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Abstract. Causal mediation analysis is routinely conducted by applied
researchers in a variety of disciplines. The goal of such an analysis is
to investigate alternative causal mechanisms by examining the roles of
intermediate variables that lie in the causal paths between the treat-
ment and outcome variables. In this paper we first prove that under
a particular version of sequential ignorability assumption, the aver-
age causal mediation effect (ACME) is nonparametrically identified.
We compare our identification assumption with those proposed in the
literature. Some practical implications of our identification result are
also discussed. In particular, the popular estimator based on the linear
structural equation model (LSEM) can be interpreted as an ACME
estimator once additional parametric assumptions are made. We show
that these assumptions can easily be relaxed within and outside of the
LSEM framework and propose simple nonparametric estimation strate-
gies. Second, and perhaps most importantly, we propose a new sensi-
tivity analysis that can be easily implemented by applied researchers
within the LSEM framework. Like the existing identifying assumptions,
the proposed sequential ignorability assumption may be too strong in
many applied settings. Thus, sensitivity analysis is essential in order to
examine the robustness of empirical findings to the possible existence
of an unmeasured confounder. Finally, we apply the proposed methods
to a randomized experiment from political psychology. We also make
easy-to-use software available to implement the proposed methods.

Key words and phrases: Causal inference, causal mediation analysis,
direct and indirect effects, linear structural equation models, sequential
ignorability, unmeasured confounders.

1. INTRODUCTION

Causal mediation analysis is routinely conducted
by applied researchers in a variety of scientific disci-
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plines including epidemiology, political science, psy-
chology and sociology (see MacKinnon, 2008). The
goal of such an analysis is to investigate causal mech-
anisms by examining the role of intermediate vari-
ables thought to lie in the causal path between the
treatment and outcome variables. Over fifty years
ago, Cochran (1957) pointed to both the possibility
and difficulty of using covariance analysis to explore
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causal mechanisms by stating: “Sometimes these av-
erages have no physical or biological meaning of in-
terest to the investigator, and sometimes they do not
have the meaning that is ascribed to them at first
glance” (page 267). Recently, a number of statisti-
cians have taken up Cochran’s challenge. Robins and
Greenland (1992) initiated a formal study of causal
mediation analysis, and a number of articles have
appeared in more recent years (e.g., Pearl, 2001;
Robins, 2003; Rubin, 2004; Petersen, Sinisi and van
der Laan, 2006; Geneletti, 2007; Joffe, Small and
Hsu, 2007; Ten Have et al., 2007; Albert, 2008; Jo,
2008; Joffe et al., 2008; Sobel, 2008; VanderWeele,
2008, 2009; Glynn, 2010).
What do we mean by a causal mechanism? The

aforementioned paper by Cochran gives the follow-
ing example. In a randomized experiment, researchers
study the causal effects of various soil fumigants on
eelworms that attack farm crops. They observe that
these soil fumigants increase oats yields but wish to
know whether the reduction of eelworms represents
an intermediate phenomenon that mediates this ef-
fect. In fact, many scientists across various disci-
plines are not only interested in causal effects but
also in causal mechanisms because competing scien-
tific theories often imply that different causal paths
underlie the same cause-effect relationship.
In this paper we contribute to this fast-growing lit-

erature in several ways. After briefly describing our
motivating example in the next section, we prove in
Section 3 that under a particular version of the se-
quential ignorability assumption, the average causal
mediation effect (ACME) is nonparametrically iden-
tified. We compare our identifying assumption with
those proposed in the literature, and discuss practi-
cal implications of our identification result. In par-
ticular, Baron and Kenny’s (1986) popular estima-
tor (Google Scholar records over 17 thousand cita-
tions for this paper), which is based on a linear struc-
tural equation model (LSEM), can be interpreted
as an ACME estimator under the proposed assump-
tion if additional parametric assumptions are satis-
fied. We show that these additional assumptions can
be easily relaxed within and outside of the LSEM
framework. In particular, we propose a simple non-
parametric estimation strategy in Section 4. We con-
duct a Monte Carlo experiment to investigate the
finite-sample performance of the proposed nonpara-
metric estimator and its asymptotic confidence in-
terval.

Like many identification assumptions, the proposed
assumption may be too strong for the typical sit-
uations in which causal mediation analysis is em-
ployed. For example, in experiments where the treat-
ment is randomized but the mediator is not, the ig-
norability of the treatment assignment holds but the
ignorability of the mediator may not. In Section 5 we
propose a new sensitivity analysis that can be imple-
mented by applied researchers within the standard
LSEM framework. This method directly evaluates
the robustness of empirical findings to the possi-
ble existence of unmeasured pre-treatment variables
that confound the relationship between the media-
tor and the outcome. Given the fact that the se-
quential ignorability assumption cannot be directly
tested even in randomized experiments, sensitivity
analysis must play an essential role in causal media-
tion analysis. Finally, in Section 6 we apply the pro-
posed methods to the empirical example, to which
we now turn.

2. AN EXAMPLE FROM THE SOCIAL

SCIENCES

Since the influential article by Baron and Kenny
(1986), mediation analysis has been frequently used
in the social sciences and psychology in particu-
lar. A central goal of these disciplines is to iden-
tify causal mechanisms underlying human behavior
and opinion formation. In a typical psychological ex-
periment, researchers randomly administer certain
stimuli to subjects and compare treatment group be-
havior or opinions with those in the control group.
However, to directly test psychological theories, es-
timating the causal effects of the stimuli is typically
not sufficient. Instead, researchers choose to inves-
tigate psychological factors such as cognition and
emotion that mediate causal effects in order to ex-
plain why individuals respond to a certain stimulus
in a particular way. Another difficulty faced by many
researchers is their inability to directly manipulate
psychological constructs. It is in this context that
causal mediation analysis plays an essential role in
social science research.
In Section 6 we apply our methods to an influen-

tial randomized experiment from political psychol-
ogy. Nelson, Clawson and Oxley (1997) examine how
the framing of political issues by the news media af-
fects citizens’ political opinions. While the authors
are not the first to use causal mediation analysis in
political science, their study is one of the most well-
known examples in political psychology and also
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represents a typical application of causal mediation
analyses in the social sciences. Media framing is the
process by which news organizations define a po-
litical issue or emphasize particular aspects of that
issue. The authors hypothesize that differing frames
for the same news story alter citizens’ political tol-
erance by affecting more general political attitudes.
They conducted a randomized experiment to test
this mediation hypothesis.
Specifically, Nelson, Clawson and Oxley (1997)

used two different local newscasts about a Ku Klux
Klan rally held in central Ohio. In the experiment,
student subjects were randomly assigned to watch
the nightly news from two different local news chan-
nels. The two news clips were identical except for
the final story on the Klan rally. In one newscast,
the Klan rally was presented as a free speech issue.
In the second newscast, the journalists presented
the Klan rally as a disruption of public order that
threatened to turn violent. The outcome was mea-
sured using two different scales of political toler-
ance. Immediately after viewing the news broadcast,
subjects were asked two seven-point scale questions
measuring their tolerance for the Klan speeches and
rallies. The hypothesis was that the causal effects of
the media frame on tolerance are mediated by sub-
jects’ attitudes about the importance of free speech
and the maintenance of public order. In other words,
the media frame influences subjects’ attitudes to-
ward the Ku Klux Klan by encouraging them to
consider the Klan rally as an event relevant for the
general issue of free speech or public order. The
researchers used additional survey questions and a
scaling method to measure these hypothesized me-
diating factors after the experiment was conducted.

Table 1 reports descriptive statistics for these me-
diator variables as well as the treatment and out-
come variables. The sample size is 136, with 67 sub-
jects exposed to the free speech frame and 69 sub-
jects assigned to the public order frame. As is clear
from the last column, the media frame treatment
appears to influence both types of response vari-
ables in the expected directions. For example, be-
ing exposed to the public order frame as opposed to
the free speech frame significantly increased the sub-
jects’ perceived importance of public order, while de-
creasing the importance of free speech (although the
latter effect is not statistically significant). More-
over, the public order treatment decreased the sub-
jects’ tolerance toward the Ku Klux Klan speech in
the news clips compared to the free speech frame.
It is important to note that the researchers in

this example are primarily interested in the causal
mechanism between media framing and political tol-
erance rather than various causal effects given in
the last column of Table 1. Indeed, in many so-
cial science experiments, researchers’ interest lies in
the identification of causal mediation effects rather
than the total causal effect or controlled direct ef-
fects (these terms are formally defined in the next
section). Causal mediation analysis is particularly
appealing in such situations.
One crucial limitation of this study, however, is

that like many other psychological experiments the
original researchers were only able to randomize news
stories but not subjects’ attitudes. This implies that
there is likely to be unobserved covariates that con-
found the relationship between the mediator and the
outcome. As we formally show in the next section,
the existence of such confounders represents a vio-
lation of a key assumption for identifying the causal

Table 1

Descriptive statistics and estimated average treatment effects from the media framing experiment. The middle four columns
show the means and standard deviations of the mediator and outcome variables for each treatment group. The last column

reports the estimated average causal effects of the public order frame as opposed to the free speech frame on the three
response variables along with their standard errors. The estimates suggest that the treatment affected each of these variables

in the expected directions

Treatment media frames
Public order Free speech

Response variables Mean S.D. Mean S.D. ATE (s.e.)

Importance of free speech 5.25 1.43 5.49 1.35 −0.231 (0.239)
Importance of public order 5.43 1.73 4.75 1.80 0.674 (0.303)
Tolerance for the KKK 2.59 1.89 3.13 2.07 −0.540 (0.340)

Sample size 69 67



4 K. IMAI, L. KEELE AND T. YAMAMOTO

mechanism. For example, it is possible that subjects’
underlying political ideology affects both their pub-
lic order attitude and their tolerance for the Klan
rally within each treatment condition. This scenario
is of particular concern since it is well established
that politically conservative citizens tend to be more
concerned about public order issues and also, in
some instances, be more sympathetic to groups like
the Klan. In Section 5 we propose a new sensitivity
analysis that partially addresses such concerns.

3. IDENTIFICATION

In this section we propose a new nonparametric
identification assumption for the ACME and discuss
its practical implications. We also compare the pro-
posed assumption with those available in the litera-
ture.

3.1 The Framework

Consider a simple random sample of size n from a
population where for each unit i we observe (Ti,Mi,
Xi, Yi). We use Ti to denote the binary treatment
variable where Ti = 1 (Ti = 0) implies unit i re-
ceives (does not receive) the treatment. The mediat-
ing variable of interest, that is, the mediator, is rep-
resented by Mi, whereas Yi represents the outcome
variable. Finally, Xi denotes the vector of observed
pre-treatment covariates, and we use M, X and Y
to denote the support of the distributions of Mi, Xi

and Yi, respectively.
What qualifies as a mediator? Since the media-

tor lies in the causal path between the treatment
and the outcome, it must be a post-treatment vari-
able that occurs before the outcome is realized. Be-
yond this minimal requirement, what constitutes a
mediator is determined solely by the scientific the-
ory under investigation. Consider the following ex-
ample, which is motivated by a referee’s comment.
Suppose that the treatment is parents’ decision to
have their child receive the live vaccine for H1N1 flu
virus and the outcome is whether the child develops
flu or not. For a virologist, a mediator of interest
may be the development of antibodies to H1N1 live
vaccine. But, if parents sign a form acknowledging
the risks of the vaccine, can this act of form signing
also be a mediator? Indeed, social scientists (if not
virologists!) may hypothesize that being informed of
the risks will make parents less likely to have their
child receive the second dose of the vaccine, thereby
increasing the risk of developing flu. This example

highlights the important role of scientific theories in
causal mediation analysis.
To define the causal mediation effects, we use the

potential outcomes framework. LetMi(t) denote the
potential value of the mediator for unit i under the
treatment status Ti = t. Similarly, we use Yi(t,m)
to represent the potential outcome for unit i when
Ti = t andMi =m. Then, the observed variables can
be written as Mi =Mi(Ti) and Yi = Yi(Ti,Mi(Ti)).
Similarly, if the mediator takes J different values,
there exist 2J potential values of the outcome vari-
able, only one of which can be observed.
Using the potential outcomes notation, we can

define the causal mediation effect for unit i under
treatment status t as (see Robins and Greenland,
1992; Pearl, 2001)

δi(t)≡ Yi(t,Mi(1))− Yi(t,Mi(0))(1)

for t= 0,1. Pearl (2001) called δi(t) the natural in-
direct effect, while Robins (2003) used the term the
pure indirect effect for δi(0) and the total indirect
effect for δi(1). In words, δi(t) represents the dif-
ference between the potential outcome that would
result under treatment status t, and the potential
outcome that would occur if the treatment status is
the same and yet the mediator takes a value that
would result under the other treatment status. Note
that the former is observable (if the treatment vari-
able is actually equal to t), whereas the latter is by
definition unobservable [under the treatment status
t we never observe Mi(1 − t)]. Some feel uncom-
fortable with the idea of making inferences about
quantities that can never be observed (e.g., Rubin,
2005, page 325), while others emphasize their impor-
tance in policy making and scientific research (Pearl,
2001, Section 2.4, 2010, Section 6.1.4; Hafeman and
Schwartz 2009).
Furthermore, the above notation implicitly assumes

that the potential outcome depends only on the val-
ues of the treatment and mediating variables and, in
particular, not on how they are realized. For exam-
ple, this assumption would be violated if the out-
come variable responded to the value of the me-
diator differently depending on whether it was di-
rectly assigned or occurred as a natural response to
the treatment, that is, for t = 0,1 and all m ∈M,
Yi(t,Mi(t)) = Yi(t,Mi(1 − t)) = Yi(t,m) if Mi(1) =
Mi(0) =m.
Thus, equation (1) formalizes the idea that the

mediation effects represent the indirect effects of the
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treatment through the mediator. In this paper we fo-
cus on the identification and inference of the average
causal mediation effect (ACME), which is defined as

δ̄(t)≡ E(δi(t))
(2)

= E{Yi(t,Mi(1))− Yi(t,Mi(0))}

for t = 0,1. In the potential outcomes framework,
the causal effect of the treatment on the outcome for
unit i is defined as τi ≡ Yi(1,Mi(1))− Yi(0,Mi(0)),
which is typically called the total causal effect. There-
fore, the causal mediation effect and the total causal
effect have the following relationship:

τi = δi(t) + ζi(1− t),(3)

where ζi(t) = Yi(1,Mi(t))− Yi(0,Mi(t)) for t= 0,1.
This quantity ζi(t) is called the natural direct ef-
fect by Pearl (2001) and the pure/total direct effect
by Robins (2003). This represents the causal effect
of the treatment on the outcome when the media-
tor is set to the potential value that would occur
under treatment status t. In other words, ζi(t) is
the direct effect of the treatment when the mediator
is held constant. Equation (3) shows an important
relationship where the total causal effect is equal
to the sum of the mediation effect under one treat-
ment condition and the natural direct effect under
the other treatment condition. Clearly, this equality
also holds for the average total causal effect so that
τ̄ ≡ E{Yi(1,Mi(1)) − Yi(0,Mi(0))} = δ̄(t) + ζ̄(1− t)
for t= 0,1 where ζ̄(t) = E(ζi(t)).
The causal mediation effects and natural direct

effects differ from the controlled direct effect of the
mediator, that is, Yi(t,m)−Yi(t,m

′) for t= 0,1 and
m 6=m′, and that of the treatment, that is, Yi(1,m)−
Yi(0,m) for all m ∈M (Pearl, 2001; Robins, 2003).
Unlike the mediation effects, the controlled direct
effects of the mediator are defined in terms of spe-
cific values of the mediator, m and m′, rather than
its potential values, Mi(1) and Mi(0). While causal
mediation analysis is used to identify possible causal
paths from Ti to Yi, the controlled direct effects may
be of interest, for example, if one wishes to under-
stand how the causal effect of Mi on Yi changes as
a function of Ti. In other words, the former exam-
ines whether Mi mediates the causal relationship
between Ti and Yi, whereas the latter investigates
whether Ti moderates the causal effect of Mi on Yi
(Baron and Kenny, 1986).

3.2 The Main Identification Result

We now present our main identification result us-
ing the potential outcomes framework described above.
We show that under a particular version of sequen-
tial ignorability assumption, the ACME is nonpara-
metrically identified. We first define our identifying
assumption:

Assumption 1 (Sequential ignorability).

{Yi(t
′,m),Mi(t)} ⊥⊥ Ti|Xi = x,(4)

Yi(t
′,m)⊥⊥Mi(t)|Ti = t,Xi = x(5)

for t, t′ = 0,1, and all x ∈ X where it is also as-
sumed that 0< Pr(Ti = t|Xi = x) and 0< p(Mi(t) =
m|Ti = t,Xi = x) for t = 0,1, and all x ∈ X and
m ∈M.

Thus, the treatment is first assumed to be ignor-
able given the pre-treatment covariates, and then
the mediator variable is assumed to be ignorable
given the observed value of the treatment as well
as the pre-treatment covariates. We emphasize that,
unlike the standard sequential ignorability assump-
tion in the literature (e.g., Robins, 1999), the con-
ditional independence given in equation (5) of As-
sumption 1 must hold without conditioning on the
observed values of post-treatment confounders. This
issue is discussed further below.
The following theorem presents our main identi-

fication result, showing that under this assumption
the ACME is nonparametrically identified.

Theorem 1 (Nonparametric identification). Un-
der Assumption 1, the ACME and the average natu-
ral direct effects are nonparametrically identified as
follows for t= 0,1:

δ̄(t) =

∫ ∫
E(Yi|Mi =m,Ti = t,Xi = x)

{dFMi|Ti=1,Xi=x(m)

− dFMi|Ti=0,Xi=x(m)}dFXi
(x),

ζ̄(t) =

∫ ∫
{E(Yi|Mi =m,Ti = 1,Xi = x)

−E(Yi|Mi =m,Ti = 0,Xi = x)}

dFMi|Ti=t,Xi=x(m)dFXi
(x),

where FZ(·) and FZ|W (·) represent the distribution
function of a random variable Z and the conditional
distribution function of Z given W .
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A proof is given in Appendix A. Theorem 1 is
quite general and can be easily extended to any
types of treatment regimes, for example, a contin-
uous treatment variable. In fact, the proof requires
no change except letting t and t′ take values other
than 0 and 1. Assumption 1 can also be somewhat
relaxed by replacing equation (5) with its corre-
sponding mean independence assumption. However,
as mentioned above, this identification result does
not hold under the standard sequential ignorabil-
ity assumption. As shown by Avin, Shpitser and
Pearl (2005) and also pointed out by Robins (2003),
the nonparametric identification of natural direct
and indirect effects is not possible without an ad-
ditional assumption if equation (5) holds only af-
ter conditioning on the post-treatment confounders
Zi as well as the pre-treatment covariates Xi, that
is, Yi(t

′,m)⊥⊥Mi(t)|Ti = t,Zi = z,Xi = x, for t, t′ =
0,1, and all x ∈ X and z ∈Z where Z is the support
of Zi. This is an important limitation since assuming
the absence of post-treatment confounders may not
be credible in many applied settings. In some cases,
however, it is possible to address the main source of
confounding by conditioning on pre-treatment vari-
ables alone (see Section 6 for an example).

3.3 Comparison with the Existing Results

in the Literature

Next, we compare Theorem 1 with the related
identification results in the literature. First, Pearl
(2001, Theorem 2) makes the following set of as-
sumptions in order to identify δ̄(t∗):

p(Y (t,m)|Xi = x) and
(6)

p(Mi(t
∗)|Xi = x) are identifiable,

Yi(t,m)⊥⊥Mi(t
∗)|Xi = x(7)

for all t= 0,1, m ∈M, and x ∈ X . Under these as-
sumptions, Pearl arrives at the same expressions for
the ACME as the ones given in Theorem 1. Indeed,
it can be shown that Assumption 1 implies equa-
tions (6) and (7). While the converse is not necessar-
ily true, in practice, the difference is only technical
(see, e.g., Robins, 2003, page 76). For example, con-
sider a typical situation where the treatment is ran-
domized given the observed pre-treatment covari-
ates Xi and researchers are interested in identifying
both δ̄(1) and δ̄(0). In this case, it can be shown that
Assumption 1 is equivalent to Pearl’s assumptions.
Moreover, one practical advantage of equation (5)

of Assumption 1 is that it is easier to interpret than

equation (7), which represents the independence be-
tween the potential values of the outcome and the
potential values of the mediator. Pearl himself rec-
ognizes this difficulty, and states “assumptions of
counterfactual independencies can be meaningfully
substantiated only when cast in structural form”
(page 416). In contrast, equation (5) simply means
that Mi is effectively randomly assigned given Ti
and Xi.
Second, Robins (2003) considers the identification

under what he calls a FRCISTG model, which sat-
isfies equation (4) as well as

Yi(t,m)⊥⊥Mi(t)|Ti = t,Zi = z,Xi = x(8)

for t= 0,1 where Zi is a vector of the observed values
of post-treatment variables that confound the rela-
tionship between the mediator and outcome. The
key difference between Assumption 1 and a FR-
CISTG model is that the latter allows conditioning
on Zi while the former does not. Robins (2003) ar-
gued that this is an important practical advantage
over Pearl’s conditions, in that it makes the ignora-
bility of the mediator more credible. In fact, not al-
lowing for conditioning on observed post-treatment
confounders is an important limitation of Assump-
tion 1.
Under this model, Robins (2003, Theorem 2.1)

shows that the following additional assumption is
sufficient to identify the ACME:

Yi(1,m)− Yi(0,m) =Bi,(9)

where Bi is a random variable independent of m.
This assumption, called the no-interaction assump-
tion, states that the controlled direct effect of the
treatment does not depend on the value of the medi-
ator. In practice, this assumption can be violated in
many applications and has sometimes been regarded
as “very restrictive and unrealistic” (Petersen, Sinisi
and van der Laan, 2006, page 280). In contrast, The-
orem 1 shows that under the sequential ignorabil-
ity assumption that does not condition on the post-
treatment covariates, the no-interaction assumption
is not required for the nonparametric identification.
Therefore, there exists an important trade-off; al-
lowing for conditioning on observed post-treatment
confounders requires an additional assumption for
the identification of the ACME.
Third, Petersen, Sinisi and van der Laan (2006)

present yet another set of identifying assumptions.
In particular, they maintain equation (5) but replace
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equation (4) with the following slightly weaker con-
dition:

Yi(t,m)⊥⊥ Ti|Xi = x and
(10)

Mi(t)⊥⊥ Ti|Xi = x

for t= 0,1 and all m ∈M. In practice, this differ-
ence is only a technical matter because, for exam-
ple, in randomized experiments where the treatment
is randomized, equations (4) and (10) are equiva-
lent. However, this slight weakening of equation (4)
comes at a cost, requiring an additional assump-
tion for the identification of the ACME. Specifically,
Petersen, Sinisi and van der Laan (2006) assume
that the magnitude of the average direct effect does
not depend on the potential values of the media-
tor, that is, E{Yi(1,m)− Yi(0,m)|Mi(t

∗) =m,Xi =
x} = E{Yi(1,m) − Yi(0,m)|Xi = x} for all m ∈M.
Theorem 1 shows that if equation (10) is replaced
with equation (4), which is possible when the treat-
ment is randomized, then this additional assumption
is unnecessary for the nonparametric identification.
In addition, this additional assumption is somewhat
difficult to interpret in practice because it entails the
mean independence relationship between the poten-
tial values of the outcome and the potential values
of the mediator.
Fourth, in the appendix of a recent paper, Hafe-

man and VanderWeele (2010) show that if the me-
diator is binary, the ACME can be identified with a
weaker set of assumptions than Assumption 1. How-
ever, it is unclear whether this result can be gener-
alized to cases where the mediator is nonbinary. In
contrast, the identification result given in Theorem 1
holds for any type of mediator, whether discrete or
continuous. Both identification results hold for gen-
eral treatment regimes, unlike some of the previous
results.
Finally, Rubin (2004) suggests an alternative ap-

proach to causal mediation analysis, which has been
adopted recently by other scholars (e.g., Egleston et
al., 2006; Gallop et al., 2009; Elliott, Raghunathan
and Li, 2010). In this framework, the average direct
effect of the treatment is given by E(Yi(1,Mi(1))−
Yi(0,Mi(0))|Mi(1) =Mi(0)), representing the aver-
age treatment effect among those whose mediator
is not affected by the treatment. Unlike the aver-
age direct effect ζ̄(t) introduced above, this quan-
tity is defined for a principal stratum, which is a
latent subpopulation. Within this framework, there
exists no obvious definition for the mediation ef-
fect unless the direct effect is zero (in this case, the

treatment affects the outcome only through the me-
diator). Although some estimate E(Yi(1,Mi(1)) −
Yi(0,Mi(0))|Mi(1) 6=Mi(0)) and compare it with the
above average direct effect, as VanderWeele (2008)
points out, the problem of such comparison is that
two quantities are defined for different subsets of
the population. Another difficulty of this approach
is that when the mediator is continuous the popula-
tion proportion of those with Mi(1) =Mi(0) can be
essentially zero. This explains why the application
of this approach has been limited to the studies with
a discrete (often binary) mediator.

3.4 Implications for Linear Structural

Equation Model

Next, we discuss the implications of Theorem 1
for LSEM, which is a popular tool among applied
researchers who conduct causal mediation analysis.
In an influential article, Baron and Kenny (1986)
proposed a framework for mediation analysis, which
has been used by many social science methodolo-
gists; see MacKinnon (2008) for a review and Imai,
Keele and Tingley (2009) for a critique of this lit-
erature. This framework is based on the following
system of linear equations:

Yi = α1 + β1Ti + εi1,(11)

Mi = α2 + β2Ti + εi2,(12)

Yi = α3 + β3Ti + γMi + εi3.(13)

Although we adhere to their original model, one may
further condition on any observed pre-treatment co-
variates by including them as additional regressors
in each equation. This will change none of the re-
sults given below so long as the model includes no
post-treatment confounders.
Under this model, Baron and Kenny (1986) sug-

gested that the existence of mediation effects can
be tested by separately fitting the three linear re-
gressions and testing the null hypotheses (1) β1 = 0,
(2) β2 = 0, and (3) γ = 0. If all of these null hy-
potheses are rejected, they argued, then β2γ could
be interpreted as the mediation effect. We note that
equation (11) is redundant given equations (12) and
(13). To see this, substitute equation (12) into equa-
tion (13) to obtain

Yi = (α3 + α2γ) + (β3 + β2γ)Ti
(14)

+ (γεi2 + εi3).

Thus, testing β1 = 0 is unnecessary since the ACME
can be nonzero even when the average total causal
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effect is zero. This happens when the mediation ef-
fect offsets the direct effect of the treatment.
The next theorem proves that within the LSEM

framework, Baron and Kenny’s interpretation is valid
if Assumption 1 holds.

Theorem 2 (Identification under the LSEM).
Consider the LSEM defined in equations (11), (12)
and (13). Under Assumption 1, the ACME is identi-
fied and given by δ̄(0) = δ̄(1) = β2γ, where the equal-
ity between δ̄(0) and δ̄(1) is also assumed.

A proof is in Appendix B. The theorem implies
that under the same set of assumptions, the aver-
age natural direct effects are identified as ζ̄(0) =
ζ̄(1) = β3, where the average total causal effect is
τ̄ = β3 +β2γ. Thus, Assumption 1 enables the iden-
tification of the ACME under the LSEM. Egleston
et al. (2006) obtain a similar result under the as-
sumptions of Pearl (2001) and Robins (2003), which
were reviewed in Section 3.3.
It is important to note that under Assumption 1,

the standard LSEM defined in equations (12) and
(13) makes the following no-interaction assumption
about the ACME:

Assumption 2 (No-interaction between the Treat-
ment and the ACME).

δ̄(1) = δ̄(0).

This assumption is equivalent to the no-interaction
assumption for the average natural direct effects,
ζ̄(1) = ζ̄(0). Although Assumption 2 is related to
and implied by Robins’ no-interaction assumption
given in equation (9), the key difference is that As-
sumption 2 is written in terms of the ACME rather
than controlled direct effects.
As Theorem 1 suggests, Assumption 2 is not re-

quired for the identification of the ACME under the
LSEM. We extend the outcome model given in equa-
tion (13) to

Yi = α3 + β3Ti + γMi + κTiMi + εi3,(15)

where the interaction term between the treatment
and mediating variables is added to the outcome
regression while maintaining the linearity in param-
eters. This formulation was first suggested by Judd
and Kenny (1981) and more recently advocated by
Kraemer et al. (2008, 2002) as an alternative to Bar-
ron and Kenny’s approach. Under Assumption 1 and
the model defined by equations (12) and (15), we can
identify the ACME as δ̄(t) = β2(γ + tκ) for t= 0,1.

The average natural direct effects are identified as
ζ̄(t) = β3+κ(α2+β2t), and the average total causal
effect is equal to τ̄ = β2γ + β3 + κ(α2 + β2). This
conflicts with the proposal by Kraemer et al. (2008)
that the existence of mediation effects can be es-
tablished by testing either γ = 0 or κ= 0, which is
clearly neither a necessary nor sufficient condition
for δ̄(t) to be zero.
The connection between the parametric and non-

parametric identification becomes clearer when both
Ti and Mi are binary. To see this, note that δ̄(t) can
be equivalently expressed as [dropping the integra-
tion over P (Xi) for notational simplicity]

δ̄(t) =
J−1∑

m=0

E(Yi|Mi =m,Ti = t,Xi)

· {Pr(Mi =m|Ti = 1,Xi)(16)

−Pr(Mi =m|Ti = 0,Xi)},

when Mi is discrete. Furthermore, when J = 2, this
reduces to

δ̄(t) = {Pr(Mi = 1|Ti = 1,Xi)

−Pr(Mi = 1|Ti = 0,Xi)}
(17)

· {E(Yi|Mi = 1, Ti = t,Xi)

−E(Yi|Mi = 0, Ti = t,Xi)}.

Thus, the ACME equals the product of two terms
representing the average effect of Ti on Mi and that
of Mi on Yi (holding Ti at t), respectively.
Finally, in the existing methodological literature

Sobel (2008) explores the identification problem of
mediation effects under the framework of LSEMwith-
out assuming the ignorability of the mediator (see
also Albert, 2008; Jo, 2008). However, Sobel (2008)
maintains, among others, the assumption that the
causal effect of the treatment is entirely through
the mediator and applies the instrumental variables
technique of Angrist, Imbens and Rubin (1996). That
is, the natural direct effect is assumed to be zero for
all units a priori, that is, ζi(t) = 0 for all t = 0,1
and i. This assumption may be undesirable from
the perspective of applied researchers, because the
existence of the natural direct effect itself is often of
interest in causal mediation analysis. See Joffe et al.
(2008) for an interesting application.

4. ESTIMATION AND INFERENCE

In this section we use our nonparametric identifi-
cation result above and propose simple parametric
and nonparametric estimation strategies.
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4.1 Parametric Estimation and Inference

Under the LSEM given by equations (12) and (13)
and Assumption 1, the estimation of the ACME is
straightforward since the error terms are indepen-
dent of each other. Thus, one can follow the pro-
posal of Baron and Kenny (1986) and estimate equa-
tions (12) and (13) by fitting two separate linear
regressions. The standard error for the estimated
ACME, that is, δ̂(t) = β̂2γ̂, can be calculated ei-
ther approximately using the Delta method (Sobel,

1982), that is, Var(δ̂(t)) ≈ β22 Var(γ̂) + γ2Var(β̂2),
or exactly via the variance formula of Goodman
(1960), that is, Var(δ̂(t)) = β22 Var(γ̂)+ γ

2Var(β̂2)+

Var(γ̂)Var(β̂2). For the natural direct and total ef-
fects, standard errors can be obtained via the re-
gressions of Yi on Ti and Mi [equation (13)] and Yi
on Ti [equation (11)], respectively.
When the model contains the interaction term as

in equation (15) (so that Assumption 2 is relaxed),
the asymptotic variance can be computed in a sim-
ilar manner. For example, using the delta method,
we have Var(δ̂(t))≈ (γ+ tκ)2Var(β̂2)+β

2
2{Var(γ̂)+

tVar(κ̂) + 2tCov(γ̂, κ̂)} for t = 0,1. Similarly,

Var(ζ̂(t)) ≈ Var(β̂3) + (α2 + tβ2)
2Var(κ̂) + 2(α2 +

tβ2)Cov(β̂3, κ̂)+κ
2{Var(α̂2)+tVar(β̂2)+2tCov(α̂2,

β̂2)}. For the average total causal effect, the variance
can be obtained from the regression of Yi on Ti.

4.2 Nonparametric Estimation and Inference

Next, we consider a simple nonparametric esti-
mator. Suppose that the mediator is discrete and
takes J distinct values, that is, M = {0,1, . . . , J −
1}. The case of continuous mediators is considered
further below. First, we consider the cases where
we estimate the ACME separately within each stra-
tum defined by the pre-treatment covariates Xi. One
may then aggregate the resulting stratum-specific
estimates to obtain the estimated ACME. In such
situations, a nonparametric estimator can be ob-
tained by plugging in sample analogues for the pop-
ulation quantities in the expression given in Theo-
rem 1,

δ̂(t) =

J−1∑

m=0

{∑n
i=1 Yi1{Ti = t,Mi =m}∑n
i=1 1{Ti = t,Mi =m}

·

(
1

n1

n∑

i=1

1{Ti = 1,Mi =m}(18)

−
1

n0

n∑

i=1

1{Ti = 0,Mi =m}

)}
,

where nt =
∑n

i=1 1{Ti = t} and t= 0,1. By the law
of large numbers, this estimator asymptotically con-
verges to the true ACME under Assumption 1. The
next theorem derives the asymptotic variance of the
nonparametric estimator defined in equation (18)
given the realized values of the treatment variable.

Theorem 3 (Asymptotic variance of the nonpara-
metric estimator). Suppose that Assumption 1 holds.
Then, the variance of the nonparametric estimator
defined in equation (18) is asymptotically approxi-
mated by

Var(δ̂(t))≈
1

nt

J−1∑

m=0

ν1−t,m

{(
ν1−t,m

νtm
− 2

)

·Var(Yi|Mi =m,Ti = t)

+
nt(1− ν1−t,m)µ2tm

n1−t

}

−
2

n1−t

J−1∑

m′=m+1

J−2∑

m=0

ν1−t,mν1−t,m′µtmµtm′

+
1

nt
Var(Yi|Ti = t)

for t= 0,1 where νtm ≡ Pr(Mi =m|Ti = t) and µtm ≡
E(Yi|Mi =m,Ti = t).

A proof is based on a tedious but simple appli-
cation of the Delta method and thus is omitted.
This asymptotic variance can be consistently esti-
mated by replacing unknown population quantities
with their corresponding sample counterparts. The
estimated overall variance can be obtained by ag-
gregating the estimated within-strata variances ac-
cording to the sample size in each stratum.
The second and perhaps more general strategy is

to use nonparametric regressions to model µtm(x)≡
E(Yi|Ti = t,Mi =m,Xi = x) and νtm(x)≡ Pr(Mi =
m|Ti = t,Xi = x), and then employ the following es-
timator:

δ̂(t) =
1

n

{
n∑

i=1

J−1∑

m=0

µ̂tm(Xi)

(19)

· (ν̂1m(Xi)− ν̂0m(Xi))

}

for t = 0,1. This estimator is also asymptotically
consistent for the ACME under Assumption 1 if
µ̂tm(x) and ν̂tm(x) are consistent for µtm(x) and
νtm(x), respectively. Unfortunately, in general, there
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is no simple expression for the asymptotic variance

of this estimator. Thus, one may use a nonparamet-

ric bootstrap [or a parametric bootstrap based on

the asymptotic distribution of µ̂tm(x) and ν̂tm(x)]

to compute uncertainty estimates.

Finally, when the mediator is not discrete, we may

nonparametrically model µtm(x)≡ E(Yi|Ti = t,Mi =

m,Xi = x) and ψt(x) = p(Mi|Ti = t,Xi = x). Then,

one can use the following estimator:

δ̂(t) =
1

nK

n∑

i=1

K∑

k=1

{µ̂
tm̃

(k)
1i

(Xi)− µ̂
tm̃

(k)
0i

(Xi)},(20)

where m̃
(k)
ti is the kth Monte Carlo draw of the me-

diator Mi from its predicted distribution based on

the fitted model ψ̂t(Xi).

These estimation strategies are quite general in

that they can be applied to a wide range of statisti-

cal models. Imai, Keele and Tingley (2009) demon-

strate the generality of these strategies by apply-

ing them to common parametric and nonparamet-

ric regression techniques often used by applied re-

searchers. By doing so, they resolve some confusions

held by social science methodologists, for example,

how to estimate mediation effects when the out-

come and/or the mediator is binary. Furthermore,

the proposed general estimation strategies enable

Imai et al. (2010) to develop an easy-to-use R pack-

age, mediation, that implements these methods and

demonstrate its use with an empirical example.

4.3 A Simulation Study

Next, we conduct a small-scale Monte Carlo ex-
periment in order to investigate the finite-sample
performance of the estimators defined in equations (18)
and (19) as well as the proposed variance estima-
tor given in Theorem 3. We use a population model
where the potential outcomes and mediators are given
by Yi(t,m) = exp(Y ∗

i (t,m)),Mi(t) = 1{M∗
i (t)≥ 0.5}

and Y ∗
i (t,m),M∗

i (t) are jointly normally distributed.
The population parameters are set to the following
values: E(Y ∗

i (1,1)) = 2; E(Y ∗
i (1,0)) = 0; E(Y ∗

i (0,1)) =
1; E(Y ∗

i (0,0)) = 0.5; E(M∗
i (1)) = 1; E(M∗

i (0)) = 0;
Var(Y ∗

i (t,m)) = Var(M∗
i (t)) = 1 for t ∈ {0,1} and

m ∈ {0,1}; Corr(Y ∗
i (t,m), Y ∗

i (t
′,m′)) = 0.5 for t, t′ ∈

{0,1} and m,m′ ∈ {0,1}; Corr(Y ∗
i (t,m),M∗

i (t
′)) =

0 for t ∈ {0,1} and m ∈ {0,1}; and Corr(M∗
i (1),

M∗
i (0)) = 0.3.
Under this setup, Assumption 1 is satisfied. Thus,

we can consistently estimate the ACME by applying
the nonparametric estimator given in equation (18).
Also, note that this data generating process implies
the following parametric regression models for the
observed data:

Pr(Mi = 1|Ti) = Φ(α2 + β2Ti),(21)

Yi|Ti,Mi ∼ lognormal(α3 + β3Ti + γMi

(22)
+ κTiMi, σ

2
3),

where (α2, β2, α3, β3, γ, κ, σ
2
3) = (−0.5,1,0.5,−0.5,

0.5,1.5,1) and Φ(·) is the standard normal distri-
bution function. We can then obtain the parametric

Table 2

Finite-sample performance of the proposed estimators and their variance estimators. The table presents the results of a
Monte Carlo experiment with varying sample sizes and fifty thousand iterations. The upper half of the table represents the
results for δ̂(0) and the bottom half δ̂(1). The columns represent (from left to right) the following: sample sizes, estimated

biases, root mean squared errors (RMSE) and the coverage probabilities of the 95% confidence intervals of the nonparametric
estimators, and the same set of quantities for the parametric estimators. The true values of δ̄(0) and δ̄(1) are 0.675 and

4.03, respectively. The results indicate that nonparametric estimators have smaller bias than the parametric estimator though
its variance is much larger. The confidence intervals converge to the nominal coverage as the sample size increases. The

convergence occurs much more quickly for the parametric estimator

Nonparametric estimator Parametric estimator
Sample size Bias RMSE 95% CI coverage Bias RMSE 95% CI coverage

δ̂(0) 50 0.002 1.034 0.824 0.096 0.965 0.919
100 0.006 0.683 0.871 0.044 0.566 0.933
500 −0.002 0.292 0.922 0.006 0.229 0.947

δ̂(1) 50 0.010 2.082 0.886 −0.010 1.840 0.934
100 0.005 1.462 0.912 0.003 1.290 0.944
500 0.001 0.643 0.939 0.001 0.570 0.955
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maximum likelihood estimate of the ACME by fit-
ting these two models via standard procedures and
estimating the following expression based on Theo-
rem 1 [see equation (17)]:

δ̄(t) = {exp(α3 + β3t+ γ + κt+ σ23/2)

− exp(α3 + β3t+ σ23/2)}(23)

· {Φ(α2 + β2)−Φ(α2)}

for t= 0,1.
We compare the performances of these two es-

timators via Monte Carlo simulations. Specifically,
we set the sample size n to 50, 100 and 500 where
half of the sample receives the treatment and the
other half is assigned to the control group, that is,
n1 = n0 = n/2. Using equation (23), the true val-
ues of the ACME are given by δ̄(0) = 0.675 and
δ̄(1) = 4.03.
Table 2 reports the results of the experiments based

on fifty thousand iterations. The performance of the
estimators turns out to be quite good in this partic-
ular setting. Even with sample size as small as 50,
estimated biases are essentially zero for the nonpara-
metric estimates. The parametric estimators are
slightly more biased for the small sample sizes, but
they converge to the true values by the time the
sample size reaches 500. As expected, the variance
is larger for the nonparametric estimator than the
parametric estimator. The 95% confidence intervals
converge to the nominal coverage as the sample size
increases. The convergence occurs much more quickly
for the parametric estimator. (Although not reported
in the table, we confirmed that for both estimators
the coverage probabilities fully converged to their
nominal values by the time the sample size reached
5000.)

5. SENSITIVITY ANALYSIS

Although the ACME is nonparametrically identi-
fied under Assumption 1, this assumption, like other
existing identifying assumptions, may be too strong
in many applied settings. Consider randomized ex-
periments where the treatment is randomized but
the mediator is not. Causal mediation analysis is
most frequently applied to such experiments. In this
case, equation (4) of Assumption 1 is satisfied but
equation (5) may not hold for two reasons. First,
there may exist unmeasured pre-treatment covari-
ates that confound the relationship between the me-
diator and the outcome. Second, there may exist ob-
served or unobserved post-treatment confounders.

These possibilities, along with other obstacles en-
countered in applied research, have led some schol-
ars to warn against the abuse of mediation analyses
(e.g., Green, Ha and Bullock, 2010). Indeed, as we
formally show below, the data generating process
contains no information about the credibility of the
sequential ignorability assumption.
To address this problem, we develop a method to

assess the sensitivity of an estimated ACME to un-
measured pre-treatment confounding (The proposed
sensitivity analysis, however, does not address the
possible existence of post-treatment confounders).
The method is based on the standard LSEM frame-
work described in Section 3.4 and can be easily used
by applied researchers to examine the robustness of
their empirical findings. We derive the maximum
departure from equation (5) that is allowed while
maintaining their original conclusion about the di-
rection of the ACME (see Imai and Yamamoto, 2010).
For notational simplicity, we do not explicitly con-
dition on the pre-treatment covariates Xi. However,
the same analysis can be conducted by including
them as additional covariates in each regression.

5.1 Parametric Sensitivity Analysis Based on the

Residual Correlation

The proof of Theorem 2 implies that if equation (4)
holds, εi2 ⊥⊥ Ti and εi3 ⊥⊥ Ti hold but εi2 ⊥⊥ εi3 does
not unless equation (5) also holds. Thus, one way
to assess the sensitivity of one’s conclusions to the
violation of equation (5) is to use the following sen-
sitivity parameter:

ρ≡Corr(εi2, εi3),(24)

where −1< ρ< 1. In Appendix C we show that As-
sumption 1 implies ρ = 0. (Of course, the contra-
positive of this statement is also true; ρ 6= 0 implies
the violation of Assumption 1). A nonzero correla-
tion parameter can be interpreted as the existence
of omitted variables that are related to both the ob-
served value of the mediator Mi and the potential
outcomes Yi even after conditioning on the treat-
ment variable Ti (and the observed covariates Xi).
Note that these omitted variables must causally pre-
cede Ti. Then, we vary the value of ρ and compute
the corresponding estimate of the ACME. In a quite
different context, Roy, Hogan and Marcus (2008)
take this general strategy of computing a quantity
of interest at various values of an unidentifiable sen-
sitivity parameter.
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The next theorem shows that if the treatment is
randomized, the ACME is identified given a partic-
ular value of ρ.

Theorem 4 (Identification with a given error cor-
relation). Consider the LSEM defined in equations
(11), (12) and (13). Suppose that equation (4) holds
and the correlation between εi2 and εi3, that is, ρ,
is given. If we further assume −1< ρ < 1, then the
ACME is identified and given by

δ̄(0) = δ̄(1) =
β2σ1
σ2

{ρ̃− ρ
√

(1− ρ̃2)/(1− ρ2)},

where σ2j ≡ Var(εij) for j = 1,2 and ρ̃ ≡ Corr(εi1,
εi2).

A proof is in Appendix D. We offer several re-
marks about Theorem 4. First, the unbiased esti-
mates of (α1, α2, β1, β2) can be obtained by fitting
the equation-by-equation least squares of equations
(11) and (12). Given these estimates, the covari-
ance matrix of (εi1, εi2), whose elements are (σ21 , σ

2
2 ,

ρ̃σ1σ2), can be consistently estimated by computing
the sample covariance matrix of the residuals, that
is, ε̂i1 = Yi − α̂1 − β̂1Ti and ε̂i2 =Mi − α̂2 − β̂2Ti.
Second, the partial derivative of the ACME with

respect to ρ implies that the ACME is either mono-
tonically increasing or decreasing in ρ, depending on
the sign of β2. The ACME is also symmetric about
(ρ, δ̄(t)) = (0, β2ρ̃σ1/σ2).
Third, the ACME is zero if and only if ρ equals

ρ̃. This implies that researchers can easily check the
robustness of their conclusion obtained under the se-
quential ignorability assumption via correlation be-
tween εi1 and εi2. For example, if δ̂(t) = β̂2γ̂ is neg-
ative, the true ACME is also guaranteed to be neg-
ative if ρ < ρ̃ holds.
Fourth, the expression of the ACME given in The-

orem 4 is cumbersome to use when computing the
standard errors. A more straightforward and general
approach is to apply the iterative feasible general-
ized least square algorithm of the seemingly unre-
lated regression (Zellner, 1962), and use the asso-
ciated asymptotic variance formula. This strategy
will also work when there is an interaction term be-
tween the treatment and mediating variables as in
equation (15) and/or when there are observed pre-
treatment covariates Xi.
Finally, Theorem 4 implies the following corollary,

which shows that under the LSEM the data generat-
ing process is not informative at all about either the

sensitivity parameter ρ or the ACME without equa-
tion (5). This result highlights the difficulty of causal
mediation analysis and the importance of sensitivity
analysis even in the parametric modeling setting.

Corollary 1 (Bounds on the sensitivity parame-
ter). Consider the LSEM defined in equations (11),
(12) and (13). Suppose that equation (4) holds but
equation (5) may not. Then, the sharp, that is, best
possible, bounds on the sensitivity parameter ρ and
ACME are given by (−1,1) and (−∞,∞), respec-
tively.

The first statement of the corollary follows di-
rectly from the proof of Theorem 4, while the second
statement can be proved by taking a limit of δ(t) as
ρ tends to −1 or 1.

5.2 Parametric Sensitivity Analysis Based on the

Coefficients of Determination

The sensitivity parameter ρ can be given an alter-
native definition which allows it to be interpreted as
the magnitude of an unobserved confounder. This
alternative version of ρ is based on the following de-
composition of the error terms in equations (12) and
(13):

εij = λjUi + ε′ij

for j = 2,3, where Ui is an unobserved confounder
and the sequential ignorability is assumed given Ui

and Ti. Again, note that Ui has to be a pre-treatment
variable so that the resulting estimates can be given
a causal interpretation. In addition, we assume that
ε′ij ⊥⊥ Ui for j = 2,3. We can then express the in-
fluence of the unobserved pre-treatment confounder
using the following coefficients of determination:

R2∗
M ≡ 1−

Var(ε′i2)

Var(εi2)

and

R2∗
Y ≡ 1−

Var(ε′i3)

Var(εi3)
,

which represent the proportion of previously unex-
plained variance (either in the mediator or in the
outcome) that is explained by the unobserved con-
founder (see Imbens, 2003).
Another interpretation is based on the proportion

of original variance that is explained by the unob-
served confounder. In this case, we use the following
sensitivity parameters:

R̃2
M ≡

Var(εi2)−Var(ε′i2)

Var(Mi)
= (1−R2

M )R2∗
M
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and

R̃2
Y ≡

Var(εi3)−Var(ε′i3)

Var(Yi)
= (1−R2

Y )R
2∗
Y ,

where R2
M and R2

Y represent the coefficients of de-
termination from the two regressions given in equa-
tions (12) and (13). Note that unlike R2∗

M and R2∗
Y

(as well as ρ given in Corollary 1), R̃2
M and R̃2

Y

are bounded from above by Var(εi2)/Var(Mi) and
Var(εi3)/Var(Yi), respectively.
In either case, it is straightforward to show that

the following relationship between ρ and these pa-

rameters holds, that is, ρ2 =R2∗
MR

2∗
Y = R̃2

M R̃
2
Y /{(1−

R2
M )(1−R2

Y )} or, equivalently,

ρ= sgn(λ2λ3)R
∗
MR

∗
Y =

sgn(λ2λ3)R̃M R̃Y√
(1−R2

M )(1−R2
Y )
,

where R∗
M ,R

∗
Y , R̃M and R̃Y are in [0,1]. Thus, in

this framework, researchers can specify the values of
(R2∗

M ,R
2∗
Y ) or (R̃2

M , R̃
2
Y ) as well as the sign of λ2λ3

in order to determine values of ρ and estimate the
ACME based on these values of ρ. Then, the analyst
can examine variation in the estimated ACME with
respect to change in these parameters.

5.3 Extensions to Nonlinear and

Nonparametric Models

The proposed sensitivity analysis above is devel-
oped within the framework of the LSEM, but some
extensions are possible. For example, Imai, Keele
and Tingley (2009) show how to conduct sensitiv-
ity analysis with probit models when the mediator
and/or the outcome are discrete. In Appendix E,
while it is substantially more difficult to conduct
such an analysis in the nonparametric setting, we
consider sensitivity analysis for the nonparametric
plug-in estimator introduced in Section 4.2 (see also
VanderWeele, 2010 for an alternative approach).

6. EMPIRICAL APPLICATION

In this section we apply our proposed methods to
the influential randomized experiment from political
psychology we described in Section 2.

6.1 Analysis under Sequential Ignorability

In the original analysis, Nelson, Clawson and Ox-
ley (1997) used a LSEM similar to the one discussed
in Section 3.4 and found that subjects who viewed
the Klan story with the free speech frame were sig-
nificantly more tolerant of the Klan than those who

Table 3

Parametric and nonparametric estimates of the ACME under sequential ignorability in the media
framing experiment. Each cell of the table represents an estimated average causal effect and its 95%
confidence interval. The outcome is the subjects’ tolerance level for the free speech rights of the Ku

Klux Klan, and the treatments are the public order frame (Ti = 1) and the free speech frame
(Ti = 0). The second column of the table shows the results of the parametric LSEM approach, while
the third column of the table presents those of the nonparametric estimator. The lower part of the

table shows the results of parametric mediation analysis under the no-interaction assumption
[δ̂(1) = δ̂(0)], while the upper part presents the findings without this assumption, thereby showing the

estimated average mediation effects under the treatment and the control, that is, δ̂(1) and δ̂(0)

Parametric Nonparametric

Average mediation effects

Free speech frame δ̂(0) −0.566 −0.596
[−1.081, −0.050] [−1.168, −0.024]

Public order frame δ̂(1) −0.451 −0.374
[−0.871, −0.031] [−0.823, 0.074]

Average total effect τ̂ −0.540 −0.540
[−1.207, 0.127] [−1.206, 0.126]

With the no-interaction assumption
Average mediation effect −0.510

δ̂(0) = δ̂(1) [−0.969, −0.051]

Average total effect τ̂ −0.540
[−1.206, 0.126]
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saw the story with the public order frame. The re-
searchers also found evidence supporting their main
hypothesis that subjects’ general attitudes mediated
the causal effect of the news story frame on toler-
ance for the Klan. In the analysis that follows, we
only analyze the public order mediator, for which
the researchers found a significant mediation effect.
As we showed in Section 3.4, the original results

can be given a causal interpretation under sequen-
tial ignorability, that is, Assumption 1. Here, we first
make this assumption and estimate causal effects
based on our theoretical results. Table 3 presents the
findings. The second and third columns of the table
show the estimated ACME and average total effect
based on the LSEM and the nonparametric estima-
tor, respectively. The 95% asymptotic confidence in-
tervals are constructed using the Delta method. For
most of the estimates, the 95% confidence intervals
do not contain zero, mirroring the finding from the
original study that general attitudes about public
order mediated the effect of the media frame.
As shown in Section 3.4, we can relax the no-

interaction assumption (Assumption 2) that is im-
plicit in the LSEM of Baron and Kenny (1986).
The first and second rows of the table present esti-
mates from the parametric and nonparametric anal-
ysis without this assumption. These results show
that the estimated ACME under the free speech
condition [δ̂(0)] is larger than the effect under the

public order condition [δ̂(1)] for both the paramet-
ric and nonparametric estimators. In fact, the 95%
confidence interval for the nonparametric estimate
of δ̄(1) includes zero. However, we fail to reject the
null hypothesis of δ̄(0) = δ̄(1) under the parametric
analysis, with a p-value of 0.238.
Based on this finding, the no-interaction assump-

tion could be regarded as appropriate. The last two
rows in Table 3 contain the analysis based on the
parametric estimator under this assumption. As ex-
pected, the estimated ACME is between the previ-
ous two estimates, and the 95% confidence interval
does not contain zero. Finally, the estimated aver-
age total effect is identical to that without Assump-
tion 2. This makes sense since the no-interaction as-
sumption only restricts the way the treatment effect
is transmitted to the outcome and thus does not af-
fect the estimate of the overall treatment effect.

6.2 Sensitivity Analysis

The estimates in Section 6.1 are identified if the
sequential ignorability assumption holds. However,

since the original researchers randomized news sto-
ries but subjects’ attitudes were merely observed, it
is unlikely this assumption holds. As we discussed
in Section 2, one particular concern is that sub-
jects’ pre-existing ideology affects both their atti-
tudes toward public order issues and their tolerance
for the Klan within each treatment condition. Thus,
we next ask how sensitive these estimates are to vi-
olations of this assumption using the methods pro-
posed in Section 5. We consider political ideology to
be a possible unobserved pre-treatment confounder.
We also maintain Assumption 2.
Figure 1 presents the results for the sensitivity

analysis based on the residual correlation. We plot
the estimated ACME of the attitude mediator against
differing values of the sensitivity parameter ρ, which
is equal to the correlation between the two error
terms of equations (27) and (28) for each. The anal-
ysis indicates that the original conclusion about the
direction of the ACME under Assumption 1 (repre-
sented by the dashed horizontal line) would be main-
tained unless ρ is less than −0.68. This implies that
the conclusion is plausible given even fairly large
departures from the ignorability of the mediator.
This result holds even after we take into account the
sampling variability, as the confidence interval cov-
ers the value of zero only when −0.79< ρ <−0.49.
Thus, the original finding about the negative ACME
is relatively robust to the violation of equation (5)
of Assumption 1 under the LSEM.

Fig. 1. Sensitivity analysis for the media framing experi-
ment. The figure presents the results of the sensitivity analy-
sis described in Section 5. The solid line represents the esti-
mated ACME for the attitude mediator for differing values of
the sensitivity parameter ρ, which is defined in equation (24).
The gray region represents the 95% confidence interval based
on the Delta method. The horizontal dashed line is drawn at
the point estimate of δ̄ under Assumption 1.
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Fig. 2. An alternative interpretation of the sensitivity analysis. The plot presents the results of the sensitivity analysis described in Section 5. Each plot contains
various mediation effects under an unobserved pre-treatment confounder of various magnitudes. The left plot contains the contours for R2∗

M and R2∗
Y which represent

the proportion of unexplained variance that is explained by the unobserved confounder for the mediator and outcome, respectively. The right plot contains the contours
for R̃2

M and R̃2
Y which represent the proportion of the variance explained by the unobserved pre-treatment confounder. Each line represents the estimated ACME

under proposed values of either (R∗2
M ,R2∗

Y ) or (R̃2
M , R̃2

Y ). The term sgn(λ2λ3) represents the sign on the product of the coefficients of the unobserved confounder.
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Next, we present the same sensitivity analysis us-
ing the alternative interpretation of ρ which is based
on two coefficients of determination as defined in
Section 5; (1) the proportion of unexplained variance
that is explained by an unobserved pre-treatment
confounder (R2∗

M and R2∗
Y ) and (2) the proportion

of the original variance explained by the same un-
observed confounder (R̃2

M and R̃2
Y ). Figure 2 shows

two plots based on the types of coefficients of de-
termination. The lower left quadrant of each plot
in the figure represents the case where the product
of the coefficients for the unobserved confounder is
negative, while the upper right quadrant represents
the case where the product is positive.
For example, this product will be positive if the

unobserved pre-treatment confounder represents sub-
jects’ political ideology, since conservatism is likely
to be positively correlated with both public order
importance and tolerance for the Klan. Under this
scenario, the original conclusion about the direc-
tion of the ACME is perfectly robust to the viola-
tion of sequential ignorability, because the estimated
ACME is always negative in the upper right quad-
rant of each plot. On the other hand, the result is
less robust to the existence of an unobserved con-
founder that has opposite effects on the mediator
and outcome. However, even for this alternative sit-
uation, the ACME is still guaranteed to be nega-
tive as long as the unobserved confounder explains
less than 27.7% of the variance in the mediator or
outcome that is left unexplained by the treatment
alone, no matter how large the corresponding por-
tion of the variance in the other variable may be.
Similarly, the direction of the original estimate is
maintained if the unobserved confounder explains
less than 26.7% (14.7%) of the original variance in
the mediator (outcome), regardless of the degree of
confounding for the outcome (mediator).

7. CONCLUDING REMARKS

In this paper we study identification, inference
and sensitivity analysis for causal mediation effects.
Causal mediation analysis is routinely conducted
in various disciplines, and our paper contributes to
this fast-growing methodological literature in sev-
eral ways. First, we provide a new identification con-
dition for the ACME, which is relatively easy to in-
terpret in substantive terms and also weaker than
existing results in some situations. Second, we prove
that the estimates based on the standard LSEM

can be given valid causal interpretations under our
proposed framework. This provides a basis for for-
mally analyzing the validity of empirical studies us-
ing the LSEM framework. Third, we propose simple
nonparametric estimation strategies for the ACME.
This allows researchers to avoid the stronger func-
tional form assumptions required in the standard
LSEM. Finally, we offer a parametric sensitivity anal-
ysis that can be easily used by applied researchers in
order to assess the sensitivity of estimates to the vi-
olation of this assumption. We view sensitivity anal-
ysis as an essential part of causal mediation analy-
sis because the assumptions required for identifying
causal mediation effects are unverifiable and often
are not justified in applied settings.
At this point, it is worth briefly considering the

progression of mediation research from its roots in
the empirical psychology literature to the present. In
their seminal paper, Baron and Kenny (1986) sup-
plied applied researchers with a simple method for
mediation analysis. This method has quickly gained
widespread acceptance in a number of applied fields.
While psychologists extended this LSEM framework
in a number of ways, little attention was paid to
the conditions under which their popular estima-
tor can be given a causal interpretation. Indeed,
the formal definition of the concept of causal me-
diation had to await the later works by epidemiolo-
gists and statisticians (Robins and Greenland, 1992;
Pearl, 2001; Robins, 2003). The progress made on
the identification of causal mediation effects by these
authors has led to the recent development of alter-
native and more general estimation strategies (e.g.,
Imai, Keele and Tingley, 2009; VanderWeele, 2009).
In this paper we show that under a set of assump-
tions this popular product of coefficients estima-
tor can be given a causal interpretation. Thus, over
twenty years later, the work of Baron and Kenny
has come full circle.
Despite its natural appeal to applied scientists,

statisticians often find the concept of causal medi-
ation mysterious (e.g., Rubin, 2004). Part of this
skepticism seems to stem from the concept’s inher-
ent dependence on background scientific theory;
whether a variable qualifies as a mediator in a given
empirical study relies crucially on the investigator’s
belief in the theory being considered. For example,
in the social science application introduced in Sec-
tion 2, the original authors test whether the effect of
a media framing on citizens’ opinion about the Klan
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rally is mediated by a change in attitudes about gen-
eral issues. Such a setup might make no sense to an-
other political psychologist who hypothesizes that
the change in citizens’ opinion about the Klan rally
prompts shifts in their attitudes about more gen-
eral underlying issues. The H1N1 flu virus example
mentioned in Section 3.1 also highlights the same
fundamental point. Thus, causal mediation analysis
can be uncomfortably far from a completely data-
oriented approach to scientific investigations. It is,
however, precisely this aspect of causal mediation
analysis that makes it appealing to those who resist
standard statistical analyses that focus on estimat-
ing treatment effects, an approach which has been
somewhat pejoratively labeled as a “black-box” view
of causality (e.g., Skrabanek, 1994; Deaton, 2009).
It may be the case that causal mediation analysis
has the potential to significantly broaden the scope
of statistical analysis of causation and build a bridge
between scientists and statisticians.
There are a number of possible future generaliza-

tions of the proposed methods. First, the sensitiv-
ity analysis can potentially be extended to various
nonlinear regression models. Some of this has been
done by Imai, Keele and Tingley (2009). Second,
an important generalization would be to allow mul-
tiple mediators in the identification analysis. This
will be particularly valuable since in many applica-
tions researchers aim to test competing hypotheses
about alternative causal mechanisms via mediation
analysis. For example, the media framing study we
analyzed in this paper included another measure-
ment (on a separate group randomly split from the
study sample) which was purported to test an alter-
native causal pathway. The formal treatment of this
issue will be a major topic of future research. Third,
implications of measurement error in the mediator
variable have yet to be analyzed. This represents an-
other important research topic, as mismeasured me-
diators are quite common, particularly in psycholog-
ical studies. Fourth, an important limitation of our
framework is that it does not allow the presence of a
post-treatment variable that confounds the relation-
ship between mediator and outcome. As discussed
in Section 3.3, some of the previous results avoid
this problem by making additional identification as-
sumptions (e.g., Robins, 2003). The exploration of
alternative solutions is also left for future research.
Finally, it is important to develop new experimen-
tal designs that help identify causal mediation ef-
fects with weaker assumptions. Imai, Tingley and

Yamamoto (2009) present some new ideas on the
experimental identification of causal mechanisms.

APPENDIX A: PROOF OF THEOREM 1

First, note that equation (4) in Assumption 1 im-
plies

Yi(t
′,m)⊥⊥ Ti|Mi(t) =m′, Xi = x.(25)

Now, for any t, t′, we have

E(Yi(t,Mi(t
′))|Xi = x)

=

∫
E(Yi(t,m)|Mi(t

′) =m,Xi = x)

dFMi(t′)|Xi=x(m)

=

∫
E(Yi(t,m)|Mi(t

′) =m,Ti = t′,Xi = x)

dFMi(t′)|Xi=x(m)

=

∫
E(Yi(t,m)|Ti = t′,Xi = x)

dFMi(t′)|Xi=x(m)

=

∫
E(Yi(t,m)|Ti = t,Xi = x)

dFMi(t′)|Ti=t′,Xi=x(m)

=

∫
E(Yi(t,m)|Mi(t) =m,Ti = t,Xi = x)

dFMi(t′)|Ti=t′,Xi=x(m)

=

∫
E(Yi|Mi =m,Ti = t,Xi = x)

dFMi(t′)|Ti=t′,Xi=x(m)

=

∫
E(Yi|Mi =m,Ti = t,Xi = x)(26)

dFMi|Ti=t′,Xi=x(m),

where the second equality follows from equation (25),
equation (5) is used to establish the third and fifth
equalities, equation (4) is used to establish the fourth
and last equalities, and the sixth equality follows
from the fact thatMi =Mi(Ti) and Yi = Yi(Ti,Mi(Ti)).
Finally, equation (26) implies

E(Yi(t,Mi(t
′)))

=

∫ ∫
E(Yi|Mi =m,Ti = t,Xi = x)

dFMi|Ti=t′,Xi=x(m)dFXi
(x).
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Substituting this expression into the definition of
δ̄(t) given by equations (1) and (2) yields the de-
sired expression for the ACME. In addition, since
τ̄ = ζ̄(t) + δ̄(t′) for any t, t′ = 0,1 and t 6= t′ under
Assumption 1, the result for the average natural di-
rect effects is also immediate.

APPENDIX B: PROOF OF THEOREM 2

We first show that under Assumption 1 the model
parameters in the LSEM are identified. Rewrite equa-
tions (12) and (13) using the potential outcome no-
tation as follows:

Mi(Ti) = α2 + β2Ti + εi2(Ti),(27)

Yi(Ti,Mi(Ti)) = α3 + β3Ti + γMi(Ti)
(28)

+ εi3(Ti,Mi(Ti)),

where the following normalization is used: E(εi2(t)) =
E(εi3(t,m)) = 0 for t= 0,1 and m ∈M. Then, equa-
tion (4) of Assumption 1 implies εi2(t) ⊥⊥ Ti, yield-
ing E(εi2(Ti)|Ti = t) = E(εi2(t)) = 0 for any t= 0,1.
Similarly, equation (5) implies εi3(t,m) ⊥⊥Mi|Ti =
t for all t and m, yielding E(εi3(Ti,Mi(Ti))|Ti =
t,Mi = m) = E(εi3(t,m)|Ti = t) = E(εi3(t,m)) = 0
for any t and m where the second equality follows
from equation (4). Thus, the parameters in equa-
tions (12) and (13) are identified under Assump-
tion 1. Finally, under Assumption 1 and the LSEM,
we can write E(Mi|Ti) = α2+β2Ti, and E(Yi|Mi, Ti) =
α3 + β3Ti + γMi. Using these expressions and The-
orem 1, the ACME can be shown to equal β2γ.

APPENDIX C: PROOF THAT ρ= 0 UNDER

ASSUMPTION 1

First, as shown in Appendix B, Assumption 1 im-
plies E(εi2(Ti)|Ti) = 0 and E(εi3(Ti,Mi(Ti))|Ti,
Mi) = 0 where the (potential) error terms are de-
fined in equations (27) and (28). These mean in-
dependence relationships (together with the law of
iterated expectations) imply

0 = E(εi3(Ti,Mi(Ti))Mi)

= E{εi3(Ti,Mi(Ti))(α2 + β2Ti + εi2(Ti))}

= E{εi3(Ti,Mi(Ti))εi2(Ti))}.

Thus, under Assumption 1, we have ρ = 0 ⇐⇒
E{εi2(Ti)εi3(Ti,Mi(Ti))}= 0.

APPENDIX D: PROOF OF THEOREM 4

First, we write the LSEM in terms of equations (12)
and (14). We omit possible pre-treatment confounders
Xi from the model for notational simplicity, although
the result below remains true even if such confounders
are included. Since equation (4) implies E(εji|Ti) = 0
for j = 2,3, we can consistently estimate (α1, α2, β1,
β2), where α1 = α3 + α2γ and β1 = β3 + β2γ, as
well as (σ21 , σ

2
2 , ρ̃). Thus, given a particular value of

ρ, we have ρ̃σ1σ2 = γσ22 + ρσ2σ3 and σ21 = γ2σ22 +
σ23 + 2γρσ2σ3. If ρ = 0, then γ = ρ̃σ1/σ2 provided
that σ23 = σ21(1− ρ̃2)≥ 0. Now, assume ρ 6= 0. Then,
substituting σ3 = (ρ̃σ1 − γσ2)/ρ into the above ex-

pression of σ21 yields the following quadratic equa-
tion: γ2 − 2γρ̃σ1/σ2 + σ21(ρ̃

2 − ρ2)/{σ22(1 − ρ2)} =
0. Solving this equation and using σ3 ≥ 0, we ob-
tain the following desired expression: γ = σ1

σ2
{ρ̃ −

ρ
√

(1− ρ̃2)/(1− ρ2)}. Thus, given a particular value
of ρ, δ̄(t) is identified.

APPENDIX E: NONPARAMETRIC

SENSITIVITY ANALYSIS

We consider a sensitivity analysis for the simple
plug-in nonparametric estimator introduced in Sec-
tion 4.2. Unfortunately, sensitivity analysis is not as
straightforward as the parametric settings. Here, we
examine the special case of binary mediator and out-
come where some progress can be made and leave
the development of sensitivity analysis in a more
general nonparametric case for future research.
We begin by the nonparametric bounds on the

ACME without assuming equation (5) of the se-
quential ignorability assumption. In the case of bi-
nary mediator and outcome, we can derive the fol-
lowing sharp bounds using the result of (2009):

max





−P001 −P011

−P000 −P001 − P100

−P011 −P010 − P110





(29)

≤ δ̄(1)≤min





P101 +P111

P000 +P100 + P101

P010 +P110 + P111



 ,

max





−P100 −P110

−P001 −P100 − P101

−P110 −P011 − P111





(30)

≤ δ̄(0)≤min





P000 +P010

P010 +P011 + P111

P000 +P001 + P101



 ,
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where Pymt ≡Pr(Yi = y,Mi =m|Ti = t) for all y,m,
t ∈ {0,1}. These bounds always contain zero, im-
plying that the sign of the ACME is not identified
without an additional assumption even in this spe-
cial case.
To construct a sensitivity analysis, we follow the

strategy of Imai and Yamamoto (2010) and first ex-
press the second assumption of sequential ignorabil-
ity using the potential outcomes notation as follows:

Pr(Yi(1,1) = y11, Yi(1,0) = y10,

Yi(0,1) = y01, Yi(0,0) = y00|Mi = 1, Ti = t′)

= Pr(Yi(1,1) = y11, Yi(1,0) = y10,(31)

Yi(0,1) = y01, Yi(0,0) = y00|

Mi = 0, Ti = t′)

for all t′, ytm,∈ {0,1}. The equality states that within
each treatment group the mediator is assigned inde-
pendent of potential outcomes. We now consider the
following sensitivity parameter υ, which is the maxi-
mum possible difference between the left- and right-
hand side of equation (31). That is, υ represents the
upper bound on the absolute difference in the pro-
portion of any principal stratum that may exist be-
tween those who take different values of the media-
tor given the same treatment status. Thus, this pro-
vides one way to parametrize the maximum degree
to which the sequential ignorability can be violated.
(Other, potentially more intuitive, parametrization
are possible, but, as shown below, this parametriza-
tion allows for easier computation of the bounds.)
Using the population proportion of each princi-

pal stratum, that is, πm1m0
y11y10y01y00

≡ Pr(Yi(1,1) = y11,
Yi(1,0) = y10, Yi(0,1) = y01, Yi(0,0) = y00,Mi(1) =
m1,Mi(0) =m0), we can write this difference as fol-
lows:

∣∣∣∣

∑1
m0=0 π

1m0
y11y10y01y00∑1

y=0 Py11

−

∑1
m0=0 π

0m0
y11y10y01y00∑1

y=0Py01

∣∣∣∣
(32)

≤ υ,

∣∣∣∣

∑1
m1=0 π

m11
y11y10y01y00∑1

y=0 Py10

−

∑1
m1=0 π

m10
y11y10y01y00∑1

y=0Py00

∣∣∣∣
(33)

≤ υ,

where υ is bounded between 0 and 1. Clearly, if and
only if υ = 0, the sequential ignorability assumption
is satisfied.

Finally, note that the ACME can be written as
the following linear function of unknown parame-
ters πm1m0

y11y10y01y00
:

δ̄(t) =

1∑

m=0

1∑

y1−t,m=0

1∑

y1,1−m=0

1∑

y0,1−m=0

(34) (
1∑

m0=0

πmm0
y11y10y01y00

−

1∑

m1=0

πm1m
y11y10y01y00

)
,

where one of the subscripts of π corresponding to
ytm is equal to 1. Then, given a fixed value of sensi-
tivity parameter υ, you can obtain the sharp bounds
on the ACME by numerically solving the linear opti-
mization problem with the linear constraints implied
by equations (32) and (33) as well as the following
relationship implied by the ignorability of the treat-
ment assignment:

Pymt =

1∑

y1−t,m=0

1∑

yt,1−m=0

1∑

y1−t,1−m=0

1∑

m1−t=0

πm1m0
y11y10y01y00

(35)
for each y,m, t ∈ {0,1}. In addition, we use the linear
constraint that all πm1m0

y11y10y01y00
sum up to 1.

We apply this framework to the media framing
example described in Sections 2 and 6. For the pur-
pose of illustration, we dichotomize both the me-
diator and treatment variables using their sample
medians as cutpoints. Figure 3 shows the results of
this analysis. In each panel the solid curves represent
the sharp upper and lower bounds on the ACME
for different values of the sensitivity parameter υ.
The horizontal dashed lines represent the point es-
timates of δ̄(1) (upper panel) and δ̄(0) (lower panel)
under Assumption 1. This corresponds to the case
where the sensitivity parameter is exactly equal to
zero (i.e., υ = 0), so that equation (31) holds. The
sharp bounds widen as we increase the value of υ,
until they flatten out and become equal to the no-
assumption bounds given in equations (29) and (30).
The results suggest that the point estimates of the

ACME are rather sensitive to the violation of the
sequential ignorability assumption. For both δ̄(1)

and δ̄(0), the upper bounds sharply increase as we
increase the value of υ and cross the zero line at
small values of υ [0.019 for δ̄(1) and 0.022 for δ̄(0)].
This contrasts with the parametric sensitivity anal-
yses reported in Section 6.2, where the estimates of
the ACME appeared quite robust to the violation
of Assumption 1. Although the direct comparison
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is difficult because of different parametrization and
variable coding, this stark difference illustrates the
potential importance of parametric assumptions in
causal mediation analysis; a significant part of iden-
tification power could in fact be attributed to such
functional form assumptions as opposed to empirical
evidence.
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