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Abstract. The Dempster–Shafer (DS) theory is a powerful tool for
probabilistic reasoning based on a formal calculus for combining evi-
dence. DS theory has been widely used in computer science and engi-
neering applications, but has yet to reach the statistical mainstream,
perhaps because the DS belief functions do not satisfy long-run fre-
quency properties. Recently, two of the authors proposed an extension
of DS, called the weak belief (WB) approach, that can incorporate de-
sirable frequency properties into the DS framework by systematically
enlarging the focal elements. The present paper reviews and extends
this WB approach. We present a general description of WB in the
context of inferential models, its interplay with the DS calculus, and
the maximal belief solution. New applications of the WB method in
two high-dimensional hypothesis testing problems are given. Simula-
tions show that the WB procedures, suitably calibrated, perform well
compared to popular classical methods. Most importantly, the WB ap-
proach combines the probabilistic reasoning of DS with the desirable
frequency properties of classical statistics.

Key words and phrases: Bayesian, belief functions, fiducial argument,
frequentist, hypothesis testing, inferential model, nonparametrics.

1. INTRODUCTION

A statistical analysis often begins with an itera-
tive process of model-building, an attempt to under-
stand the observed data. The end result is what we
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call a sampling model—a model that describes the
data-generating mechanism—that depends on a set
of unknown parameters. More formally, let X ∈ X

denote the observable data, and Θ ∈ T the parame-
ter of interest. Suppose the sampling model X ∼ PΘ

can be represented by a pair consisting of (i) an
equation

X = a(Θ,U),(1.1)

where U ∈ U is called the auxiliary variable, and
(ii) a probability measure µ defined on measurable
subsets of U. We call (1.1) the a-equation, and µ
the pivotal measure. This representation is similar
to that of Fraser [11], and familiar in the context
of random data generation, where a random draw
U ∼ µ is mapped, via (1.1), to a variable X with the
prescribed distribution depending on known Θ. For
example, to generate a random variable X having an
exponential distribution with fixed rate Θ = θ, one
might draw U ∼Unif(0,1) and set X =−θ−1 logU .
For inference, uncertainty about Θ is typically de-
rived directly from the sampling model, without any
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additional considerations. But Fisher [10] highlighted
the fundamental difference between sampling and
inference, suggesting that the two problems should
be, somehow, kept separate. Here we take a new ap-
proach in which inference is not determined by the
sampling model alone—a so-called inferential model
is built to handle posterior uncertainty separately.
Since the early 1900s, statisticians have strived

for inferential methods capable of producing pos-
terior probability-based conclusions with limited or
no prior assumptions. In Section 2 we describe two
major steps in this direction. The first major step,
coming in the 1930s, was Fisher’s fiducial argument,
which uses a “pivotal quantity” to produce a poste-
rior distribution with no prior assumptions on the
parameter of interest. Limitations and inconsisten-
cies of the fiducial argument have kept it from be-
coming widely accepted. A second major step, made
by Dempster in the 1960s, extended both Bayesian
and fiducial inference. Dempster uses (1.1) to con-
struct a probability model on a class of subsets of
X×T such that conditioning on Θ produces the sam-
pling model, and conditioning on the observed data
X generates a set of upper and lower posterior prob-
abilities for the unknown parameter Θ. Dempster [6]
argues that this uncertainty surrounding the exact
posterior probability is not an inconvenience but,
rather, an essential component of the analysis. In
the 1970s, Shafer [18] extended Dempster’s calculus
of upper and lower probabilities into a general the-
ory of evidence. Since then, the resulting Dempster–
Shafer (DS) theory has been widely used in com-
puter science and engineering applications but has
yet to make a substantial impact in statistics. One
possible explanation for this slow acceptance is the
fact that the DS upper and lower probabilities are
personal and do not satisfy the familiar long-run
frequency properties under repeated sampling.
Zhang and Liu [25] have recently proposed a vari-

ation of DS inference that does have some of the de-
sired frequency properties. The goal of the present
paper is to review and extend the work of Zhang
and Liu [25] on the theory of statistical inference
with weak beliefs (WBs). The WB method starts
with a belief function on X × T, but before condi-
tioning on the observed data X , a weakening step is
taken whereby the focal elements are sufficiently en-
larged so that some desirable frequency properties
are realized. The belief function is weakened only
enough to achieve the desired properties. This is
accomplished by choosing a “most efficient” belief

function from those which are sufficiently weak—
this belief is called the maximal belief (MB) solu-
tion.
To emphasize the main objective of WB, namely,

modifying belief functions to obtain desirable fre-
quency properties, we present a new concept here
called an inferential model (IM). Simply put, an IM
is a belief function that is bounded from above by
the conventional DS posterior belief function. For
the special case considered here, where the sampling
model can be described by the a-equation (1.1) and
the pivotal measure µ, we consider IMs generated by
using random sets to predict the unobserved value
of the auxiliary variable U .
The remainder of the paper is organized as fol-

lows. Since WBs are built upon the DS framework,
the necessary DS notation and concepts will be in-
troduced in Section 2. Then, in Section 3, we de-
scribe the new approach to prior-free posterior in-
ference based on the idea of IMs. Zhang and Liu’s
WB method is used to construct an IM, completely
within the belief function framework, and the desir-
able frequency properties of the resulting MB solu-
tion follow immediately from this construction. Sec-
tions 4 and 5 give detailed WB analyses of two high-
dimensional hypothesis testing problems, and com-
pare the MB procedures in simulations to popular
frequentists methods. Some concluding remarks are
made in Section 6.

2. FIDUCIAL AND DEMPSTER–SHAFER

INFERENCE

The goal of this section is to present the notation
and concepts from DS theory that will be needed in
the sequel. It is instructive, as well as of historical
interest, however, to first discuss Fisher’s fiducial
argument.

2.1 Fiducial Inference

Consider the model described by the a-equation
(1.1), where Θ is the parameter of interest, X is
a sufficient statistic rather than the observed data,
and U is the auxiliary variable, referred to as a piv-
otal quantity in the fiducial context. A crucial as-
sumption underlying the fiducial argument is that
each one of (X,Θ,U) is uniquely determined by (1.1)
given the other two. The pivotal quantity U is as-
sumed to have an a priori distribution µ, indepen-
dent of Θ. Prior to the experiment, X has a sam-
pling distribution that depends on Θ; after the ex-
periment, however, X is no longer a random vari-
able. To produce a posterior distribution for Θ, the
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variability in X prior to the experiment must some-
how be transferred, after the experiment, to Θ. As
in Dempster [1], we “continue to believe” that U is
distributed according to µ after X is observed. This
produces a distribution for Θ, called the fiducial dis-
tribution.

Example 1. To see the fiducial argument in ac-
tion, consider the problem of estimating the un-
known mean of a N(Θ,1) population based on a
single observation X . In this case, we may write the
a-equation (1.1) as

X =Θ+Φ−1(U),

where Φ(·) is the cumulative distribution function
(CDF) of the N(0,1) distribution, and the pivotal
quantity U has a priori distribution µ= Unif(0,1).
Then, for a fixed θ, the fiducial probability of {Θ≤
θ} is, as Fisher [9] reasoned, determined by the fol-
lowing logical sequence:

Θ≤ θ ⇐⇒ X −Φ−1(U)≤ θ

⇐⇒ U ≥Φ(X − θ).

That is, since the events {Θ ≤ θ} and {U ≥Φ(X −
θ)} are equivalent, their probabilities must be the
same; thus, the fiducial probability of {Θ ≤ θ}, as
determined by “continuing to believe,” is Φ(θ−X).
We can, therefore, conclude that the fiducial distri-
bution of Θ, given X , is

Θ∼N(X,1).(2.1)

Note that (2.1) is exactly the objective Bayes answer
when Θ has the Jeffreys (flat) prior. A more general
result along these lines is given by Lindley [15].

For a detailed account of the development of
Fisher’s fiducial argument, criticisms of it, and a
comprehensive list of references, see Zabell [24]. For
more recent developments in fiducial inference, see
Hannig [12].

2.2 Dempster–Shafer Inference

The Dempster–Shafer theory is both a successor
of Fisher’s fiducial inference and a generalization
of Bayesian inference. The foundations of DS have
been laid out by Dempster [2–4, 6] and Shafer [18–
22]. The DS theory has been influential in many
scientific areas, such as computer science and engi-
neering. In particular, DS has played a major role
in the theoretical and practical development of ar-
tificial intelligence. The 2008 volume Classic Works

on the Dempster–Shafer Theory of Belief Functions
[23], edited by R. Yager and L. Liu, contains a se-
lection of nearly 30 influential papers on DS theory
and applications. For some recent statistical appli-
cations of DS theory, see Denoeux [7], Kohlas and
Monney [13] and Edlefsen, Liu and Dempster [8].
DS inference, like Bayes, is designed to make prob-

abilistic statements about Θ, but it does so in a very
different way. The DS posterior distribution is not
a probability distribution on the parameter space T

in the usual (Bayesian) sense, but a distribution on
a collection of subsets of T. The important point is
that a specification of an a priori distribution for Θ
is altogether avoided—the DS posterior comes from
an a priori distribution over this collection of subsets
of X×T and the DS calculus for combining evidence
and conditioning on observed data.
Recall the a-equation (1.1) where X ∈ X is the

observed data, Θ ∈ T is the parameter of interest,
and U ∈U is the auxiliary variable. In this setup, X ,
Θ and U are allowed to be vectors or even functions;
the nonparametric problem where the parameter of
interest is a CDF is discussed in Section 5. Here
X is the full observed data and not necessarily a
reduction to a sufficient statistic as in the fiducial
context. Furthermore, unlike fiducial, the sets

Tx,u = {θ ∈ T :x= a(θ,u)},
(2.2)

Ux,θ = {u ∈U :x= a(θ,u)}

are not required to be singletons.
Following Shafer [18], the key elements of the DS

analysis are the frame of discernment and belief func-
tion; Dempster [6] calls these the state space model
and the DS model, respectively. The frame of dis-
cernment is X × T, the space of all possible pairs
(X,Θ) of real-world quantities. The belief function
Bel : 2X×T → [0,1] is a set-function that assigns nu-
merical values to events E ⊂X×T, meant to repre-
sent the “degree of belief” in E . Belief functions are
generalizations of probability measures—see Shafer
[18] for a full axiomatic development—and Shafer
[20] shows that one can conveniently construct be-
lief functions out of suitable measures and set-valued
mappings through a “push-forward” operation. For
our statistical inference problem, a particular con-
struction comes to mind, which we now describe.
Consider the set-valued mapping M :U → 2X×T

given by

M(U) = {(X,Θ) ∈X×T :X = a(Θ,U)}.(2.3)
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The set M(U) is called a focal element, and con-
tains all those data-parameter pairs (X,Θ) consis-
tent with the model and particular choice of U . Let
M = {M(U) :U ∈ U} ⊆ 2X×T denote the collection
of all such focal elements. Then the mapping M(·)
in (2.3) and the pivotal measure µ on U together
specify a belief function

Bel(E) = µ{U :M(U)⊆ E}, E ⊂X×T.(2.4)

Some important properties of belief functions will be
described below. Here we point out that Bel in (2.4)
is the push-forward measure µM−1, and this defines
a probability distribution over measurable subsets of
M . Therefore, when U ∼ µ, one can think of M(U)
as a random set in M whose distribution is defined
by Bel in (2.4). Random sets will appear again in
Section 3.
The rigorous DS calculus laid out in Shafer [18],

and reformulated for statisticians in Dempster [6],
makes the DS analysis very attractive. A key ele-
ment of the DS theory is Dempster’s rule of com-
bination, which allows two (independent) pieces of
evidence, represented as belief functions on the same
frame of discernment, to be combined in a way that
is similar to combining probabilities via a product
measure. While the intuition behind Dempster’s rule
is quite simple, the general expression for the com-
bined belief function is rather complicated and is,
therefore, omitted; see Shafer [18], Chapter 3, or
Yager and Liu [23], Chapter 1, for the details. But
in a statistical context, the most important type of
belief functions to be combined with Bel in (2.4)
are those that fix the value of either the X or Θ
component—this type of combination is known as
conditioning. It turns out that Dempster’s rule of
conditioning is fairly simple; see Theorem 3.6 of
Shafer [18]. Next we outline the construction of these
conditional belief functions, handling the two dis-
tinct cases separately.

Condition on Θ Here we combine the belief func-
tion (2.4) with another based on the information
Θ = θ. Start with the trivial (constant) set-valued
mapping

M0(U)≡ {(X,Θ) :Θ = θ}.

This, together with the mapping M in (2.3), gives
a combined focal element

M0(U) ∩M(U) = {(X,θ) :X = a(θ,U)},

the θ-cross section of M(U), which we project down
to the X-margin to give

Mθ(U) = {X :X = a(θ,U)} ⊂X.(2.5)

Let A be a measurable subset of X. It can be shown
that the conditional belief function Belθ can be ob-
tained by applying the same rule as in (2.4) but with
Mθ(U) in place of M(U). That is, the conditional
belief function, given Θ= θ, is given by

Belθ(A) = µ{U :Mθ(U)⊆A}
(2.6)

= µ{U :a(θ,U) ∈A},

the push-forward measure defined by µ and the map-
ping a(θ, ·), which is how the sampling distribution
is defined. Therefore, given Θ = θ, the conditional
belief function Belθ(·) is just the sampling distribu-
tion Pθ(·).

Condition on X For given X = x, we proceed just
as before; that is, start with the trivial (constant)
set-valued mapping

M0(U)≡ {(X,Θ) :X = x}

and combine this with M(U) in (2.3) to obtain a
new posterior focal element

M0(U)∩M(U) = {(x,Θ) :x= a(Θ,U)},

the x-cross section of M(U), which we project down
to the Θ margin to give

Mx(U) = {Θ:x= a(Θ,U)} ⊂ T.(2.7)

Unlike the “condition on Θ” case above, this poste-
rior focal element can, in general, be empty—a so-
called conflict case. Dempster’s rule of combination
will effectively remove these conflict cases by condi-
tioning on the event that MX(U) 6= ∅; see Demp-
ster [3]. In this case, for an assertion, or hypothesis,
A⊂ T, the DS posterior belief function Belx is de-
fined as

Belx(A) =
µ{U :Mx(U)⊆A}

µ{U :Mx(U) 6=∅}
.(2.8)

We now turn to some important properties of Belx.
In Shafer’s axiomatic development, belief functions
are nonadditive, which implies

Belx(A) + Belx(A
c)≤ 1 for all A,(2.9)

with equality if and only if Belx is an ordinary addi-
tive probability. The intuition here is that evidence
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not in favor of Ac need not be in favor of A. If we
define the plausibility function as

Plx(A) = 1−Belx(A
c),(2.10)

then it is immediately clear from (2.9) that

Belx(A)≤ Plx(A) for all A.

For this reason, Belx(A) and Plx(A) have often been
called, respectively, the lower and upper probabili-
ties of A given X = x. In our statistical context, A
plays the role of a hypothesis about the unknown
paramter Θ of interest. So for any relevant asser-
tion A, the posterior belief and plausibility functions
Belx(A) and Plx(A) can be calculated, and conclu-
sions are reached based on the relative magnitudes
of these quantities.
We have been writing “X = x” to emphasize that

the posterior focal elements and belief function are
conditional on a fixed observed value x of X . But
later we will consider sampling properties of the pos-
terior belief function, for fixed A, as a function of
the random variable X , so, henceforth, we will write
MX(U) for Mx(U) in (2.7), and BelX for Belx in
(2.8).

Example 2. Consider again the problem in Ex-
ample 1 of making inference on the unknown mean
Θ of a Gaussian population N(Θ,1) based on a
single observation X . We can use the a-equation
X =Θ+Φ−1(U), where U ∼ µ=Unif(0,1). The fo-
cal elements M(U) in (2.3) are the lines

M(U) = {(X,Θ) :X =Θ+Φ−1(U)}.

GivenX , the focal elements MX(U) = {X−Φ−1(U)}
in (2.7) are singletons. Since U ∼Unif(0,1), the pos-
terior belief function

BelX(A) = µ{U :X −Φ−1(U) ∈A}

is the probability that an N(X,1) distributed ran-
dom variable falls in A, which is the same as the ob-
jective Bayes and fiducial posterior. Note also that
this approach is different from that suggested by
Dempster [2] and described in detail in Dempster
[5].

Example 3. Suppose that the binary data X =
(X1, . . . ,Xn) consists of independent Bernoulli ob-
servations, and Θ ∈ [0,1] represents the unknown
probability of success. Dempster [2] considered the
sampling model determined by the a-equation

Xi = I{Ui≤θ}, i= 1, . . . , n,(2.11)

where IA denotes the indicator of the event A, and
the auxiliary variable U = (U1, . . . ,Un) has pivotal
measure µ = Unif([0,1]n). The belief function will
have generic focal elements

M(U) = {(X,Θ) :Xi = I{Ui≤Θ} ∀i= 1, . . . , n}.

This definition of the focal element is quite formal,
but looking more carefully at the a-equation (2.11)
casts more light on the relationships between Xi, Ui

and Θ. Indeed, we know that:

• if Xi = 1, then Θ≥ Ui, and
• if Xj = 0, then Θ<Uj .

Letting NX =
∑n

i=1Xi be the number of successes
in the n Bernoulli trials, it is clear that exactly NX

of the Ui’s are smaller than Θ, and the remaining
n−NX are greater than Θ. There is nothing par-
ticularly important about the indices of the Ui’s, so
throwing out conflict cases reduces the problem from
the binary vector X and uniform variates U to the
success count N =NX and ordered uniform variates;
see Dempster [2] for a detailed argument. Let U(i)

denote the ith order statistic from U1, . . . ,Un, with
U(0) := 0 and U(n+1) := 1. Then the focal element
M(U) above reduces to

M(U) = {(N,Θ) :U(N) ≤Θ≤ U(N+1)},

U ∈ [0,1]n.

Figure 1 gives a graphical representation of this generic
focal element. Now given N , the posterior belief
function has focal elements

MN (U) = {Θ:U(N) ≤Θ≤ U(N+1)},(2.12)

U ∈ [0,1]n,

which are intervals (the horizontal lines in Figure 1)
compared to the singletons in Example 2. Consider
the assertion Aθ = {Θ≤ θ} for θ ∈ [0,1]. The poste-
rior belief and plausibility functions for Aθ are given
by

BelN (Aθ) = µ{U ∈ [0,1]n :U(N+1) ≤ θ},

PlN (Aθ) = 1− µ{U ∈ [0,1]n :U(N) > θ}.

When N is fixed, the marginal beta distributions
of U(N) and U(N+1) are available and BelX(Aθ) and
PlX(Aθ) can be readily calculated. Plots for the case
of n= 12 and observed N = 7 can be seen in Figure 3
(Example 5 in Section 3.3).

Next are two important remarks about the con-
ventional DS analysis just described:
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Fig. 1. A focal element M(U) for the Bernoulli data prob-
lem in Example 3, with n= 7. A posterior focal element is a
horizontal line segment, the Θ-interval determined by fixing
the value of N =NX .

• The examples thus far have considered only “dull”
assertions, such as A = {Θ ≤ θ}, where conven-
tional DS performs fairly well. But for “sharp”
assertions, such as A = {Θ = θ}, particularly in
high-dimensional problems, conventional DS can
be too strong, resulting in plausibilities PlX(A)≈
0 that are of no practical use.

• For fixed A, BelX(A) has no built-in long-run fre-
quency properties as a function of X . Therefore,
rules like “reject A if PlX(A) < 0.05 or, equiv-
alently, if BelX(Ac) ≥ 0.95” have no guaranteed
long-run error rates, so designing statistical
methodology around conventional DS may be chal-
lenging.

It turns out that both of these problems can be
taken care of by shrinking BelX in (2.8). We do this
in Section 3 by suitably weakening the conventional
DS belief, replacing the pivotal measure µ with a
belief function.

3. INFERENCE WITH WEAK BELIEFS

3.1 Inferential Models

The conventional DS analysis of the previous sec-
tion achieves the lofty goal of providing posterior
probability-based inference without prior specifica-
tion, but the difficulties mentioned at the end of
Section 2.2 have kept DS from breaking into the sta-
tistical mainstream. Our basic premise is that these
obstacles can be overcome by relaxing the crucial
“continue to believe” assumption. The concept of
inferential models (IMs) will formalize this idea.
Let BelX denote the posterior belief function (2.8)

of the conventional DS analysis in Section 2.2, and

let Bel∗ be another belief function on the parameter
space T, possibly depending on X . For any asser-
tion A of interest, Bel∗(A) can be calculated and,
at least in principle, used to make inference on the
unknown Θ. We say that Bel∗ specifies an IM on T

if

Bel∗(A)≤ BelX(A) for all A.(3.1)

Since Bel∗ has plausibility Pl∗(A) = 1 − Bel∗(Ac),
it is clear from (3.1) that Pl∗(A) ≥ PlX(A) for all
A. Therefore, an IM can have meaningful nonzero
plausibility even for sharp assertions. Shrinking the
belief function can be done by suitably modifying
the focal element mapping M(·) or the pivotal mea-
sure µ, but any other technique that generates a be-
lief function bounded by BelX would also produce a
valid IM.
BelX itself specifies an IM, but is a very extreme

case. At the opposite extreme is the vacuous belief
function with Bel∗(A) = 0 for all A 6= 2T. Clearly,
neither of these IMs would be fully satisfactory in
general. The goal is to choose an IM that falls some-
where in between these two extremes.
In the next subsection we use IMs to motivate the

method of weak beliefs, due to Zhang and Liu [25].
That is, we apply their WB method to construct a
particular class of IMs and, in Section 3.4, we show
how a particular IM can be chosen.

3.2 Weak Beliefs

Section 1 described how the a-equation might be
used for data generation: fix Θ, sample U from the
pivotal measure µ, and compute X = a(Θ,U). Now,
for the inference problem, suppose that the observed
data X was, indeed, generated according to this
recipe, but the corresponding values of Θ and U
remain hidden. Denote by U∗ the value of the un-
observed auxiliary variable; see (3.2). The key point
is that knowing Θ is equivalent to knowing U∗; in
other words, inference on Θ is equivalent to predict-
ing the value of the unobserved U∗. Both the fiducial
and DS theories are based on this idea of shifting
the problem of inference on Θ to one of predicting
U∗, although, to our knowledge, neither method has
been described in this way before. The advantage of
focusing on U∗ is that the a priori distribution for
U∗ is fully specified by the sampling model.
More formally, if the sampling model PΘ is spec-

ified by the a-equation (1.1), then the following re-
lation must hold after X is observed:

X = a(Θ,U∗),(3.2)
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where Θ is unknown and U∗ is unobserved. We can
“solve” this equation for Θ to get

Θ ∈A(X,U∗),(3.3)

where A(·, ·) is a set-valued map. Intuitively, (3.3)
identifies those parameter values which are consis-
tent with the observed X . For example, in the nor-
mal mean problem of Example 1, once X has been
observed, there is a one-to-one relationship between
the unknown mean Θ and the unobserved U∗, that
is, Θ = A(X,U∗) = {X − Φ−1(U∗)}, so, given U∗,
one can immediately find Θ. Therefore, if we could
predict U∗, then we could know Θ exactly. The cru-
cial “continue to believe” assumption of fiducial and
DS says that U∗ can be predicted by taking draws
U from the pivotal measure µ. WB weakens this as-
sumption by replacing the draw U ∼ µ with a set
S(U) containing U , which is equivalent to replacing
µ with a belief function.
Recall from Section 2.2 that a measure and set-

valued mapping together define a belief function.
Here we fix µ to be the pivotal measure, and con-
struct a belief function on U by choosing a set-valued
mapping S :U→ 2U that satisfies U ∈ S(U). This is
not the same as the DS analysis described in Section
2.2; there the belief function was fully specified by
the sampling model, but here we must make a sub-
jective choice of S . We call this pair (µ,S) a belief,
as it generates a belief function µS−1 on U. Intu-
itively, (µ,S) determines how aggressive we would
like to be in predicting the unobserved U∗; more ag-
gressive means smaller S(U), and vice versa. We will
call S(U), as a function of U ∼ µ, a predictive ran-
dom set (PRS), and we can think of the inference
problem as trying to hit U∗ with the PRS S(U).
The two extreme IMs—the DS posterior belief

function BelX in (2.8) and the vacuous belief function—
are special cases of this general framework; take
S(U) = {U} for the former, and S(U) = U for the
latter. So in this setting we see that the quality of
the IM is determined by how well the PRS S(U)
can predict U∗. With this new interpretation, we
can explain the comment at the end of Section 2.2
about the quality of conventional DS for sharp asser-
tions in high-dimensional problems. Generally, high-
dimensional Θ goes hand-in-hand with
high-dimensional U , and accurate estimates of Θ re-
quire accurate prediction of U∗. But the curse of di-
mensionality states that, as the dimension increases,
so too does the probabilistic distance between U∗

and a random point U in U. Consequently, the tiny

(sharp) assertion A will rarely, if ever, be hit by the
focal elements MX(U).
In Section 3.4 we give a general WB framework,

show how a particular S can be chosen, and estab-
lish some desirable long-run frequency properties of
the weakened posterior belief function. But first, in
Section 3.3, we develop WB inference for given S
and give some illustrative examples.

3.3 Belief Functions and WB

In this section we show how to incorporate WB
into the DS analysis described in Section 2.2. Sup-
pose that a map S is given. The case S(U) = {U}
was taken care of in Section 2.2, so what follows will
be familiar. But this formal development of the WB
approach will highlight two interesting and impor-
tant properties, consequences of Dempster’s condi-
tioning operation.
Previously, we have taken the frame of discern-

ment to be X× T. Here we have additional uncer-
tainty about U∗ ∈ U, so first we will extend this to
the larger frame X× T×U. The belief function on
U has focal elements

{U∗ ∈U :U∗ ∈ S(U)},

which correspond to cylinders in the larger frame,
that is,

{(X,Θ,U∗) :U∗ ∈ S(U)}.

Likewise, extend the focal elements M(U) in (2.3)
to cylinders in the larger frame with focal elements

{(X,Θ,U∗) :X = a(Θ,U∗)}.

(The belief functions to which these extended focal
elements correspond are implicitly formed by com-
bining the particular belief function with the vacu-
ous belief function on the opposite margin.) Com-
bining these extended focal elements, and simulta-
neously marginalizing over U, gives a new focal ele-
ment on the original frame X× T, namely,

M(U ;S) = {(X,Θ) :X = a(Θ, u), u ∈ S(U)}
(3.4)

=
⋃

{M(u) :u ∈ S(U)},

where M(·) is the focal mapping defined in (2.3).
Immediately we see that the focal element M(U ;S)
in (3.4) is an expanded version of M(U) in (2.3).
The measure µ and the mapping M(U ;S) generate
a new belief function over X×T:

Bel(E ;S) = µ{U :M(U ;S)⊆ E}.

Since M(U) ⊆ M(U ;S) for all U , it is clear that
Bel(E ;S)≤ Bel(E). The two DS conditioning opera-
tions will highlight the importance of this point.
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Condition on Θ Conditioning on a fixed Θ = θ,
the focal elements (as subsets of X) become

Mθ(U ;S) = {X :X = a(θ,u), u∈ S(U)}

=
⋃

{Mθ(u) :u ∈ S(U)}.

This generates a new (predictive) belief function
Belθ(·;S) that satisfies

Belθ(A;S) = µ{U :Mθ(U ;S)⊆A}

≤ µ{U :Mθ(U)⊆A}

= Belθ(A) = Pθ(A).

Therefore, in the WB framework, this conditional
belief function need not coincide with the sampling
model as it does in the conventional DS context.
But the sampling model Pθ(·) is compatible with the
belief function Belθ(·;S) in the sense that

Belθ(·;S)≤ Pθ(·)≤ Plθ(·;S).

If we think about probability as a precise measure of
uncertainty, then, intuitively, when we weaken our
measure of uncertainty about U∗ by replacing µ with
a belief function µS−1, we expect a similar smearing
of our uncertainty about the value of X that will be
ultimately observed.

Condition on X Conditioning on the observed X ,
the focal elements (as subsets of T) become

MX(U ;S) = {Θ:X = a(Θ, u), u ∈ S(U)}

=
⋃

{MX(u) :u ∈ S(U)}.

Evidently, MX(U ;S) is just an expanded version of
MX(U) in (2.7). But a larger focal element will be
less likely to fall completely within A or Ac. Indeed,
the larger MX(U ;S) generates a new posterior belief
function BelX(·;S) which satisfies

BelX(A;S) = µ{U :MX(U ;S)⊆A}
(3.5)

≤ µ{U :MX(U)⊆A}=BelX(A).

Therefore, BelX(·;S) is a bonafide IM according to
(3.1).
There are many possible maps S that could be

used. In the next two examples we utilize one rela-
tively simple idea—using an interval/rectangle
S(U) = [A(U),B(U)] to predict U∗.

Example 4. Consider again the normal mean
problem in Example 1. The posterior belief function
was derived in Example 2 and shown to be the same

as the objective Bayes posterior. Here we consider a
WB analysis where the set-valued mapping S = Sω

is given by

S(U) = [U − ωU,U + ω(1−U)],(3.6)

ω ∈ [0,1].

It is clear that the cases ω = 0 and ω = 1 corre-
spond to the conventional and vacuous beliefs, re-
spectively. Here we will work out the posterior be-
lief function for ω ∈ (0,1) and compare the result
to that in Example 2. Recall that the posterior fo-
cal elements in Example 2 were singletons MX(U) =
{Θ:Θ =X −Φ−1(U)}. It is easy to check that the
weakened posterior focal elements are intervals of
the form

MX(U ;S) =
⋃

{MX(u) :u ∈ S(U)}

= [X −Φ−1(U + ω(1−U)),

X −Φ−1(U − ωU)].

Consider the sequence of assertions Aθ = {Θ ≤ θ}.
We can derive analytical formulas for BelX(Aθ) and
PlX(Aθ) as functions of θ:

BelX(Aθ;S) =

[
1−

Φ(X − θ)

1− ω

]+
,

(3.7)

PlX(Aθ;S) = 1−

[
Φ(X − θ)− ω

1− ω

]+
,

where x+ =max{0, x}. Plots of these functions are
shown in Figure 2, for ω ∈ {0,0.25,0.5}, when X =
1.2 is observed. Here we see that as ω increases, the
spread between the belief and plausibility curves in-
creases. Therefore, one can interpret the parameter
ω as a degree of weakening.

Example 5. Consider again the Bernoulli prob-
lem from Example 3. In this setup, the auxiliary
variable U = (U1, . . . ,Un) in U = [0,1]n is vector-
valued. We apply a similar weakening principle as
in Example 4, where we use a rectangle to predict
U∗. That is, fix ω ∈ [0,1] and define S = Sω as

S(U) = [A1(U),B1(U)]× · · · × [An(U),Bn(U)]

a Cartesian product of intervals like that in Example
4, where

Ai(U) = Ui − ωUi,

Bi(U) = Ui + ω(1−Ui).
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Fig. 2. Plots of belief and plausibility, as functions of θ, for
assertions Aθ = {Θ≤ θ} for X = 1.2 and ω ∈ {0,0.25,0.5} in
the normal mean problem in Example 4. The case ω = 0 was
considered in Example 1.

Following the DS argument in Example 3, it is not
difficult to check that the (weakened) posterior focal
elements are of the form

MN (U ;S) = [U(N) − ωU(N),U(N+1)

+ ω(1−U(N+1))],

an expanded version of the focal element MX(U)
in (2.12). Computation of the belief and plausibility
can still be facilitated using the marginal beta distri-
butions of U(N) and U(N+1). For example, consider
the sequence of assertions Aθ = {Θ ≤ θ}, θ ∈ [0,1].
Plots of BelN (Aθ;S) and PlN (Aθ;S), as functions of
θ, are given in Figure 3 for ω = 0 (which is the con-
ventional belief situation in Example 3) and ω = 0.1,
when n= 12 and N = 7. As expected, the distance
between the belief and plausibility curves is greater
for the latter case. But this naive construction of S
is not the only approach; see Zhang and Liu [25] for
a more efficient alternative based on a well-known
relationship between the binomial and beta CDFs.

3.4 The Method of Maximal Belief

The WB analysis for a given set-valued map S
was described in Section 3.3. But how should one
choose S so that the posterior belief function sat-
isfies certain desirable properties? Roughly speak-
ing, the idea is to choose a map S with the “small-
est” PRSs S(U) with the desired coverage probabil-
ity. Following Zhang and Liu [25], we call this the
method of maximal belief (MB).
Consider a general class of beliefs B = (µ,S ),

where µ is the pivotal measure from Section 1, and
S = {Sω :ω ∈ Ω} is a class of set-valued mappings

Fig. 3. Plots of belief and plausibility, as functions of θ,
for assertions Aθ = {Θ ≤ θ} when n = 12 and N = 7 and
ω ∈ {0,0.1}, in the Bernoulli success probability problem in
Example 5. The case ω = 0 was considered in Example 3.

indexed by Ω. Each Sω in S maps points u ∈ U

to subsets Sω(u)⊂U and, together with the pivotal
measure µ, determines a belief function µS−1

ω on U

and, in turn, a posterior belief function BelX(·;Sω)
on T as in Section 3.3. For a given class of beliefs,
it remains to choose a particular map Sω or, equiv-
alently, an index ω ∈Ω, with the appropriate credi-
bility and efficiency properties. To this end, define

Qω(u) = µ{U :Sω(U) 6∋ u}, u ∈U,(3.8)

which is the probability that the PRS Sω(U) misses
the target u ∈ U. We want to choose Sω in such a
way that the random variable Qω(U

∗), a function of
U∗ ∼ µ, is stochastically small.

Definition 1. A belief (µ,Sω) is credible at level
α ∈ (0,1) if

ϕα(ω) := µ{U∗ :Qω(U
∗)≥ 1− α} ≤ α.(3.9)

Note the similarity between credibility and the
control of Type-I error in the frequentist context of
hypothesis testing. That is, if Sω is credible at level
α= 0.05, then in a sequence of 100 similar inference
problems, each having different U∗, we expect Qω—
the probability that the PRS Sω misses its target—
to exceed 0.95 in no more than 5 of these cases. The
analogy with frequentist hypothesis testing is made
here only to offer a way of understanding credibility.
It is not immediately clear why this notion of cred-

ibility is meaningful for the problem of inference on
the unknown parameter Θ. The following theorem,
an extension of Theorem 3.1 in Zhang and Liu [25],
gives conditions under which BelX(·;S) has desir-
able long-run frequency properties in repeated X-
sampling.
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Theorem 1. Suppose (µ,S) is credible at level
α ∈ (0,1), and that µ{U :MX(U ;S) 6=∅}= 1. Then,
for any assertion A⊂ T, the posterior belief function
BelX(A;S) in (3.5), as a function of X, satisfies

PΘ{BelX(A;S)≥ 1− α} ≤ α, Θ ∈Ac.(3.10)

We can again make a connection to frequentist
hypothesis testing, but this time in terms of asser-
tions/hypotheses A in the parameter space. If we
adopt the decision rule “conclude Θ /∈ A if
PlX(A;S)< 0.05,” then under the conditions of The-
orem 1 we have

PΘ{PlX(A;S)< 0.05} ≤ 0.05, Θ ∈A.

That is, if A does contain the true Θ, then we will
“reject” A no more than 5% of the time in repeated
experiments, which is analogous to Type-I error prob-
abilities in the frequentist testing domain. So the
importance of Theorem 1 is that it equates cred-
ibility of the belief (µ,S) to long-run error rates
of belief/plausibility function-based decision rules.
For example, the belief (µ,Sω) in (3.6) is credible
for ω ∈ [0.5,1], so decision rules based on (3.7) will
have controlled error rates in the sense of (3.10). But
remember that belief functions are posterior quan-
tities that contain problem-specific evidence about
the parameter of interest.
Credibility cannot be the only criterion, however

since the belief, with S(U) =U, is always credible at
any level α ∈ (0,1). As an analogy, a frequentist test
with empty rejection region is certain to control the
Type-I error, but is practically useless; the idea is
to choose from those tests that control Type-I error
one with the largest rejection region. In the present
context, we want to choose from those α-credible
maps the one that generates the “smallest” PRSs.
A convenient way to quantify size of a PRS Sω(U),
without using the geometry of U, is to consider its
coverage probability 1−Qω.

Definition 2. (µ,Sω) is as efficient as (µ,Sω′)
if

ϕα(ω)≥ ϕα(ω
′) for all α ∈ (0,1).

That is, the coverage probability 1−Qω is (stochas-
tically) no larger than the coverage probability 1−
Qω′ .

Efficiency defines a partial ordering on those be-
liefs that are credible at level α. Then the level-α
maximal belief (α-MB) is, in some sense, the max-
imal (µ,Sω) with respect to this partial ordering.

The basic idea is to choose, from among those cred-
ible beliefs, one which is most efficient. Toward this,
let Ωα ⊂Ω index those maps Sω which are credible
at level α.

Definition 3. For α ∈ (0,1), Sω∗ defines an α-
MB if

ϕα(ω
∗) = sup

ω∈Ωα

ϕα(ω).(3.11)

Such an ω∗ will be denoted by ω(α).

By the definition of Ωα, it is clear that the supre-
mum on the right-hand side of (3.11) is bounded by
α. Under fairly mild conditions on S , we show in
Appendix A.1 that there exists an ω∗ ∈Ωα such that

ϕα(ω
∗) = α,(3.12)

so, consequently, ω∗ = ω(α) specifies an α-MB. We
will, henceforth, take (3.12) as our working defini-
tion of MB. Uniqueness of a MB must be addressed
case-by-case, but the left-hand side of (3.12) often
has a certain monotonicity which can be used to
show the solution is unique.
We now turn to the important point of computing

the MB or, equivalently, the solution ω(α) of the
equation (3.12). For this purpose, we recommend the
use of a stochastic approximation (SA) algorithm,
due to Robbins and Monro [17]. Kushner and Yin
[14] give a detailed theoretical account of SA, and
Martin and Ghosh [16] give an overview and some
recent statistical applications.
Putting all the components together, we now sum-

marize the four basic steps of a MB analysis:

1. Form a class B = (µ,S ) of candidate beliefs,
the choice of which may depend on (a) the as-
sertions of interest, (b) the nature of your per-
sonal uncertainty, and/or (c) intuition and geo-
metric/computational simplicity.

2. Choose the desired credibility level α.
3. Employ a stochastic approximation algorithm to

find an α-MB as determined by the solution of
(3.12).

4. Compute the posterior belief and plausibility func-
tions via Monte Carlo integration by simulating
the PRSs Sω(α)(U).

In Sections 4 and 5 we will describe several specific
classes of beliefs and the corresponding PRSs. These
examples certainly will not exhaust all of the possi-
bilities; they do, however, shed light on the consid-
erations to be taken into account when constructing
a class B of beliefs.
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4. HIGH-DIMENSIONAL TESTING

A major focus of current statistical research is
very-high-dimensional inference and, in particular,
multiple testing. This is partly due to new scientific
technologies, such as DNA microarrays and medi-
cal imaging devices, that give experimenters access
to enormous amounts of data. A typical problem
is to make inference on an unknown Θ ∈ R

n based
on an observed X ∼ Nn(Θ, In); for example, test-
ing H0i :Θi = 0 for each i= 1, . . . , n. See Zhang and
Liu [25] for a maximal belief solution of this many-
normal-means problem. Below we consider a related
problem—testing homogeneity of a Poisson process.
Suppose we monitor a system over a pre-specified

interval of time, say, [0, τ ]. During that period of
time, we observe n events/arrivals at times 0 = τ0 <
τ1 < τ2 < · · · < τn, where the (n + 1)st event, tak-
ing place at τn+1 > τ , is unobserved. Assume an
exponential model for the inter-arrival times Xi =
τi − τi−1, i= 1, . . . , n, that is,

Xi ∼ Exp(Θi), i= 1, . . . , n,(4.1)

where the Xi’s are independent and the exponential
rates Θ1, . . . ,Θn > 0 are unknown. A question of in-
terest is whether the underlying process is homoge-
neous, that is, whether the rates Θ1, . . . ,Θn have a
common value. This question, or hypothesis, corre-
sponds to the assertion

A= {the process is homogeneous}

(4.2)
= {Θ1 =Θ2 = · · ·=Θn}.

Let (X,Θ) be the real-world quantities of inter-
est, where X = (X1, . . . ,Xn), Θ = (Θ1, . . . ,Θn) and
X= T = (0,∞)n. Define the auxiliary variable U =
(R,P ), where R > 0 and P = (P1, . . . , Pn) is in the
(n− 1)-dimensional probability simplex Pn−1 ⊂R

n,
defined as

Pn−1 =

{
(p1, . . . , pn) ∈ [0,1]n :

n∑

i=1

pi = 1

}
.

The variables R and P are functions of the data
X1, . . . ,Xn and the parameters Θ1, . . . ,Θn. The a-
equation X = a(Θ,U), in this case, is given by Xi =
RPi/Θi, where

R=
n∑

j=1

ΘjXj and

(4.3)

Pi =
ΘiXi∑n
j=1ΘjXj

, i= 1, . . . , n.

To complete the specification of the sampling model,
we must choose the pivotal measure µ for the auxil-
lary variable U = (R,P ). Given the nature of these
variates, a natural choice is the product measure

µ=Gamma(n,1)×Unif(Pn−1).(4.4)

The measure µ in (4.4) is, indeed, consistent with
the exponential model (4.1). To see this, note that

Fig. 4. Six realizations of R-cross sections of the PRS Sω(R,P ) in (4.5) in the case of n = 3. Here P2 is the triangular
region in the Barycentric coordinate system.
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Unif(Pn−1) is equivalent to the Dirichlet distribu-
tion Dir(1n), where 1n is an n-vector of unity. Then,
conditional on (Θ1, . . . ,Θn), it follows from stan-
dard properties of the Dirichlet distribution that
Θ1X1, . . . ,ΘnXn are i.i.d. Exp(1), which is equiv-
alent to (4.1).
We now proceed with the WB analysis. Step 1 is to

define the class of mappings S for prediction of the
unobserved auxiliary variables U∗ = (R∗, P ∗). To ex-
pand a random draw U = (R,P ) ∼ µ to a random
set, consider the class of maps S = {Sω :ω ∈ [0,∞]}
defined as

Sω(U) = {(r, p) ∈ [0,∞)× Pn−1 :
(4.5)

K(P,p)≤ ω},

where K(P,p) is the Kullback–Leibler (KL) diver-
gence

K(P,p) =

n∑

i=1

Pi log(Pi/pi), p,P ∈ Pn−1.(4.6)

Several comments on the choice of PRSs (4.5) are
in order. First, notice that Sω(U) does not constrain
the value of R, that is, Sω(U) is just a cylinder in
[0,∞) × Pn−1 defined by the P -component of U .
Second, the use of the KL divergence in (4.5) is
motivated by the correspondence between Pn−1 and
the set of all probability measures on {1,2, . . . , n}.
The KL divergence is a convenient tool for defin-
ing neighborhoods in Pn−1. Figure 4 shows cross-
sections of several random sets Sω(U) in the case of
n= 3.
After choosing a credibility level α ∈ (0,1), we are

on to Step 3 of the analysis: finding an α-MB. As in
Section 3, define

Qω(r, p) = µ{(R,P ) :Sω(R,P ) 6∋ (r, p)},

and, finally, choose ω = ω(α) to solve the equation

µ{(R∗, P ∗) :Qω(R
∗, P ∗)≥ 1− α}= α.

This calculation requires stochastic approximation.
For Step 4, first define the mapping P̂ :T→ Pn−1

by the component-wise formula P̂i(Θ) = ΘiXi/∑
j ΘjXj , i = 1, . . . , n. For inference on Θ = (Θ1,

. . . ,Θn), a posterior focal element is of the form

MX(R,P ;Sω(α)) = {Θ:K(P, P̂ (Θ))≤ ω(α)}.

For the homogeneity assertion A in (4.2) the pos-
terior belief function is zero, but the plausibility is
given by

PlX(A;Sω(α))

= 1− µ{(R,P ) :K(P, P̂ (1n))> ω(α)},

where P̂i(1n) = Xi/
∑

j Xj . Since P̂ (1n) is known

and P ∼Unif(Pn−1) is easy to simulate, once ω(α) is
available, the plausibility can be readily calculated
using Monte Carlo.
In order to assess the performance of the MB

method above in testing homogeneity, we will com-
pare it with the typical likelihood ratio (LR) test.
Let ℓ(Θ) be the likelihood function under the general
model (4.1). Then the LR test statistic for H0 :Θ1 =
· · ·=Θn is given by

L0 =
sup{ℓ(Θ) :Θ ∈H0}

sup{ℓ(Θ) :Θ ∈H0 ∪Hc
0}

=

[
(
∏n

i=1Xi)
1/n

X

]n
,

a power of the ratio of the geometric and arithmetic
means. If P̂ is as defined before, then a little algebra
shows that

L=− logL0 = nK(un, P̂ (1n)),

where un is the n-vector n−11n which corresponds to
the uniform distribution on {1,2, . . . , n}. Note that
this problem is invariant under the group of scale
transformations, so the null distribution of P̂ (1n)
and, hence L, is independent of the common value of
the rates Θ1, . . . ,Θn. In fact, under the homogeneity
assertion (4.2), P̂ (1n)∼Unif(Pn−1).

Example 6. To compare the MB and LR tests
of homogeneity described above, we performed a
simulation. Take n= n1 + n2 = 100, n1 of the rates
Θ1, . . . ,Θn to be 1 and n2 of the rates to be θ, for
various values of θ. For each of 1000 simulated data
sets, the plausibility for A in (4.2). To perform the
hypothesis test using q, we choose a nominal 5%
level and say “reject the homogeneity hypothesis
if plausibility < 0.05.” The power of the two tests
are summarized in Figure 5, where we see that the
MB test is noticeably better than the LR test. The
MB test also controls the frequentist Type-I error at
0.05. But note that, unlike the LR test, the MB test
is based on a meaningful data-dependent measure of
the amount of evidence supporting the homogeneity
assertion.

5. NONPARAMETRICS

A fundamental problem in nonparametric infer-
ence is the so-called one-sample test. Specifically, as-
sume that X1, . . . ,Xn are i.i.d. observations from a
distribution on R with CDF F in a class F of CDFs;
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the goal is to test H0 :F ∈ F0 where F0 ⊂ F is given.
One application is a test for normality, that is, where
F0 = {N(θ,σ2) for some θ and σ2}. This is an im-
portant problem, since many popular methods in
applied statistics, such as regression and analysis of
variance, often require an approximate normal dis-
tribution of the data, of residuals, etc.
We restrict attention to the simple one-sample

testing problem, where F0 = {F0} ⊂ F is a single-
ton. Our starting point is the a-equation

Xi = F−1(Ui), F ∈ F, i= 1, . . . , n,(5.1)

where U1, . . . ,Un are i.i.d. Unif(0,1). Since F is mono-
tonically increasing, it is sufficient to consider the or-
dered data X(1) ≤X(2) ≤ · · · ≤X(n), the correspond-

ing ordered auxiliary variables Ũ = (U(1), . . . ,U(n)),
and pivotal measure µ determined by the distribu-

tion of Ũ .
In this section we present a slightly different form

of WB analysis based on hierarchical PRSs. In hier-
archical Bayesian analysis, a random prior is taken
to add an additional layer of flexibility. The intu-
ition here is similar, but we defer the discussion and
technical details to Appendix A.2.
For predicting Ũ∗, we consider a class of beliefs in-

dexed by Ω = [0,∞], whose PRSs are small n-boxes
inside the unit n-box [0,1]n. Start with a fixed set-
valued mapping that takes ordered n-vectors ũ ∈
[0,1]n, points z ∈ (0.5,1), and forms the intervals
[Ai(z),Bi(z)], where

Ai(z) = qBeta(pi − zpi | i, n+ 1− i),
(5.2)

Bi(z) = qBeta(pi + z(1− pi) | i, n+1− i)

and pi = pBeta(u(i) | i, n − i + 1). Here pBeta and
qBeta denote CDF and inverse CDF of the Beta
distribution, respectively. Then the mapping S(ũ, z)
is just the Cartesian product of these n intervals; cf.
Example 5. Now sample Ũ and Z from a suitable
distribution depending on ω:

• Take a draw Ũ of n ordered Unif(0,1) variables.
• Take V ∼ Beta(ω,1) and set Z = 1

2 (1 + V ).

The result is a random set S(Ũ ,Z) ∈ 2U. We call
this approach “hierarchical” because one could first
sample Z = z from the transformed beta distribu-
tion indexed by ω, fix the map S(·, z), and then

sample Ũ .

For a draw (Ũ ,Z), the posterior focal elements
for F look like

MX(Ũ ,Z;S) = {F :Ai(Z)≤ F (X(i))≤Bi(Z),

∀i= 1, . . . , n}.

Details of the credibility of in a more general context
are given in Appendix A.2. Stochastic approxima-
tion is used, as in Section 4, to optimize the choice
of ω. The MB method uses the posterior focal ele-
ments above, with optimal ω, to compute the poste-
rior belief and plausibility functions for the assertion
A= {F = F0} of interest.

Example 7. To illustrate the performance of
the MBmethod, we present a small simulation study.
We take F0 to be the CDF of a Unif(0,1) distribu-
tion. Samples X1, . . . ,Xn, for various sample sizes n,
are taken from several nonuniform distributions and
the power of MB, along with some of the classical
tests, is computed. We have chosen our nonuniform

Fig. 5. Power of the MB and LR tests of homogeneity in Example 6, where θ is the ratio of the rate for the last n2

observations to the rate of the first n1 observations. Left: (n1, n2) = (50,50). Right: (n1, n2) = (10,90).
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alternatives to be Beta(β1, β2) for various values of
(β1, β2). For the MB test, we use the decision rule
“reject H0 if plausibility < 0.05.” Figure 6 shows the
power of the level α = 0.05 Kolmogorov–Smirnov
(KS), Anderson–Darling (AD), Cramér–von Mises
(CV) and MB tests, as functions of the sample size
n for six pairs of (β1, β2). From the plots we see that
the MB test outperforms the three classical tests in
terms of power in all cases, in particular, when n
is relatively small and the alternative is symmetric
and “close” to the null [i.e., when (β1, β2)≈ (1,1)].
Here, as in Example 6, the MB test also controls the
Type-I error at level α= 0.05.

6. DISCUSSION

In this paper we have considered an modification
of the DS theory in which some desired frequency
properties can be realized while, at the same time,
the essential components of DS inference, such as
“don’t know,” remain intact. The WB method was
justified within a more general framework of inferen-
tial models, where posterior probability-based infer-
ence with frequentist properties is the primary goal.
In two high-dimensional hypothesis testing prob-
lems, the MB method performs quite well compared
to popular frequentist methods in terms of power—
more work is needed to fully understand this rela-
tionship between WB/MB hypothesis testing and
frequentist power. Also, the detail in which these
examples were presented should shed light on how
MB can be applied in practice.
One potential criticism of the WB method is the

lack of uniqueness of the a-equations and PRS map-
pings S . At this stage, there are no optimality re-
sults justifying any particular choices. Our approach
thus far has been to consider relatively simple and
intuitive ways of constructing PRSs, but further re-
search is needed to define these optimality criteria
and to design PRSs that satisfy these criteria.
In addition to the applications shown above, pre-

liminary results of WB methods in other statistical
problems are quite promising. We hope that this
work on WBs will inspire both applied and theoret-
ical statisticians to take a another look at what DS
has to offer.

APPENDIX: TECHNICAL RESULTS

A.1 Existence of a MB

Consider a class S = {Sω :ω ∈ Ω} of set-valued
mappings. Assume that the index set Ω is a com-

plete metric space. Each Sω, together with the piv-
otal measure µ, define a belief function µS−1

ω on U.
Here we show that there is a ω = ω(α) that solves
the equation (3.12). To this end, we make the fol-
lowing assumptions:

A1. Both the conventional and vacuous beliefs are
encoded in S .

A2. If ωn → ω, then Sωn
(u)→Sω(u) for each u ∈U.

Condition A1 is to make sure that B is suitably
rich, while A2 imposes a sort of continuity on the
sets Sω ∈S .

Proposition 1. Under assumptions A1–A2,
there exists a solution ω(α) to (3.12) for any α ∈
(0,1).

Proof. For notational simplicity, we write Q(ω,
u) for Qω(u). We start by showing Q(ω,u) is con-
tinuous in ω. Choose ω ∈Ω and a sequence ωn → ω.
Then under A2

Q(ωn, u) =

∫
I{Sωn (v)6∋u}

dµ(v)

→

∫
I{Sω(v)6∋u} dµ(v) =Q(ω,u)

by the dominated convergence theorem (DCT). Since
ωn → ω was arbitrary and Ω is a metric space, it fol-
lows that Q(·, u) is continuous on Ω.
Write ϕ(ω) for ϕα(ω) in (3.9); we will now show

that ϕ(·) is continuous. Again choose ω ∈ Ω and a
sequence ωn → ω. Define Jω(u) = I{Q(ω,u)≥1−α}, so

that ϕ(ω) =
∫
Jω(u)dµ(u). Since

|ϕ(ωn)−ϕ(ω)| ≤

∫
|Jωn

(u)− Jω(u)|dµ(u)

and the integrand on the right-hand side is bounded
by 2, it follows, again follows by the DCT, that
ϕ(ωn) → ϕ(ω) and, hence, that ϕ(·) is continuous
on Ω. But A1 implies that ϕ(·) takes values 0 and 1
on Ω so by the intermediate value theorem, for any
α ∈ (0,1), there exists a solution ω = ω(α) to the
equation ϕ(ω) = α. �

A.2 Hierarchical PRSs

In Section 5 we considered a WB analysis with
hierarchical PRSs. The purpose of this generaliza-
tion is to provide a more flexible choice of random
sets for predicting the unobserved U∗. Here we give
a theoretical justification along the lines in Section
3.4.
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Fig. 6. Power comparison for the one-sample tests in Example 7 at level α= 0.05 for various values of n. The six alternatives
are (a) Beta(0.8,0.8); (b) Beta(1.3,1.3); (c) Beta(0.6,0.6); (d) Beta(1.6,1.6); (e) Beta(0.6,0.8); (f) Beta(1.3,1.6).

Let ω ∈Ω index a family of probability measures

λω on a space Z, and suppose S(·, ·) is a fixed set-

valued mapping U×Z→ 2U, assumed to satisfy U ∈

S(U,Z) for all Z. A hierarchical PRS is defined

by first taking Z ∼ λω and then choosing the map

SZ(·) = S(·,Z) defined on U. This amounts to a

product pivotal measure µ× λω. Toward credibility

of (µ× λω,S), define the noncoverage probability

Qω(u) = (µ× λω){(U,Z) :S(U,Z) 6∋ u}

=

∫
Qz(u)dλω(z),

a mixture of the noncoverage probabilities in (3.8).
Then we have the following, more general, definition
of credibility.

Definition 4. (µ,Sω) is credible at level α if

ϕα(ω) := µ{U∗ :Qω(U
∗)≥ 1− α} ≤ α.

Beliefs which are credible in the sense of Defini-
tion 1 are also credible according to Definition 4—
take λω to be a point mass at ω. It is also clear
that if (µ,Sz) is credible in the sense of Definition 1
for all z ∈ Z, then (µ× λω,S) will also be credible.
Next we generalize Theorem 1 to handle the case of
hierarchical PRSs.
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Theorem 2. Suppose that (µ× λω,S) is credi-
ble at level α in the sense of Definition 4, and that
(µ × λω){(U,Z) :MX(U,Z;S) 6= ∅} = 1. Then for
any assertion A⊂ T, the belief function BelX(A;S) =
(µ× λω)S

−1(A) satisfies

PΘ{BelX(A;S)≥ 1− α} ≤ α, Θ ∈Ac.

Proof. Start by fixing Z = z, and write Sz(·) =
S(·, z). For Θ ∈Ac, monotonicity of the belief func-
tion gives

BelX(A;Sz)≤ BelX({Θ}c;Sz)

= µ{U :MX(U ;Sz) 6∋Θ}.

When Θ is the true value, the event MX(U ;Sz) 6∋Θ
is equivalent to Sz(U) 6∋ U∗; consequently,

BelX(A;Sz)≤ µ{U :Sz(U) 6∋U∗}=Qz(U
∗).

For the hierarchical PRS, the belief function satisfies

BelX(A;S) = (µ× λω){(U,Z) :MX(U,Z;S)⊆A}

=

∫
µ{U :MX(U ;Sz)⊆A}dλω(z)

=

∫
BelX(A;Sz)dλω(z)

≤

∫
Qz(U

∗)dλω(z)

=Qω(U
∗).

The claim now follows from credibility of the belief
(µ× λω,S). �
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