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Abstract

It is shown that for thin metal films, thickness of which does not exceed a thick-

ness of a skin – layer, the problem allows analytical solution for any boundary

conditions. The analysis of transmission, reflection and absorption of an electro-

magnetic wave coefficients depending on a angle of incidence, thickness of a layer,

coefficient of specular reflection and frequency of oscillations of electromagnetic field

is carried out.
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INTRODUCTION

The problem of interaction of an electromagnetic wave with the metal

films attracts attention to itself for a long time [1] – [5]. It is connected

with the theoretical interest to this problem, and with numerous practical

appendices of it as well.
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Research of interaction of an electromagnetic wave with conducting

medium (in particular, metal films) was carried out basically for a case

of specular dissipation of electrons on a film surface. It is connected with

the fact that for more general boundary conditions the problem becomes

essentially complicated and does not allow analytical solution generally.

At the same time for the real materials coefficient of specular electron re-

flection from the surface is far from unit as a rule. For example, in the

work [6] on the basis of the analysis of longitudinal magnetic resistance of

the thin metal wire it is shown, that for sodium the coefficient of specular

reflection is equal to 0.3.

In the present work it is shown that for thin films, thickness of which

does not exceed thickness of a skin – layer, the problem allows analytical

solution for any boundary conditions.

Let’s notice, that the most part of reasonings carrying out below is fair

for more general case of conducting (in particular, semi-conductor) films.

PROBLEM STATEMENT

Let’s consider a thin slab of metal, which the electromagnetic wave falls

on. An angle of falling we will designate as θ. Let’s assume that a vector

of electric field of the electromagnetic wave is parallel to a slab surface.

Such wave is called s–wave (see [3] or [1]).

We take the Cartesian system of coordinates with the origin of coor-

dinates on one of the slab surfaces, an axis x, directed deep into a slab.

Axis y we direct parallel to electric field vector of electromagnetic wave.

Then the behaviour of electric and magnetic fields of a wave in a layer is



3

described by the following system of differential equations [3]:






















dEy

dx
− ikHz = 0

dHz

dx
+ ik(sin2 θ − 1)Ey = −

4π

c
jy.

(1)

Here c is the velocity of light, j is the current density, k is the wave

number (k =
ω

c
), Ey(x) and Hz(x) defined from relations for electric and

magnetic fields

E = e−iωt+ik sin θy{0, Ey(x), 0}, H = e−iωt+ikz{Hx(x), 0, Hz(x)}.

Let’s designate a thickness of a slab as d.

Transmission coefficient T , reflection coefficient R and slab absorption

coefficient A of the electromagnetic wave are described by the following

expressions [1], [7]

T =
1

4

∣

∣P (1) − P (2)
∣

∣

2
, (2a)

R =
1

4

∣

∣P (1) + P (2)
∣

∣

2
, (2b)

A = 1− T −R. (2c)

Quantities P (j) (j = 1, 2) are defined by the following expressions

P (j) =
Z(j) cos θ − 1

Z(j) cos θ + 1
, j = 1, 2. (3)

Quantities Z(1) and Z(2) correspond to an impedance on the bottom

slab surface at antisymmetric by electric field (case 1, when Ey(0) =

−Ey(d), Hz(0) = Hz(d)) and symmetric by electric field (case 2, when

Ey(0) = Ey(d), Hz(0) = −Hz(d)) configurations of external fields.

The impedance thus in both cases is defined as follows

Z(j) =
Ey(−0)

Hz(−0)
. (4)
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TRANSMISSION COEFFICIENT, REFLECTION

COEFFICIENT AND ABSORPTION COEFFICIENT IN THE

THIN SLAB

Let’s consider a case when the width of a slab d is less than depth of a

skin – layer δ. We will note, that depth of a skin – layer depends essentially

on frequency of radiation, decreasing monotonously during the process of

growth of the last. The quantity δ possesses the minimum value in so-called

infra-red case [8]

δ0 =
c

ωp

,

where ωp is the plasma frequency.

For typical metals [8] δ0 ∼ 10−5 cm.

Thus for the films thickness of which d is less than δ0 our assumption is

correct for any frequencies.

Electric and magnetic fields vary little at distances less than depth of

a skin – layer. Therefore under fulfilment of the given assumption d < δ

this field will vary a little within a slab. In case 1 when Hz(0) = Hz(d), it

is possible to assume, that quantity Hz is constant in the slab. Change of

quantity of electric field at the thickness of a slab can be defined from the

first equation of system (1)

Ey(d)− Ey(0) = ikdHz.

Considering antisymmetric character of electric field in this case we

receive

Ey(0) = −
ikdHz

2
.

Accordingly (4) for the impedance we have

Z(1) = −
idk

2
. (5)
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For the case 2 when Ey(0) = Ey(d), it is possible to consider electric

field as constant in the slab, which we will designate as Ey. Then magnetic

field change at the width of slab can be defined from the second equation

of the system (1)

Hz(d)−Hz(0) = ikd(sin2 θ − 1)Ey −
4π

c

d
∫

0

jy(x)dx. (6)

Thus

jy(x) = σ(x)Ey,

where σ(x) is the conductivity which depends from coordinate x in general

case.

Let’s introduce the conductivity averaged by thickness of slab

σd =
1

Eyd

d
∫

0

jy(x)dx =
1

d

d
∫

0

σ(x)dx. (7)

Then the relation (6) according to (7) can be rewritten in the form

Hz(d)−Hz(0) = ikd(sin2 θ − 1)Ey −
4πdσd

c
Ey.

Considering symmetry of the magnetic field, from here we receive

Hz(0) = −
1

2
ikd(sin2 θ − 1)Ey +

2πdσd

c
Ey.

For the impedance (4) we receive

Z(2) =
2c

−ickd(sin2 θ − 1) + 4πdσd

.

Let’s assume further, that length of the wave of incoming radiation

surpasses essentially thickness of a slab. This assumption is satisfied for

the majority of cases when the thickness of a slab is less than the depth of a
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skin – layer. Then the quantity kd ≪ 1 and in expressions for impedances

it is possible for to neglect it. It is hence received according to (5) Z(1) = 0,

and Z(2) =
c

2πdσd

. According to (3) we have

P (1) =
c cos θ − 2πdσd

c cos θ + 2πdσd

, P (2) = −1.

According to the expressions (2a), (2b) and (2c) we receive

T =
∣

∣

∣

c cos θ

c cos θ + 2πσdd

∣

∣

∣

2

, (8a)

R =
∣

∣

∣

2πσdd

c cos θ + 2πσdd

∣

∣

∣

2

, (8b)

A =
4cπRe (σd)d cos θ
∣

∣c cos θ + 2πσdd
∣

∣

2 . (8c)

In limiting case of a non-conductive slab, when σd → 0 from these

expressions we have T → 1, R → 0, A → 0. At almost tangential falling,

when θ → π/2 we receive T → 0, R → 1, A → 0.

If we designate

B =
2πdσd

c cos θ
,

then formulas (8) can be written down in the compact form

T =
1

|1 +B|2
, R =

1

|1 +B−1|2
, A =

2Re B

|1 + B|2
. (9)

Let’s consider a case of a metal film. Let the relation kd ≪ 1 to be

satisfied. Then in a low-frequency case, when ω → 0, the quantity σd can

be presented in the form [9]

σd =
w

Φ(w)
σ0, w =

d

l
. (10)

Here

1

Φ(w)
=

1

w
−

3

2w2
(1− p)

∞
∫

1

( 1

t3
−

1

t5

) 1− e−wt

1− pe−wt
dt.
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Here l is the mean free electron path, p is the reflectivity coefficient,

σ0 = ω2
pτ/(4π) is the static conductivity of the volume sample, τ = l/vF is

the time of the mean free electron path, vF is the electron speed on Fermi’s

surface. It is supposed, that Fermi’s surface has spherical form.

In a low-frequency case when the formula (10) is applicable, coefficients

T,R,A according to the formulas (8) do not depend on frequency of the

incident radiation.

For any frequencies of the expression (8) will be satisfied under the

condition, that it is necessary to use the following expression as quantity l

l →
vF τ

1− iωτ
, and instead of σ0 we should use the expression σ0 →

σ0

1− iωτ
.

In case of arbitrary frequencies coefficients of transmission, reflection

and absorption are calculated also with the help of the formulas (9), in

which

w =
d

l
(1− iωτ),

and

B =
2πdσ0

c cos θ(1− iωτ)

[

1−
1.5

w
(1− p)

∞
∫

1

( 1

t3
−

1

t5

) 1− e−wt

1− pe−wt
dt

]

.

Let’s consider the case of a thin slab of sodium. Then [1] ωp = 6.5 ·

1015 sec−1, vF = 8.52 · 107 cm/sec. Frequency of the volume collisions

of electrons we take to be equal ν = τ−1 = 10−3ωp sec
−1 . On fig. 1,

2 and 3 correspondingly the dependence of coefficients of transmission,

reflection and absorption on an angle of falling of an electromagnetic wave

on the border, on a thickness of a layer and on reflectivity coefficients is

represented. On fig. 4 and 5 dependence of reflectivity on frequency of

oscillations of an electromagnetic field under various values of thickness of

the slab is represented. On fig. 4 the case when coefficient of specular
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reflection is equal to zero is considered. On fig. 5 the case when coefficient

of specular reflection is equal to unit is considered.

CONCLUSION

From fig. 1 it is visible, that dependences of all the coefficients T = T (θ),

R = R(θ) and A = A(θ) become apparent close to θ =
π

2
. Thus the

absorption coefficients has smooth maximum close to the point θ =
π

2
.

It is interesting to note (fig. 2), that the quantity of absorption co-

efficient practically does not depend on a thickness of the slab d (under

change d from 10−7 cm to 10−6 cm). Under this change d approximately in

2 times the propagation coefficient decreases, and the reflection coefficient

increases (also in 2 times).

On fig. 3 for the first time dependence of coefficient T = T (p), R = R(p)

and A = A(p) on quantity of coefficient of specular reflection is found out.

Coefficients T,R,A discover strong dependence on coefficient of specular

reflection that is found out for the first time. With the growth of coefficient

of specular reflection the reflection coefficient increases, and the absorption

coefficient decreases.

The analysis of graphs on fig. 4 and fig. 5 shows, that with growth of

oscillations frequency the reflection coefficient is monotonously decreasing

function. With growth of a thickness of the slab the values of reflection

coefficient increase, with growth of coefficient of reflection the values of

reflection coefficient also increase.
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Figure 1. Dependence of transmission coefficient (curve 1), reflecion coefficient (curve 2) and

absorption coefficient (curve 3) on quantity of the angle of incidence θ, 0 6 θ 6
π

2
, d = 10−7

cm, ω = 10−2ωp sec
−1, p = 0.5.
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Figure 2. Dependence of transmission coefficient (curve 1), reflecion coefficient (curve 2) and

absorption coefficient (curve 3) on quantity of the thickness of the slab d, 10−7 cm 6 d 6 10−6

cm, at normal falling of the wave (θ = 0), ω = 10−1ωp sec
−1, p = 0.5.
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Figure 3. Dependence of transmission coefficient (curve 1), reflecion coefficient (curve 2) and

absorption coefficient (curve 3) on quantity of coefficient of specular reflection p (06 p 6 1)

under normal incidence of the wave (θ = 0), ω = 10−1ωp c
−1, d = 10−7 sm

.
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Figure 4. Dependence of reflection coefficient R on the quantity of oscillation frequency of the

field ω under various values of a thickness slab d and under normal falling of an

electromagnetic wave (θ = 0). Curves of 1, 2, 3 correspond to values d = 10−7 cm, 2 · 10−7 cm,

3 · 10−7 cm The coefficient of specular reflection is equal to zero (p = 0).
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Figure 5. Dependence of reflection coefficient R on the quantity of oscillation frequency of the

field ω under various values of a thickness slab d and under normal incidence of an

electromagnetic wave (θ = 0). Curves of 1, 2, 3 correspond to values d = 10−7 cm, 2 · 10−7 cm,

3 · 10−7 cm. The coefficient of specular reflection is equal to unit (p = 1).



12

REFERENCES

1. Jones W. E., Kliewer K. L., Fuchs R. Nonlocal theory of the optical

properties of thin metallic films // Phys. Rev. 1969. Vol. 178. No. 3.

P. 1201 - 1203.

2. Kliewer K. L., Fuchs R. Optical properties of an electron gas: Further

studies of a nonlocal description //Phys. Rev. 1969. Vol. 185. No. 3. P.

805 - 913.

3. Kondratenko A. N. Penetration of waves in Plasma. M: Atomizdat,

1979. 232 P. (in russian).
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