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A GENERALIZATION OF THE WEAK AMENABILITY
OF SOME BANACH ALGEBRA

KAZEM HAGHNEJAD AZAR AND ABDOLHAMID RIAZI

Abstract. Let A be a Banach algebra and A∗∗ be the second dual of it. We
show that by some new conditions, A is weakly amenable whenever A∗∗ is weakly
amenable. We will study this problem under generalization, that is, if (n+2)−th

dual of A, A(n+2), is T − S−weakly amenable, then A(n) is T − S−weakly
amenable where T and S are continuous linear mappings from A(n) into A(n).

1. Preliminaries and Introduction

Let A be a Banach algebra and A∗, A∗∗, respectively, are the first and second dual
of A. For a ∈ A and a′ ∈ A∗, we denote by a′a and aa′ respectively, the functionals
on A∗ defined by 〈a′a, b〉 = 〈a′, ab〉 = a′(ab) and 〈aa′, b〉 = 〈a′, ba〉 = a′(ba) for all
b ∈ A. The Banach algebra A is embedded in its second dual via the identification
〈a, a′〉 - 〈a′, a〉 for every a ∈ A and a′ ∈ A∗. Arens [1] has shown that given any
Banach algebra A, there exist two algebra multiplications on the second dual of A
which extend multiplication on A. In the following, we introduce both multiplication
which are given in [13]. The first (left) Arens product of a′′, b′′ ∈ A∗∗ shall be simply
indicated by a′′b′′ and defined by the three steps:

〈a′a, b〉 = 〈a′, ab〉,

〈a′′a′, a〉 = 〈a′′, a′a〉,

〈a′′b′′, a′〉 = 〈a′′, b′′a′〉.

for every a, b ∈ A and a′ ∈ A∗. Similarly, the second (right) Arens product of
a′′, b′′ ∈ A∗∗ shall be indicated by a′′ob′′ and defined by :

〈aoa′, b〉 = 〈a′, ba〉,

〈a′oa′′, a〉 = 〈a′′, aoa′〉,

〈a′′ob′′, a′〉 = 〈b′′, a′ob′′〉.

for all a, b ∈ A and a′ ∈ A∗.
We say that A is Arens regular if both multiplications are equal. Let a′′ and b′′ be
elements of A∗∗. By Goldstine,s Theorem [6, P.424-425], there are nets (aα)α and
(bβ)β in A such that a′′ = weak∗ − limαaα and b′′ = weak∗ − limβbβ. So it is easy
to see that for all a′ ∈ A∗,

limαlimβ〈a
′, aαbβ〉 = 〈a′′b′′, a′〉

and
limβlimα〈a

′, aαbβ〉 = 〈a′′ob′′, a′〉.
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Thus A is Arens regular if and only if for every a′ ∈ A∗, we have

limαlimβ〈a
′, aαbβ〉 = limβlimα〈a

′, aαbβ〉.

For more detail see [6, 13, 15].
Let X be a Banach A − bimodule. A derivation from A into X is a bounded linear
mapping D : A → X such that

D(xy) = xD(y) +D(x)y for all x, y ∈ A.

The space of continuous derivations from A into X is denoted by Z1(A,X).
Easy example of derivations are the inner derivations, which are given for each x ∈ X
by

δx(a) = ax− xa for all a ∈ A.

The space of inner derivations from A into X is denoted by N1(A,X). The Banach
algebra A is said to be a amenable, when for every Banach A − bimodule X , the
inner derivations are only derivations existing from A into X∗. It is clear that A is
amenable if and only if H1(A,X∗) = Z1(A,X∗)/N1(A,X∗) = {0}.
A Banach algebra A is said to be a weakly amenable, if every derivation from
A into A∗ is inner. Similarly, A is weakly amenable if and only if H1(A,A∗) =
Z1(A,A∗)/N1(A,A∗) = {0}.
Suppose that A is a Banach algebra and X is a Banach A− bimodule. According to
[5, pp.27 and 28], X∗∗ is a Banach A∗∗ − bimodule, where A∗∗ is equipped with the
first Arens product.
Let A(n) and X(n) be n − th dual of A and X , respectively. By [19, page 4132-
4134], if n ≥ 0 is an even number, then X(n) is a Banach A(n) − bimodule. Then for
n ≥ 2, we define X(n)X(n−1) as a subspace of A(n−1), that is, for all x(n) ∈ X(n),
x(n−1) ∈ X(n−1) and a(n−2) ∈ A(n−2) we define

〈x(n)x(n−1), a(n−2)〉 = 〈x(n), x(n−1)a(n−2)〉.

If n is odd number, then for n ≥ 1, we define X(n)X(n−1) as a subspace of A(n), that
is, for all x(n) ∈ X(n), x(n−1) ∈ X(n−1) and a(n−1) ∈ A(n−1) we define

〈x(n)x(n−1), a(n−1)〉 = 〈x(n), x(n−1)a(n−1)〉.

If n = 0, we take A(0) = A and X(0) = X .
Now let X be a Banach A − bimodule and D : A → X be a derivation. A problem
which is of interest is under what conditions D′′ is again a derivation. In [14, 5.9
], this problem has been studied for the spacial case X = A, and they showed that
D′′ is a derivation if and only if D′′(A∗∗)A∗∗ ⊆ A∗. We study this problem in the
generality, that is, if A(n+2) is T − S−weakly amenable, then it follows that A(n) is
T − S− weakly amenable where T and S are continuous linear mapping from A(n)

into A(n) and n ≥ 0.
The main results of this paper can be summarized as follows:
a) Assume that A is a Banach algebra and A(n+2) has T − w∗w property. If A(n+2)

is weakly T ′′ − S′′−amenable, then A(n) is weakly T − S−amenable.
b) Let X be a Banach A− bimodule and let T, S : A(n) → A(n) be continuous linear
mappings. Let the mapping a(n+2) → x(n+2)T ′′(a(n+2)) be weak∗-to-weak continu-
ous for all x(n+2) ∈ X(n+2). Then if D : A(n) → X(n+1) is a T − S − derivation, it
follows that D′′ : A(n+2) → X(n+3) is a T ′′ − S′′ − derivation.
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c) Let X be a Banach A−bimodule and the mapping a′′ → x′′a′′ be weak∗−to−weak
continuous for all x′′ ∈ X∗∗. If D : A → X∗ is a derivation, then D′′(A∗∗)X∗∗ ⊆ A∗.
d) Let X be a Banach A − bimodule and D : A → X∗ be a derivation. Suppose
that D′′ : A∗∗ → X∗∗∗ is surjective derivation. Then the mapping a′′ → x′′a′′ is
weak∗ − to− weak continuous for all x′′ ∈ X∗∗.
e) Suppose that X is a Banach A − bimodule and A is Arens regular. Assume that
D : A → X∗ is a derivation and surjective. Then D′′ : A∗∗ → X∗∗∗ is a derivation if
and only if the mapping a′′ → x′′a′′ is weak∗− to−weak continuous for all x′′ ∈ X∗∗.
In every parts of this paper, n ≥ 0 is even number.

2. Weak amenability of Banach algebras

Definition 2-1. Let X be a Banach A − bimodule and T , S be continuous linear
mappings from A into itself. We say that D : A → X is T − S − derivation, if

D(xy) = T (x)D(y) +D(x)S(y) for all x, y ∈ A.

Now let x ∈ A. Then we say that the linear mapping δx : A → A is inner
T − S − derivation, if for every a ∈ A we have δx(a) = T (a)x− xS(a).
The Banach algebra A is said to be a T − S−amenable, when for every Banach
A−bimodule X , every T −S−derivations from A into X∗ is inner T −S−derivations.
The definition of weakly T − S− amenable is similar.

Definition 2-2. Assume that A is a Banach algebra and T : A → A is a continuous
linear mapping such that the mapping b′′ → a′′T ′′(b′′) : A∗∗ → A∗∗ is weak∗ − to−
weak continuous where a′′ ∈ A∗∗. Then we say that a′′ ∈ A∗∗ has T −w∗w property.
We say that B ⊆ A∗∗ has T − w∗w property, if every b ∈ B has T − w∗w property.

Let A be a Banach algebra and A∗∗ has I − w∗w property whenever I : A → A is
the identity mapping. Then, obviously that A is Arens regular. There are some non-
reflexive Banach algebras which the second dual of them have T −w∗w property. If A
is Arens regular, then, in general, A∗∗ has not I −w∗w property. In the following we
give some examples from Banach algebras that the second dual of them have T −w∗w
property or no.

(1) Let A be a non-reflexive Banach space and suppose that 〈f, x〉 = 1 for some
f ∈ A∗ and x ∈ A. We define the product on A as ab = 〈f, a〉b for all a, b ∈ A.
It is clear that A is a Banach algebra with this product, then A∗∗ has I−w∗w
property whenever I : A → A is the identity mapping.

(2) Every reflexive Banach algebra has T − w∗w property.
(3) Consider the algebra c0 = (c0, .) is the collection of all sequences of scalars

that convergence to 0, with the some vector space operations and norm as
ℓ∞. Then c∗∗0 = ℓ∞ has I−w∗w property whenever I : c0 → c0 is the identity
mapping.

(4) L1(G)∗∗ and M(G)∗∗ have not I −w∗w property whenever G is locally com-
pact group, but when G is finite, L1(G)∗∗ and M(G)∗∗ have I−w∗w property.
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Theorem 2-3. Assume that A is a Banach algebra and A(n+2) has T−w∗w property.
If D : A(n) → A(n+1) is a T − S − derivation, then D′′ : A(n+2) → A(n+3) is a
T ′′ − S′′ − derivation.

Proof. Let a(n+2), b(n+2) ∈ A(n+2) and let (a
(n)
α )α, (b

(n)
β )β ⊆ A(n) such that a

(n)
α

w∗

→

a(n+2) and b
(n)
β

w∗

→ b(n+2). Due to A(n+2) has T−w∗w property, we have c(n+2)T (a
(n)
α )

w
→

c(n+2)T ′′(a(n+2)) for all c(n+2) ∈ A(n+2). Using the weak∗ − to−weak∗ continuity of
D′′, we obtain

limαlimβ〈T (a
(n)
α )D(b

(n)
β ), c(n+2)〉 = limαlimβ〈D(b

(n)
β ), c(n+2)T (a(n)α )〉

= limα〈D
′′(b(n+2)), c(n+2)T (a(n)α )〉 = 〈D′′(b(n+2)), c(n+2)T ′′(a(n+2))〉

= 〈T ′′(a(n+2))D′′(b(n+2)), c(n+2)〉.

Moreover, it is also clear that for every c(n+2) ∈ A(n+2), we have

limαlimβ〈D(a(n)α )S(b
(n)
β ), c(n+2)〉 = 〈D′′(a(n+2))S′′(b(n+2)), c(n+2)〉.

Notice that in latest equalities, we didn’t need S − w∗w property for A(n+2). In the
following, we take limit on the weak∗ topologies. Thus we have

D′′(a(n+2)b(n+2)) = limαlimβD(a(n)α b
(n)
β ) = limαlimβT (a

(n)
α )D(b

(n)
β )+

limαlimβD(a(n)α )S(b
(n)
β ) = T ′′(a(n+2))D′′(b(n+2)) +D′′(a(n+2))S′′(b(n+2)).

�

Theorem 2-4. Assume that A is a Banach algebra and A(n+2) has T−w∗w property.
If A(n+2) is weakly T ′′ − S′′−amenable, then A(n) is weakly T − S−amenable.

Proof. Let D : A(n) → A(n+1) is a T − S − derivation, then by Theorem 2-3, D′′ :
A(n+2) → A(n+3) is a T ′′ − S′′ − derivation. Since A(n+2) is weakly T ′′ − S′′−
amenable, D′′ : A(n+2) → A(n+3) is an inner T ′′ − S′′ − derivation. It follows that
for every a(n+2) ∈ A(n+2), we have

D′′(a(n+2)) = T ′′(a(n+2))a(n+3) − a(n+3)S′′(a(n+2)).

for some a(n+3) ∈ A(n+3). Take a(n+1) = a(n+3) |A(n+1) . Then for every a(n) ∈ A(n),
we have

D(a(n)) = T (a(n))a(n+1) − a(n+1)S(a(n)).

It follows that D is inner T − S−derivation, and so proof is hold.
�

Corollary 2-5. Let A be a Banach algebra and I : A → A be identity mapping. If
A∗∗ has I − w∗w property and A∗∗ is weakly amenable, then A is weakly amenable.

Corollary 2-6. Let A be a Banach algebra. If A∗∗∗A∗∗ ⊆ A∗ and A∗∗ is weakly
amenable, then A is weakly amenable.
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Proof. We show that A∗∗ has I−w∗w property where I : A → A is identity mapping.

Suppose that a′′, b′′ ∈ A∗∗ and b′′α
w∗

→ b′′. Let c′′′ ∈ A∗∗∗. Since c′′′a′′ ∈ A∗, we have

〈c′′′, a′′b′′α〉 = 〈c′′′a′′, b′′α〉 = 〈b′′α, c
′′′a′′〉 → 〈b′′, c′′′a′′〉 = 〈c′′′, a′′b′′〉.

We conclude that a′′b′′α
w
→ a′′b′′. So A∗∗ has I − w∗w property. By using Corollary

2-5, A is weakly amenable.
�

Example 2-7. c0 is weakly amenable.

Proof. Since ℓ∞ = c∗∗0 is weakly amenable and ℓ∞ has I−w∗w property by Corollary
2-5, proof is hold.

�

Theorem 2-8. Suppose that A is a Banach algebra and B is a closed subalgebra of
A(n+2) that is consisting of A(n) where n ∈ N ∪ {0}. If B has T −w∗w property and
is weakly T ′′ − S′′−amenable, then A(n) is weakly T − S−amenable.

Proof. Suppose that D : A(n) → A(n+1) is a T − S − derivation and p : A(n+3) → B′

is the restriction map, defined by P (a(n+3)) = a(n+3) |B′ for every a(n+3) ∈ A(n+3).
Since B has T − w∗w property, D̄ = PoD′′ |B: B → B′ is a T ′′ − S′′ − derivation.
Since B is weakly T ′′ − S′′−amenable, there is b′ ∈ B′ such that D̄ = δb′ . We take
a(n+1) = b′ |A(n+1) , then D = D̄ on A(n+1). Consequently, we have D = δa(n+1) .

�

Theorem 2-9. Let X be a Banach A − bimodule and let T, S : A(n) → A(n)

be continuous linear mappings. Let the mapping a(n+2) → x(n+2)T ′′(a(n+2)) be
weak∗-to-weak continuous for all x(n+2) ∈ X(n+2). If D : A(n) → X(n+1) is a
T − S − derivation, then D′′ : A(n+2) → X(n+3) is a T ′′ − S′′ − derivation.

Proof. Let a(n+2), b(n+2) ∈ A(n+2) and let (a
(n)
α )α, (b

(n)
β )β ⊆ A(n) such that a

(n)
α

w∗

→

a(n+2) and b
(n)
β

w∗

→ b(n+2). Then for all x(n+2) ∈ X(n+2), we have x(n+2)T (a
(n)
α )

w
→

x(n+2)a(n+2). Consequently, we have

limαlimβ〈T (a
(n)
α )D(b

(n)
β ), x(n+2)〉 = limαlimβ〈D(b

(n)
β ), x(n+2)T (a(n)α )〉

= limα〈D
′′(b(n+2)), x(n+2)T (a(n)α )〉 = 〈D′′(b(n+2)), x(n+2)T (a(n+2))〉

= 〈T (a(n+2))D′′(b(n+2)), x(n+2)〉.

For every x(n+2) ∈ X(n+2), we have also the following equalities

limαlimβ〈D(a(n)α )S(b
(n)
β ), x(n+2)〉 = limαlimβ〈D(a(n)α ), S(b

(n)
β )x(n+2)〉

= limα〈D(a(n)α ), S(b(n+2))x(n+2)〉 = 〈D′′(a(n+2)), S(b(n+2))x(n+2)〉

= 〈D′′(a(n+2))S(b(n+2)), x(n+2)〉.

In the following, we take limit on the weak∗ topologies. Using the weak∗− to−weak∗

continuity of D′′, we obtain

D′′(a(n+2)b(n+2)) = limαlimβD(a(n)α b
(n)
β ) = limαlimβT (a

(n)
α )D(b

(n)
β )+

limαlimβD(a(n)α )S(b
(n)
β ) = T ′′(a(n+2))D′′(b(n+2)) +D′′(a(n+2))S′′(b(n+2)).
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Thus D′′ : A(n+2) → X(n+3) is a T ′′ − S′′ − derivation.
�

Corollary 2-10. Let X be a Banach A − bimodule and the mapping a′′ → x′′a′′

be weak∗ − to − weak continuous for all x′′ ∈ X∗∗. Then, if H1(A∗∗, X∗∗∗) = 0, it
follows that H1(A,X∗) = 0.

Corollary 2-11. Let X be a Banach A− bimodule and the mapping a′′ → x′′a′′ be
weak∗ − to− weak continuous for all x′′ ∈ X∗∗. If D : A → X∗ is a derivation, then
D′′(A∗∗)X∗∗ ⊆ A∗.

Proof. By using Theorem 2-9 and [14, Corollary 4-3], proof is hold.
�

Theorem 2-12. Let X be a Banach A− bimodule and D : A → X∗ be a surjective
derivation. Suppose that D′′ : A∗∗ → X∗∗∗ is also a derivation. Then the mapping
a′′ → x′′a′′ is weak∗ − to− weak continuous for all x′′ ∈ X∗∗.

Proof. Let a′′ ∈ A∗∗ such that a′′α
w∗

→ a′′. We show that x′′a′′α
w
→ x′′a′′ for all x′′ ∈ X∗∗.

Suppose that x′′′ ∈ X∗∗∗. Since D′′(A∗∗) = X∗∗∗, by using [14, Corollary 4-3], we
conclude that X∗∗∗X∗∗ = D′′(A∗∗)X∗∗ ⊆ A∗. Then x′′′x′′ ∈ A∗, and so we have the
following equality

〈x′′′, x′′a′′α〉 = 〈x′′′x′′, a′′α〉 = 〈a′′α, x
′′′x′′〉 → 〈a′′, x′′′x′′〉 = 〈x′′′, x′′a′′〉.

�

Corollary 2-13. Suppose that X is a Banach A− bimodule and A is Arens regular.
Assume that D : A → X∗ is a surjective derivation. Then D′′ : A∗∗ → X∗∗∗ is a
derivation if and only if the mapping a′′ → x′′a′′ from A∗∗ into X∗∗ is weak∗ − to−
weak continuous for all x′′ ∈ X∗∗.

Proof. By using Corollary 2-11, Theorem 2-12 and [14, Corollary 4-3], proof is hold.
�

In the proceeding Corollary, if we omit the Arens regularity of A, then we have
also the following conclusion.
Assume that D : A → X∗ is a surjective derivation. Then, D′′(A∗∗)X∗∗ ⊆ A∗ if and
only if the mapping a′′ → x′′a′′ is weak∗ − to− weak continuous for all x′′ ∈ X∗∗.

Corollary 2-14. Let A be a Banach algebra. Then we have the following results:

(1) Assume that A is Arens regular and D : A → A∗ is a surjective derivation.
Then D′′ : A∗∗ → A∗∗∗ is a derivation if and only if A has I − w∗w property
whenever I : A → A is the identity mapping.

(2) Assume that D : A → A∗ is a surjective derivation. Then, A has I − w∗w
property if and only if D′′(A∗∗)A∗∗ ⊆ A∗. So it is clear that if D : A → A∗ is
a surjective derivation and D′′(A∗∗)A∗∗ ⊆ A∗, then A is Arens regular.
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Problem. Let S be a semigroup. Dose C(S)∗∗, L1(S)∗∗ and M(S)∗∗ have I − w∗w
property? whenever I is the identity mapping.
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