1 0
0 1

)

)

.

Again we draw 1000 posterior samples for dL1(Q1, Q2) and for dH2(Q1, Q2) under each
set of sample sizes. The histograms of these samples are plotted in Figure Figure 6, where
the vertical lines again indicate the actual L1 and Hellinger distances between the two dis-
tributions.

7 Concluding remarks

In this work we have introduced the coupling optional Polya tree prior for Bayesian non-
parametric analysis on the two sample problem. This prior jointly generates two random
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Figure 5: Histograms for posterior samples of L1 and squared Hellinger distances for two
samples from Beta(2,5) and Beta(20,15). The vertical lines indicate the actual L1 and
squared Hellinger distance between these two distributions.
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Figure 6: Histograms for posterior samples of L1 and squared Hellinger distances for Exam-
ple 7. The vertical lines indicate the actual L1 and squared Hellinger distances for the two
underlying distributions.
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probability distributions that can “couple” on subsets of the state space. We have demon-
strated that this construction allows both the testing and the learning of the distributional
difference between the two samples. One can easily extend this prior to allow the joint gen-
eration of more than two samples. For example, if four samples are involved, then one can
draw four, instead of two, independent Dirichlet vectors for probability assignment on each
uncoupled node.

One interesting feature of the co-OPT prior (as well as the original OPT prior) is that the
corresponding posterior can be computed “exactly” using the recursive formulation given in
(4.2) without resorting to Monte Carlo sampling. However, such “exact inference” [11] based
on recursions is still computationally intensive, especially in high-dimensional problems.
Efficient implementation is a necessity for this method to be feasible for any non-trivial
problems. More detailed discussion on the computational issues and ways to efficiently
implement the inference can be found in LM’s dissertation. However, even with the most
efficient implementation, the exponential nature of the method dictates that approximation
techniques such as k-step look-ahead as well as large-scale parallelization are needed for
“ultra-high” dimensional problems, such as those on a contingency table with 100 dimensions.
Current work is undergoing in this direction.
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