# Interpolating Thin-Shell and Sharp Large-Deviation Estimates For Isotropic Log-Concave Measures 

Olivier Guédon ${ }^{1}$ and Emanuel Milman ${ }^{2}$


#### Abstract

Given an isotropic random vector $X$ with log-concave density in Euclidean space $\mathbb{R}^{n}$, we study the concentration properties of $|X|$. We show in particular that: $$
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \exp \left(-c n^{\frac{1}{2}} \min \left(t^{3}, t\right)\right) \quad \forall t>0
$$ for some universal constant $c>0$. This improves the best known deviation results above the expectation on the thin-shell and mesoscopic scales due to Fleury and Klartag, respectively, and recovers the sharp large-deviation estimate of Paouris. Another new feature of our estimate is that it improves when $X$ is $\psi_{\alpha}(\alpha \in(1,2])$, in precise agreement with the sharp Paouris estimates. The upper bound on the thin-shell width $\sqrt{\operatorname{Var}(|X|)}$ we obtain is of the order of $n^{1 / 3}$, and improves down to $n^{1 / 4}$ when $X$ is $\psi_{2}$. Our estimates thus continuously interpolate between a new best known thin-shell estimate and the sharp Paouris large-deviation one.


## 1 Introduction

Let a Euclidean norm $|\cdot|$ on $\mathbb{R}^{n}$ be fixed. This work is dedicated to quantitative concentration properties of $|X|$, where $X$ is an isotropic random vector in $\mathbb{R}^{n}$ with log-concave density. Recall that a random vector $X$ in $\mathbb{R}^{n}$ (and its density) is called isotropic if $\mathbb{E} X=0$ and $\mathbb{E} X \otimes X=I d$, i.e. its barycenter is at the origin and its covariance matrix is equal to the identity one. Taking traces, we observe that $\mathbb{E}|X|^{2}=n$. Here and throughout we use $\mathbb{E}$ to denote expectation, $\mathbb{P}$ to denote probability, and Var to denote variance. A function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$is called log-concave if $-\log g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex. Throughout this work, $C, c, c_{2}, C^{\prime}$, etc. denote universal positive numeric constants, independent of any other parameter and in particular the dimension $n$, whose value may change from one occurrence to the next.

It was conjectured by Anttila, Ball and Perissinaki [1] that $|X|$ is concentrated around its expectation significantly more than suggested by the trivial bound $\operatorname{Var}|X| \leq \mathbb{E}|X|^{2}=$

[^0]$n$. Namely, they conjectured that there exists a sequence $\left\{\varepsilon_{n}\right\}$ decreasing to 0 with the dimension $n$, so that $X$ is concentrated within a "thin shell" of relative width $2 \varepsilon_{n}$ around the (approximately) expected Euclidean norm of $\sqrt{n}$ :
\[

$$
\begin{equation*}
\mathbb{P}\left(||X|-\sqrt{n}| \geq \varepsilon_{n} \sqrt{n}\right) \leq \varepsilon_{n} . \tag{1.1}
\end{equation*}
$$

\]

Their conjecture was mainly motivated by the Central Limit Problem for log-concave measures, and as pointed out in [1], implies that most marginals of log-concave measures are approximately Gaussian.

A stronger version of this conjecture was put forth by Bobkov and Koldobsky [7]. It may be equivalently formulated as stating that the "thin-shell width" $\sqrt{\mathbb{V} a r|X|}$ is bounded above by a universal constant $C$.

An even stronger conjecture is due to Kannan, Lovász and Simonovits [16]. In an equivalent form, it states that for any smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ :

$$
\mathbb{V} \operatorname{ar}(f(X)) \leq C \mathbb{E}|\nabla f(X)|^{2}
$$

Applied to the function $f(x)=|x|^{p}$ with $p=c \sqrt{n}$, the KLS conjecture implies (see [11] and Section (4) that:

$$
\begin{equation*}
\mathbb{P}(||X|-\sqrt{n}| \geq t \sqrt{n}) \leq C \exp (-c \sqrt{n} t) \quad \forall t \geq 0 . \tag{1.2}
\end{equation*}
$$

It was shown by G. Paouris [29] that the predicted positive deviation estimate (1.2) indeed holds in the large:

$$
\begin{equation*}
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \exp (-c \sqrt{n} t) \quad \forall t \geq C>0 . \tag{1.3}
\end{equation*}
$$

Moreover, Paouris showed that when $X$ is $\psi_{\alpha}(\alpha \in[1,2])$ :

$$
\begin{equation*}
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \exp \left(-c n^{\frac{\alpha}{2}} t\right) \quad \forall t \geq C>0 \tag{1.4}
\end{equation*}
$$

Recall that $X$ (and its density) is said to be " $\psi_{\alpha}$ with constant $D>0$ " if:

$$
\left(\mathbb{E}|\langle X, y\rangle|^{p}\right)^{1 / p} \leq D p^{1 / \alpha}\left(\mathbb{E}|\langle X, y\rangle|^{2}\right)^{1 / 2} \quad \forall p \geq 2 \quad \forall y \in \mathbb{R}^{n}
$$

We will simply say that " $X$ is $\psi_{\alpha}$ ", if it is $\psi_{\alpha}$ with constant $D \leq C$, and not specify explicitly the dependence of the estimates on the parameter $D$. By Borell's Lemma [10] (see also [27, Appendix III]), it is well known that any $X$ with log-concave density is $\psi_{1}$ with some universal constant, and so we only gain additional information when $\alpha>1$.

The positive large-deviation estimate (1.4) is easily verified to be sharp (up to universal constants) for all $\alpha \in[1,2]$. However, this leaves open the concentration estimates in the bulk: positive deviation $\mathbb{P}(|X| \geq(1+t) \sqrt{n})$ when $t \in[0, C]$, and negative deviation $\mathbb{P}(|X| \leq(1-t) \sqrt{n})$ when $t \in[0, c](c \in(0,1))$; in particular, this gives no information on the thin-shell $\sqrt{\operatorname{Var}|X|}$. We remark that the small-ball estimates $\mathbb{P}(|X| \leq \varepsilon \sqrt{n})$ for $\varepsilon \in[0,1-c]$ will mostly be disregarded in this work (see however Remark 1.4 below).

The first non-trivial estimate on the concentration of $|X|$ around its expectation was given by B. Klartag in [18], involving logarithmic improvements in $n$ over the trivial bounds. This validated the conjectured thin-shell concentration (1.1), allowing Klartag to resolve the Central Limit Problem for log-concave measures. A different proof continuing Paouris' approach was given by Fleury, Guédon and Paouris in [13. Klartag then improved in [19] his estimates from logarithmic to polynomial in $n$ as follows (for any small $\varepsilon>0$ ):

$$
\begin{equation*}
\mathbb{P}(||X|-\sqrt{n}| \geq t \sqrt{n}) \leq C_{\varepsilon} \exp \left(-c_{\varepsilon} n^{\frac{1}{3}-\varepsilon} t^{\frac{10}{3}-\varepsilon}\right) \quad \forall t \in[0,1] . \tag{1.5}
\end{equation*}
$$

This implies in particular a thin-shell estimate of:

$$
\sqrt{\operatorname{Var}|X|} \leq C_{\varepsilon} n^{\frac{1}{2}-\frac{1}{10}-\varepsilon} .
$$

Note, however, that when $t=1 / 2$, (1.5) does not recover the sharp positive largedeviation estimate of Paouris (1.3).

Recently in [12], B. Fleury improved Klartag's thin-shell estimate to:

$$
\sqrt{\operatorname{Var}|X|} \leq C n^{\frac{1}{2}-\frac{1}{8}}
$$

by obtaining the following deviation estimates:

$$
\begin{array}{ll}
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq C \exp \left(-c n^{\frac{1}{4}} t^{2}\right) \quad \forall t \in[0,1] ; \\
\mathbb{P}(|X| \leq(1-t) \sqrt{n}) \leq C \exp \left(-c n^{\frac{1}{8}} t\right) \quad \forall t \in[0,1] .
\end{array}
$$

Note, however, that when $t=1 / 2$, Fleury's positive and negative large-deviation estimates are both inferior to those of Klartag, and so in the mesoscopic scale $t=n^{-\delta}(\delta>0$ small), Klartag's estimates still outperform Fleury's (and Paouris' ones are inapplicable). In addition, note that both Klartag and Fleury's estimates do not seem to improve under a $\psi_{\alpha}$ condition, contrary to the ones of Paouris. See also [8, 20, 11, 23] for further related results.

All of this suggests that one might hope for a concentration estimate which:

- Recovers the sharp positive large-deviation result of Paouris (1.4).
- Improves if $X$ is $\psi_{\alpha}$.
- Improves the best-known thin-shell estimate of Fleury.
- Improves the best-known positive mesoscopic-deviation estimate of Klartag.
- Interpolates continuously between all positive scales of $t$ (bulk, mesoscopic, largedeviation).

The aim of this work is to provide precisely such an estimate.

### 1.1 The Results

Theorem 1.1. Let $X$ denote an isotropic random vector in $\mathbb{R}^{n}$ with log-concave density, which is in addition $\psi_{\alpha}(\alpha \in[1,2])$. Then:

$$
\begin{equation*}
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \exp \left(-c n^{\frac{\alpha}{2}} \min \left(t^{2+\alpha}, t\right)\right) \quad \forall t>0 \tag{1.6}
\end{equation*}
$$

and:

$$
\begin{equation*}
\mathbb{P}(|X| \leq(1-t) \sqrt{n}) \leq C \exp \left(-c n^{\frac{\alpha}{2(2+\alpha)}} t\right) \quad \forall t \in(0,1) \tag{1.7}
\end{equation*}
$$

In particular:

$$
\begin{equation*}
\sqrt{\mathbb{V} \operatorname{ar}(|X|)} \leq C n^{\frac{1}{2+\alpha}} . \tag{1.8}
\end{equation*}
$$

Note that when $\alpha=1$, as is the case for an arbitrary isotropic $X$ with log-concave density, we obtain the following thin-shell estimate:

$$
\sqrt{\operatorname{Var}(|X|)} \leq C n^{\frac{1}{2}-\frac{1}{6}}
$$

Also note that we obtain $\mathbb{P}(|X| \geq(1+\varepsilon) \sqrt{n}) \leq \exp \left(-C_{\varepsilon} n^{\frac{\alpha}{2}}\right)$ for any $\varepsilon>0$, whereas Paouris' estimate (1.4) only ensures that this holds for $\varepsilon \geq C$ for some large enough $C>0$.

Theorem 1.1 is a standard consequence of the following moment estimates, which are the main result of this work:
Theorem 1.2. Let $X$ denote an isotropic random vector in $\mathbb{R}^{n}$ with log-concave density, which is in addition $\psi_{\alpha}(\alpha \in[1,2])$. Then for any $2 \leq p \leq c n^{\alpha / 2}$ :

$$
\begin{equation*}
\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}} \leq\left(1+C\left(\frac{p}{n^{\frac{\alpha}{2}}}\right)^{\frac{1}{\alpha+1}}\right)\left(\mathbb{E}|X|^{2}\right)^{\frac{1}{2}} . \tag{1.9}
\end{equation*}
$$

Note that using $p=4$ in (1.9) we obtain $\operatorname{Var}\left(|X|^{2}\right) \leq C_{2} n^{2-\frac{\alpha}{2(\alpha+1)}}$, which only yields $\sqrt{\operatorname{Var}(|X|)} \leq C_{3} n^{\frac{1}{2}-\frac{\alpha}{4(\alpha+1)}}$, an inferior estimate to (1.8). The reason for this discrepancy is due to the fact that our moment estimates for relatively small values of $p$ may be a-posteriori improved, by integrating by parts and using the deviation estimates of Theorem [1.1 (see [11, Lemma 6]):
Corollary 1.3. With the same assumptions as in Theorem 1.2. for any $2 \leq p \leq$ $c_{2} n^{\frac{\alpha}{2(\alpha+2)}}$ :

$$
\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}} \leq\left(1+C_{2} \frac{p}{n^{\frac{\alpha}{\alpha+2}}}\right)\left(\mathbb{E}|X|^{2}\right)^{\frac{1}{2}}
$$

Remark 1.4. Note that our estimates for negative mesoscopic and large deviation are still inferior to those of Klartag. The best known negative large-deviation and small-ball estimates are due to Paouris [30], who showed that there exists a constant $C>1$ so that:

$$
\begin{equation*}
\mathbb{P}(|X| \leq \varepsilon \sqrt{n}) \leq(C \varepsilon)^{c n^{\frac{\alpha}{2}}} \quad \forall \varepsilon \in(0,1 / C) \tag{1.10}
\end{equation*}
$$

It should be possible to extend our methods to handle negative moments $p$ in Theorem 1.2, resulting in a continuous interpolation between (1.7) and (1.10), and thus improving over Klartag's negative mesoscopic deviation estimates; we leave this for another note.

### 1.2 The Approach

We let $G_{n, k}$ denote the Grassmann manifold of all $k$-dimensional linear subspaces of $\mathbb{R}^{n}$, and $S O(n)$ the group of rotations. Fixing a Euclidean structure on $\mathbb{R}^{n}$, and given a linear subspace $F$, we denote by $S(F)$ and $B_{2}(F)$ the unit-sphere and unit-ball in $F$, respectively. When $F=\mathbb{R}^{n}$, we simply write $S^{n-1}$ and $B_{2}^{n}$. We denote by $P_{F}$ the orthogonal projection onto $F$ in $\mathbb{R}^{n}$, and given a random vector $Y$ with density $g$, we denote by $\pi_{F} g$ the marginal density of $g$ on $F$, i.e. the density of $P_{F} Y$. When $F=\operatorname{span}(\theta), \theta \in S^{n-1}$, we denote the density $\pi_{\theta} g$ on $\mathbb{R}$ given by $\pi_{\theta} g(t):=\pi_{F} g(t \theta)$.

For the proof of Theorem 1.2, we use many of the ingredients developed previously by Klartag [19, and adapted to the language of moments by Fleury [11, 12]:

- It is enough to verify (1.9) with $X$ replaced by $Y=\left(X+G_{n}\right) / \sqrt{2}$, where $G_{n}$ denotes a standard Gaussian random vector in $\mathbb{R}^{n}$.
- It is useful to first project $Y$ onto a lower-dimensional subspace $F \in G_{n, k}$. This idea also appears in essence in the work of Paouris [29]. Klartag and Paouris use V. Milman's approach to Dvoretzky's theorem [25, 27] for identifying lowerdimensional structures in most marginals $P_{F} Y$. Fleury, on the other hand, takes an average over the Haar measure on $G_{n, k}$, which is more efficient (see [12] or below):

$$
\begin{equation*}
\frac{\left(\mathbb{E}|Y|^{p}\right)^{1 / p}}{\left(\mathbb{E}|Y|^{2}\right)^{1 / 2}} \leq \frac{\left(\mathbb{E}_{F, Y}\left|P_{F} Y\right|^{p}\right)^{1 / p}}{\left(\mathbb{E}_{F, Y}\left|P_{F} Y\right|^{2}\right)^{1 / 2}} \tag{1.11}
\end{equation*}
$$

- Rewriting using the invariance of the Haar measure and polar coordinates:

$$
\begin{equation*}
\frac{\left(\mathbb{E}_{F, Y}\left|P_{F} Y\right|^{p}\right)^{1 / p}}{\left(\mathbb{E}_{F, Y}\left|P_{F} Y\right|^{2}\right)^{1 / 2}}=\frac{\left(\mathbb{E}_{U} h_{k, p}(U)\right)^{1 / p}}{\left(\mathbb{E}_{U} h_{k, 2}(U)\right)^{1 / 2}} \tag{1.12}
\end{equation*}
$$

where $U$ is uniformly distributed over $S O(n), E_{0} \in G_{n, k}, \theta_{0} \in S\left(E_{0}\right), g$ denotes the density of $Y$ in $\mathbb{R}^{n}$, and $h_{k, q}: S O(n) \rightarrow \mathbb{R}_{+}$is defined as:

$$
\begin{equation*}
h_{k, p}(u):=\operatorname{Vol}\left(S^{k-1}\right) \int_{0}^{\infty} t^{p+k-1} \pi_{u\left(E_{0}\right)} g\left(t u\left(\theta_{0}\right)\right) d t \tag{1.13}
\end{equation*}
$$

To control the ratio in (1.12), a good bound on the $\log$-Lipschitz constant $L_{k, q}$ of $h_{k, q}$ is required.
Our main technical result in this work is the following improvement over the logLipschitz bounds of Klartag from [19]:
Theorem 1.5. Under the same assumptions as in Theorem 1.1, $L_{k, p} \leq C \max (k, p)^{1 / \alpha+1 / 2}$.
Contrary to Klartag's analytical approach for controlling the log-Lipschitz constant, ours is completely based on geometric convexity arguments, employing the convex bodies $K_{k+q}$ introduced by K. Ball in [3], and a variation on the $L_{q}$-centroid bodies, which were introduced by E. Lutwak and G. Zhang in [22].

Fleury proceeds by employing three additional ingredients:

- As shown by Borell [9], for any log-concave function $w$ on $\mathbb{R}_{+}$:

$$
\begin{equation*}
q \mapsto \log \frac{\int_{0}^{\infty} t^{q-1} w(t) d t}{\Gamma(q)} \text { is concave on } \mathbb{R}_{+} . \tag{1.14}
\end{equation*}
$$

Consequently, $q \mapsto \log \left(h_{k, q}(u) / \Gamma(k+q)\right)$ is concave for any fixed $u \in S O(n)$. This ingredient was also used in [13].

- As follows e.g. from the work of Bakry and Émery [2] (see also [21]), for any Lipschitz function $f: S O(n) \rightarrow \mathbb{R}_{+}$, the following log-Sobolev inequality is satisfied (see Sections 2 and 3 for definitions):

$$
\begin{equation*}
\mathbb{E n t}_{U}(f) \leq \frac{c}{n} \mathbb{E}_{U}\left(|\nabla f|^{2} / f\right) \tag{1.15}
\end{equation*}
$$

- The latter log-Sobolev inequality implies via the Herbst argument, that for any log-Lipschitz function $f: S O(n) \rightarrow \mathbb{R}_{+}$with log-Lipschitz constant bounded above by $L$, the following reverse Hölder inequality holds (see [12, (15)]):

$$
\begin{equation*}
\left(\mathbb{E}_{U} f^{q}\right)^{\frac{1}{q}} \leq \exp \left(C \frac{L^{2}}{n}(q-r)\right)\left(\mathbb{E}_{U} f^{r}\right)^{\frac{1}{r}} \quad \forall q>r>0 . \tag{1.16}
\end{equation*}
$$

We proceed by using these ingredients as our predecessors, but our proof corrects the slight inefficiency of Fleury's approach in the resulting large-deviation estimate (witnessed by the comparison to Klartag's estimate earlier). The improvement here comes from the fact that we take the derivative in $p$ of (1.11), and optimize on the dimension $k$ for each $p$ separately, as opposed to optimizing on a single $k$ directly in (1.11). However, this by itself would not yield the improvement in the thin-shell estimate - the latter is due to our improved log-Lipschitz estimate in Theorem 1.5. Only by combining this improved log-Lipschitz estimate with our variation on Fleury's method, are we able to recover the sharp large-deviation estimates of Paouris (1.4).

The rest of this work is organized as follows. In Section 2 we prove a more general version of Theorem 1.5, In Section 3 we provide a complete proof of Theorem 1.2, In Section 4, we derive for completeness Theorem 1.1 from Theorem 1.2, In Section 5, we provide some concluding remarks. In the Appendix, we provide a proof of Proposition 2.6 and other lemmas, whose purpose is to handle the case when $X$ is not centrallysymmetric (non-even density).

## 2 An improved log-Lipschitz estimate

Let $M_{k, l}(\mathbb{R})$ denote the set of $k$ by $l$ matrices over $\mathbb{R}$. We equip

$$
S O(n)=\left\{U \in M_{n, n}(\mathbb{R}) ; U^{t} U=I d, \operatorname{det}(U)=1\right\}
$$

with its standard (left and right) invariant Riemannian metric $g$, which we specify for concreteness on $T_{I d} S O(n)$, the tangent space at the identity element $I d \in S O(n)$.

Fixing an orthonormal basis of $\mathbb{R}^{n}$ and taking the derivative of the relation $U^{t} U=$ $I d$, we see that this tangent space may be identified with all anti-symmetric matrices $\left\{B \in M_{n, n}(\mathbb{R}) ; B^{t}+B=0\right\}$. Given $B \in T_{I d} S O(n)$, we set $|B|^{2}:=g_{I d}(B, B)=$ $\frac{1}{2}\|B\|_{H S}^{2}$, where recall the Hilbert-Schmidt norm of $A \in M_{k, l}(\mathbb{R})$ is given by $\|A\|_{H S}^{2}:=$ $\operatorname{tr}\left(A^{t} A\right)=\sum_{1 \leq i \leq k, 1 \leq j \leq l} A_{i, j}^{2}$. The factor of $\frac{1}{2}$ above is simply a convenience to ensure that a full $2 \pi$ degree rotation in any two-plane leaving the orthogonal complement in place, has geodesic length $2 \pi$, and to prevent further appearances of factors like $\sqrt{2}$ later on. Up to this factor, this metric coincides with the one induced from the natural embedding $S O(n) \subset \mathbb{R}^{n^{2}}$.

### 2.1 Main Result

Throughout this section, let $Y$ denote an isotropic random vector in $\mathbb{R}^{n}$ with log-concave density $g$. Given an integer $k$ between 1 and $n$, a linear subspace $E_{0} \in G_{n, k}$ and $\theta_{0} \in S\left(E_{0}\right)$, we recall the definition of the function $h_{k, p}: S O(n) \rightarrow \mathbb{R}_{+}$:

$$
\begin{equation*}
h_{k, p}(U):=\operatorname{Vol}\left(S^{k-1}\right) \int_{0}^{\infty} t^{p+k-1} \pi_{U\left(E_{0}\right)} g\left(t U\left(\theta_{0}\right)\right) d t \quad, \quad U \in S O(n) . \tag{2.1}
\end{equation*}
$$

Note that $\pi_{E} g$ is log-concave for any $E \in G_{n, k}$ by the Prékopa-Leindler theorem (e.g. [14]).

When $Y=\left(X+G_{n}\right) / \sqrt{2}$, where (as throughout this work) $X$ denotes an isotropic random vector in $\mathbb{R}^{n}$ with log-concave density, an upper bound on the log-Lipschitz constant (i.e. the Lipschitz constant of the logarithm) of:

$$
U \mapsto \pi_{U\left(E_{0}\right)} g\left(t U\left(\theta_{0}\right)\right)
$$

was obtained by Klartag [19, Lemma 3.1], playing a crucial role in his polynomial estimates on the thin-shell of an isotropic log-concave measure. When $t \leq C \sqrt{k}$, Klartag's estimate is of the order of $k^{2}$. In [12], Fleury defined a truncated version of (2.1), where the integral ranges up to $C \sqrt{k}$. Klartag's estimate obviously implies the same bound on the log-Lipschitz constant of this truncated version of $h_{k, p}$.

Our main technical result in this work is the following improved estimate on the logLipschitz constant of $h_{k, p}$, which is completely based on geometric convexity arguments. Note that we do not need any truncation, nor do we need to assume that $Y$ has been convolved with a Gaussian to obtain a meaningful estimate. However, the improvement over Klartag's $k^{2}$ bound appears after this convolution.

Theorem 2.1. The log-Lipschitz constant $L_{k, p}$ of $U \mapsto h_{k, p}(U)$ is bounded above by $C \max (k, p) \operatorname{dist}\left(Z_{\max (k, p)}^{+}(g), B_{2}^{n}\right)$.

Here $Z_{q}^{+}(w) \subset \mathbb{R}^{n}(q \geq 1)$ denotes the one-sided $L_{q}$-centroid body of the density $w$ (which may not have total mass one), defined via its support functional:

$$
h_{Z_{q}^{+}(w)}(y)=\left(2 \int_{\mathbb{R}^{n}}\langle x, y\rangle_{+}^{q} w(x) d x\right)^{1 / q}
$$

(here as usual $\left.a_{+}:=\max (a, 0)\right)$. When $w$ is even, this coincides with the more standard definition of the $L_{q}$-centroid body, introduced by E. Lutwak and G. Zhang in [22] (under a different normalization):

$$
h_{Z_{q}(w)}(y)=\left(\int_{\mathbb{R}^{n}}|\langle x, y\rangle|^{q} w(x) d x\right)^{1 / q}
$$

Clearly:

$$
Z_{q}^{+}(w) \subset 2^{1 / q} Z_{q}(w)
$$

In any case, when $w$ is the characteristic function of a set $K$, we denote $Z_{q}^{+}(K):=$ $Z_{q}^{+}\left(1_{K}\right)$, and similarly for $Z_{q}(K)$. Lastly, the geometric distance $\operatorname{dist}(K, L)$ between two subsets $K, L \subset \mathbb{R}^{n}$ is defined as:

$$
\operatorname{dist}(K, L):=\inf \left\{C_{2} / C_{1} ; C_{1} L \subset K \subset C_{2} L, C_{1}, C_{2}>0\right\}
$$

A very useful result for handling the non-even case is due to Grünbaum [15]:
Lemma 2.2. Let $X_{1}$ denote a random variable on $\mathbb{R}$ with log-concave density and barycenter at the origin. Then $\frac{1}{e} \leq \mathbb{P}\left(X_{1} \geq 0\right) \leq 1-\frac{1}{e}$.

Note that by definition $Y$ (and its density $g$ ) is $\psi_{\alpha}(\alpha \geq 1)$ iff $Z_{q}(g) \subset C q^{1 / \alpha} Z_{2}(g)$ for some fixed universal constant $C>1$ and all $q \geq 2$. Also recall that by Borell's Lemma [10, a log-concave probability density $g$ is always $\psi_{1}$, and that moreover:

$$
\begin{equation*}
1 \leq q_{1} \leq q_{2} \quad \Rightarrow \quad Z_{q_{1}}(g) \subset Z_{q_{2}}(g) \subset C \frac{q_{2}}{q_{1}} Z_{q_{1}}(g) \tag{2.2}
\end{equation*}
$$

If in addition the barycenter of $g$ is at the origin, then repeating the argument leading to (2.2) and using Lemma 2.2, one verifies:

$$
\begin{equation*}
1 \leq q_{1} \leq q_{2} \Rightarrow\left(\frac{2}{e}\right)^{\frac{1}{q_{1}}-\frac{1}{q_{2}}} Z_{q_{1}}^{+}(g) \subset Z_{q_{2}}^{+}(g) \subset C\left(\frac{2 e-2}{e}\right)^{\frac{1}{q_{1}}-\frac{1}{q_{2}}} \frac{q_{2}}{q_{1}} Z_{q_{1}}^{+}(g) \tag{2.3}
\end{equation*}
$$

Note that $Z_{2}(g)=B_{2}^{n}$ by definition of isotropicity, and one may similarly show (see Lemma A.5) that $c B_{2}^{n} \subset Z_{2}^{+}(g) \subset \sqrt{2} B_{2}^{n}$. It follows immediately from (2.3) that $\operatorname{dist}\left(Z_{k}^{+}(g), B_{2}^{n}\right) \leq C k$, and we see that Theorem [2.1 recovers Klartag's $k^{2}$ order of magnitude when $p \leq k$ (which is the case of interest in the subsequent analysis).

The improvement over Klartag's bound comes from the following elementary:
Lemma 2.3. Let $X_{0}$ denote a random-vector in $\mathbb{R}^{n}$ with log-concave density and barycenter at the origin. Set $Y_{0}=\left(X_{0}+G_{n}\right) / \sqrt{2}$ and denote by $g_{0}$ its density. Then:

1. $Z_{q}^{+}\left(g_{0}\right) \supset c \sqrt{q} B_{2}^{n}$ for all $q \geq 2$.
2. If $X_{0}$ is $\psi_{\alpha}(\alpha \in[1,2])$, then so is $Y_{0}$.

Proof. Given $\theta \in S^{n-1}$, denote $Y_{1}=\pi_{\theta} Y_{0}, X_{1}=\pi_{\theta} X_{0}$ and $G_{1}=\pi_{\theta} G_{n}$ (a onedimensional standard Gaussian random variable). We have:

$$
h_{Z_{q}^{+}\left(g_{0}\right)}^{q}(\theta)=2 \mathbb{E}\left(Y_{1}\right)_{+}^{q}=\frac{2}{2^{q / 2}} \mathbb{E}\left(X_{1}+G_{1}\right)_{+}^{q} \geq \frac{2}{2^{q / 2}} \mathbb{E}\left(G_{1}\right)_{+}^{q} \mathbb{P}\left(X_{1} \geq 0\right) .
$$

When $X_{0}$ is centrally-symmetric $\mathbb{P}\left(X_{1} \geq 0\right)=1 / 2$. In the general case, since $X_{1}$ has log-concave density on $\mathbb{R}$ and barycenter at the origin, Lemma 2.2 implies that $\mathbb{P}\left(X_{1} \geq\right.$ $0) \geq 1 / e$, and hence:

$$
h_{Z_{q}^{+}\left(g_{0}\right)}^{q}(\theta) \geq \frac{1}{e 2^{q / 2}} \mathbb{E}\left|G_{1}\right|^{q},
$$

by the symmetry of $G_{1}$. An elementary calculation shows that $c_{1} \sqrt{q} \leq\left(\mathbb{E}\left|G_{1}\right|^{q}\right)^{1 / q} \leq$ $c_{2} \sqrt{q}$ for all $q \geq 1$, concluding the first claim. The second claim follows similarly since:

$$
h_{Z_{q}\left(g_{0}\right)}^{q}(\theta)=\mathbb{E}\left|Y_{1}\right|^{q}=\mathbb{E}\left|\frac{X_{1}+G_{1}}{\sqrt{2}}\right|^{q} \leq \frac{2^{q-1}}{2^{q / 2}} \mathbb{E}\left(\left|X_{1}\right|^{q}+\left|G_{1}\right|^{q}\right) .
$$

Corollary 2.4. If $X$ is $\psi_{\alpha}(\alpha \in[1,2])$ and $Y=\left(X+G_{n}\right) / \sqrt{2}$, then $\operatorname{dist}\left(Z_{q}^{+}(g), B_{2}^{n}\right) \leq$ $C q^{1 / \alpha-1 / 2}$. Consequently, Theorem 2.1 implies that $L_{k, p} \leq C \max (k, p)^{1 / \alpha+1 / 2}$.

### 2.2 Proof of Theorem 2.1

For convenience, we assume that $2 \leq k \leq n / 2$, although it will be clear from the proof that this is immaterial. By the symmetry and transitivity of $S O(n)$, and since $E_{0} \in G_{n, k}$ was arbitrary, it is enough to bound $\left|\nabla_{U_{0}} \log h_{k, p}\right|$ at $U_{0}=I d$. We complete $\theta_{0}$ to an orthonormal basis $\left\{\theta_{0}, e^{2}, \ldots, e^{k}\right\}$ of $E_{0}$, and take $\left\{e^{k+1}, \ldots, e^{n}\right\}$ to be any completion to an orthonormal basis of $\mathbb{R}^{n}$. In this basis, the anti-symmetric matrix $M:=\nabla_{I d} \log h_{k, p} \in T_{I d} S O(n)$ looks as follows:

where $M_{1} \in M_{k, k}(\mathbb{R}), M_{2} \in M_{k, n-k}(\mathbb{R}), V_{1} \in M_{1, k-1}(\mathbb{R}), V_{2} \in M_{1, n-k}(\mathbb{R})$ and $V_{3} \in$ $M_{k-1, n-k}(\mathbb{R})$. Indeed, the lower $n-k$ by $n-k$ block of $M$ is clearly 0 , since rotations in $E_{0}^{\perp}$, the orthogonal complement to $E_{0}$, leave $\pi_{U\left(E_{0}\right)} g$ and hence $h_{k, p}$ unaltered; and the lower $k-1$ by $k-1$ block of $M_{1}$ is 0 since rotations which fix $\theta_{0}$ and act invariantly on $E_{0}$ preserve $h_{k, p}$ as well. Consequently $\left|\nabla_{I d} \log h_{k, p}\right|^{2}=\left\|V_{1}\right\|_{H S}^{2}+\left\|V_{2}\right\|_{H S}^{2}+\left\|V_{3}\right\|_{H S}^{2}$. We will analyze the contributions of these three terms separately.

Denote by $T_{i}(i=1,2,3)$ the subspace of $T_{I d} S O(n)$ having the form (2.4) with $V_{j}=0$ for $j \neq i$. Given $B \in T_{i}$, we call the geodesic $\mathbb{R} \ni s \mapsto U_{s}:=\exp _{I d}(s B) \in S O(n)$ a Type-i movement. Clearly $\left\|V_{i}\right\|_{H S}=\sup _{0 \neq B \in T_{i}}\left\langle\nabla_{I d} \log h_{k, p}, B\right\rangle /|B|$, so our goal now is to obtain a uniform upper bound on the derivative of $\log h_{k, p}$ induced by a Type- $i$ movement.

To this end, we recall the following crucial fact, due to K. Ball [3, Theorem 5] in the even case, and verified to still hold in the general one by Klartag [17. Theorem 2.2]:

Theorem. Let $w$ denote a log-concave function on $\mathbb{R}^{m}$ with $0<\int w<\infty$ and $w(0)>0$. Given $q \geq 1$, set:

$$
\|x\|=\|x\|_{K_{q}(w)}:=\left(q \int_{0}^{\infty} t^{q-1} w(t x) d t\right)^{-\frac{1}{q}}, x \in \mathbb{R}^{m}
$$

Then for all $x, y \in \mathbb{R}^{m}, 0 \leq\|x\|<\infty,\|x\|=0$ iff $x=0,\|\lambda x\|=\lambda\|x\|$ for all $\lambda \geq 0$, and $\|x+y\| \leq\|x\|+\|y\|$.

We will thus say that $\|\cdot\|_{K_{q}(w)}$ defines a norm, even though it may fail to be even, and denote by $K_{q}(w):=\left\{x \in \mathbb{R}^{m} ;\|x\|_{K_{q}(w)} \leq 1\right\}$ its associated convex compact unitball. Note that the constant $q$ in front of the integral above is simply a convenient normalization for later use. We also set $\|x\|_{\hat{K}_{q}(w)}:=\max \left(\|x\|_{K_{q}(w)},\|-x\|_{K_{q}(w)}\right)$, having unit-ball $\hat{K}_{q}(w)=K_{q}(w) \cap-K_{q}(w)$. Note that the triangle inequality implies that:

$$
\begin{equation*}
\left|\|x\|_{K_{q}(w)}-\|y\|_{K_{q}(w)}\right| \leq\|x-y\|_{\hat{K}_{q}(w)} . \tag{2.5}
\end{equation*}
$$

Finally, note that since $B_{2}^{m}$ is centrally-symmetric, then $C_{1} B_{2}^{m} \subset K \cap-K \subset K \subset C_{2} B_{2}^{m}$ iff $C_{1} B_{2}^{m} \subset K \subset C_{2} B_{2}^{m}$, and hence:

$$
\begin{equation*}
\frac{\|x\|_{\hat{K}_{q}(w)}}{\|y\|_{K_{q}(w)}} \leq \operatorname{dist}\left(K_{q}(w), B_{2}^{m}\right) \frac{|x|}{|y|} . \tag{2.6}
\end{equation*}
$$

### 2.2.1 Type-1 movement

Let $B \in T_{1}$ with $|B|=1$ generate a Type-1 movement $\left\{U_{s}\right\}$, and denote $\xi_{0}=\left.\frac{d}{d s} U_{s}\left(\theta_{0}\right)\right|_{s=0} \in$ $T_{\theta_{0}} S\left(\mathbb{R}^{n}\right)$. Using henceforth the natural embedding $T_{\theta} S\left(\mathbb{R}^{n}\right) \subset T_{\theta} \mathbb{R}^{n} \subset \mathbb{R}^{n}$, we see that $\xi_{0}$ lies in the orthogonal complement of $\theta_{0}$ in $E_{0}$, and $|B|=1$ ensures that $\left|\xi_{0}\right|=1$. So $U_{s}$ is a rotation in the $\left\{\theta_{0}, \xi_{0}\right\}$ plane, and $U_{s}\left(E_{0}\right)=E_{0}$. Recalling the definition of $h_{k, p}$, we see that:

$$
\left.\left|\left\langle\nabla_{I d} \log h_{k, p}, B\right\rangle\right|=\left.\left|\frac{d}{d s} \log h_{k, p}\left(U_{s}\right)\right|_{s=0}|=(k+p)| \frac{d}{d s} \log \left\|U_{s}\left(\theta_{0}\right)\right\|_{K_{k+p}\left(\pi_{E_{0}} g\right)}\right|_{s=0} \right\rvert\, .
$$

Estimating the derivative of the norm using the triangle-inequality (2.5) and (2.6), we immediately obtain:

$$
\left.\left|\left\langle\nabla_{I d} \log h_{k, p}, B\right\rangle\right| \leq(k+p) \frac{\left\|\xi_{0}\right\|_{\hat{K}_{k+p}\left(\pi_{E_{0}} g\right)}}{\left\|\theta_{0}\right\|_{K_{k+p}\left(\pi_{E_{0}} g\right)}} \leq(k+p) \operatorname{dist}\left(K_{k+p}\left(\pi_{E_{0}} g\right)\right), B_{2}\left(E_{0}\right)\right) .
$$

### 2.2.2 Type-2 movement

Let $B \in T_{2}$ with $|B|=1$ generate a Type-2 movement $\left\{U_{s}\right\}$, and denote $\theta_{s}:=U_{s}\left(\theta_{0}\right)$ and $\xi_{s}:=\frac{d}{d s} \theta_{s} \in T_{\theta_{s}} S\left(\mathbb{R}^{n}\right)$. Now $\xi_{0} \in S\left(E_{0}^{\perp}\right)$, and the rotation $U_{s}$ in the $\left\{\theta_{s}, \xi_{s}\right\}=\left\{\theta_{0}, \xi_{0}\right\}$ plane rotates $E_{0}$ into $E_{s}:=U_{s}\left(E_{0}\right)$. Denote $H:=\operatorname{span}\left(E_{s}, \xi_{s}\right) \in G_{n, k+1}$, and observe that:

$$
h_{k, p}\left(U_{s}\right)=\operatorname{Vol}\left(S^{k-1}\right) \int_{0}^{\infty} \int_{-\infty}^{\infty} t^{p+k-1} \pi_{H} g\left(t \theta_{s}+r \xi_{s}\right) d r d t
$$

Performing the change of variables $r=v t$, which is valid except at the negligible point $t=0$, we obtain:
$h_{k, p}\left(U_{s}\right)=\operatorname{Vol}\left(S^{k-1}\right) \int_{0}^{\infty} \int_{-\infty}^{\infty} t^{p+k} \pi_{H} g\left(t\left(\theta_{s}+v \xi_{s}\right)\right) d v d t=c_{p, k} \int_{-\infty}^{\infty}\left\|\theta_{s}+v \xi_{s}\right\|_{K_{k+p+1}\left(\pi_{H} g\right)}^{-(k+p+1)} d v$,
where $c_{p, k}=\operatorname{Vol}\left(S^{k-1}\right) /(k+p+1)$ is totally immaterial. Using that $\frac{d}{d s} \xi_{s}=-\theta_{s}$ and the triangle inequality for $\|\cdot\|_{K_{k+p+1}\left(\pi_{H} g\right)}$, we obtain:

$$
\begin{aligned}
\left|\left\langle\nabla_{I d} \log h_{k, p}, B\right\rangle\right| & =\left|\frac{d}{d s} \log h_{k, p}\left(U_{s}\right)\right|_{s=0} \left\lvert\, \leq(k+p+1) \sup _{v \in \mathbb{R}} \frac{\left\|\xi_{0}-v \theta_{0}\right\|_{\hat{K}_{k+p+1}\left(\pi_{H} g\right)}}{\left\|\theta_{0}+v \xi_{0}\right\|_{K_{k+p+1}\left(\pi_{H} g\right)}}\right. \\
& \leq(k+p+1) \operatorname{dist}\left(K_{k+p+1}\left(\pi_{H} g\right), B_{2}(H)\right) \sup _{v \in \mathbb{R}} \frac{\left|\xi_{0}-v \theta_{0}\right|}{\left|\theta_{0}+v \xi_{0}\right|} \\
& =(k+p+1) \operatorname{dist}\left(K_{k+p+1}\left(\pi_{H} g\right), B_{2}(H)\right),
\end{aligned}
$$

where we have used the fact that $\theta_{0}$ and $\xi_{0}$ are orthogonal unit vectors in the last equality.

### 2.2.3 Type-3 movement

Finally, we analyze the most important movement type, which is responsible for a subspace of movements of dimension $(k-1)(n-k)$ (out of the $\operatorname{dim} G_{n, k}+\operatorname{dim} S^{k-1}=$ $k(n-k)+(k-1)$ dimensional subspace of non-trivial movements).

Let $0 \neq B \in T_{3}$ generate a Type-3 movement $\left\{U_{s}\right\}$, and note that $U_{s}\left(\theta_{0}\right)=\theta_{0}$. Set $e_{s}^{j}:=U_{s}\left(e^{j}\right), j=2, \ldots, k$, and note that $f^{j}:=\left.\frac{d}{d s} e_{s}^{j}\right|_{s=0} \in E_{0}^{\perp}$. Denote $F_{0}:=$ span $\left\{f^{2}, \ldots, f^{k}\right\}$, and note that by slightly perturbing $B$ if necessary, we may assume that $F_{0}$ is $k-1$ dimensional. Finally, set $H=E_{0} \oplus F_{0} \in G_{n, 2 k-1}$, and notice that $H$ is invariant under $U_{s}$ (since $U_{s}$ is an isometry acting as the identity on the orthogonal complement). Consequently, $H=E_{s} \oplus F_{s}$, where $F_{s}:=U_{s}\left(F_{0}\right)$, and so:

$$
h_{k, p}\left(U_{s}\right)=\operatorname{Vol}\left(S^{k-1}\right) \int_{0}^{\infty} \int_{F_{s}} t^{p+k-1} \pi_{H} g\left(t \theta_{0}+y\right) d y d t .
$$

Using the change of variables $y=z t$, we obtain (with $\left.c_{p, k}=\operatorname{Vol}\left(S^{k-1}\right) /(2 k-1+p)\right)$ :
$h_{k, p}\left(U_{s}\right)=\operatorname{Vol}\left(S^{k-1}\right) \int_{0}^{\infty} \int_{F_{s}} t^{p+2 k-2} \pi_{H} g\left(t\left(\theta_{0}+z\right)\right) d z d t=c_{p, k} \int_{F_{s}}\left\|\theta_{0}+z\right\|_{K_{2 k-1+p}\left(\pi_{H} g\right)}^{-(2 k-1+p)} d z$,
which we rewrite, since $U_{s}$ is orthogonal, as:

$$
h_{k, p}\left(U_{s}\right)=c_{p, k} \int_{F_{0}}\left\|\theta_{0}+U_{s}(z)\right\|_{K_{2 k-1+p}\left(\pi_{H} g\right)}^{-(2 k-1+p)} d z .
$$

As usual, the triangle inequality for $\|\cdot\|_{K_{2 k-1+p}\left(\pi_{H} g\right)}$ implies that:

$$
\left|\left\langle\nabla_{I d} \log h_{k, p}, B\right\rangle\right|=\left|\frac{d}{d s} \log h_{k, p}\left(U_{s}\right)\right|_{s=0} \left\lvert\, \leq(2 k-1+p) \sup _{z \in F_{0}} \frac{\|B z\|_{\hat{K}_{2 k-1+p}\left(\pi_{H} g\right)}}{\left\|\theta_{0}+z\right\|_{K_{2 k-1+p}\left(\pi_{H} g\right)}}\right.
$$

and so:

$$
\begin{aligned}
\frac{\left|\left\langle\nabla_{I d} \log h_{k, p}, B\right\rangle\right|}{(2 k-1+p) \operatorname{dist}\left(K_{2 k-1+p}\left(\pi_{H} g\right), B_{2}(H)\right)} & \leq \sup _{z \in F_{0}} \frac{|B z|}{\left|\theta_{0}+z\right|} \leq\|B\|_{o p} \sup _{z \in F_{0}} \frac{|z|}{\sqrt{1+|z|^{2}}} \\
& \leq \frac{\|B\|_{H S}}{\sqrt{2}}=|B|,
\end{aligned}
$$

where we have used that $\theta_{0}$ is perpendicular to $F_{0}$, and that $\|B\|_{o p} \leq\|B\|_{H S} / \sqrt{2}$ for any anti-symmetric matrix $B$ (here $\|B\|_{o p}$ denotes its operator norm), as may be easily verified by using the Cauchy-Schwarz inequality.

### 2.3 Distance of $K_{m+p}$ to Euclidean ball

To conclude the proof of Theorem [2.1, it remains to control the geometric distance of $K_{m+p}\left(\pi_{H} g\right)$ to a Euclidean ball, for $H \in G_{n, m}$ with $m$ of the order of $k$. To this end, we compare $K_{m+p}\left(\pi_{H} g\right)$ to $Z_{p}\left(\pi_{H} g\right)=P_{H} Z_{p}(g)$. Our motivation comes from the work of Paouris [29], who noted that:

$$
Z_{p}\left(\pi_{H} g\right)=Z_{p}\left(K_{m+p}\left(\pi_{H} g\right)\right),
$$

and using the trivial $Z_{p}(K) \subset \operatorname{conv}(K \cup-K)$ for any set $K$ of volume 1 , obtained an upper bound on $\operatorname{Vol}\left(Z_{p}\left(\pi_{H} g\right)\right)$ by bounding above $\operatorname{Vol}\left(K_{m+p}\left(\pi_{H} g\right)\right)$. In this work, on the other hand, we take the converse path, passing from $K_{m+p}$ bodies to $Z_{p}$ ones, and consequently need to introduce the $Z_{p}^{+}$bodies to handle non-even densities. Moreover, we require bounds on $Z_{p}^{+}(K)$ both from above and from below, which turn out to be more laborious in the non-even case (when $K$ is not centrally-symmetric).

Since the distance to the Euclidean ball cannot increase under orthogonal projections, and since $c_{1} Z_{k}^{+}(g) \subset c_{2} Z_{m}^{+}(g) \subset c_{3} Z_{2 k-1}^{+}(g) \subset c_{4} Z_{k}^{+}(g)$ when $k \leq m \leq 2 k-1$ by (2.3), it remains to establish the following:

Theorem 2.5. Let $w$ denote a log-concave function on $\mathbb{R}^{m}$ with $0<\int w<\infty$ and barycenter at the origin. Then for any $p \geq 1$ :

$$
\operatorname{dist}\left(K_{m+p}(w), B_{2}^{m}\right) \leq C \operatorname{dist}\left(Z_{\max (p, m)}^{+}(w), B_{2}^{m}\right) .
$$

For the proof, we recall several useful properties of the bodies $K_{q}(w)$ and $Z_{q}^{+}(K)$. First, it is known (see [4, 3, 26] for the even case and [17, Lemmas 2.5,2.6] or [30, Lemma 3.2 and (3.12)] for the general one) that under the assumptions of Theorem [2.5;

$$
\begin{equation*}
1 \leq q_{1} \leq q_{2} \quad \Rightarrow \quad e^{-m\left(\frac{1}{q_{1}}-\frac{1}{q_{2}}\right)} \frac{K_{q_{1}}(w)}{w(0)^{1 / q_{1}}} \subset \frac{K_{q_{2}}(w)}{w(0)^{1 / q_{2}}} \subset \frac{\Gamma\left(q_{2}+1\right)^{1 / q_{2}}}{\Gamma\left(q_{1}+1\right)^{1 / q_{1}}} \frac{K_{q_{1}}(w)}{w(0)^{1 / q_{1}}} . \tag{2.7}
\end{equation*}
$$

Second, integration in polar coordinates (cf. [29]) directly shows that:

$$
\begin{equation*}
Z_{p}^{+}\left(K_{m+p}(w)\right)=Z_{p}^{+}(w) . \tag{2.8}
\end{equation*}
$$

Lastly, we require the following proposition, which is well-known in the even-case (e.g. [28, Lemma 4.1]), but requires more work in the general one (note for instance that the barycenter of $K_{m+p}(w)$ below need not be at the origin); its proof is postponed to the Appendix.

## Proposition 2.6.

$$
\begin{equation*}
C_{1} Z_{p}^{+}\left(K_{m+p}(w)\right) \subset \operatorname{Vol}\left(K_{m+p}(w)\right)^{1 / p} K_{m+p}(w) \subset C_{2} Z_{p}^{+}\left(K_{m+p}(w)\right)\left(\frac{\Gamma(m+p+1)}{\Gamma(m) \Gamma(p+1)}\right)^{1 / p} \tag{2.9}
\end{equation*}
$$

Proof of Theorem [2.5. Note that by Stirling's formula, (2.9) with (2.8) implies that:

$$
\operatorname{dist}\left(K_{m+p}(w), B_{2}^{m}\right) \leq C \frac{p+m}{p} \operatorname{dist}\left(Z_{p}^{+}(w), B_{2}^{m}\right),
$$

and so when $p \geq m$ the asserted claim follows. Otherwise, using (2.7), Stirling's formula, (2.9) and (2.8), we see that if $q \geq p$ then:
$\operatorname{dist}\left(K_{m+p}(w), B_{2}^{m}\right) \leq C_{1} \frac{m+q}{m+p} \operatorname{dist}\left(K_{m+q}(w), B_{2}^{m}\right) \leq C_{2} \frac{m+q}{m+p} \frac{m+q}{q} \operatorname{dist}\left(Z_{q}^{+}(w), B_{2}^{m}\right)$.
Setting $q=m$, the case $p<m$ is also resolved.
The proof of Theorem 2.1 is now complete.

## 3 Moment Estimates

In this section we provide a complete proof of Theorem 1.2,

### 3.1 Reductions

Given $X$ as in Theorem 1.2, set $Y:=\left(X+G_{n}\right) / \sqrt{2}$, where $G_{n}$ is an independent standard Gaussian random vector in $\mathbb{R}^{n}$. Note that $Y$ is centrally-symmetric and isotropic, and by the Prékopa-Leindler Theorem, has log-concave density.

We repeat the argument of Fleury for reducing the moment estimation problem from $X$ to $Y$ and for passing from integration on $\mathbb{R}^{n}$ to $S O(n)$. By the symmetry and independence of $G_{n}$, convexity of $t \mapsto t^{p}$ and the Cauchy-Schwarz inequality, we have:

$$
\begin{aligned}
& \mathbb{E}|Y|^{2 p}=E\left(\frac{\left|X+G_{n}\right|^{2}}{2}\right)^{p}=\frac{1}{2} \mathbb{E}\left(\left(\frac{\left|X+G_{n}\right|^{2}}{2}\right)^{p}+\left(\frac{\left|X-G_{n}\right|^{2}}{2}\right)^{p}\right) \\
\geq & \mathbb{E}\left(\frac{|X|^{2}+\left|G_{n}\right|^{2}}{2}\right)^{p} \geq \mathbb{E}|X|^{p}\left|G_{n}\right|^{p}=\mathbb{E}|X|^{p} \mathbb{E}\left|G_{n}\right|^{p} \geq \mathbb{E}|X|^{p}\left(\mathbb{E}\left|G_{n}\right|^{2}\right)^{p / 2}=n^{p / 2} \mathbb{E}|X|^{p} .
\end{aligned}
$$

Since $\mathbb{E}|X|^{2}=\mathbb{E}|Y|^{2}=n$, we deduce:

$$
\begin{equation*}
\frac{\left(\mathbb{E}|X|^{p}\right)^{1 / p}}{\left(\mathbb{E}|X|^{2}\right)^{1 / 2}} \leq\left(\frac{\left(\mathbb{E}|Y|^{2 p}\right)^{1 / 2 p}}{\left(\mathbb{E}|Y|^{2}\right)^{1 / 2}}\right)^{2} \tag{3.1}
\end{equation*}
$$

and it remains to obtain (1.9) with $X$ replaced by $Y$, with an obvious modification of the constants.

Next, since $|x|^{p}=a_{n, k, p} \mathbb{E}_{F}\left|P_{F} x\right|^{p}$, where $F$ is uniformly distributed on $G_{n, k}$ (according to its Haar probability measure), with $k$ to be determined later on, we have:

$$
\frac{\mathbb{E}|Y|^{p}}{\mathbb{E}\left|G_{n}\right|^{p}}=\frac{\mathbb{E}_{F}\left|P_{F} Y\right|^{p}}{\mathbb{E E}_{F}\left|P_{F} G_{n}\right|^{p}}=\frac{\mathbb{E} \mathbb{E}_{F}\left|P_{F} Y\right|^{p}}{\mathbb{E}\left|G_{k}\right|^{p}}
$$

where $G_{i}$ denotes a standard Gaussian random vector on $\mathbb{R}^{i}$. A direct calculation shows that:

$$
\mathbb{E}\left|G_{i}\right|^{p}=2^{p / 2-1} \frac{\Gamma((p+i) / 2)}{\Gamma(i / 2)}
$$

and hence:

$$
\mathbb{E}|Y|^{p}=\frac{\Gamma((p+n) / 2) \Gamma(k / 2)}{\Gamma(n / 2) \Gamma((p+k) / 2)} \mathbb{E} \mathbb{E}_{F}\left|P_{F} Y\right|^{p}
$$

Passing to polar coordinates on $F \in G_{n, k}$ and using the invariance of the Haar measures on $G_{n, k}, S(F)$ and $S O(n)$ under the action of $S O(n)$, we verify that:

$$
\mathbb{E}_{F}\left|P_{F} Y\right|^{p}=\mathbb{E}_{U} h_{k, p}(U),
$$

where $U$ is uniformly distributed on $S O(n)$.

### 3.2 Controlling the derivative

We now deviate from Fleury's argument and proceed to estimate:

$$
\begin{equation*}
\frac{d}{d p} \log \left(\left(\mathbb{E}|Y|^{p}\right)^{\frac{1}{p}}\right)=\frac{d}{d p} \log \left(\left(\mathbb{E}_{U} h_{k, p}(U)\right)^{\frac{1}{p}}\right)+\frac{d}{d p}\left(\frac{1}{p} \log \frac{\Gamma((p+n) / 2) \Gamma(k / 2)}{\Gamma(n / 2) \Gamma((p+k) / 2)}\right) . \tag{3.2}
\end{equation*}
$$

Given $u \in S O(n)$, we introduce the (non-probability) measure $\mu_{u}$ on $\mathbb{R}_{+}$having density $\operatorname{Vol}\left(S^{k-1}\right) t^{k-1} \pi_{u\left(F_{0}\right)} g\left(t u\left(\theta_{0}\right)\right)$, where $g$ is the density of $Y$ on $\mathbb{R}^{n}$. We define the (probability) measure $\mu_{k, p}:=\mathbb{E}_{U} \mu_{U}$ on $\mathbb{R}_{+}$, and write:

$$
h_{k, p}(u)=\mathbb{E}_{\mu_{u}}\left(t^{p}\right), \mathbb{E}_{U} h_{k, p}(U)=\mathbb{E}_{U} \mathbb{E}_{\mu_{U}}\left(t^{p}\right)=\mathbb{E}_{\mu_{k, p}}\left(t^{p}\right)
$$

Here and in the sequel we use the following convention: given a measure space $(\Omega, \mu)$, which does not necessarily have total mass 1 , and a measurable $f: \Omega \rightarrow \mathbb{R}_{+}$, we set:

$$
\mathbb{E}_{\mu} f=\mathbb{E}_{\mu}(f)=\int f d \mu, \mathbb{E n t}_{\mu}(f)=\mathbb{E}_{\mu}(f \log f)-\mathbb{E}_{\mu}(f) \log \left(\mathbb{E}_{\mu}(f)\right)
$$

A useful fact, easily verified by direct calculation, is that:

$$
\frac{d}{d p} \log \left(\left(\mathbb{E}_{\mu} f^{p}\right)^{\frac{1}{p}}\right)=\frac{1}{p^{2}} \frac{\mathbb{E n t}_{\mu}\left(f^{p}\right)}{\mathbb{E}_{\mu}\left(f^{p}\right)}
$$

We proceed with estimating (3.2). As explained:

$$
\begin{equation*}
\frac{d}{d p} \log \left(\left(\mathbb{E}_{U} h_{k, p}(U)\right)^{\frac{1}{p}}\right)=\frac{1}{p^{2}} \frac{\mathbb{E n t}_{\mu_{k, p}}\left(t^{p}\right)}{\mathbb{E}_{\mu_{k, p}}\left(t^{p}\right)}=\frac{1}{p^{2}} \frac{\mathbb{E n t}_{\mu_{k, p}}\left(t^{p}\right)}{\mathbb{E}_{U} h_{k, p}(U)} \tag{3.3}
\end{equation*}
$$

Our main idea here is to decompose the numerator as follows:

$$
\begin{equation*}
\mathbb{E n t}_{\mu_{k, p}}\left(t^{p}\right)=\mathbb{E}_{U} \mathbb{E n t}_{\mu_{U}}\left(t^{p}\right)+\mathbb{E n t}_{U} \mathbb{E}_{\mu_{U}}\left(t^{p}\right)=\mathbb{E}_{U} \mathbb{E n t}_{\mu_{U}}\left(t^{p}\right)+\mathbb{E n t}_{U} h_{k, p}(U) \tag{3.4}
\end{equation*}
$$

The contribution of the second term in (3.4) is controlled using the log-Sobolev inequality (1.15):

$$
\begin{equation*}
\frac{1}{p^{2}} \frac{\mathbb{E n t}_{U} h_{k, p}(U)}{\mathbb{E}_{U} h_{k, p}(U)} \leq \frac{c}{p^{2} n} \frac{\mathbb{E}_{U}\left(\left|\nabla \log h_{k, p}\right|^{2}(U) h_{k, p}(U)\right)}{\mathbb{E}_{U} h_{k, p}(U)} \leq \frac{c L_{k, p}^{2}}{p^{2} n} \tag{3.5}
\end{equation*}
$$

where recall $L_{k, p}$ denotes the log-Lipschitz constant of $u \mapsto h_{k, p}(u)$. To control the contribution of the first term in (3.4), we first write given $u \in S O(n)$ :
$\frac{1}{p^{2}} \frac{\mathbb{E n t}_{\mu_{u}}\left(t^{p}\right)}{\mathbb{E}_{\mu_{u}}\left(t^{p}\right)}=\frac{d}{d p} \log \left(\left(\mathbb{E}_{\mu_{u}} t^{p}\right)^{\frac{1}{p}}\right)=\frac{d}{d p} \frac{1}{p}\left(\log \frac{h_{k, p}(u)}{\Gamma(k+p)}-\log \frac{h_{k, 0}(u)}{\Gamma(k)}+\log \frac{\Gamma(k+p)}{\Gamma(k)}+\log h_{k, 0}(u)\right)$.
By Borell's concavity result (1.14), we realize that:

$$
\frac{d}{d p} \frac{1}{p}\left(\log \frac{h_{k, p}(u)}{\Gamma(k+p)}-\log \frac{h_{k, 0}(u)}{\Gamma(k)}\right) \leq 0
$$

and hence:

$$
\frac{1}{p^{2}} \frac{\mathbb{E n t}_{\mu_{u}}\left(t^{p}\right)}{E_{\mu_{u}}\left(t^{p}\right)} \leq \frac{d}{d p}\left(\frac{1}{p} \log \frac{\Gamma(k+p)}{\Gamma(k)}\right)-\frac{1}{p^{2}} \log h_{k, 0}(u) .
$$

Plugging this estimate back into (3.3) and (3.4), we obtain:

$$
\begin{equation*}
\frac{1}{p^{2}} \frac{\mathbb{E}_{U} \mathbb{E n t}_{\mu_{U}}\left(t^{p}\right)}{\mathbb{E}_{U} \mathbb{E}_{\mu_{U}}\left(t^{p}\right)} \leq \frac{d}{d p}\left(\frac{1}{p} \log \frac{\Gamma(k+p)}{\Gamma(k)}\right)+\frac{1}{p^{2}} \frac{\mathbb{E}_{U} \log \left(1 / h_{k, 0}(U)\right) h_{k, p}(U)}{\mathbb{E}_{U} h_{k, p}(U)} \tag{3.6}
\end{equation*}
$$

By using the Jensen and Cauchy-Schwarz inequalities, we bound the second term by:
$\frac{\mathbb{E}_{U} \log \left(1 / h_{k, 0}(U)\right) h_{k, p}(U)}{\mathbb{E}_{U} h_{k, p}(U)} \leq \log \left(\frac{\mathbb{E}_{U} \frac{h_{k, p}(U)}{h_{k, 0}(U)}}{\mathbb{E}_{U} h_{k, p}(U)}\right) \leq \log \left(\frac{\left(\mathbb{E}_{U} h_{k, p}(U)^{2}\right)^{1 / 2}}{\mathbb{E}_{U} h_{k, p}(U)}\left(\mathbb{E}_{U} h_{k, 0}(U)^{-2}\right)^{1 / 2}\right)$.

We now use the reverse Hölder inequality (1.16) for comparing the various moments above. Denoting $\|f\|_{q}:=\left(\mathbb{E}_{U}|f(U)|^{q}\right)^{1 / q}$, we have:

$$
\begin{aligned}
& \left\|h_{k, p}\right\|_{2} \leq \exp \left(\frac{C L_{k, p}^{2}}{n}\right)\left\|h_{k, p}\right\|_{1}, \\
& \left\|h_{k, 0}^{-1}\right\|_{2} \leq \exp \left(\frac{2 C L_{k, 0}^{2}}{n}\right)\left\|h_{k, 0}^{-1}\right\|_{0}=\exp \left(\frac{2 C L_{k, 0}^{2}}{n}\right) \frac{1}{\left\|h_{k, 0}\right\|_{0}} \leq \exp \left(\frac{3 C L_{k, 0}^{2}}{n}\right) \frac{1}{\left\|h_{k, 0}\right\|_{1}},
\end{aligned}
$$

where $\|f\|_{0}$ is as usual interpreted as $\exp \left(\mathbb{E}_{U} \log |f(U)|\right)$. Since $\left\|h_{k, 0}\right\|_{1}=\mathbb{E}_{U} h_{k, 0}(U)=$ $\mathbb{E}_{\mu_{k, p}}(1)=1$, we conclude that:

$$
\begin{equation*}
\frac{\mathbb{E}_{U} \log \left(1 / h_{k, 0}(U)\right) h_{k, p}(U)}{\mathbb{E}_{U} h_{k, p}(U)} \leq \frac{C}{p^{2} n}\left(L_{k, p}^{2}+3 L_{k, 0}^{2}\right) . \tag{3.7}
\end{equation*}
$$

Now, plugging all the estimates (3.5), (3.6), (3.7) into (3.3) using the decomposition (3.4), and plugging the result into (3.2), we obtain:

$$
\frac{d}{d p} \log \left(\left(\mathbb{E}|Y|^{p}\right)^{\frac{1}{p}}\right) \leq \frac{c}{p^{2} n}\left(2 L_{k, p}^{2}+3 L_{k, 0}^{2}\right)+\frac{d}{d p}\left(\frac{1}{p} \log \frac{\Gamma(k+p)}{\Gamma(k)}\right)+\frac{d}{d p}\left(\frac{1}{p} \log \frac{\Gamma((p+n) / 2) \Gamma(k / 2)}{\Gamma(n / 2) \Gamma((p+k) / 2)}\right) .
$$

### 3.3 Optimizing on the dimension

As observed by Fleury, using that the function $\frac{d}{d p} \log \Gamma(p)$ is concave, the contribution of the last term above is easily verified to be non-positive and moreover insignificant relative to the second term, so we just bound it from above by 0 . For the second term, we estimate using Jensen's inequality, for any $q>0$ :

$$
\begin{array}{r}
\frac{d}{d p}\left(\frac{1}{p} \log \frac{\Gamma(k+p)}{\Gamma(k)}\right)=\frac{1}{p q} \frac{\int_{0}^{\infty} \log \left(t^{q}\right) t^{p+k-1} \exp (-t) d t}{\Gamma(p+k)}-\frac{1}{p^{2}} \log \frac{\Gamma(k+p)}{\Gamma(k)} \\
\leq \frac{1}{p q} \log \frac{\Gamma(k+p+q)}{\Gamma(k+p)}-\frac{1}{p^{2}} \log \frac{\Gamma(k+p)}{\Gamma(k)}=\frac{1}{p} \log \left(\frac{\Gamma(k+p+q)^{1 / q}}{\Gamma(k+p)^{1 / q}} \frac{\Gamma(k)^{1 / p}}{\Gamma(k+p)^{1 / p}}\right) .
\end{array}
$$

Applying Stirling's formula and setting $q=(p+k-1) \frac{p}{k-1}$, one verifies that:

$$
\frac{d}{d p}\left(\frac{1}{p} \log \frac{\Gamma(k+p)}{\Gamma(k)}\right) \leq \frac{C}{k} .
$$

Plugging our estimates for $L_{k, q}$ obtained in Corollary [2.4, we conclude that if $X$ is $\psi_{\alpha}$ ( $\alpha \in[1,2]$ ), then:

$$
\frac{d}{d p} \log \left(\left(\mathbb{E}|Y|^{p}\right)^{\frac{1}{p}}\right) \leq C\left(\frac{k^{1+2 / \alpha}}{p^{2} n}+\frac{1}{k}\right) \quad \forall k \in[p, n] .
$$

Optimizing on $k$ in the above range, we set:

$$
k=\left\lceil p^{1 / \beta} n^{1 /(2 \beta)}\right\rceil, \beta:=1+\frac{1}{\alpha},
$$

which is guaranteed to satisfy $k \in[p, n]$ whenever $2 \leq p \leq n^{\alpha / 2}$, and obtain for such $p$ :

$$
\frac{d}{d p} \log \left(\left(E|Y|^{p}\right)^{\frac{1}{p}}\right) \leq \frac{C_{2}}{p^{1 / \beta} n^{1 /(2 \beta)}} .
$$

Integrating over $p$, we obtain for $p$ in that range:

$$
\left(\mathbb{E}|Y|^{p}\right)^{\frac{1}{p}} \leq \exp \left(C_{3} \frac{p^{\frac{1}{\alpha+1}}}{n^{\frac{\alpha}{2(\alpha+1)}}}\right)\left(\mathbb{E}|Y|^{2}\right)^{\frac{1}{2}},
$$

and together with the reduction (3.1) from $X$ to $Y$, the conclusion of Theorem 1.2 follows.

## 4 Deviation Estimates

Obtaining the deviation estimates of Theorem 1.1 from the moment estimates of Theorem 1.2 is completely standard, exactly as in [12]. For completeness, we provide a brief description.

Proof of Theorem 1.1. Set:

$$
\varepsilon_{n, \alpha}:=\min \left(1, \frac{2^{\frac{\alpha+2}{\alpha+1}} C}{n^{\frac{\alpha}{2(\alpha+1)}}}\right)
$$

and note that there exists a constant $t_{0} \in(0,1]$, so that:

$$
\begin{equation*}
\forall t \in\left[\varepsilon_{n, \alpha}, t_{0}\right] \quad \exists p \in\left[2, c n^{\alpha / 2}\right] \quad \text { such that } \quad t=2 C \frac{p^{\frac{1}{\alpha+1}}}{n^{\frac{\alpha}{2(\alpha+1)}}} . \tag{4.1}
\end{equation*}
$$

Here $c, C>0$ are the two constants appearing in Theorem 1.2, which guarantee that for $p$ in the above range:

$$
\left(\mathbb{E}|X|^{p}\right)^{1 / p} \leq\left(1+\frac{t}{2}\right) \sqrt{n} .
$$

Since $\frac{1+t}{1+t / 2} \geq 1+t / 3$ for $t \in[0,1]$, we obtain by the Markov-Chebyshev inequality:

$$
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \mathbb{P}\left(|X| \geq(1+t / 3)\left(\mathbb{E}|X|^{p}\right)^{1 / p}\right) \leq(1+t / 3)^{-p} \leq \exp (-p t / 4) .
$$

Expressing $p$ as a function of $t$, for $t$ in the range specified in (4.1), and plugging this above, we obtain:

$$
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \exp \left(-c_{1} n^{\alpha / 2} t^{2+\alpha}\right) \quad \forall t \in\left[\varepsilon_{n, \alpha}, t_{0}\right] .
$$

To extend this estimate to the entire interval $\left[0, t_{0}\right]$, note that:

$$
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq(1+t)^{-2} \leq \exp (-t / 2) \quad \forall t \in\left[0, \varepsilon_{n, \alpha}\right]
$$

and so adjusting the constants appearing above:

$$
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \exp \left(-c_{2} n^{\alpha / 2} t^{2+\alpha}\right) \quad \forall t \in\left[0, t_{0}\right]
$$

Finally, a standard application of Borell's lemma [10] (e.g. as in [29]), ensures that:

$$
\mathbb{P}(|X| \geq(1+t) \sqrt{n}) \leq \exp \left(-c_{3} n^{\alpha / 2} t\right) \quad \forall t \geq t_{0}
$$

concluding the proof of the positive deviation estimate (1.6).
For the proof of the negative deviation estimate (1.7), observe that there exists a constant $c_{4}>0$, so that setting $p_{0}:=c_{4} n^{\frac{\alpha}{2(\alpha+2)}}$, Theorem 1.2 implies that:

$$
\mathbb{E}|X|^{2 p_{0}} \leq\left(1+C \frac{p_{0}^{\frac{1}{\alpha+1}}}{n^{\frac{\alpha}{2(\alpha+1)}}}\right)^{2 p_{0}}\left(\mathbb{E}|X|^{2}\right)^{p_{0}} \leq \frac{17}{16}\left(\mathbb{E}|X|^{2}\right)^{p_{0}} \leq \frac{17}{16}\left(\mathbb{E}|X|^{p_{0}}\right)^{2} .
$$

Consequently $\operatorname{Var}|X|^{p_{0}} \leq \frac{1}{16}\left(\mathbb{E}|X|^{p_{0}}\right)^{2}$, and Chebyshev's inequality implies:

$$
\begin{align*}
\frac{1}{4} & \geq \mathbb{P}\left(\left.| | X\right|^{p_{0}}-\left.\mathbb{E}|X|^{p_{0}}\left|\geq \frac{1}{2} \mathbb{E}\right| X\right|^{p_{0}}\right)  \tag{4.2}\\
& \geq \mathbb{P}\left(|X| \geq \frac{1}{2^{1 / p_{0}}}\left(\mathbb{E}|X|^{p_{0}}\right)^{1 / p_{0}}\right) \geq \mathbb{P}\left(|X| \leq\left(1-\frac{c_{5}}{p_{0}}\right) \sqrt{n}\right) .
\end{align*}
$$

On the other hand, the positive deviation estimate (1.6) implies that:

$$
\begin{equation*}
\mathbb{P}\left(|X| \leq\left(1+\frac{c_{6}}{p_{0}}\right) \sqrt{n}\right) \geq \frac{3}{4} . \tag{4.3}
\end{equation*}
$$

Setting $t_{1}:=\frac{\max \left(c_{5}, c_{6}\right)}{p_{0}}$ and given $t \in\left(t_{1}, 1\right)$, we set $\lambda:=\frac{2 t_{1}}{t+t_{1}} \in(0,1)$ so that:

$$
\left(1-t_{1}\right)=\lambda(1-t)+(1-\lambda)\left(1+t_{1}\right),
$$

and by the log-concavity of the function $\mathbb{R}_{+} \ni s \mapsto \mathbb{P}(|X| \leq s)$ (a consequence of Prékopa-Leindler), it follows that:

$$
\mathbb{P}\left(|X| \leq\left(1-t_{1}\right) \sqrt{n}\right) \geq \mathbb{P}(|X| \leq(1-t) \sqrt{n})^{\lambda} \mathbb{P}\left(|X| \leq\left(1+t_{1}\right) \sqrt{n}\right)^{1-\lambda}
$$

Using the estimates (4.2) and (4.3), we deduce:

$$
\mathbb{P}(|X| \leq(1-t) \sqrt{n}) \leq\left(\frac{1}{4}\right)^{1 / \lambda}\left(\frac{4}{3}\right)^{1 / \lambda-1} \leq \frac{1}{4} \frac{1}{3^{1 / \lambda}} \leq \exp \left(-c_{7} p_{0} t\right) \quad \forall t \in\left(t_{1}, 1\right)
$$

The negative deviation estimate (1.7) immediately follows.
Lastly, we observe that:

$$
\sqrt{\mathbb{V a r}|X|} \leq C \frac{n^{1 / 2}}{p_{0}}=C_{2} n^{\frac{1}{2+\alpha}}
$$

e.g. by integrating by parts and using the positive and negative deviation estimates (see e.g. [11, Lemma 6]).

## 5 Concluding Remarks

Remark 5.1. Examining the proof, it is easy to verify that if the log-Lipschitz constant $L_{k, p}$ of $h_{k, p}: S O(n) \rightarrow \mathbb{R}_{+}$satisfies:

$$
p \leq k \quad \Rightarrow \quad L_{k, p} \leq C p^{\beta} k^{\gamma}, \beta, \gamma \in \mathbb{R}
$$

then the sharp large-deviation estimate $\mathbb{P}(|X| \geq C \sqrt{n}) \leq \exp (-\sqrt{n})$ is recovered if and only if $\beta+\gamma=3 / 2$. Of course, since $p \leq k$, it is better to have larger $\beta$, and this affects the resulting thin-shell estimate. Our estimates yield $\beta=0$ and $\gamma=3 / 2$.

Remark 5.2. Using a theorem of Bobkov [6], we improve the best-known bound on the Cheeger constant $D_{C h e}(\mu)$ of a general log-concave isotropic measure $\mu$ in $\mathbb{R}^{n}$ to $D_{C h e}(\mu) \geq c n^{-\frac{5}{12}}$, bringing us a little bit closer to the full KLS conjecture $D_{C h e}(\mu) \geq$ $c>0$ (we refer to [6] for missing definitions and background). Note that the estimate improves all the way to $D_{C h e}(\mu) \geq c n^{-\frac{3}{8}}$ when $\mu$ is $\psi_{2}$.

## Appendix

In the Appendix, we prove several properties of the bodies $Z_{p}^{+}(K)$ which are needed for the results of Section 2,

Our main goal is to establish Proposition [2.6. Given $\theta \in S^{m-1}$, we denote $H_{\theta}^{+}:=$ $\left\{x \in \mathbb{R}^{m} ;\langle x, \theta\rangle \geq 0\right\}$ and set $H_{\theta}^{-}:=H_{-\theta}^{+}$. For the proof, we require several lemmas.

Lemma A.1. Let $K$ denote a convex body in $\mathbb{R}^{m}$, and given $\theta \in S^{m-1}$, denote $f_{\theta}=$ $\pi_{\theta} \mathbf{1}_{K}$. Then:

$$
\left(\frac{f_{\theta}(0)}{\left\|f_{\theta}\right\|_{\infty}}\right)^{1 / p}\left(\frac{\Gamma(m) \Gamma(p+1)}{\Gamma(m+p+1)}\right)^{1 / p} h_{K}(\theta) \leq \frac{h_{Z_{p}^{+}(K)}(\theta)}{\left(2 \operatorname{Vol}\left(K \cap H_{\theta}^{+}\right)\right)^{1 / p}} \leq h_{K}(\theta) .
$$

Proof. The right inequality is straightforward from the definitions. The left inequality is derived by following the proof of [28, Lemma 4.1], which uses the fact that the $1 /(m-1)$ power of any one-dimensional marginal of $K$ is a concave function.

To control the left-most term in Lemma A.1, we have:
Lemma A.2. Let $\mu=f(x) d x$ denote a log-concave probability measure on $\mathbb{R}$. Then for any $\varepsilon>0$ :

$$
\varepsilon \leq \int_{0}^{\infty} f(x) d x \leq 1-\varepsilon \quad \Rightarrow f(0) \geq \varepsilon\|f\|_{\infty}
$$

Proof. Consider the function $\mathcal{I}:[0,1] \rightarrow \mathbb{R}_{+}$given by $\mathcal{I}(v)=\min \left(f \circ F^{-1}(v), f \circ F^{-1}(1-\right.$ $v)$ ), where $F(x)=\int_{-\infty}^{x} f(t) d t$. By a result of Bobkov [5], $\mathcal{I}$ is the isoperimetric profile of the measure-metric space $(\mathbb{R},|\cdot|, \mu)$ (see [5] for definitions), and furthermore, $\mathcal{I}$ is a
concave and symmetric function on $[0,1]$. If $v=F(0)$ is such that $v \in[\varepsilon, 1-\varepsilon]$, it follows by the concavity of $\mathcal{I}$ that:

$$
\begin{equation*}
f(0) \geq \mathcal{I}(v) \geq 2 \min (v, 1-v) \mathcal{I}(1 / 2) \geq 2 \varepsilon f(m) \tag{A.1}
\end{equation*}
$$

where $m=F^{-1}(1 / 2)$ is the median of $\mu$. But by [24, Lemma 2.7], $f(m) \geq\|f\|_{\infty} / 2$, which together with (A.1) concludes the assertion.

This reduces our task to showing:
Lemma A.3. If $w$ is a log-concave function on $\mathbb{R}^{m}$ with barycenter at the origin, then:

$$
\forall \theta \in S^{m-1} \quad \frac{1}{C} \leq\left(\frac{\operatorname{Vol}\left(K_{m+p}(w) \cap H_{\theta}^{+}\right)}{\operatorname{Vol}\left(K_{m+p}(w) \cap H_{\theta}^{-}\right)}\right)^{1 / p} \leq C
$$

Proof. Note that we may normalize and rescale so that $w(0)=1$ and $\int_{\mathbb{R}^{m}} w(x) d x=1$. Using polar-coordinates, we have for any convex (in fact, star-shaped) body $K$ containing the origin:

$$
\begin{equation*}
\operatorname{Vol}\left(K \cap H_{\theta}^{+}\right)=\frac{1}{m} \int_{S^{m-1} \cap H_{\theta}^{+}}\|\xi\|_{K}^{-m} d \xi \tag{A.2}
\end{equation*}
$$

Using (2.7), we see that:

$$
\forall \xi \in S^{m-1} \quad e^{-\frac{m p}{m+p}}\|\xi\|_{K_{m}(w)}^{-m} \leq\|\xi\|_{K_{m+p}(w)}^{-m} \leq \frac{\Gamma(m+p+1)^{\frac{m}{m+p}}}{\Gamma(m+1)}\|\xi\|_{K_{m}(w)}^{-m} .
$$

Plugging this into (A.2) and using Stirling's formula, we verify that:

$$
\begin{equation*}
\forall \theta \in S^{m-1} \quad e^{-p} \leq \frac{\operatorname{Vol}\left(K_{m+p}(w) \cap H_{\theta}^{+}\right)}{\operatorname{Vol}\left(K_{m}(w) \cap H_{\theta}^{+}\right)} \leq C^{p} \tag{A.3}
\end{equation*}
$$

Using (A.2), the definition of $K_{m}(w)$ and polar-coordinates again, we see that $\operatorname{Vol}\left(K_{m}(w) \cap\right.$ $\left.H_{\theta}^{+}\right)=\int_{H_{\theta}^{+}} w(x) d x=\mathbb{P}\left(W_{1} \geq 0\right)$, where $W_{1}$ is the random variable on $\operatorname{span}(\theta)$ having density $\pi_{\theta} w$. Since this density is log-concave by the Prékopa-Leindler theorem, and since the barycenter of $W_{1}$ is at the origin, Lemma 2.2 implies that:

$$
\frac{1}{e-1} \leq \frac{\operatorname{Vol}\left(K_{m}(w) \cap H_{\theta}^{+}\right)}{\operatorname{Vol}\left(K_{m}(w) \cap H_{\theta}^{-}\right)} \leq e-1 .
$$

Together with (A.3), this concludes the proof.
Corollary A.4. With the same assumptions as in Lemma A.3:

$$
\forall \theta \in S^{m-1} \quad \frac{1}{C^{\prime}} \leq\left(\frac{\operatorname{Vol}\left(K_{m+p}(w) \cap H_{\theta}^{+}\right)}{\operatorname{Vol}\left(K_{m+p}(w)\right)}\right)^{1 / p} \leq C^{\prime}
$$

Proof of Proposition 2.6. Applying Lemma A.1] with $K=K_{m+p}(w)$ and using Corollary A.4, we obtain for all $\theta \in S^{m-1}$ :

$$
c\left(\frac{f_{\theta}(0)}{\left\|f_{\theta}\right\|_{\infty}}\right)^{1 / p}\left(\frac{\Gamma(m) \Gamma(p+1)}{\Gamma(m+p+1)}\right)^{1 / p} \leq \operatorname{Vol}\left(K_{m+p}(w)\right)^{-1 / p} \frac{h_{Z_{p}^{+}\left(K_{m+p}(w)\right)}(\theta)}{h_{K_{m+p}(w)}(\theta)} \leq C .
$$

Lemma A. 2 together with Lemma A. 3 imply that:

$$
\forall \theta \in S^{m-1} \quad\left(\frac{f_{\theta}(0)}{\left\|f_{\theta}\right\|_{\infty}}\right)^{1 / p} \geq c^{\prime}>0
$$

and hence:

$$
c^{\prime \prime}\left(\frac{\Gamma(m) \Gamma(p+1)}{\Gamma(m+p+1)}\right)^{1 / p} K_{m+p}(w) \subset \operatorname{Vol}\left(K_{m+p}(w)\right)^{-1 / p} Z_{p}^{+}\left(K_{m+p}(w)\right) \subset C K_{m+p}(w)
$$

Rearranging terms, the assertion of Proposition 2.6 follows.
Finally, we prove:
Lemma A.5. If $g: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}$is log-concave and isotropic then $Z_{2}^{+}(g) \supset c B_{2}^{m}$.
Proof. Given $\theta \in S^{n-1}$, denote $g_{0}:=\pi_{\theta} g$; as usual, it is an isotropic log-concave probability density on $\mathbb{R}$. Comparing moments using (2.7) with $m=1, q_{1}=1$ and $q_{2}=3$, we obtain:

$$
3 \int_{0}^{\infty} t^{2} g_{0}(t) d t \geq \frac{\left(\int_{0}^{\infty} g_{0}(t) d t\right)^{3}}{e^{2} g_{0}(0)^{2}}
$$

Applying now the reverse comparison in both directions $\theta$ and $-\theta$ and summing, we obtain:

$$
3=3 \int_{-\infty}^{\infty} t^{2} g_{0}(t) d t \leq \frac{\Gamma(4)}{g_{0}(0)^{2}}\left(\left(\int_{0}^{\infty} g_{0}(t) d t\right)^{3}+\left(\int_{-\infty}^{0} g_{0}(t) d t\right)^{3}\right) .
$$

Combining these two estimates and using Lemma 2.2 to control $\int_{0}^{\infty} g_{0}(t) d t$, the assertion follows with e.g. $c=\left(3 e^{2}\left(1+(e-1)^{3}\right)\right)^{-1 / 2}$.

## References

[1] M. Anttila, K. Ball, and I. Perissinaki. The central limit problem for convex bodies. Trans. Amer. Math. Soc., 355(12):4723-4735, 2003.
[2] D. Bakry and M. Émery. Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pages 177-206. Springer, Berlin, 1985.
[3] K. Ball. Logarithmically concave functions and sections of convex sets in $\mathbb{R}^{n}$. Studia Math., 88(1):69-84, 1988.
[4] R. E. Barlow, A. W. Marshall, and F. Proschan. Properties of probability distributions with monotone hazard rate. Ann. Math. Statist., 34:375-389, 1963.
[5] S. Bobkov. Extremal properties of half-spaces for log-concave distributions. Ann. Probab., 24(1):35-48, 1996.
[6] S. Bobkov. On isoperimetric constants for log-concave probability distributions. In Geometric aspects of functional analysis, Israel Seminar 2004-2005, volume 1910 of Lecture Notes in Math., pages 81-88. Springer, Berlin, 2007.
[7] S. G. Bobkov and A. Koldobsky. On the central limit property of convex bodies. In Geometric aspects of functional analysis, volume 1807 of Lecture Notes in Math., pages 44-52. Springer, Berlin, 2003.
[8] S. G. Bobkov and F. L. Nazarov. On convex bodies and log-concave probability measures with unconditional basis. In Geometric Aspects of Functional Analysis, volume 1807 of Lecture Notes in Mathematics, pages 53-69. Springer, 2001-2002.
[9] Ch. Borell. Complements of Lyapunov's inequality. Math. Ann., 205:323-331, 1973.
[10] Ch. Borell. Convex measures on locally convex spaces. Ark. Mat., 12:239-252, 1974.
[11] B. Fleury. Between Paouris concentration inequality and variance conjecture. Ann. Inst. Henri Poincaré Probab. Stat., 46(2):299-312, 2010.
[12] B. Fleury. Concentration in a thin euclidean shell for log-concave measures. $J$. Func. Anal., 259:832-841, 2010.
[13] B. Fleury, O. Guédon, and G. Paouris. A stability result for mean width of $l_{p^{-}}$ centroid bodies. Advances in Mathematics, 214(2):865-877, 2007.
[14] R. J. Gardner. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39(3):355-405, 2002.
[15] B. Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes. Pacific J. Math., 10:1257-1261, 1960.
[16] R. Kannan, L. Lovász, and M. Simonovits. Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom., 13(3-4):541-559, 1995.
[17] B. Klartag. On convex perturbations with a bounded isotropic constant. Geom. and Funct. Anal., 16(6):1274-1290, 2006.
[18] B. Klartag. A central limit theorem for convex sets. Invent. Math., 168:91-131, 2007.
[19] B. Klartag. Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal., 245:284-310, 2007.
[20] B. Klartag. A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields, 45(1):1-33, 2009.
[21] M. Ledoux. The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
[22] E. Lutwak and G. Zhang. Blaschke-Santaló inequalities. J. Differential Geom., 47(1):1-16, 1997.
[23] E. Milman. On gaussian marginals of uniformly convex bodies. J. Theoret. Prob., 22(1):256-278, 2009.
[24] E. Milman and S. Sodin. An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies. J. Funct. Anal., 254(5):1235-1268, 2008.
[25] V. D. Milman. A new proof of A. Dvoretzky's theorem on cross-sections of convex bodies. Funkcional. Anal. i Priložen., 5(4):28-37, 1971.
[26] V. D. Milman and A. Pajor. Isotropic position and interia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space. In Geometric Aspects of Functional Analysis, volume 1376 of Lecture Notes in Mathematics, pages 64-104. SpringerVerlag, 1987-1988.
[27] V. D. Milman and G. Schechtman. Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov.
[28] G. Paouris. $\psi_{2}$-estimates for linear functionals on zonoids. In Geometric Aspects of Functional Analysis, volume 1807 of Lecture Notes in Mathematics, pages 211-222. Springer, 2001-2002.
[29] G. Paouris. Concentration of mass on convex bodies. Geom. Funct. Anal., 16(5):1021-1049, 2006.
[30] G. Paouris. Small ball probability estimates for log-concave measures. To appear in Trans. Amer. Math. Soc., 2010.


[^0]:    ${ }^{1}$ Université Paris-Est Marne La Vallée, Laboratoire d'Analyse et de Mathématiques Appliquées. 5, Bd Descartes, Champs sur Marne 77454, Marne La Vallée, Cédex 2, FRANCE. Email: olivier.guedon@univmlv.fr.
    ${ }^{2}$ Department of Mathematics, Technion, Haifa 32000, Israel ; and Fields Institute, 222 College Street, Toronto, Ontario M5T 3J1, Canada. Email: emanuel.milman@gmail.com.

