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Abstract

We present a method for computing period lattices and elliptic loga-
rithms for elliptic curves defined over C, using the complex Arithmetic-
Geometric Mean (AGM) first studied by Gauss. Earlier authors have only
considered the case of elliptic curves defined over the real numbers; here,
the multi-valued nature of the complex AGM plays an important role.
Our method, which we have implemented in both MAGMA and Sage, is
illustrated with several examples.

1 Introduction

Let E be an elliptic curve defined over C, given by a Weierstrass equation

E : Y 2 = 4(X − e1)(X − e2)(X − e3),

where the roots ej ∈ C are distinct. As is well known, there is an isomorphism
(of complex analytic Lie groups) C/Λ ∼= E(C), where Λ is the period lattice of E:
specifically, we take Λ to be the lattice of periods of the invariant differential
dX/Y on E. It is a discrete rank 2 subgroup of C, spanned by a Z-basis {w1, w2}
with w2/w1 /∈ R. The isomorphism is given by the map

z (mod Λ) 7→ P = (℘Λ(z), ℘
′
Λ(z)) ∈ E(C)

(with 0 (mod Λ) 7→ O ∈ E(C), the base point at infinity) where ℘Λ denotes the
classical elliptic Weierstrass function associated to the lattice Λ. The inverse of
this map,

P 7→ z (mod Λ),

from E(C) to C/Λ, is called the elliptic logarithm, and we say that any z ∈ C

representing its class modulo Λ is an elliptic logarithm of P . Two natural
questions are:

1. How can we compute a basis for the period lattice Λ of E, given a Weier-
strass equation?

2. Given a point P = (x, y) ∈ E(C), how can we compute its elliptic loga-
rithm z ∈ C?
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For elliptic curves over R, these questions have been answered satisfactorily
and are well-known. Algorithms for computing Z-bases for period lattices of
elliptic curves defined over R, and elliptic logarithms of real points on such
curves, may be found in the literature (see, for example, [3, Algorithm 7.4.8]
or [5, §3.7]). These use the real arithmetic-geometric mean (AGM), and allow
one to compute both values rapidly with a high degree of precision. The theory
behind this method is described succinctly by Mestre in [2]. The situation for
elliptic curves over C, however, is less satisfactory.

In this paper, we will give a complete method for computing period lattices
and elliptic logarithms for elliptic curves over C, by generalising the real algo-
rithm. To this end, we will first explain the connection between the following
three classes of objects:

• Complex AGM sequences, as first studied by Gauss and explored in depth
more recently by Cox [4];

• Chains of lattices in C;

• Chains of 2-isogenies between elliptic curves defined over C.

These will be defined precisely below. This connection will allow us to derive
an explicit formula (see Theorems 19 and 21 below), based on so-called optimal
complex AGM values, for a Z-basis of the period lattice of any elliptic curve
defined over C. We then develop our method further to give an iterative method
(Algorithm 28) for computing elliptic logarithms of complex points.

Our approach to the computation of periods follows closely that of Bost and
Mestre [2] in the real case. However, in that case there is only a single chain of
2-isogenies which needs to be considered, and a unique AGM sequence, while
over C we find it convenient to consider a whole class of such sequences. The
connection between these three types of sequence has some independent interest.

We note that the recent paper by Dupont [6] also presents related methods
for evaluating modular functions using the complex AGM, including explicit
complexity results. The results in [6] may also be used to compute complex
periods, as these are given by elliptic integrals with complex parameters.

In the next three sections of the paper we consider in turn complex AGM
sequences (as are described well in Cox [4]), then lattice chains and finally
chains of 2-isogenies. Then we give the first application, to the computation
of a basis for the period lattice (see Theorem 21). The following section gives
a new proof of a result about the complete set of values of the (multi-valued)
complex AGM, slightly more general than the version in [4]. Then in Section 8
we develop the elliptic logarithm algorithm (Algorithm 28). The paper ends
with a set of illustrative examples.

Our algorithms have been implemented by the authors both in Sage (see [8])
and in MAGMA (see [1], code available from the second author).

The results of this paper form part of the PhD thesis [9] of the second au-
thor. The proofs are in some cases different: in [9] both the periods and elliptic
logarithms are expressed more traditionally, as integrals over the Riemann sur-
face E(C); however the resulting iterative algorithms are identical. The second
author acknowledges the support of the Development and Promotion of Science
and Technology Talent Project (DPST) of the Ministry of Education, Thailand.
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2 AGM Sequences

Let (a, b) ∈ C2 be a pair of complex numbers satisfying

a 6= 0, b 6= 0, a 6= ±b. (1)

We say that (a, b) is good if ℜ(b/a) ≥ 0, or equivalently,

|a− b| ≤ |a+ b|; (2)

otherwise the pair is said to be bad. Clearly, only one of the pairs (a, b), (a,−b)
is good, unless ℜ(b/a) = 0 (or equivalently, |a− b| = |a+ b|), in which case both
are good.

An arithmetic-geometric mean (AGM) sequence is a sequence ((an, bn))
∞
n=0,

whose pairs (an, bn) ∈ C2 satisfy the relations

2an+1 = an + bn, b2n+1 = anbn

for all n ≥ 0. It is easy to see that if any one pair (an, bn) in the sequence
satisfies (1) then all do, and we will make this restriction henceforth.

From any given starting pair (a0, b0) there are uncountably many AGM se-
quences, obtained by iterating the procedure of replacing (an, bn) by the arith-
metic mean an+1 = (an + bn)/2 and the geometric mean bn+1 =

√
anbn, with

a choice of the square root for bn+1 at each step. However, we usually prefer
to consider the entire sequence as a whole. We say that an AGM sequence is
good if the pairs (an, bn) are good for all but finitely many n. A good AGM
sequence in which (an, bn) are good for all n > 0 is said to be optimal, and
strongly optimal if in addition (a0, b0) is good. If an AGM sequence is not good,
then we say that it is bad.

It is easy to check that (an+1,±bn+1) are both good if and only if an/bn
is real and negative, in which case (an, bn) is certainly bad. In an optimal
sequence, this situation can only occur for n = 0. In consequence, for every
starting pair (a0, b0) there is exactly one optimal AGM sequence, unless a0/b0
is real and negative, in which case there are two, with different signs of b1,
with the property that the ratios an/bn in one of the sequences are the complex
conjugates of those in the other.

The following proposition is from Cox (see [4]); the proof of parts (1) and (2)
is elementary, and we refer the reader to [4]; part (3) appears deeper, and we
will give a proof below after relating the different AGM values to a certain set
of periods of an elliptic curve. Note that Cox defines the notion of “good” more
strictly than above (when ℜ(a/b) = 0 he requires ℑ(a/b) > 0, so that exactly
one of (a,±b) is good in every case), but in view of the preceding remarks this
does not affect the following result.

Proposition 1. Given a pair (a0, b0) ∈ C2 satisfying (1), every AGM sequence
((an, bn))

∞
n=0 starting at (a0, b0) satisfies the following:

1. limn→∞ an and limn→∞ bn exist and are equal;

2. The common limit, say M , is non-zero if and only if the sequence is good;

3. |M | attains its maximum (among all AGM-sequences starting at (a0, b0))
if and only if the sequence is optimal.
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For an AGM sequence ((an, bn))
∞
n=0 starting at (a0, b0), we will denote the

common limit limn→∞ an = limn→∞ bn by MS(a0, b0), where S ⊆ Z>0 is the
set of all indices n for which the pair (an, bn) is bad. For example, M∅(a0, b0)
denotes the common limit for the optimal AGM sequence. To avoid ambiguities
when a0/b0 is negative real, we may agree to choose b1 so that ℑ(a1/b1) > 0
in that case, though this choice will not affect our results below. Note that the
AGM sequence is good if and only if S is a finite set. To ease notation, we shall
write M∅(a0, b0) simply as M(a0, b0).

3 Lattice Chains

In this paper, a lattice will always be a free Z-module of rank 2, embedded as a
discrete subgroup of C. Elements of lattices will often be called periods, since in
our application the lattices will arise as period lattices of elliptic curves defined
over C.

The following definition, as well as Lemma 2, only depend on the algebraic
structure of lattices. We define a chain of lattices (of index 2) to be a sequence
of lattices (Λn)

∞
n=0 which satisfies the following conditions:

1. Λn ⊃ Λn+1 for all n ≥ 0;

2. [Λn : Λn+1] = 2 for all n ≥ 0;

3. Λ0/Λn is cyclic for all n ≥ 1; equivalently, Λn+1 6= 2Λn−1 for all n ≥ 1.

Thus for each n ≥ 1 we have

Λn+1 = 〈w〉 + 2Λn (3)

for some w ∈ Λn\2Λn−1. Given an initial lattice Λ0, there are three possibilities
for Λ1. When n ≥ 1, one of the three sublattices of index 2 is excluded, since it is
contained in 2Λn−1 (which would contradict the last condition in the definition),
and so there are only two possible choices for Λn+1. The number of such chains
starting with Λ0 is uncountable; we will distinguish a countable subset of these
as follows. Let

Λ∞ =

∞
⋂

n=0

Λn.

Then Λ∞ is free of rank at most 1; the rank cannot be 2, since for all n,

[Λ0 : Λ∞] ≥ [Λ0 : Λn] = 2n,

so [Λ0 : Λ∞] is infinite. We say that the chain is good if Λ∞ has rank 1; in this
case a generator for Λ∞ will be called a limiting period of the chain. We will
first show that the limiting period is primitive, i.e. not in mΛ0 for any m ≥ 2.

Lemma 2. Let (Λn)
∞
n=0 be a good chain with Λ∞ = 〈w∞〉. Then

1. w∞ is primitive; equivalently, Λ0/Λ∞ is free of rank 1;

2. Λn = 〈w∞〉+ 2nΛ0 for all n ≥ 0.
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Proof. Suppose that w∞ = mw for some m ≥ 1 and w ∈ Λ0. If m is odd, then
since Λ0/Λn has order 2n which is prime to m, we see that

mw ∈ Λn =⇒ w ∈ Λn

for all n, so that w ∈ Λ∞. Hence (by definition of w∞), m = 1.
Next suppose that w∞ = 2w for some w ∈ Λ0. By definition of w∞, we then

have w /∈ Λ∞, and hence there exists n > 0 such that w /∈ Λn. This implies
that w∞ ∈ Λn \ 2Λn. But since w∞ ∈ Λn+1, we have

Λn+1 = 〈w∞〉+ 2Λn = 〈2w〉 + 2Λn+1 ⊆ 2Λ0,

which contradicts the definition of a chain. This proves the first statement.
The second statement follows from the fact that Λn/2

nΛ0 is cyclic of order
2n, and is generated by w∞ modulo 2nΛ0, since w∞ is primitive.

So far, our notion of a good chain has been defined as a property of the chain
as a whole, and only used the abstract structure of lattices as free Z-modules.
Using the next definition, we will see that this property can also be seen in
terms of the individual steps Λn ⊃ Λn+1, when the lattices are embedded in C.
In view of (3), the choice of Λn+1 is determined by the class of w modulo 2Λn.

For n ≥ 1, we say that Λn+1 ⊂ Λn is the right choice of sublattice of Λn if
Λn+1 = 〈w〉 + 2Λn where w is a minimal element in Λn \ 2Λn−1 (with respect
to the usual complex absolute value).

Lemma 3. Let (Λn)
∞
n=0 be a good chain with Λ∞ = 〈w∞〉. Then w∞ is minimal

in Λn for all but finitely many n ≥ 0.

Proof. Since Λ0 is discrete, the number of periods w ∈ Λ0 with 0 < |w| < |w∞|
is finite. Each of these periods lies in only finitely many Λn by minimality of w∞

in Λ∞, so there exists n0 such that w∞ is minimal in Λn0
and hence also in Λn

for all n ≥ n0.

The following proposition yields an alternative notion of a good chain. For
now we remark that this is analogous to the definition of a good AGM sequence
in the previous section; more of its analogues will be seen in later sections.

Proposition 4. A chain of lattices (Λn)
∞
n=0 is good if and only if Λn+1 ⊂ Λn

is the right choice for all but finitely many n ≥ 1.

Proof. Let (Λn)
∞
n=0 be a good chain with Λ∞ = 〈w∞〉. Then by Lemma 3,

there exists an integer n0 such that w∞ is minimal in Λn for all n ≥ n0. Since
Λn+1 = 〈w∞〉+ 2Λn for all n, then by definition, Λn+1 ⊂ Λn is the right choice
for all n ≥ n0.

Conversely, suppose that Λn+1 ⊂ Λn is the right choice for all n ≥ n0 (where
n0 ≥ 1). Without loss of generality, we may suppose that n0 = 1. Let w1 ∈ Λ1

be a minimal element. Then w1 is certainly primitive (as an element of Λ1,
though not necessarily in Λ0). We claim that w1 ∈ Λn for all n ≥ 1, so that the
chain is good with limiting period w1.

To prove the claim, suppose that w1 ∈ Λj for all j ≤ n. Then Λn = 〈w1〉 +
2n−1Λ1, since the latter is contained in the former and both have index 2n−1 in
Λ1. Hence Λn = 〈w1, 2

n−1w2〉, where w2 ∈ Λ1 is such that Λ1 = 〈w1, w2〉. The
right sublattice of Λn+1 is clearly 〈w1〉 + Λn, by minimality of w1 (which is a
candidate since w1 ∈ Λn \ 2Λn−1); in particular, w1 ∈ Λn+1, as required.
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3.1 Optimal Chains and Rectangular Lattices

Let us define a lattice chain to be optimal if Λn+1 ⊂ Λn is the right choice for
all n ≥ 1. We will see that there is in general just one optimal chain for each
of the three choices of Λ1 ⊂ Λ0. In order to make the statement more precise,
however, some preparation is necessary.

We say that a lattice Λ ⊂ C is rectangular if it has an “orthogonal” Z-
basis {w1, w2}, i.e. one which satisfies ℜ(w2/w1) = 0. For example, the period
lattice of an elliptic curve defined over R with positive discriminant is rectan-
gular, where an orthogonal basis is given by the least real period and the least
imaginary period. In general, rectangular lattices are homothetic to the period
lattices of this family of elliptic curves.

If {w1, w2} is any Z-basis for a lattice Λ, the three non-trivial cosets of 2Λ
in Λ are Cj = wj + 2Λ for j = 1, 2, 3, where w3 = w1 +w2. By a minimal coset
representative in Λ we mean a minimal element of one of these cosets. Minimal
coset representatives are always primitive; for they are certainly not in 2Λ, and
if w = mw′ with m ≥ 3 odd, then |w′| < |w| while w′ is in the same coset as w.

Lemma 5. In each coset Cj the minimal coset representative is unique up to
sign, except in the case of a rectangular lattice with orthogonal basis {w1, w2}
where the coset C3 has four minimal vectors, ±(w1 ± w2).

Proof. For a rectangular lattice with orthogonal basis {w1, w2}, it is easy to see
that the minimal coset representatives are as stated. Conversely, suppose that
the lattice Λ has a coset C with at least two pairs of minimal elements, ±w and
±w′. Then w1, w2 = (w ± w′)/2 ∈ Λ are easily seen to be orthogonal.

If w1 ≡ 0 (mod 2Λ), then w2 ≡ w (mod 2Λ). But then |w2| < |w1 +
w2| = |w|, contradicting minimality of w in its coset. Hence w1 6≡ 0 (mod 2Λ).
Similarly, w2 6≡ 0 (mod 2Λ). Moreover, w1 6≡ w2 (mod 2Λ) since w = w1 +
w2 ≡ w1 − w2 6≡ 0 (mod 2Λ). Therefore, w1, w2, w do represent the three
non-trivial cosets modulo 2Λ. Now if {w1, w2} was not a Z-basis, there would
exist a non-zero period w0 = αw1 + βw2 with 0 ≤ α, β < 1. But then one of
w0, w0 − w1, w0 − w2, w0 − w is in the same coset as w, and all are smaller,
contradiction.

Our algorithm for computing periods of elliptic curves will in fact compute
minimal coset representatives. Although these are individually primitive, to
ensure that we thereby obtain a Z-basis for the lattice, the following lemma is
required.

Lemma 6. For j = 1, 2, 3, let wj be minimal coset representatives for a non-
rectangular lattice Λ ⊂ C; that is, minimal elements of the three non-trivial
cosets of 2Λ in Λ. Then any two of the wj form a Z-basis for Λ, and w3 =
±(w1 ± w2).

Proof. We may assume that |w1| ≤ |w2| ≤ |w3|. Then w1 is minimal in Λ and
w2 is minimal in Λ\ 〈w1〉. Hence (replacing w2 by −w2 if necessary) τ = w2/w1

is in the standard fundamental region for SL2(Z) acting on the upper half-plane,
{w1, w2} is a Z-basis, and w3 = w2 ±w1; the sign depends on that of ℜ(τ).

The following proposition shows that the limiting period of an optimal chain
is closely related to minimal coset representatives.
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Proposition 7. A good chain of lattices (Λn)
∞
n=0 with Λ∞ = 〈w∞〉 is optimal

if and only if w∞ is a minimal coset representative of 2Λ0 in Λ0.

Proof. Suppose that w∞ is a minimal coset representative. Then it is clear that
Λn+1 = 〈w∞〉 + 2Λn ⊂ Λn is the right sublattice for all n ≥ 1, since w∞ is
certainly minimal in Λn \ 2Λn−1.

Conversely, suppose that the sequence is optimal. Let w be a minimal el-
ement of Λ1 \ 2Λ0, so that w is a minimal coset representative for the unique
non-trivial coset of 2Λ0 which is contained in Λ1. Note that w is unique up to
sign, unless Λ0 is rectangular in which case (for one of the cosets) there will be
two possibilities for w up to sign. By optimality, the sublattice Λ2 ⊂ Λ1 is the
right choice. In particular, if Λ0 is not rectangular, then we must therefore have
Λ2 = 〈w〉 + 2Λ1. This, however, may not hold in the rectangular case, but it
will hold if we replace w by the other choice of minimal coset representative.

Now we claim that Λn = 〈w〉+2Λn−1 for all n ≥ 2. We already know this for
n = 2. If the claim is true for n, then certainly w ∈ Λn \2Λn−1 (since w /∈ 2Λ0),
so the (unique) good choice of sublattice of Λn is 〈w〉 + 2Λn. By optimality,
this is Λn+1, and so the claim holds for n+1. Thus w ∈ ⋂∞

n=0 Λn = 〈w∞〉, and
indeed, w = ±w∞, since w is primitive.

Combining Lemma 5 with Proposition 7, we have the following conclusion.

Corollary 8. Every non-rectangular lattice Λ has precisely three optimal sub-
lattice chains, whose limiting periods are the minimal coset representatives in
each of the three non-zero cosets of 2Λ in Λ. Every rectangular lattice Λ has
precisely four optimal sublattice chains.

4 Short lattice chains and level 4 structures

In this section we establish a link between AGM sequences and lattice chains.
The first step is to associate a pair of nonzero complex number (a, b) (with
a 6= ±b) to each “short” lattice chain Λ0 ⊃ Λ1 ⊃ Λ2 in such a way that (a, b) is
good in the sense of Section 2 if and only if Λ2 is the right choice of sublattice
of Λ1, in the sense of Section 3.

We establish bijections between the following sets:

1. “short” lattice chains Λ0 ⊃ Λ2 with Λ0/Λ2 cyclic of order 4;

2. triples (E,ω,H) where E is an elliptic curve defined over C, ω a holomor-
phic differential on E, and H ⊂ E(C) a cyclic subgroup of order 4;

3. unordered pairs of nonzero complex numbers a, b with a2 6= b2, where the
pairs a, b and −a,−b are identified.

For each short lattice chain Λ0 ⊃ Λ2, if we set Λ1 = Λ2 + 2Λ0 then (Λ0,Λ1,Λ2)
satisfy the conditions for the first three terms in a lattice sequence as defined
earlier. Hence we will usually think of a short lattice chain as a triple Λ0 ⊃
Λ1 ⊃ Λ2, even though Λ1 is uniquely determined by the other two.

To each short lattice chain we associate the elliptic curve E = C/Λ0 with
differential ω = dz and subgroup H = (1/4)Λ2/Λ0. Conversely, to a triple
(E,ω,H) we associate the chain Λ0 ⊃ Λ2 where Λ0 is the lattice of periods of ω
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(so that E(C) ∼= C/Λ0), and Λ2 is the sublattice such that H ∼= (1/4)Λ2/Λ0

under this isomorphism.
Each triple (E,ω,H) has a model of the form

E{a,b} : Y 2 = 4X(X + a2)(X + b2),

for some unordered pair a, b ∈ C∗ such that a2 6= b2, where ω = dX/Y , and H
is the subgroup generated by the point

P{a,b} = (ab, 2ab(a+ b)).

The four points P{±a,±b} are the solutions to 2P = T = (0, 0) ∈ E{a,b}(C)[2].
Interchanging {a, b} and {−a,−b} does not affect the curve and interchanges
P{a,b} and P{−a,−b} = −P{a,b} so does not change H . On the other hand,
changing the sign of just one of a, b changes H to the other cyclic subgroup of
order 4 containing T . Hence the pair {a, b} has the properties stated and is
well-defined up to changing the signs of both a and b,

Conversely, given {a, b} with ab 6= 0 and a 6= ±b, we recover the triple
(E{a,b}, ω,H), which is unchanged by either interchanging a and b or negating
both.

If we only consider elliptic curves up to isomorphism, we may ignore the
differential ω, scale the equations arbitrarily, and consider lattices only up to
homothety. Now we can identify pairs {a, b} and {ua, ub} for all u ∈ C∗. The
equation for E{a,b} can be scaled so that ab = 1, giving the homogeneous form

Ef : Y 2 = 4X(X2 + fX + 1),

where

f =
a2 + b2

ab
=

a

b
+

b

a
6= ±2.

In this model, the points ±P{a,b} generating the distinguished subgroup H
now have coordinates (1,±2√2 + f). Thus the pair E,H uniquely determines
a complex number f ∈ C \ {±2}. We call this f the modular parameter for the
level 4 structure, since (as we will see below) it is in fact the value of a modular
function for the congruence subgroup Γ0(4).

Proposition 9. The above constructions give a bijection between these sets:

1. “short” lattice chains Λ0 ⊃ Λ2 up to homothety;

2. pairs (E,H) where E is an elliptic curve defined over C with H ⊂ E(C)
a distinguished cyclic subgroup of order 4, up to isomorphism (where iso-
morphisms preserve the distinguished subgroups);

3. complex numbers f ∈ C \ {±2}.
4. points in the open modular curve Y0(4) = Γ0(4)\H, where H denotes the

upper half-plane.

Remark. It would appear that considering pairs (E,P ), where P is a point
of exact order 4 in E(C), would give a refinement to the level 4 structure,
corresponding to points on the modular curve Y1(4) = Γ1(4)\H, since [Γ0(4) :
Γ1(4)] = 2. However, this is an illusion: since every E has an automorphism
[−1] which takes P to −P , the set of pairs (E,H) (up to isomorphism) may be
identified with the space of pairs (E,P ) (also up to isomorphism). Similarly,
since Γ0(4) = (±I)Γ1(4), we may identify Y1(4) and Y0(4).
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Proof. Bijections between all sets except the last have already been established.
Up to homothety, the lattice Λ0 is determined by τ ∈ H modulo the action

of the modular group Γ = SL(2,Z): for any oriented basis w1, w2 of Λ0 (where
“oriented” means w2/w1 ∈ H) we associate τ = w2/w1 ∈ H. All oriented bases
w′

1, w
′
2 of Λ0 have the form

w′
2 = aw2 + bw1

w′
1 = cw2 + dw1

with1 γ =

(

a b
c d

)

∈ Γ, and τ ′ = w′
2/w

′
1 = (aτ + b)/(cτ + d). To allow for

the additional level 4 structure, we restrict to oriented bases w1, w2 such that
Λ2 = 〈w1〉+ 4Λ0, so that w′

1, w
′
2 is only admissible if w1 ≡ ±w′

1 (mod 4Λ0), or
equivalently (c, d) ≡ (0,±1) (mod 4). This uniquely determines the Γ0(4)-orbit
of τ and not just its Γ-orbit.

Let Y0(4) = Γ0(4)\H denote the open modular curve associated to Γ0(4), and
X0(4) its completion, obtained by including the three cusps (represented by ∞,
0 and 1/2 ∈ P1(Q)), which has genus 0. Hence the function field of X0(4) is gen-
erated by a single function. Since the j-invariant of Ef is 256(f2 − 3)3/(f2 − 4),
we see that f = f(τ) is a suitable function. This establishes the claim concern-
ing f , and completes the proof of the proposition.

Remark. There is an involution on each of these sets, which preserves the level 2
structure but interchanges the two possible associated level 4 structures. In each
of the sets this takes the following forms: replace Λ2 by the other sublattice Λ′

2

of index 2 in Λ1 such that Λ0/Λ
′
2 is cyclic; replace H by the other subgroup H ′

which is cyclic of order 4 and contains T = (0, 0); change the sign of one of a, b;
or change f to −f . This involution comes from the nontrivial automorphism of
the cover X0(4) → X0(2) of degree 2; the function field of X0(2) is generated
by f2.

Remark. Since

(

2 0
0 1

)

Γ0(4)

(

2 0
0 1

)−1

= Γ(2), the function field of X0(4)

may also be generated by λ(2τ) where λ(τ) is the classical Legendre elliptic
function which generates the function field of X(2). A calculation shows that
f(τ) = 2(1 + λ(2τ))/(1 − λ(2τ)). One interpretation of this is that instead
of parametrizing short lattice chains by the parameter τ ∈ Y0(4) corresponding
to Λ0 with Γ0(4)-structure, we could instead have used the parameter 2τ ∈ Y (2)
to parametrize the middle lattice Λ1 with full level 2-structure given by the
sublattices 1

2Λ0 and Λ2.

We now state the main result of this section.

Theorem 10. Let Λ0 ⊃ Λ1 ⊃ Λ2 be a short lattice chain corresponding to
the unordered pair {a, b} and modular parameter f . Then the following are
equivalent:

1. Λ2 is the right choice of sublattice of Λ1;

2. the pair (a, b) is good;

3. ℜ(f) ≥ 0.

1The reason for ordering bases this way is to maintain consistency with other sections.
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Proof. Equivalence of the second and third conditions is immediate from f =
a/b+b/a since (a, b) is good if and only if ℜ(a/b) ≥ 0. (In terms of the Legendre
function, the equivalent condition is that |λ(2τ)| ≤ 1.)

For equivalence of the first condition, we need to work harder. Recall that
Λ2 is the right choice of sublattice if Λ2 = 〈w1〉+2Λ1 = 〈w1〉+4Λ0, where w1 is
the minimal period in its coset modulo 2Λ1. We now characterize this condition
in terms of the imaginary part of τ ∈ H.
Lemma 11. Let w1, w2 be any oriented basis for Λ0 such that Λ2 = 〈w1〉+4Λ0,
and let τ = w2/w1. The following are equivalent:

1. ℑτ is maximal, over all τ in its Γ0(4)-orbit;

2. |cτ + d| ≥ 1 for all coprime c, d ∈ Z such that (c, d) ≡ (0,±1) (mod 4);

3. |w1| is minimal, over all primitive periods of Λ0 such that Λ2 = 〈w1〉+4Λ0;

4. |τ + d/4| ≥ 1/4 for all odd d ∈ Z.

Proof. Equivalence of the first two statements follows from ℑ(γτ) = ℑτ/|cτ+d|2

for γ =

(

a b
c d

)

. Since |cτ+d| ≥ 1 ⇐⇒ |cw2+dw1| ≥ |w1|, the third statement

is also equivalent to these. For the last statement, consider the geometry of the
upper half-plane: the region given by these conditions are the same: (4) states
that τ lies on or above all the semicircles centred on rationals with denominator 4
and with radius 1/4, while (2) says that τ lies above all semicircles centred
at rationals −d/c with radius 1/c for which (c, d) ≡ (0,±1) (mod 4); as the
semicircles for c > 4 lie strictly under those for c = 4, this is no stronger.

We denote by F(4) the set of τ which satisfy these conditions; that is, those
for which ℑτ is maximal in a Γ0(4)-orbit. The subset of F(4) consisting of τ
such that 0 ≤ ℜτ ≤ 1 is a (closed) fundamental region for Γ0(4). Since Γ0(4)
has index 2 in Γ0(2), the region F(4) decomposes into two components, which
we denote F±(4): the first is F+(4) = F(2), consisting of all τ lying on or
above all semicircles of radius 1/2 centred at rationals with denominator 2; a
closed fundamental region for Γ0(2) is the subset of F(2) consisting of τ such
that 0 ≤ ℜτ ≤ 1. Secondly, F−(4) = F(4) \ F(2). The boundary between these
is F+(4)∩F−(4), which consists of the union of the semicircles |τ + d/2| = 1/2
for all odd d ∈ Z.

The lemma above shows that Λ2 is the right choice if and only if the τ for
which ℑτ is maximal over all τ in its Γ0(4)-orbit is also maximal in the larger
Γ0(2)-orbit; in other words, given that τ ∈ F(4), we in fact have τ ∈ F+(4).

The following lemma then completes the proof of the theorem.

Lemma 12. Let τ ∈ F(4). Then

ℜf(τ) ≥ 0 ⇐⇒ τ ∈ F+(4).

Proof. This will follow by continuity from the following facts, for τ ∈ F(4) with
0 ≤ ℜτ ≤ 1:

1. ℜf(τ) = 0 if and only if τ lies on the semicircle |2τ−1| = 1 which separates
the interiors of F±(4).
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2. ℜf(τ) > 0 for at least one τ ∈ F+(4).

For the first fact implies that ℜf(τ) has constant nonzero sign on the two
interiors. Since f(γτ) = −f(τ) for γ ∈ Γ0(2) \ Γ0(4), the signs are different in
the two interiors; and the second fact establishes that ℜf(τ) is positive in the
interior of F+(4).

Let f = f(τ). Let the roots of X(X2 + fX + 1) be e1 = 0, e2, e3. Since
e2e3 = 1, we have ℜf = 0 if and only if ℜe2 = ℜe3 = 0 with the imaginary
parts ℑe2, ℑe3 of opposite sign; so e1, e2, e3 collinear, with 0 in between the
other two roots. Conversely, if the ej are colinear with 0 in the middle then
(since e2e3 = 1) it follows that ℜf = 0. However, this alignment of the roots
happens precisely when the period lattice Λ0 is rectangular, with orthogonal
basis w2, w1 + w2, which is when τ lies on the semicircle as claimed. This
establishes the first fact.

Finally, one can check that for i ∈ F+(4) we have f(i) = 3/
√
2 > 0 (equiva-

lently, λ(2i) = (3− 2
√
2)/(3 + 2

√
2) so that |λ(2i)| < 1).

5 Chains of 2-Isogenies

From now on we will use standard Weierstrass models of elliptic curves rather
than the special forms E{a,b} used above. Thus, let E0 be an elliptic curve over
C given by a Weierstrass equation

E0 : Y 2
0 = 4(X0 − e

(0)
1 )(X0 − e

(0)
2 )(X0 − e

(0)
3 ), (4)

where the roots e
(0)
j are distinct, and

∑3
j=1 e

(0)
j = 0. We consider the ordering

of the roots e
(0)
j as fixed, with the point T0 = (e

(0)
1 , 0) of order 2 as distinguished.

Let

a0 = ±
√

e
(0)
1 − e

(0)
3 , b0 = ±

√

e
(0)
1 − e

(0)
2 ;

the choice of signs will be discussed below. Via a shift of the X-coordinate
we have E0

∼= E{a0,b0}, and the choice of signs determines the point P0 =

(e
(0)
1 + a0b0, 2a0b0(a0 + b0)) of order 4 such that 2P0 = T0.
Now consider arbitrary AGM sequences ((an, bn))

∞
n=0 starting from (a0, b0).

As in [2], for n ≥ 1 we let

e
(n)
1 =

a2n + b2n
3

, e
(n)
2 =

a2n − 2b2n
3

, e
(n)
3 =

b2n − 2a2n
3

. (5)

These equalities also hold for n = 0, and for all n ≥ 0 the e
(n)
j are distinct,

and satisfy
∑3

j=1 e
(n)
j = 0. Hence each AGM sequence determines a sequence

(En)
∞
n=0 of elliptic curves defined over C, where En is given by the Weierstrass

equation

En : Y 2
n = 4(Xn − e

(n)
1 )(Xn − e

(n)
2 )(Xn − e

(n)
3 ). (6)

Each has a distinguished 2-torsion point Tn = (e
(n)
1 , 0).
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For n ≥ 1, define a 2-isogeny ϕn : En → En−1 via (xn, yn) 7→ (xn−1, yn−1),
where

xn−1 = xn +
(e

(n)
3 − e

(n)
1 )(e

(n)
3 − e

(n)
2 )

xn − e
(n)
3

,

yn−1 = yn

(

1− (e
(n)
3 − e

(n)
1 )(e

(n)
3 − e

(n)
2 )

(xn − e
(n)
3 )2

)

.

(7)

Now ker(ϕn) = 〈(e(n)3 , 0)〉, and

ϕn(Tn) = Tn−1 = ϕn((e
(n)
2 , 0)).

The dual isogeny ϕ̂n : En−1 → En has kernel 〈Tn−1〉 6= ker(ϕn−1), so is distinct
from ϕn−1. Each composite ϕn ◦ ϕn+1 has cyclic kernel, since

ϕn (ϕn+1 (Tn+1)) = ϕn(Tn) = Tn−1 6= O.

Similarly, by tracing the images of Tn, we see that all composites of the ϕn have
cyclic kernels.

This chain of 2-isogenies may be depicted thus:

· · · En1
oo

2

��

3
ϕn

//
En−1

1
ϕ̂n

oo

2

��

3 // · · · E11
oo

3 //

2

��

E0
1

oo

The number j next to each arrow originating from En denotes the point (e
(n)
j , 0)

which generates the kernel of an associated 2-isogeny.
The construction of this isogeny chain from the original curve E(0) depends

on many choices. The definition of a0, b0 depends first on which root is la-

belled e
(0)
1 (which determines T0 and hence E1), and the order of labelling of

e
(0)
2 and e

(0)
3 . Secondly, the signs for a0, b0 were arbitrary; changing just one of

them changes P0 and hence E2. So, as in the previous section, the unordered pair
{a0, b0} determines the short isogeny chain E2 → E1 → E0, with {−a0,−b0}
determining the same short chain. Finally, for each a0, b0, there are many AGM
sequences, which determine the rest of the chain.

Note that we can rewrite e
(n+1)
j given by (5) as

e
(n+1)
1 =

e
(n)
1 + 2anbn

4
, e

(n+1)
2 =

e
(n)
1 − 2anbn

4
, e

(n+1)
3 =

−e(n)1

2
.

If (an, bn) is replaced by (an,−bn) for n ≥ 1, we see that this interchanges e
(n+1)
1

and e
(n+1)
2 but leaves e

(n+1)
3 unchanged. This does not change the curve En+1;

it only changes the labelling of its roots, which then changes En+2.
Hence we have established a bijection between

• The set of all AGM sequences starting at (a0, b0), and

• The set of all isogeny chains starting with the short chain E2 → E1 → E0.
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We now consider what happens when n→∞. From (5), we have

lim
n→∞

e
(n)
1 =

2M2

3
, lim

n→∞
e
(n)
2 = lim

n→∞
e
(n)
3 =

−M2

3
, (8)

where M = MS(a0, b0) for some set S ⊆ Z>0. The “limiting curve” E∞ for the
sequence (En)

∞
n=0 is the singular curve

E∞ : Y 2
∞ = 4

(

X∞ −
2

3
M2

)(

X∞ +
1

3
M2

)2

. (9)

Proposition 1 implies the following.

Proposition 13. The singular point of E∞ is a node if and only if the AGM
sequence (an, bn) is good.

5.1 The associated lattice chain

For each n ≥ 0, we have En(C) ∼= C/Λn, where Λn is the lattice of periods of
the differential dXn/Yn. From the definition of ϕn (see (7)), it can be verified
that each ϕn is normalised, in the sense that

ϕ∗
n

(

dXn−1

Yn−1

)

=
dXn

Yn

(10)

for all n ≥ 1. Hence ϕn corresponds to the map C/Λn → C/Λn−1 induced from
the identity map C → C. Since each ϕn is a 2-isogeny and the composites of
the ϕn have cyclic kernels, it is clear that (Λn) is a lattice chain in the sense of
Section 3.

This establishes the commutativity of the diagram (Figure 1), which shows
the relationship between chains of lattices and chains of 2-isogenies. For brevity
we denote z 7→ (℘Λ(z), ℘

′
Λ(z)) by z 7→ ℘n(z).

· · · // C
id //

��

C

��

// · · ·

· · · // C/Λn
//

℘n

��

C/Λn−1

℘n−1

��

// · · ·

· · · // En

ϕn

// En−1
// · · ·

Figure 1: A chain of isogenies linked with a chain of lattices

Conversely, given any lattice chain (Λn) starting from Λ0, we may recover
the sequence of curves En and the chain of 2-isogenies linking them: first, Λ1

determines which root of E0 is labelled e
(0)
1 ; then Λ2 determines the choice of

signs in the definition of a0, b0; and finally the AGM sequence starting with
(a0, b0) is determined by the Λn for n ≥ 2.

Thus we have a third set in bijection with both the set of all AGM sequences
starting at (a0, b0), and the set of all isogeny chains starting with the short chain
E2 → E1 → E0: namely, the set of all lattice chains starting with the short
chain Λ0 ⊃ Λ1 ⊃ Λ2.
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Proposition 14. With the above notation, for all n ≥ 0,

1. En
∼= E{an,bn};

2. Λn ⊃ Λn+1 ⊃ Λn+2 is a short chain in the sense of Section 3;

3. Λn+2 is the right choice of sublattice of Λn+1 if and only if (an, bn) is a
good pair;

4. the lattice chain (Λn) is good (respectively, optimal) if and only if the
sequence ((an, bn)) is good (respectively, optimal).

Proof. For (1), replace xn by xn + e
(n)
1 in the equation for En to obtain the

equation for E{an,bn}. The rest is then is clear, using Theorem 10.

6 Period Lattices of Elliptic Curves

6.1 General Case

Let E0 be an elliptic curve over C of the form (4). We keep the notation of the
preceding section; in particular, the period lattice of E0 is Λ0. Each primitive
period w1 ∈ Λ0 determines a good lattice chain (Λn) where Λn = 〈w1〉+ 2nΛ0,
and conversely, since ∩nΛn = 〈w1〉. So we have a bijection between the set of
primitive periods of Λ0 (up to sign) and good lattice chains. Each good lattice
chain in turn determines a good AGM sequence ((an, bn)) starting at a pair
(a0, b0) such that E0

∼= E{a0,b0}.
We now show that the period w1 may be expressed simply in terms of the

limit of the associated AGM sequence. It will follow that every primitive pe-
riod w1 of E0 may be obtained from the limit of an appropriately chosen good
AGM sequence. Conversely, we may express the set of all limits of AGM se-
quences starting at (a0, b0) in terms of periods of E0. We will also show that
optimal AGM sequences give periods which are minimal in their coset mod-
ulo 4Λ0, and super-optimal sequences (where the initial pair (a0, b0) also good)
give periods which are minimal modulo 2Λ0. By Lemma 6, we will be then able
to express a Z-basis for Λ0 in terms of specific AGM values.

Proposition 15. Let (Λn) be a good lattice sequence with limiting period w1

(generating ∩Λn, and defined up to sign). Then for all z ∈ C \ Λ0 we have

lim
n→∞

℘Λn
(z) =

(

π

w1

)2(
1

sin2(zπ/w1)
− 1

3

)

lim
n→∞

℘′
Λn

(z) = −2
(

π

w1

)3(
cos(zπ/w1)

sin3(zπ/w1)

)

.

Proof. Since w1 is primitive, there exists w2 ∈ C such that Λn = 〈w1, 2
nw2〉 for

all n ≥ 0. In the standard series expansion

℘Λn
(z) =

1

z2
+

∑

06=w∈Λn

(

1

(z − w)2
− 1

w2

)

,
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we set w = m1w1 +m22
nw2 with m1,m2 not both zero. As n → ∞ all terms

with m2 6= 0 tend to zero, leaving

lim
n→∞

℘Λn
(z) =

∑

m∈Z

1

(z −mw1)2
− 1

3

(

π

w1

)2

.

Using the expansion π2/ sin2(πz) =
∑

m∈Z
1/(z − m)2, this simplifies to the

formula given.
For limn→∞ ℘′

Λn

(z), we may either differentiate this, or apply the same ar-
gument to the series expansion of ℘′

Λn

(z).

Corollary 16. In the above notation, let (Λn) be a (good) lattice chain, with
limiting period w1, associated to the elliptic curve E0 and the (good) AGM
sequence ((an, bn)) with non-zero limit M = MS(a0, b0). Then M = ±π/w1, so
that the period w1 may be determined up to sign by

w1 = ±π/MS(a0, b0).

Proof. For all n ≥ 0 we have ℘Λn
(w1/2) = e

(n)
1 . Letting n → ∞ and using the

proposition we find that

2

3
M2 = lim

n→∞
e
(n)
1 =

2

3

(

π

w1

)2

,

from which the result follows.

The ambiguity of sign in this result will not matter in practice: changing
the sign of w1 does not change the lattice chain, and neither does changing the
signs of both a0, b0 (and hence the sign of MS(a0, b0)).

For fixed (a0, b0), the value of MS(a0, b0) depends on the set S of indices n
for which (an, bn) is bad. Changing S, we obtain different AGM sequences, and
different lattice chains, but these all start with the same short chain (Λn)

2
n=0,

and the periods given by π/MS(a0, b0) are all in the same coset modulo 4Λ0.
We may now establish the result stated above as Proposition 1(3):

Corollary 17. |MS(a0, b0)| attains its maximum (among all AGM-sequences
starting at (a0, b0)) if and only if the sequence is optimal.

Proof. By Corollary 16, MS(a0, b0) is maximal (in absolute value) if and only
if the limiting period w1 = π/MS(a0, b0) is minimal. By Proposition 7, this is
if and only if the lattice chain is optimal. By Proposition 14(4), this in turn is
if and only if the AGM sequence is optimal.

Corollary 18. 1. The optimal value M = M(a0, b0) gives a period w1 =
π/M which is minimal in its coset modulo 4Λ0.

2. |M(a0, b0)| ≥ |M(a0,−b0)| ⇐⇒ |a0 − b0| ≤ |a0 + b0|.

3. If (a0, b0) is good, then π/M(a0, b0) is minimal in its coset modulo 2Λ0.
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Proof. Changing the sign of b0 (only) does not change Λ1 (or E1), but does
change Λ2. The effect on w1, therefore, is to change its coset modulo 4Λ0 while
not affecting its coset modulo 2Λ0. By Proposition 10, Λ2 is the right choice
if and only if (a0, b0) is good. Hence, to obtain a period minimal in its coset
modulo 2Λ0, and not just modulo 4Λ0, we choose the sign of b0 so that the
pair (a0, b0) is good, and then take an optimal AGM sequence.

Theorem 19 (Periods of Elliptic Curves over C, first version). Let E be an
elliptic curve over C given by the Weierstrass equation

Y 2 = 4(X − e1)(X − e2)(X − e3),

with period lattice Λ. Set a0 =
√
e1 − e3 and b0 =

√
e1 − e2, where the signs are

chosen so that (a0, b0) is good, i.e., |a0 − b0| ≤ |a0 + b0|, and let

w1 =
π

M(a0, b0)
,

using the optimal value of the AGM. Then w1 is a primitive period of E, and
is a minimal period in its coset modulo 2Λ.

Define w2, w3 similarly by permuting the ej; then any two of w1, w2, w3 form
a Z-basis for Λ.

Proof. Everything has been established except the last part. Letting e2, e3 in
turn play the role of e1 gives minimal periods in each of the cosets modulo 2Λ,
so Lemma 6 applies.

Algorithm 20 (Computation of a period lattice basis).

Input: An elliptic curve E defined over C, and roots ej ∈ C for j = 1, 2, 3.

Output: Three primitive periods of E, which are minimal coset representatives,
any two of which form a Z-basis for the period lattice of E.

1. Label one of the roots as e1, and the other two arbitrarily as e2, e3;

2. Set a0 =
√
e1 − e3 with arbitrary sign, and then b0 = ±√e1 − e2 with the

sign chosen such that |a0 − b0| ≤ |a0 + b0|.

3. Output w = π/M(a0, b0), using the optimal value of the AGM.

4. Repeat with each root ej in turn playing the role of e1.

Instead of computing w2, w3 by permuting the ej as in Theorem 19, we may
alternatively obtain all wj by using a single ordering of the roots and three
different AGM computations.

Starting with an arbitrary ordering of the roots,say (e1, e2, e3), define a and b
as before, up to sign, by a2 = e1 − e3 and b2 = e1 − e2; and also define c (up
to sign) by c2 = e2 − e3, so that a2 = b2 + c2. We would like to determine the
signs of a, b, c so that all three of the following conditions hold:

|a− b| ≤ |a+ b|, |c− ib| ≤ |c+ ib|, |a− c| ≤ |a+ c|. (11)

We claim that this is always possible. To see this, first choose the sign of a
arbitrarily. Then choose the signs of b and c so that the first and the third
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conditions in (11) hold. Finally, if the second condition fails, one can easily
check that if e1 and e3 are interchanged and a, b, c replaced (in order) by ia, ic,
ib, then all three inequalities will hold.

We can now state an alternative theorem for obtaining a Z-basis for the
period lattice Λ of E.

Theorem 21 (Periods of Elliptic Curves over C, second version). Let E be an
elliptic curve over C given by the Weierstrass equation

Y 2 = 4(X − e1)(X − e2)(X − e3),

with period lattice Λ. Order the roots (e1, e2, e3) of E, so that the signs of
a =

√
e1 − e3, b =

√
e1 − e2, c =

√
e2 − e3 may be chosen to satisfy all the

conditions of (11). Define

w1 =
π

M(a, b)
, w2 =

π

M(c, ib)
, w3 =

iπ

M(a, c)
.

Then each wj is a primitive period, minimal in its coset modulo 2Λ, and any
two of the wj form a Z-basis for Λ.

Proof. Let (e1, e2, e3) be an order of the roots of E0. Interchanging e1 and e3
if necessary, define a =

√
e1 − e3, b =

√
e1 − e2, c =

√
e2 − e3, with the signs

chosen so that all three inequalities in (11) hold.
Now w1 = π/M(a, b) is primitive and minimal in its coset as before, since

(a, b) is good. Using (e′1, e
′
2, e

′
3) = (e2, e1, e3), we find that (a′, b′) = (c, ib)

is good, and set w2 = π/M(a′, b′) = π/M(c, ib); and using (e′′1 , e
′′
2 , e

′′
3) =

(e3, e2, e1), we see that (a′′, b′′) = (ia, ic) is good, and set w3 = π/M(a′′, b′′) =
πi/M(a, c).

We complete this section by considering two special cases, which arise when
considering elliptic curves defined over the real numbers, separating the cases
of positive discriminant (rectangular period lattice) and negative discriminant.

6.2 Special Case I: Rectangular Lattices

For the rest of this section, we set i =
√
−1. Recall that if |a0 − b0| = |a0 + b0|,

then both (a0,±b0) are good and ℜ(b0/a0) = 0. Then

e2 − e1
e3 − e1

= (b0/a0)
2

is real and negative. Geometrically, this means that the ej are collinear on the
complex plane with e1 in the middle.

To see what the associated period lattice looks like, let w = π/M(a0, b0) and
w′ = π/M(a0,−b0). Then w,w′ are both minimal elements in the same coset
modulo 2Λ0. By Lemma 5, the periods w1, w2 = (w±w′)/2 form an orthogonal
Z-basis for Λ0, and the period lattice is rectangular. Alternatively, we could
obtain a Z-basis for Λ0 by computing two periods (as in Theorem 19) using the
two other roots of E which are not “in the middle” in the role of e1.

Finally, we note that whenever the ej are collinear, we can “rotate” them
by a multiplying by a suitable constant in C∗ so that the scaled roots e′j are all
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real. Then one could use an algorithm for computing period lattices of elliptic
curves over R (e.g. [3, Algorithm 7.4.7]) to compute the period lattice of the
elliptic curve (Y ′)2 = 4(X ′ − e′1)(X

′ − e′2)(X
′ − e′3). The period lattice of our

original elliptic curve is then obtained after suitable scaling. This may be more
efficient in practice, since only real arithmetic would be needed in the AGM
iteration.

If the ej are all real (as is the case for an elliptic curve defined over R with
positive discriminant), we may order them so that e1 > e2 > e3 and obtain a
rectangular basis for the period lattice by setting

w1 = π/M(
√
e1 − e2,

√
e1 − e3), w2 = πi/M(

√
e2 − e3,

√
e1 − e3) (12)

with all square roots positive; then w1 and w2/i are both real and positive.
These familiar formulas may be found in [3, Algorithm 7.4.7] or [5, (3.7.1)].

6.3 Special Case II

If the roots of E are such that
∣

∣

∣

∣

e1 − e2
e1 − e3

∣

∣

∣

∣

= 1 with e1 − e2 6= ±(e1 − e3),

then geometrically the ej lie on an isosceles triangle having e1 as the vertex
where the sides of equal length intersect. As before, one can rotate this triangle
by a suitable constant in C∗ so that e1 ∈ R, and e2, e3 are complex conjugates.
This yields a new elliptic curve E′, defined over R, whose Weierstrass equation
has only one real root.

Again, one could use an algorithm for computing period lattices of elliptic
curves over R (e.g. [3, Algorithm 7.4.7]) to compute the period lattice of E′.
This is of the form Λ′ = 〈w′

1, w
′
2〉, for some w′

1, w
′
2 satisfying

w′
1 ∈ R, ℜ(w′

2) =
w′

1

2
.

The period lattice Λ = 〈w1, w2〉 of E, with ℜ(w2/w1) = 1/2, can then be
obtained by a suitable scaling of w′

1, w
′
2. This will be illustrated in Example 4.

For real curves with negative discriminant, we present here a simplification
of the purely real algorithm given in [3]. Let e1 be real and e2, e3 complex
conjugates, ordered so that ℑe2 > 0. Set a0 =

√
e1 − e3 = x+ yi; since e1 − e3

lies in the upper half-plane, we may choose the sign of a0 so that x, y > 0. Set
r =

√

x2 + y2 > 0 and b0 =
√
e1 − e2 = x − yi. Now we may obtain a real

period w+ from

w+ = π/M(a0, b0) = π/M(x+ yi, x− yi) = π/M(x, r),

and an imaginary period w− from

w− = π/M(−a0, b0) = πi/M(y − xi, y + xi) = πi/M(y, r).

Note that both AGMs appearing here, M(x, r) and M(y, r), are classical (real
and positive). These periods span a sublattice of index 2 in the period lattice,
for which a Z-basis may be taken to be w1 = w+ and w2 = (w++w−)/2, where
ℜ(w2/w1) = 1/2.
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7 The complete set of AGM values

In 1800, Gauss described the complete set of values of MS(a, b) as S ranges
through all finite sets. The proof given by Cox in [4, Theorem 2.2] uses theta
and modular functions related to the modular functions which appeared earlier
in this paper. Other proofs are also available in the literature, for example by
Geppert [7].

We will give here a slightly more general form of the result than that stated
in [4], and give an alternative proof which brings out clearly the relation with
period lattices of elliptic curves.

In the following statement, we set PS(a, b) = π/MS(a, b) (for any finite
S ⊆ Z>0) and P (a, b) = π/M(a, b).

Theorem 22. For a, b ∈ C∗ with a 6= ±b, let E{a,b} be the elliptic curve over
C given by the Weierstrass equation

E{a,b} : Y 2 = 4X(X + a2)(X + b2),

and let Λ be its period lattice. Let c =
√
a2 − b2, with the sign chosen so that

the pair (a, c) is good, and set

w1 = P (a, b), w3 = iP (a, c).

Then Λ = Zw1 + Zw3, and the set of values of PS(a, b) is precisely the set of
primitive elements of the coset w1 + 4Λ. More precisely, we have the following:

{PS(a, b)} = {w ∈ w1 + 4Λ, w primitive};
{PS(a,−b)} = {w ∈ w1 + 2w3 + 4Λ, w primitive};
{PS(−a,−b)} = {w ∈ −w1 + 4Λ, w primitive};
{PS(−a, b)} = {w ∈ −w1 + 2w3 + 4Λ, w primitive}.

Thus, the complete set of all values of PS(±a,±b) is the set of primitive elements
of the coset w1 + 2Λ.

Proof. Since Λ is invariant under translations of theX-coordinate, we may apply
Theorem 21 to see that Λ = Zw′

1 +Zw3 where w3 (as given) is a minimal coset
representative, and either

• (a, b) is good and w′
1 = w1; or

• (a, b) is bad and w′
1 = w1 ± 2w3.

In either case, Λ = Zw1 + Zw3.
Now the values of PS(a, b) are precisely the primitive periods in the same

coset as w1 = P (a, b) modulo 4Λ. Secondly, PS(−a,−b) = −PS(a, b) = −w1, so
the values of PS(−a,−b) are the primitive periods in the coset −w1 (mod 4Λ),
as required. Next, P (a,−b) is the minimal period in the coset w1 + 2w3 + 4Λ,
since this is the other coset modulo 4Λ contained in w1 + 2Λ, so the values
of ±PS(a,−b) are also as stated.

Corollary 23. Let a, b, c ∈ C∗ satisfy a2 = b2 + c2. Define w = π/M(a, b) and
w′ = πi/M(a, c), where (a, c) is a good pair. Then
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1. Λ = Zw + Zw′ is a lattice in C;

2. the set of values of π/MS(a, b) is the set of primitive elements of the coset
w + 4Λ; that is, the set

{uw + vw′ | u, v ∈ Z, gcd(u, v) = 1, u− 1 ≡ v ≡ 0 (mod 4)};

3. the set of values of π/MS(±a,±b) is the set of primitive elements of the
coset w + 2Λ; that is, the set

{uw + vw′ | u, v ∈ Z, gcd(u, v) = 1, u− 1 ≡ v ≡ 0 (mod 2)}.

8 Elliptic Logarithms

We now extend the method for computing periods of elliptic curves in Section 6
to give a method for computing elliptic logarithms of points on elliptic curves.

Let E be an elliptic curve over C given by a Weierstrass equation as before,
and Λ the lattice of periods of the differential dX/Y on E, so that E(C) ∼=
C/Λ. An elliptic logarithm of P ∈ E(C) is a value zP ∈ C such that P =
(℘Λ(zP ), ℘

′
Λ(zP )). Note that zP is only well-defined modulo Λ. We wish to have

an algorithm which can compute the numerical value of the complex number zP ,
to any required precision, from the coefficients of E and the coordinates of P
(which we assume are given exactly, or are available to arbitrary precision).

Construct as before an isogeny chain (En) with E0 = E, with associated
lattice chain (Λn) (with Λ0 = Λ) and AGM sequence (an, bn). We will assume
that the chain is super-optimal with |an − bn| < |an + bn| for all n ≥ 0. (This
is possible except when Λ0 is rectangular, and even then is possible for two of
the three super-optimal sequences). Let w1, w2 be a Z-basis for Λ such that
Λn = 〈w1, 2

nw2〉 for all n ≥ 0. We have 2-isogenies ϕn : En → En−1 for n ≥ 1,
induced by the natural maps C/Λn → C/Λn−1.

8.1 Coherent point sequences

Consider sequences of points (Pn)
∞
n=0 where Pn ∈ En(C) satisfy ϕn(Pn) =

Pn−1 for all n ≥ 1. Such a sequence will be called coherent if there exists
z ∈ C such that Pn = ℘n(z) for all n ≥ 0; here, as above, we write ℘n(z)
for (℘Λn

(z), ℘′
Λn

(z)). If such a z exists, it is uniquely determined modulo ∩Λn =
Λ∞ = 〈w1〉.

In general there are uncountably many point sequences with a fixed starting
point P0, since for each Pn ∈ En(C) there are two points Pn+1 ∈ En+1(C) with
ϕn+1(Pn+1) = Pn. However, only countably many of these are coherent, since
℘−1
0 (P0) is a coset of Λ0 in C, and hence countable.
For example, taking z = 0 shows that the trivial sequence (On), where On is

the base point on En, is coherent. Also, the sequence with Pn = Tn = (e
(n)
1 , 0)

is coherent, via z = w1/2.
Given a point sequence (Pn), for each n let Cn = ℘−1

n (Pn) ⊂ C be the
complete set of all the elliptic logarithms of Pn, which is a coset of Λn in C.
Since Λn+1 has index 2 in Λn, each Cn is the disjoint union of two cosets of Λn+1,
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one of these being Cn+1; the other is the set of elliptic logarithms of the second
point P ′

n+1 ∈ En+1(C) such that ϕn+1(P
′
n+1) = Pn. Thus we have

C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ Cn+1 ⊃ . . . .

The point sequence is coherent if and only if C∞ = ∩∞n=0Cn 6= ∅, in which case
C∞ is a coset of Λ∞ in C.

An argument similar to that used above for Lemma 3 shows the following.

Lemma 24. The sequence (Pn) is coherent if and only if Cn+1 contains the
smallest element of Cn for almost all n ≥ 0.

8.2 The elliptic logarithm formula

Proposition 25. With notation as above, let (Pn) be a coherent point sequence
determined by z ∈ C. Assume that 2z 6∈ Λ∞. Then for n sufficiently large, we
have Pn 6= On, and write Pn = (xn, yn). Let P∞ = (x∞, y∞) ∈ E∞(C) be the
limit point, defined by (x∞, y∞) = limn→∞(xn, yn). Set M = π/w1, and

t∞ = −1

2
y∞/(x∞ +M2/3).

Then t∞ 6= 0,∞, and (modulo Λ∞) we have

z =
1

M
arctan

(

M

t∞

)

=
w1

π
arctan

(

π

w1t∞

)

. (13)

Proof. Since z 6∈ Λ∞, for all n ≫ 0 we have z 6∈ Λn, so that Pn 6= On. Propo-
sition 15 gives expressions for the coordinates of P∞ = (x∞, y∞) ∈ E∞(C) in
terms of M , s = sin(zπ/w1) and c = cos(zπ/w1):

x∞ = M2

(

1

s2
− 1

3

)

; y∞ = −2M3 c

s3
.

Note that s 6= 0, since z 6∈ Λ∞; also, s 6= ±1 (and c 6= 0) since 2z 6∈ Λ∞. Thus
x∞ +M2/3 = M2/s2 6= 0, and t∞ = − 1

2y∞/(x∞ +M2/3) = Mc/s 6= 0, giving
formula (13). Taking different values of the multiple-valued function arctan
changes z by integer multiples of w1; so this formula gives a well defined value
for z modulo Λ∞, as desired.

This result does also apply when z = ±w1/2 (mod Λ∞), for then s = ±1
and c = 0, so x∞ +M2/3 = M2 and y∞ = 0, giving t∞ = 0 and z = w1; this is
the case we used above to compute periods.

Proposition 25, and in particular formula (13), is the key to our elliptic
logarithm algorithm, in which we will compute a sequence (tn) iteratively such
that lim tn = t∞. However, we derived (12) by starting from a value of z ∈ C,
rather than from the coordinates of a point P = ℘(z) ∈ E(C). In order to
produce an algorithm for computing z from the coordinates of P , we must show
how to construct inductively a suitable coherent sequence of points, so that the
limits x∞, y∞ and t∞ exist. We will do this in the next subsection.

Remark. Our formula (13) is similar to the one used in Cohen’s algorithm [3,
Algorithm 7.4.8] for computing elliptic logarithms of real points on elliptic curves
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defined over R. The variable denoted cn in [3] is related to our tn (defined below)
by c2n = t2n+a2n; setting c∞ = limn→∞ cn, so that c2∞ = t2∞+M2, we can rewrite
zP as

zP = ± 1

M
arcsin

(

M

c∞

)

,

which is similar (up to sign) to the output of Cohen’s algorithm. This approach
leaves an ambiguity of the sign of zP , which is resolved in [3] by considering the
sign of y0 at the end, something which is only possible in the real case. Using
t∞ instead of c∞ avoids the ambiguity.

8.3 The elliptic logarithm iteration

Let P = (x, y) ∈ E(C), where as above E is the elliptic curve with equation

E : Y 2 = 4(X − e1)(X − e2)(X − e3).

In order to compute the elliptic logarithm zP of P using (13), we need to find
a suitable coherent point sequence (Pn) starting at P0 = P . We iteratively
compute P1, P2, . . . , using the explicit formulas for the isogenies ϕn; at each
stage there are two possible choices for Pn, determined by choosing a specific
sign for a square root. The main issue is how to make these choices in such a
way that the sequences converge.

It is simpler in practice to use alternative models for the elliptic curves in
the sequence, in which the isogeny formulas are simpler. We introduce these
now. Let E′

1 be the curve with equation

E′
1 : R2 = (T 2 + a2)/(T 2 + b2).

We regard E′
1 as a projective curve in P1 × P1, with points at infinity given by

(t, r) = (∞,±1), (±bi,∞).
Define a map α : E′

1 → E by2 (t, r) 7→ (x, y) = (t2 + e1,−2rt(t2 + b2)),
where as usual a2 = e1 − e3 and b2 = e1 − e2. This map is unramified and
has degree 2; it sends (∞,±1) 7→ OE , (±bi,∞) 7→ (e2, 0), (0,±a/b) 7→ (e1, 0)
and (±ai, 0) 7→ (e3, 0).

Write a1, b1 for the arithmetic and geometric means of a, b as usual, set

e′1 = (a21 + b21)/3 = (a2 + 6ab+ b2)/12,

e′2 = (a21 − 2b21)/3 = (a2 − 6ab+ b2)/12,

e′3 = (b21 − 2a21)/3 = −(a2 + b2)/6,

so that E1 has with Weierstrass equation

E1 : Y 2
1 = 4(X1 − e′1)(X1 − e′2)(X1 − e′3).

Now E′
1
∼= E1 via the isomorphism θ given by (t, r) 7→ (x1, y1) where

(x1, y1) = (
1

2
(t2 + r(t2 + a2) +

1

6
(a2 + b2)), t(t2 + r(t2 + a2) +

1

2
(a2 + b2)),

2The sign of y here is chosen to avoid a minus sign in the elliptic logarithm formula (13).
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with inverse

(x1, y1) 7→ (t, r) =

(

3y1
6x1 + a2 + b2

,
12x1 + 5a2 − b2

12x1 + 5b2 − a2

)

.

The composite α ◦ θ−1 : E1 → E′
1 → E is the 2-isogeny denoted ϕ in Section 5.

Given a complete 2-isogeny chain (En)n≥0 with E0 = E, as in Section 5, we
define for each n ≥ 1 a curve E′

n with equation R2
n = (T 2

n + a2n−1)/(T
2
n + b2n−1),

isomorphic to En via θn (defined as for θ = θ1 as above); these fit into a
commutative diagram

· · · // E′
n

ϕ′

n //

θn

��

E′
n−1

//

θn−1

��

· · · // E′
1

θ1

��

α

  
@

@

@

@

@

@

@

@

· · · // En

ϕn // En−1
// · · · // E1

ϕ1 // E0

where ϕ′
n : E′

n → E′
n−1 is the 2-isogeny which makes the diagram commute. A

little algebra shows that ϕ′
n is given by

rn−1 =
t2n + an−1an−2

t2n + an−1bn−2
=

an−2r
2
n − an−1

−bn−2r2n + an−1
, tn−1 =

tn
rn

.

For any point sequence (Pn) (with Pn ∈ En(C) and ϕn+1(Pn+1) = Pn for
all n ≥ 0) we set P ′

n = (rn, tn) = θ−1
n (Pn) ∈ E′

n(C) for n ≥ 1. Since α(P ′
1) = P0,

we have

r21 =
x0 − e3
x0 − e2

, and t1 = − y0
2r1(x0 − e2)

=
√
x0 − e1;

note that these equations determine r1 (and then t1) up to sign. Next, from
ϕ′
n(P

′
n) = P ′

n−1 for n ≥ 2, we have

r2n =
an−1(rn−1 + 1)

bn−2rn−1 + an−2
, and tn = rntn−1;

again, these determine (rn, tn) up to sign.
Hence we may construct all possible point sequences (P ′

n) with P ′
n ∈ E′

n(C)
for n ≥ 1, starting from P0 = (x0, y0) ∈ E0(C) with y0 6= 0, by initialising

r1 =

√

x0 − e3
x0 − e2

, and t1 = − y0
2r1(x0 − e2)

to determine P ′
1 = (r1, t1), and then iterating the following to obtain P ′

n =
(rn, tn) for n ≥ 2:

rn =

√

an−1(rn−1 + 1)

bn−2rn−1 + an−2
, and tn = rntn−1.

Suitable choices of signs of rn will be discussed below, which will ensure that
these sequences converge. Then we will have r∞ = lim rn = 1 and t∞ = lim tn
satisfying

x∞ = t2∞ +
2

3
M2, y∞ = −2t∞(t2∞ +M2),
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where M = AGM(a, b) as usual. It follows that

t∞ =
−y∞/2

x∞ +M2/3
,

as in the statement of Proposition 25.

8.4 Choice of signs in the iteration

We now show that we do obtain coherent, convergent sequences, provided that
for all (or all but finitely many) n we choose the sign of rn so that ℜ(rn) ≥ 0;
always assuming that the isogeny sequence itself is optimal.

Proposition 26. With the notation of the previous section, assume that the
AGM sequence satisfies ℜ(an/bn) > 0 for all n ≥ 0.

If ℜrn ≥ 0 for all n ≥ 1, then the point sequence (Pn) = (θn(rn, tn)) deter-
mined by the iteratively defined sequence of pairs (rn, tn) is coherent.

The same conclusion holds if ℜrn ≥ 0 for all but finitely many n ≥ 1.

Proof. Recall that Λn is the period lattice of En for n ≥ 0, with Z-basis w1, w2

such that w1 = π/M(a0, b0) generates ∩nΛn, and Λn = 〈w1, 2
nw2〉 for all n ≥ 0.

So for each n there exists zn ∈ C, uniquely determined modulo Λn, such that
xn = ℘Λn

(zn) and yn = ℘′
Λn

(zn). We wish to show that the zn may be chosen
independently of n.

Since

rn =
12xn + 5a2n−1 − b2n−1

12xn + 5b2n−1 − a2n−1

,

we may regard rn as the value at zn of an elliptic function fn of degree 2 with
respect to Λn. Similarly its square,

r2n =
xn−1 − e

(n−1)
3

xn−1 − e
(n−1)
2

,

is the value at zn of f2
n, which is an elliptic function with respect to the larger

lattice Λn−1. It follows that

fn(z + 2n−1w2) = −fn(z)

for all z ∈ C and all n ≥ 1.
Since

℘n(0) = OE = θn((∞, 1))

and
℘n(w1/2) = (e

(n)
1 , 0) = θn((0, an−1/bn−1)),

we have fn(0) = 1 and fn(w1/2) = an−1/bn−1 for all n ≥ 1.
We now consider the preimage Rn of the right half-plane under fn, for

n ≥ 1. Since fn(w1/2) = an−1/bn−1 and ℜ(an−1/bn−1) > 0, this contains w1/2
for all n. Let Ro

n denote the connected component of Rn which contains w1/2.
Both Rn and Ro

n are invariant under translation by w1 (by periodicity of fn),
and Rn is the union of all translates of Ro

n by multiples of 2nw2. The preimage
of the left half-plane under fn is Ln = Rn + 2n−1w2, which is the union of the
translates of Ro

n by odd multiples of 2n−1w2.
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Consider a point Pn = ℘n(zn) ∈ En(C), where zn ∈ Ro
n. Its preimages

in En+1(C) are ℘n+1(zn) and ℘n+1(z
′
n), where z′n = zn + 2nw2. One of zn, z

′
n

lies in Rn+1, the other in Ln+1. Since w1/2 ∈ Ro
k for all k, one can show that

Ro
n ⊂ Ro

n+1 (see Lemma 27 below). Hence, in fact, zn ∈ Ro
n+1 and z′n ∈ Ln+1.

Hence, by choosing the sign of each rn for n ≥ 1 so that it lies in the right
half-plane (for all n ≥ 1), we ensure that each Pn = ℘n(zn), where zn ∈ Ro

1 does
not depend on n. Hence the associated point sequence is coherent, as required.

For the last part, if ℜrn > 0 only for n > n0 ≥ 0, then we simply apply the
above argument to En0

and (Pn)n≥n0
, noting that Pn0

is a lift of P0 to En0
(C),

and that every elliptic logarithm of Pn0
is also one of P0.

Lemma 27. In the notation of Proposition 26, Ro
n ⊂ Ro

n+1 for all n ≥ 1.

Proof. It suffices to show that ℜfn+1(z) has constant sign for z ∈ Ro
n, since this

sign is positive for z = w1/2 ∈ Ro
n. If not, then there exists z ∈ Ro

n such that
ℜfn+1(z) < 0, so fn+1(z)

2 is real and negative. We show this to be impossible.
We have

rn−1 =
an−2r

2
n − an−1

−bn−2r2n + an−1
= hn(r

2
n−1) = gn(rn−1),

say, where hn is the linear fractional transformation

z 7→ an−2z − an−1

−bn−2z + an−1
,

and gn(z) = hn(z
2). This implies that

fn(z) = gn+1(fn+1(z)) = hn+1(fn+1(z)
2).

To complete the proof we show that the image of the negative real axis
under hn is contained in the left half-plane, for all n ≥ 1. Let t ∈ R be negative,
and set s = 2t− 1 < −1, and α = an−2/bn−2; then

hn(t) =
sα− 1

α− s
,

and we leave it to the reader to check that this has negative real part when
s < −1 and ℜα > 0.

We remark that this lemma implies that we always have ℜrn > 0 for n ≥ 2.
It is possible to have ℜr1 = 0; this occurs if and only if x0 lies on the open line
segment between e2 and e3.

8.5 The elliptic logarithm algorithm

We summarise this section with the following algorithm.

Algorithm 28 (Complex Elliptic Logarithm). Given an elliptic curve E defined
over C by the Weierstrass equation Y 2 = 4(X − e1)(X − e2)(X − e3), and a
non-2-torsion point P ∈ E(C), compute an elliptic logarithm of P .

Input: E, with roots e1, e2, e3, and P = (x0, y0) ∈ E(C), with y0 6= 0.
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1. Set a0 =
√
e1 − e3 and b0 =

√
e1 − e2, choosing the numbering of the

roots (if necessary) and the signs so that |a0 − b0| < |a0 + b0|.

2. Set r =
√

(x0 − e3)/(x0 − e2), with ℜr ≥ 0.

3. Set t = −y0/(2r(x0 − e2)) (so t2 = x0 − e1).

4. Repeat the following, for n = 1, 2, . . . :

(a) set

an =
an−1 + bn−1

2
, bn =

√

an−1bn−1,

choosing the sign of bn so that |an − bn| < |an + bn|;
(b) set r ←

√

an(r + 1)/(bn−1r + an−1), with ℜr > 0.

(c) set t← rt.

until |an/bn − 1| and |r − 1| are sufficiently small. Set M = lim an.

Output:

zP =
1

M
arctan

(

M

t

)

.

Note that the output value of zP may not be in the fundamental paral-
lelogram of the period lattice Λ. However, assuming that the usual range for
the arctan function is used, where −π/2 < ℜ arctan(x) ≤ π/2, we will have
zP = xw1 + iyw1 with x, y ∈ R and −1/2 < x ≤ 1/2.

For points P of order 2, choose the labelling of the roots so that P = (e1, 0)
and then take zP = w1/2 = π/(2M) where M = M(

√
e1 − e3,

√
e1 − e2).

8.6 The real case

For elliptic curves defined over R there is some advantage in adapting the algo-
rithm to use real arithmetic where possible, even though the algorithm as given
above works perfectly well in this situation. We divide into cases as in sections
6.2 and 6.3 above.

8.6.1 Curves with positive discriminant

Order the roots, which are all real, as in section 6.2, so that e1 > e2 > e3; the
real and imaginary periods w1, w2 are then given by (12).

Let P = (x0, y0) ∈ E(R) with 2P 6= 0 (so y0 6= 0). If P is in the connected
component of the identity of E(R) then x0 > e1, and it is immediate from the
formulae given above that as well as all an, bn being real and positive, so too
are all rn, and the tn are real and with constant sign (opposite to that of y0).
Hence zP , the output of the algorithm, is real and in the interval |zP | < w1/2.

Now suppose that e2 > x0 > e3, so that P is in the other real component.
Now zP = xP + w2/2 where xP is real, and it suffices to compute xP . To do
this we may replace P by P ′ = P + (e3, 0) which is in the identity component
and has elliptic logarithm equal to xP . A short calculation shows that we may
compute xP using the usual iteration, with the positive real initial values

r′ = a0/
√
e1 − x0; t′ = r′y0/2(x0 − e3).
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8.6.2 Curves with negative discriminant

As in 6.3, we order the roots so that e1 is real and ℑe2 > 0. Set a0 =
√
e1 − e3 =

x+ yi where x, y > 0. The real period is w1 = π/M(a0, b0) = π/M(x,R) where
R = |a0|. Now let

√
x0 − e3 = u + iv with u, v > 0, and then set the initial

values of r and t to r1 = (u+ iv)/(u− iv) and t1 = −y0/2(u2 + v2).
Applying the first step in the iteration, we find that a1 = x and b1 = R, and

also that r2 =
√

ux/(ux+ vy), where the quantity inside the square root is real
and positive, so we may take r2 > 0 also, and t2 = r2t1 which is also real and
with the opposite sign to y0. Now the rest of the iteration may be carried out
using real values for all quantities, and again the output value zP is real and
satisfies |zP | < w1/2.

9 Examples

In the following examples, we will illustrate our method for computing the
period lattices of elliptic curves over C, and the elliptic logarithms of complex
points. These examples were computed using the MAGMA implementation by
the second author. All complex numbers in our examples are computed correctly
up to 100 decimal places, but only the first 20 decimal places will be shown.
Note that we implemented our own function for computing optimal AGM values,
since the standard function in MAGMA does not always return an optimal one.

Example 1. Let E be the elliptic curve over C given by the Weierstrass equa-
tion

E : Y 2 = 4(X − e1)(X − e2)(X − e3)

with
e1 = 3− 2i, e2 = 1 + i, e3 = −4 + i.

Observe that
∑3

j=1 ej = 0. We will compute the period lattice of E using the
method described in Theorem 21. To do this, first we let E0 = E and calculate

a0 =
√
e1 − e3, b0 =

√
e1 − e2, c0 =

√

a20 − b20,

where the signs of a0, b0, c0 are chosen so that (11) holds, i.e.

|a0 − b0| ≤ |a0 + b0|, |a0 − c0| ≤ |a0 + c0|, |c0 − ib0| ≤ |c0 + ib0|.

In this example, one can verify that such a0, b0, c0 are

a0 = 2.70331029534753078867 . . .− i0.55487525889334275023 . . .

b0 = 1.67414922803554004044 . . .− i0.89597747612983812471 . . .

c0 = 2.23606797749978969640 . . . .

In fact, all conditions in (11) are strictly inequalities in this case, so the period
lattice of E is non-rectangular. By Theorem 21, we have

w1 = 1.29215151748713051904 . . .+ i0.44759218107818896608 . . .

w2 = 1.42661373451784507587 . . .− i0.80963848056301882107 . . .

w3 = −0.13446221703071455682 . . .+ i1.25723066164120778715 . . .
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and any two of wj form a Z-basis for Λ (where Λ is the period lattice of E). In
our computation, we also have |w1 −w2 −w3| ≈ 10−100. As expected, these wj

are minimal coset representatives of 2Λ in Λ.

Next, we wish to compute an elliptic logarithm of the point

P = (2− i, 8 + 4i) ∈ E(C)

(which has infinite order). Using a0, b0 as above, Algorithm 28 gives

zP = −0.72212997914002299126 . . .+ i0.01717122412650902249 . . . .

Note that zP is only well-defined modulo Λ. Depending on the basis for
Λ, the value zP obtained using Algorithm 28 may not lie in the fundamental
parallelogram spanned by that basis. In our case, one can check that

zP = (−0.33249952362000772434 . . .)w1 − (0.20502411273191295799 . . .)w2

≡ (0.66750047637999227565 . . .)w1 + (0.79497588726808704200 . . .)w2,

and so zP is not in the fundamental parallelogram spanned by {w1, w2}. Finally,
one may verify that, to the given precision, we have, as expected,

℘Λ(zP ) = x(P ), ℘′
Λ(zP ) = y(P ),

and
℘Λ(w1/2) = e1, ℘Λ(w2/2) = e2, ℘Λ(w3/2) = e3,

and ℘′
Λ(wj/2) ≈ 0 for all j = 1, 2, 3.

Example 2 (Rectangular Lattice). Let E be the elliptic curve over C given the
Weierstrass equation

E : Y 2 = 4(X − e1)(X − e2)(X − e3)

with
e1 = 1 + 3i, e2 = −4− 12i, e3 = 3 + 9i.

Observe that
∑3

j=1 ej = 0 and all ej are collinear. By letting E0 = E and
computing a0, b0, c0 as before, we have

a0 = 1.47046851723128684330 . . .− i2.04016608641756892919 . . .

b0 = −3.22578581905571472955 . . .− i2.32501487101070997214 . . .

c0 = 2.75099469475848456460 . . .− i3.81680125374499001591 . . . .

This time, however, we have |a0− b0| = |a0+ b0|, while the other two conditions
in (11) are strictly inequalities. Hence we have two minimal elements (up to
sign) in one coset of 2Λ in Λ (where Λ is the period lattice of E), and so Λ is
rectangular.

To derive an orthogonal basis for Λ, first we let w,w′ = π/M(a0,±b0). In
this example, we have

w = −0.29920293143872535713 . . .+ i1.10940038117892953702 . . .

w′ = 1.14708588706988127437 . . .+ i0.06697438037476960963 . . . .
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One can check |w| = |w′|. Let w1 = (w + w′)/2 and w2 = (w − w′)/2. Then
w1, w2 form an orthogonal basis for Λ, as proved in Lemma 5. Here, we have

w1 = 0.42394147781557795862 . . .+ i0.58818738077684957333 . . .

w2 = −0.72314440925430331575 . . .+ i0.52121300040207996369 . . . .

Note that ℜ(w2/w1) = 0, so both {w1, w2} is indeed an orthogonal basis for Λ.

Let zP be an elliptic logarithm of the point P = (3 + 2i, 28 − 14i) ∈ E(C)
(note that P has infinite order). Algorithm 28 shows that

zP = −0.42599662534207481578 . . .− i0.02491254923738153924 . . .

≡ (0.62858224538977667533 . . .)w1 + (0.37134662195976180031 . . .)w2.

Finally, we verify that

|℘Λ(zP )− x(P )| ≈ 10−98, |℘′
Λ(zP )− y(P )| ≈ 10−97.

Moreover, we have

|℘Λ (w1/2)− e2| ≈ 10−99

|℘Λ (w2/2)− e3| ≈ 0

|℘Λ (w/2)− e1| ≈ 10−99,

and

|℘′
Λ(w1/2)| ≈ 10−99, |℘′

Λ(w2/2)| ≈ 10−99, |℘′
Λ(w/2)| ≈ 10−100.

Example 3. Let K = Q(θ) where θ is a root of the polynomial x3 − 2. Let E
be the elliptic curve defined over K given by the Weierstrass equation

E : Y 2 = 4(X − θ)(X − 1)(X + 1 + θ).

Note that K has one real embedding and one pair of complex embeddings. Let
E1, E2 be the real and complex embedding of E respectively, i.e.

E1 : Y 2 = 4(X − 3
√
2)(X − 1)(X + 1 +

3
√
2)

E2 : Y 2 = 4(X − ω
3
√
2)(X − 1)(X + 1+ ω

3
√
2)

where ω = exp(2πi/3) is a cube root of unity. Since E1 has three real roots,

then the period lattice of E1 is rectangular. In fact, by letting e
(0)
1 = 3

√
2, e

(0)
2 =

1, e
(0)
3 = −1− 3

√
2, we can compute a0, b0, c0 satisfying (11) as

a0 = 1.87612422291002530767 . . .

b0 = 0.50982452853395859808 . . .

c0 = 1.80552514518487755254 . . . .

One can then verify that |c0 − ib0| = |c0 + ib0|. As before, we compute

w =
π

M(c0, ib0)
= 2.90130425944817643666 . . .− i1.70677932803214980295 . . .

w′ =
π

M(c0,−ib0)
= w̄,
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and let w1, w2 = (w ± w′)/2. Then w1, w2 form an orthogonal basis for the
period lattice of E1. In this example, we have w1 = ℜ(w) and w2 = iℑ(w).

Nevertheless, the period lattice of E2 is non-rectangular, since all roots of

E2 are not collinear. In fact, by letting e
(0)
1 = −1 − ω 3

√
2, e

(0)
2 = 1, e

(0)
3 = ω 3

√
2

(here we must ensure that a0, b0, c0 satisfy (11)), we have

a0 = 1.10851094368231305521 . . .− i0.98431471713501219051 . . .

b0 = 0.43669517024285334726 . . .− i1.24929666083200513980 . . .

c0 = 1.34004098848655674756 . . .− i0.40712323180652750769 . . . .

One can check that all conditions in (11) are strictly inequalities, hence this also
confirms that the period lattice of E2 is non-rectangular. By Theorem 21, we
finally obtain

w1 = 1.28194824894788708942 . . .+ i1.88277404359595361782 . . .

w2 = 2.36557653380849535471 . . .− i0.03808700290170419307 . . .

w3 = −1.08362828486060826529 . . .+ i1.92086104649765781090 . . .

with |w1 − w2 − w3| ≈ 10−100.

Example 4. Let E be the elliptic curve over C given by the Weierstrass equa-
tion

E : Y 2 = 4(X − e1)(X − e2)(X − e3)

with
e1 = −1− 3i, e2 = 3 + i, e3 = −2 + 2i.

Observe that
∑3

j=1 ej = 0 and |e1 − e3| = |e2 − e3|. Thus e1, e2, e3 are on an
isosceles triangle. By letting E0 = E and computing a0, b0, c0 as before, we have

a0 = 1.74628455779589152702 . . .− i1.43161089573822132705 . . .

b0 = 0.91017972112445468260 . . .− i2.19736822693561993207 . . .

c0 = 2.24711142509587014360 . . .− i0.22250788030178260411 . . . .

Hence by Theorem 21, we obtain

w1 = 0.81646689790312614904 . . .+ i1.10773333340066743861 . . .

w2 = 1.36061503191563570645 . . .− i0.20595647167234558716 . . .

w3 = −0.54414813401250955741 . . .+ i1.31368980507301302578 . . .

with |w1−w2 −w3| ≈ 10−100. In addition, one can check that ℜ(w1/w3) = 1/2
as claimed in Section 6.3. Let Λ be the period lattice of E. We finally verify
that |℘Λ(wj/2)− ej | ≈ 10−100 for all j = 1, 2, 3, and

|℘′
Λ(w1/2)| ≈ 10−99, |℘′

Λ(w2/2)| ≈ 10−100, |℘′
Λ(w3/2)| ≈ 10−99.
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