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Multivariate Rogers-Szegö polynomials and flags in finite vector

spaces

C. Ryan Vinroot

Abstract

We give a recursion for the multivariate Rogers-Szegö polynomials, along with another
recursive functional equation, and apply them to compute special values. We also consider
the sum of all q-multinomial coefficients of some fixed degree and length, and give a recursion
for this sum which follows from the recursion of the multivariate Rogers-Szegö polynomials,
and generalizes the recursion for the Galois numbers. The sum of all q-multinomial coeffi-
cients of degree n and length m is the number of flags of length m − 1 of subspaces of an
n-dimensional vector space over a field with q elements. We give a combinatorial proof of
the recursion for this sum of q-multinomial coefficients in terms of finite vector spaces.
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1 Introduction

For a parameter q 6= 1, and a positive integer n, let (q)n = (1 − q)(1 − q2) · · · (1 − qn), and
(q)0 = 1. For non-negative integers n and k, with n ≥ k, the q-binomial coefficient or Gaussian

polynomial, denoted
(n
k

)

q
, is defined as

(n
k

)

q
= (q)n

(q)k(q)n−k
.

The Rogers-Szegö polynomial in a single variable, denoted Hn(t), is defined as

Hn(t) =

n
∑

k=0

(

n

k

)

q

tk.

The Rogers-Szegö polynomials first appeared in papers of Rogers [12, 13] which led up to the
famous Rogers-Ramanujan identities, and later were independently studied by Szegö [15]. They
are important in combinatorial number theory ([1, Ex. 3.3–3.9] and [4, Sec. 20]), symmet-
ric function theory [16], and are key examples of orthogonal polynomials [2]. They also have
applications in mathematical physics [8, 9].

The Rogers-Szegö polynomials satisfy the recursion (see [1, p. 49])

Hn+1(t) = (1 + t)Hn(t) + t(qn − 1)Hn−1(t). (1.1)

Letting t = 1, we have Hn(1) =
∑n

k=0

(n
k

)

q
, which, when q is the power of a prime, is the

total number of subspaces of an n-dimensional vector space over a field with q elements. The
numbers Gn = Hn(1) are the Galois numbers, and from (1.1), satisfy the recursion Gn+1 =
2Gn + (qn − 1)Gn−1. The Galois numbers were studied from the point of view of finite vector
spaces by Goldman and Rota [5], and have been studied extensively, for example, in [11, 6].
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For non-negative integers k1, k2, . . . , km such that k1 + · · · + km = n, we define the q-
multinomial coefficient of length m as

(

n

k1, k2, . . . , km

)

q

=
(q)n

(q)k1(q)k2 · · · (q)km
,

so that
(

n
k

)

q
=
(

n
k,n−k

)

q
. Define the homogeneous Rogers-Szegö polynomial in m variables for

m ≥ 2, denoted H̃n(t1, t2, . . . , tm), by

H̃n(t1, t2, . . . , tm) =
∑

k1+···+km=n

(

n

k1, . . . , km

)

q

tk11 · · · tkmm ,

and define the Rogers-Szegö polynomial in m− 1 variables, denoted Hn(t1, . . . , tm−1), by

Hn(t1, . . . tm−1) = H̃(t1, . . . , tm−1, 1).

The homogeneous multivariate Rogers-Szegö polynomials were first defined by Rogers [12] in
terms of their generating function, and several of their properties are given by Fine [4, Section
21]. The definition of the multivariate Rogers-Szegö polynomial Hn is given by Andrews in [1,
Chap. 3, Ex. 17], along with a generating function, although there is little other study of these
polynomials elsewhere in the literature (however, there is a non-symmetric version of a bivariate
Rogers-Szegö polynomial [3]). In Section 2, we give a recursion for the multivariate Rogers-Szegö
polynomials which generalizes (1.1). The result, given in Theorem 2.1 below, follows quickly
from the generating function for the multivariate Rogers-Szegö polynomials, although seems not
to have been noted before. We also give a few other properties of the multivariate Rogers-Szegö
polynomials in Section 2 which complement those given in [4, Section 21].

Finally, in Section 3, we concentrate on the value Hn(1, 1, . . . , 1), of the Rogers-Szegö poly-
nomial Hn(t1, . . . , tm−1) when we let t1 = · · · = tm−1 = 1. This is the sum of all q-multinomial

coefficients of length m, which we denote by G
(m)
n , so

G(m)
n =

∑

k1+···+km=n

(

n

k1, . . . , km

)

q

.

These generalize the Galois numbers Gn = G
(2)
n , and in particular, G

(m)
n is the total number

of flags of subspaces of length m of an n-dimensional vector space over a field with q elements

when q is the power of a prime. The main task of Section 3 is to study the numbers G
(m)
n in

the context of finite vector spaces, independent of the Rogers-Szegö polynomials, in the spirit

of the study of Goldman and Rota. A recursion for the numbers G
(m)
n is immediately obtained

in Corollary 3.1 from the recursion of the multivariate Rogers-Szegö polynomials, for which
we provide a combinatorial proof in terms of finite vector spaces. We prove the recursion for
the generalized Galois numbers by obtaining a recursive formula for q-multinomial coefficients,
which itself implies the recursion for the multivariate Rogers-Szegö polynomials.

2 Rogers-Szegö polynomials

For any a, r 6= 1, and n ≥ 1, we define (a; r)n by

(a; r)n = (1− a)(1 − ar) · · · (1− arn−1),

2



and (a; r)0 = 1. Define (a; r)∞ by the formal infinite product

(a; r)∞ =

∞
∏

i=0

(1− ari).

For our fixed parameter q 6= 1, and any a 6= 1, define (a)n = (a; q)n and (a)∞ = (a; q)∞, so
(q)n = (1− q)(1− q2) · · · (1− qn) for n ≥ 1 as in the introduction.

Then we have [1, Cor. 2.2] the following formal identity, originally due to Euler:

∞
∑

n=0

xn

(r; r)n
= (x; r)−1

∞ . (2.1)

We may use (2.1) to give a generating function for the multivariate Rogers-Szegö polynomials.
The following is stated in [1, Ex. 3.17], but we include the proof here for the sake of self-
containment.

Lemma 2.1. The multivariate Rogers-Szegö polynomials have the following generating function:

∞
∑

n=0

Hn(t1, . . . , tm−1)

(q)n
xn = (t1x)

−1
∞ · · · (tm−1x)

−1
∞ (x)−1

∞ .

Proof. By (2.1), we have

(t1x)
−1
∞ · · · (tm−1x)

−1
∞ (x)−1

∞ =





∞
∑

k1=0

tk11 xk1

(q)k1



 · · ·





∞
∑

km−1=0

t
km−1

m−1 x
km−1

(q)km−1









∞
∑

km=0

xkm

(q)km





=

∞
∑

n=0





∑

k1+···+km=n

tk11 · · · t
km−1

m−1

(q)k1 · · · (q)km



xn

=

∞
∑

n=0





∑

k1+···+km=n

(

n

k1, . . . , km

)

q

tk11 · · · t
km−1

m−1





xn

(q)n

=

∞
∑

n=0

Hn(t1, . . . , tm−1)

(q)n
xn,

as claimed.

For any finite set of variables X, we let ei(X) denote the ith elementary symmetric poly-
nomial in the variables X. We can now give the recursion of the multivariate Rogers-Szegö
polynomials which generalizes (1.1).

Theorem 2.1. The Rogers-Szegö polynomials in m−1 variables satisfy the following recursion:

Hn+1(t1, . . . , tm−1) =
m−1
∑

i=0

ei+1(t1, . . . , tm−1, 1)(−1)i
(q)n
(q)n−i

Hn−i(t1, . . . , tm−1).

Proof. Let

F (x, t1, . . . , tm−1) =

∞
∑

n=0

Hn(t1, . . . , tm−1)

(q)n
xn = (t1x)

−1
∞ · · · (tm−1x)

−1
∞ (x)−1

∞ ,
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by Lemma 2.1. Since (1− tix)(tix)
−1
∞ = (tixq)

−1
∞ and (1− x)(x)−1

∞ = (xq)−1
∞ , we have

(1− t1x) · · · (1− tm−1x)(1 − x)F (x, t1, . . . , tm−1) = (t1xq)
−1
∞ · · · (tm−1xq)

−1
∞ (xq)−1

∞

= F (xq, t1, . . . , tm−1). (2.2)

By the definition of the elementary symmetric polynomials, we have

(1− t1x) · · · (1− tm−1x)(1 − x) =

m
∑

i=0

(−1)iei(t1, . . . , tm−1, 1)x
i.

From this and (2.2), we have

(

m
∑

i=0

(−1)iei(t1, . . . , tm−1, 1)x
i

)

∞
∑

n=0

Hn(t1, . . . , tm−1)

(q)n
xn =

∞
∑

n=0

qnHn(t1, . . . , tm−1)

(q)n
xn,

which may be re-written as

∞
∑

n=0

(1− qn)Hn(t1, . . . , tm−1)

(q)n
xn =

(

m−1
∑

i=0

(−1)iei+1(t1, . . . , tm−1, 1)x
i+1

)

∞
∑

n=0

Hn(t1, . . . , tm−1)

(q)n
xn.

Comparing the coefficients of xn+1 in both sides of the above expression, we obtain

Hn+1(t1, . . . , tm−1)

(q)n
=

m−1
∑

i=0

ei+1(t1, . . . , tm−1, 1)
(−1)i

(q)n−i
Hn−i(t1, . . . , tm−1),

which yields the desired result.

Note that we have (−1)i(q)n/(q)n−i = (qn − 1)(qn−1 − 1) · · · (qn−i+1 − 1). For example,
applying Theorem 2.1 to the Rogers-Szegö polynomials in two variables, we obtain

Hn+1(t1, t2) = (1 + t1 + t2)Hn(t1, t2)+(t1t2 + t1 + t2)(q
n − 1)Hn−1(t1, t2)

+ t1t2(q
n − 1)(qn−1 − 1)Hn−2(t1, t2).

When the Rogers-Szegö polynomial Hn(t) in a single variable is evaluated at t = −1, we get
the following identity for the alternating sum of q-binomial coefficients originally due to Gauss:

Hn(−1) =

n
∑

k=0

(

n

k

)

q

(−1)k =

{

(q)n
(q2;q2)n/2

=
∏

j<n,j odd (1− qj) if n is even,

0 otherwise.
(2.3)

As pointed out in [4, Sec. 21], this identity may be generalized by evaluating the multivariate
Rogers-Szegö polynomials at roots of unity. That is, if ω = e2πi/m is a primitive m-th root of
unity, where m ≥ 2, and let n ≥ 0, then

Hn(ω, ω
2, . . . , ωm−1) =

{

(q)n
(qm;qm)n/m

=
∏

j<n,m∤j(1− qj) if m|n,

0 otherwise.
(2.4)

This is calculated in [4] by applying the generating function in Lemma 2.1. We note that
we may also compute it quickly from Theorem 2.1 as follows. We have ei(ω, . . . , ω

m−1, 1) = 0
for 1 ≤ i ≤ m− 1, while em(ω, . . . , ωm−1, 1) = (−1)m+1, since these roots of unity are the roots
of xm − 1. We have H0(t1, . . . , tm−1) = 1, and for 0 < n ≤ m − 1, we have Hn(t1, . . . , tm−1)
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is a symmetric polynomial in t1, . . . , tm−1, 1, of degree n < m, with zero constant term. We
may thus write Hn(t1, . . . , tm−1) as a polynomial in ei(t1, . . . , tm−1, 1), with 0 < i < n. Now,
Hn(ω, . . . , ω

m−1) can be written as a polynomial in ei(ω, . . . , ω
m−1, 1), for 1 ≤ i ≤ m− 1, which

are all 0. It follows that Hn(ω, . . . , ω
m−1) = 0 for these n. By Theorem 2.1 and the values of

the elementary symmetric polynomials, if n ≥ m then

Hn(ω, . . . , ω
m−1) =

m−1
∑

i=0

ei+1(ω, . . . , ω
m−1, 1)(−1)i

(q)n−1

(q)n−1−i
Hn−1−i(ω, . . . , ω

m−1)

= (1− qn−1)(1 − qn−2) · · · (1− qn−m+1)Hn−m(ω, . . . , ωm−1).

The values (2.4) now follow by induction.
Another value of the Rogers-Szegö polynomial of a single variable is

Hn(q
1/2) =

(q)n

(q1/2; q1/2)n
= (q1/2;−q1/2)n =

n
∏

j=1

(1 + qj/2).

This is generalized in [4] with the value

Hn(q
1/m, q2/m, . . . , q(m−1)/m) =

(q)n
(q1/m; q1/m)n

=

n
∏

j=1

(1 + qj/m + · · ·+ qj(m−1)/m). (2.5)

Fine also gives a generalization of both (2.4) and (2.5), and applies it to obtain a bi-basic identity
[4, 21.4].

The Rogers-Szegö polynomial Hn(t) also takes the value

Hn(−q) =
(q)n

(q2; q2) ⌊n/2⌋
=

∏

j≤n,j odd

(1− qj), (2.6)

which is applied in finding identities involving Hall-Littlewood functions in [16], for example. A
generalization of (2.6) for the multivariate Rogers-Szegö polynomials is not covered above, and
so we obtain one now. Let ω = e2πi/m be a primitive m-th root of unity, where m ≥ 2, and let
n ≥ 0. Then

Hn(ωq, ω
2q, . . . , ωm−1q) =

(q)n
(qm; qm)⌊n/m⌋

=
∏

j≤n,m∤j

(1− qj), (2.7)

which we calculate as follows. By Lemma 2.1 and (2.1), we have

∞
∑

n=0

Hn(ωq, . . . , ω
m−1q)

(q)n
xn =

1

(x)∞(xωq)∞ · · · (xωm−1q)∞

=
1

1− x

∞
∏

j=1

m−1
∏

l=0

1

1− xωlqj
=

1

1− x

∞
∏

j=1

1

1− xmqmj

=
1 + x+ · · ·+ xm−1

(1− xm)(1 − xmqm)(1− xmq2m) · · ·
=

1 + x+ · · · + xm−1

(xm; qm)∞

= (1 + x+ · · ·+ xm−1)

∞
∑

k=0

1

(qm; qm)k
xmk.

Comparing the coefficients of xn, we obtain (2.7).
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The value (2.6) of Hn(−q) could also be computed by using (2.3) along with the functional
equation [4, 20.64b]

Hn(tq) = Hn(t)− t(1− qn)Hn−1(t). (2.8)

The next result, which generalizes (2.8) to multivariate Rogers-Szegö polynomials, has a very
similar form and proof to Theorem 2.1.

Theorem 2.2. Let m ≥ 2, and let J ⊆ {1, . . . ,m−1}, where |J | 6= 0. For 1 ≤ i ≤ m−1, define
si = tiq if i ∈ J , and si = ti otherwise. Let ei(tJ) be the ith elementary symmetric polynomial
in the set of variables tJ = {tj | j ∈ J}. Then for n ≥ |J |,

Hn(s1, . . . , sm−1) =

|J |
∑

i=0

ei(tJ )(−1)i
(q)n
(q)n−i

Hn−i(t1, . . . , tm−1).

Proof. Let F (x, t1, . . . , tm−1) be the generating function for Hn(t1, . . . , tm−1) as in the proof of
Theorem 2.1. Then we have





∏

j∈J

(1− tjx)



F (x, t1, . . . , tm−1) =





∏

j∈J

(tjqx)
−1
∞









∏

i 6∈J,1≤i≤m−1

(tix)
−1
∞



 (x)−1
∞

= F (x, s1, . . . , sm−1). (2.9)

Since
∏

j∈J(1− tjx) =
∑|J |

i=0(−1)iei(tJ)x
i, it follows from (2.9) that we have

∞
∑

n=0

Hn(s1, . . . , sm−1)

(q)n
xn =





|J |
∑

i=0

(−1)iei(tJ)x
i





∞
∑

n=0

Hn(t1, . . . , tm−1)

(q)n
xn.

Comparing the coefficient of xn in both sides of the above gives the result.

Now we may compute the value (2.7) by applying Theorem 2.2 in the following way. Note
that since ω, ω2, . . . , ωm−1, are the roots of xm + xm−1 + · · ·+ 1, then ei(ω, . . . , ω

m−1) = (−1)i

for 0 ≤ i ≤ m− 1. If we are able to compute the values Hi(ωq, . . . , ω
m−1q) for i < m, then we

use Theorem 2.2 with J = {1, . . . ,m− 1} and ti = ωi to obtain, when n ≥ m,

Hn(ωq, . . . , ω
m−1q) =

m−1
∑

i=1

(q)n
(q)n−i

Hn−i(ω, . . . , ω
m−1).

The values (2.7) then follow for n ≥ m when plugging in the values (2.4). We can compute
Hn(ωq, . . . , ω

m−1q) for n < m using Theorem 2.2 as well. For n = 1, we begin by taking J = {1}
and ti = ωi to obtain H1(ωq, ω

2, . . . , ωm−1) = ω(q−1). Then take J = {2}, t1 = ωq, and ti = ωi

for i > 1. Applying Theorem 2.2 then gives H1(ωq, ω
2q, ω3, . . . , ωm−1) = (ω + ω2)(q − 1).

Continuing in this way, we get

H1(ωq, ω
2q, . . . , ωm−1q) = (ω + · · · + ωm−1)(q − 1) = (1− q).

The values for 1 < n < m may be computed similarly.
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3 Flags in finite vector spaces

Now let q be the power of a prime, and let Fq denote a finite field with q elements. If V is
an n-dimensional vector space over Fq, then the q-binomial coefficient

(n
k

)

q
is the number of

k-dimensional subspaces of V (see [7, Thm. 7.1] or [14, Prop. 1.3.18]). When we evaluate the
Rogers-Szegö polynomial at t = 1, we obtain

Hn(1) =

n
∑

k=0

(

n

k

)

q

,

which is the total number of subspaces of an n-dimensional vector space over Fq. We define
the Galois numbers as Gn = Hn(1). As mentioned in the introduction, the recursion for the
Rogers-Szegö polynomials (1.1) gives the following recursion for the Galois numbers, which was
studied by Goldman and Rota [5]:

Gn+1 = 2Gn + (qn − 1)Gn−1, G0 = 1, G1 = 2. (3.1)

The recursion (3.1) was proved bijectively by counting subspaces of finite vector spaces by
Nijenhuis, Solow, and Wolf [11]. The proof in [11] is obtained by proving the following result
bijectively, from which (3.1) follows.

Lemma 3.1. For integers n ≥ k ≥ 1, we have
(

n+ 1

k

)

q

=

(

n

k

)

q

+

(

n

k − 1

)

q

+ (qn − 1)

(

n− 1

k − 1

)

q

.

We now consider the meaning of a q-multinomial coefficient in terms of vector spaces over
Fq. It follows from the definition of a q-multinomial coefficient and the fact that

(n
k

)

q
=
( n
n−k

)

q

that we have
(

n

k1, k2, . . . , km

)

q

=

(

n

k1

)

q

(

n− k1
k2

)

q

· · ·

(

n− k1 − · · · − km−2

km−1

)

q

=

(

n

n− k1

)

q

(

n− k1
n− k1 − k2

)

q

· · ·

(

n− k1 − · · · − km−2

n− k1 − · · · − km−2 − km−1

)

q

.

So, if V is an n-dimensional vector space over Fq, the q-multinomial coefficient
( n
k1,...,km

)

q
is equal

to the number of ways to choose an (n − k1)-dimensional subspace W1 of V , an (n − k1 − k2)-
dimensional subspace W2 of W1, and so on, until finally we choose an (n − k1 − · · · − km−1)-
dimensional subspace Wm−1 of some (n−k1−· · ·−km−2)-dimensional subspace Wm−2 (see also
[10, Sec. 1.5]). That is,

Wm−1 ⊆ Wm−2 ⊆ · · · ⊆ W2 ⊆ W1

is a flag of subspaces of V of length m− 1, where dim Wi = n−
∑i

j=1 kj .
If we evaluate the Rogers-Szegö polynomial in m− 1 variables at t1 = t2 = · · · = tm−1 = 1,

we obtain

Hn(1, 1, . . . , 1) =
∑

k1+···+km=n

(

n

k1, . . . , km

)

q

,

which, by the discussion above, counts the total number of flags of subspaces of length m − 1

in an n-dimensional Fq-vector space. We denote this quantity by G
(m)
n , so that the Galois

number Gn = G
(2)
n . We may apply Theorem 2.1 to obtain a recursion for the numbers G

(m)
n ,

generalizing the recursion in (3.1), by noticing that the number of terms in the elementary
symmetric polynomial ei+1(t1, . . . , tm−1, 1) is

( m
i+1

)

.
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Corollary 3.1. The numbers G
(m)
n satisfy the following recursion, for n ≥ m− 1:

G
(m)
n+1 =

m−1
∑

i=0

(

m

i+ 1

)

(−1)i
(q)n
(q)n−i

G
(m)
n−i.

In this section, we prove Corollary 3.1 combinatorially in terms of finite vector spaces, by
proving an analog of Lemma 3.1.

We need some notation. Let k denote the m-tuple (k1, . . . , km), and write the corresponding
q-multinomial coefficient as

(

n

k1, . . . , km

)

q

=

(

n

k

)

q

.

For a subset J ⊆ {1, . . . ,m}, let eJ denote the m-tuple (e1, . . . , em), where

ei =

{

1 if i ∈ J ,
0 if i 6∈ J .

For example, if m = 3, J = {1, 3}, and k = (k1, k2, k3), then

(

n

k − eJ

)

q

=

(

n

k1 − 1, k2, k3 − 1

)

q

.

The following is our generalization of Lemma 3.1.

Lemma 3.2. For m ≥ 2, and any k1, . . . , km > 0 such that k1 + · · ·+ km = n+ 1, we have

(

n+ 1

k1, . . . , km

)

q

=
∑

J⊆{1,...,m},|J |>0

(−1)|J |−1 (q)n
(q)n−|J |+1

(

n+ 1− |J |

k − eJ

)

q

Before proving Lemma 3.2, we explain why it implies Corollary 3.1. First note that we may
get a version of Lemma 3.2 which allows any of the ki = 0 as follows. If we want l of the ki’s
to be 0, we start with applying Lemma 3.2 to a q-multinomial coefficient of length m− l, using
the m − l nonzero ki’s, and note that the equation in Lemma 3.2 is not affected by inserting
0’s into the appropriate positions of all the q-multinomial coefficients in both sides. That is, if
some ki = 0, we may still apply Lemma 3.2, while ignoring these ki, or equivalently, we may
apply Lemma 3.2 to the q-multinomial coefficient obtained by removing the ki’s which are 0,
and re-inserting these 0’s in all q-multinomial coefficients in the sum the end.

Now consider the sum of all q-multinomial coefficients of the form
(

n+1
k1,...,km

)

q
, while applying

the more general version of Lemma 3.2 just discussed. For any i, 0 ≤ i ≤ m − 1, each term
( n+1
k1,...,km

)

q
in G

(m)
n+1 may be obtained by adding 1 to i+1 of the li’s in terms in G

(m)
n−i of the form

( n−i
l1,...,lm

)

q
in exactly

( m
i+1

)

ways. By Lemma 3.2, these terms contribute exactly what we need

to conclude Corollary 3.1. By a similar argument, we may see that in fact the recursion for the
multinomial Rogers-Szegö polynomials in Theorem 2.1 also follows from Lemma 3.2.

Proof of Lemma 3.2. We will prove this by induction on m, where the base case m = 2 is given
by Lemma 3.1. Fix V to be an (n+1)-dimensional vector space over Fq. We know

( n+1
k1,...,km

)

q
is

the number of flags of subspaces of V , Wm−1 ⊂ · · · ⊂ W2 ⊂ W1, where dim Wi = n+1−
∑i

j=1 kj .
We must show that the right-hand side of the claimed identity in Lemma 3.2 also counts these
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flags. We have, by choosing first the subspace W1 and then the rest of the flag, and applying
Lemma 3.1,

(

n+ 1

k1, . . . , km

)

q

=

(

n+ 1

n+ 1− k1

)

q

(

n+ 1− k1
k2, . . . , km

)

q

=

(

(

n

n+ 1− k1

)

q

+

(

n

n− k1

)

q

+ (qn − 1)

(

n− 1

n− k1

)

q

)

(

n+ 1− k1
k2, . . . , km

)

q

. (3.2)

We have
(

n
n+1−k1

)

q

(

n+1−k1
k2,...,km

)

q
=
(

n
k1−1,k2,...,km

)

q
, which is the term corresponding to the subset

J = {1} ⊂ {1, . . . ,m}. This may be thought of as the total number of ways of choosing our flag
so that W1 is contained in some fixed n-dimensional subspace of V . By our induction hypothesis,
the number of remaining flags is given by

(

(

n

n− k1

)

q

+ (qn − 1)

(

n− 1

n− k1

)

q

)

∑

I⊆{1,...,m−1},|I|>0

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(

n+ 1− k1 − |I|

k′ − eI

)

q

,

(3.3)
where k′ = (k2, . . . , km). We have

(

n

n− k1

)

q

(q)n−k1

(q)n−k1−|I|+1
=

(q)n
(q)n−|I|+1

(

n+ 1− |I|

n− k1 − |I|+ 1

)

q

,

and

(qn − 1)

(

n− 1

n− k1

)

q

(q)n−k1

(q)n−k1−|I|+1
= (−1)

(q)n
(q)n−|I|

(

n− |I|

n− k1 − |I|+ 1

)

q

.

Given I ⊂ {1, . . . ,m − 1}, |I| > 0, write I + 1 = {i + 1 | i ∈ I} ⊆ {2, . . . ,m}. If we let
k = (k1, . . . , km), we now have

(

n

n− k1

)

q

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(

n+ 1− k1 − |I|

k′ − eI

)

q

= (−1)|J |−1 (q)n
(q)n−|J |+1

(

n+ 1− |J |

k − eJ

)

q

,

(3.4)
where J = I + 1, |J | = |I|, and

(qn − 1)

(

n− 1

n− k1

)

q

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(

n+ 1− k1 − |I|

k′ − eI

)

q

= (−1)|J |−1 (q)n
(q)n−|J |+1

(

n+ 1− |J |

k − eJ

)

q

, (3.5)

where J = {1} ∪ (I + 1), |J | = |I| + 1. As I ranges over nonempty subsets of {1, . . . ,m − 1},
I + 1 and {1} ∪ (I + 1) range over all nonempty subsets of {1, . . . ,m} other than {1}. Finally,
we substitute (3.4) and (3.5) into (3.3), and we see that the sum of all of these terms, along
with

( n+1
k1−1,k2,...,km

)

corresponding to J = {1}, gives the desired result.

While the inductive proof of Lemma 3.2 above works nicely, it somewhat disguises the way
we count our flags to see the result bijectively. We conclude with an explanation of this count.
First, we need to understand the combinatorial proof of Lemma 3.1 appearing in [11], which may
be summarized as follows. Fix V to be an (n+1)-dimensional Fq-vector space as before. There
are

(n+1
k

)

q
ways to choose a k-dimensional subspace W of V . Fix a basis {v1, v2, . . . , vn+1} of V .

Any k-dimensional subspace W can be written as span(W ′, v) where W ′ is a (k−1)-dimensional
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subspace of V ′ = span(v1, . . . , vn). We may choose W in three distinct ways. If v ∈ V ′, then
W is a subspace of V ′, for which there are

(n
k

)

q
choices. Call this a Type 1 subspace of V . If

we take v to be a scalar multiple of vn+1, then W is determined by W ′, for which there are
( n
k−1

)

q
choices. We call this a Type 2 subspace of V . Finally, if v is neither in V ′ nor a scalar

multiple of vn+1, then we call W a Type 3 subspace of V , and it can be shown that there are
(qn − 1)

(

n−1
k−1

)

q
choices for W , giving Lemma 3.1.

We now fix a basis of every subspace U of V , so that we may speak of subspaces of Type
1, 2, or 3 of U . Consider a flag of subspaces of V = W0, Wm−1 ⊂ · · · ⊂ W2 ⊂ W1, such that if
we define ki for 1 ≤ i ≤ m by

∑i
j=1 kj = n + 1 − dim Wi, then each ki > 0. The total number

of such flags is
(

n+1
k1,...,km

)

q
, and these flags may also be counted in the following way. We may

choose W1 to be a Type 1 subspace of V , or we may choose every Wi to be a Type 2 or Type
3 subspace of Wi−1 for i ≤ m− 1, or we may choose Wi to be a Type 2 or Type 3 subspace of
Wi−1 for i ≤ r − 1 for some r < m and Wr a Type 1 subspace of Wr−1. These cases account
for all possibilities for such a flag of V . For a nonempty J ⊆ {1, . . . ,m}, let r be the maximum
element of J . Then a closer look at the proof of Lemma 3.2 reveals that

(−1)|J |−1 (q)n
(q)n−|J |+1

(

n+ 1− |J |

k − eJ

)

q

is the number of ways to choose our flag such that Wj is a Type 3 subspace of Wj−1 for j ∈ J
and j < r, Wi is a Type 2 subspace of Wi−1 for i 6∈ J and i < r, and Wr is a Type 1 subspace of
Wr−1 if r < m. These account for all 2m − 1 terms in the right-side of the equation in Lemma
3.2, and all possible ways to choose our flag.
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