
MHD Simulations of Parker Instability Undergoing Cosmic-Ray Diffusion:
Effect of the Initial Equilibrium Conditions on Mixing

Ying-Yi Lo, Chih-Yueh Wang1,

Department of Physics, Chung-Yuan Christian University, 200 Chung-Pei Road, Chung-Li, Taiwan 32023

Abstract

Parker instability arises from the presence of magnetic fields in a plasma such as the interstellar medium (ISM),
wherein the magnetic buoyant pressure expels the gas and causes the gas to move along the field lines. The subse-
quent gravitational collapse of the plasma gas is thought to be responsible for the formation of giant molecular clouds
in the Galaxy. The process of clump formation in the ISM near the Galactic plane is investigated. The initial ISM
is assumed to consist of two fluids: plasma gas and cosmic-ray particles, in hydrostatic equilibrium, coupled with a
uniform, azimuthally-aligned magnetic field. The evolution of the instability is explored in two models: an isothermal
exponential-declining density model and a two-layered, hyperbolic tangent temperature model. After a small pertur-
bation, the unstable gas aggregates at the bottom of the magnetic loops and forms dense blobs. The growth rate of the
instability decreases as the coupling between the cosmic rays and the plasma becomes stronger (meaning a smaller
CR diffusion coefficient). The mixing is enhanced by the cosmic-ray diffusion, while the shape of the condensed gas
depends sensitively on the initial equilibrium conditions. In the hyperbolic tangent temperature model, a more con-
centrated and round shape of clumps like the giant molecular cloud is observed at the foot points of rising magnetic
arches. Conversely, in the exponential density model, a filamentary morphology of the clumpy structure is attained.
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1. Introduction

Parker (1966) first identified the instability of a
gravitationally stratified gaseous disk in a magneto-
hydrostatic equilibrium, like the Galaxy, in response
to perturbations due to magnetic buoyancy, if perturba-
tions occur in the magnetic field lines that lie parallel
to the disk plane. This phenomenon is referred to as
magnetic buoyancy instability (Hughes & Proctor 1988;
Tajima & Shibata 1997) or, in astronomical literature,
Parker instability (Parker 1966; 1979). Solar magnetic
activities such as sunspots, which is attributed to the
emergence of magnetic flux tubes from the interior of
the sun into the solar atmosphere (Zwaan 1985, 1987),
also reflect this instability. Early observational evidence
related to Parker instability had been proposed by Ap-
penzeller (1971). Giant dense CO molecular loops close
to the Galactic center support Parker instability (Fukui
et al., 2006). As is expected, gas aggregating at the foot-
point of the rising magnetic loops eventually collapses,
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becoming a giant cloud and a region that hosts stellar
formations. A more recent findings of the mushroom
shape of the hydrogen cloud GW 123.4-1.5 Baek, Ku-
doh & Tomisaka (2008) also suggested magnetic floata-
tion and, hence, Parker instability. However, Hanasz
et al. (2004) found that for galactic dynamo models,
the efficiency of sustaining the galactic magnetic field
can be improved if the effect of cosmic rays is incorpo-
rated. Actually, in Parker’s original concept of instabil-
ity, the role of cosmic rays has been considered, because
the cosmic-ray pressure functions just like the magnetic
pressure, capable of overpowering the gas pressure in-
side the magnetic flux tube and making it easier for the
gas to rise.

Cosmic rays are a major component in the interstel-
lar medium (ISM) in galaxies, whose energy density is
comparable to the kinetic and magnetic energy densities
of thermal plasma gas (Ferriére 2001). Cosmic rays are
high energy particles, of which, 90% are protons. As
long as their gyroradius is significantly smaller than the
characteristic spatial scales of the magnetic field, cos-
mic rays particles only propagate along the magnetic
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field lines. Although the velocity of cosmic-ray parti-
cles is close to the speed of light, the bulk motion of
cosmic rays is diffusive and the bulk speed is of the or-
der of Alfvén speed.

The morphology of this instability can exhibit two
modes, i.e. the undular mode (the wavenumber vector
k|| of the perturbation parallel to the magnetic field B),
and the interchange mode (k⊥ perpendicular to B). The
undular mode, also called Parker instability, is excited
by perturbations along the magnetic field lines, where
the falling gas creates a magnetic buoyancy greater than
the restoring magnetic tension. However, the inter-
change mode, known as flute instability or magnetic
Rayleigh-Taylor instability (Kruskal & Schwarzchild
1954), occurs for shorter-wavelength perturbations, ca-
pable of causing two straight flux tubes to interchange
and ultimately reducing the potential energy in the sys-
tem. The linear growth rate of the interchange mode
generally exceeds that of the undular mode owing to
the short wavelength. However, in the nonlinear stage,
the undular mode often dominates (Matsumoto et al,
1993; Tajima & Shibata 1997). Thus, the undular mode
(Parker instability) is more important than the inter-
change mode in astrophysical problems.

Baierlein (1983) and Matsumoto et al. (1988) per-
formed the first one- and two-dimensional (2D), pure
MHD simulations of Parker instability, respectively.
The findings are that in the nonlinear stage, the gas
condensates to form giant clouds; in addition, a shock
wave appears in the flow along the rising magnetic loop.
By applying the simulation results of Matsumoto et al.
(1988) to the solar atmosphere, Shibata et al. (1989b,
1990a) demonstrated that the emerging magnetic loop
still expands self-similarly during the nonlinar evolu-
tion in two dimensions. Kamaya et al. (1996) adopted
the supernova explosion as a perturbation in the ISM
to trigger nonlinear instability. Earlier, Nozawa (1992)
also examined the instability deeper in the convectively
unstable layer of the solar atmosphere; when consider-
ing how magnetic shear affects the flow (Hanawa, Mat-
sumoto, & Shibata 1992; Nozawa 2005), although the
interchange mode is stabilized, a large thin-structure
may still form. Shantanu et al. (1997) and Kim et al.
(2000) made a further application of Parker instability
to the Galactic disk without cosmic rays.

In Parker’s original analysis, the instability has a
maximum growth rate for non-zero k⊥, although non-
zero k|| is the main cause for the instability. In the
3D simulations for both solar and galactic problems
by Matsumoto & Shibata (1992) and Matsumoto et al.
(1993), the previous 2D results of cloud formation, pres-
ence of shock wave, and self-similar evolution are con-

firmed. However, the spatial and temporal scale in these
studies depends on the k⊥. If a larger k⊥ is applied,
the magnetic loop tends to have a thinner structure and
a horizontal expansion, which would suppresses the up-
ward expansion (Matsumoto et al. 1993). Similarly thin
structures have been found in other 3D simulations of
Kim et al. (1998, 2001, 2001) and Hanasz et al. (2002).

This study describes the evolution of Parker instabil-
ity undergoing cosmic-ray diffusion using 2D simula-
tions. Effects of the adiabatic index and the initial hy-
drostatic condition other than an isothermal temperature
and a uniform density profile are examined. Two initial
profiles are used, i.e. the hyperbolic tangent temperature
model, i.e. often used in the solar atmosphere, and the
exponential density model, i.e. appropriate for Galac-
tic problems. Various perturbation results are also ex-
plored. The physical parameters and initial conditions
invoked are particularly appropriate for a galactic ISM.
Section 2-5 details the governing equations, initial con-
ditions, and numerical approaches. Section 6 describes
the numerical algorithms results, while Section 7 dis-
cusses the results. Conclusions are finally drawn.

2. Governing Equations

This study investigates how cosmic rays affect a
MHD system. In this hydrodynamic approach, the cos-
mic rays and the thermal plasma are two fluid compo-
nents of a plasma system; the plasma fluid has a mass
density of ρ, a thermal pressure of Pg and a cosmic-ray
pressure of Pc, all of which are threaded by a frozen-in
magnetic field B. The cosmic-ray energy is described
based on the diffusion-convection equation (Drury &
Völk 1981; Jones & Kang 1990), with the cosmic rays
treated as a hot massless fluid. Additionally, the mo-
mentum spectrum of cosmic rays is neglected to sim-
plify the governing equations. The artificial separation
of the cosmic rays from the plasma helps to distinguish
the role played by high- and low-energy components.

This study investigates the Parker instability with re-
spect to how cosmic rays affect a uniformly-rotating
disk, with each fluid element under the influence of
external gravity from the Galactic center. Self-gravity
from the plasma gas is not included. A local rectangular
domain representing the corotating sheet of the Galactic
disk in the vertical plane is used for the simulations. The
horizontal component of the radially inward external
gravity is balanced by the centrifugal force. Therefore,
in the momentum equation, only the vertical component
of external gravity and the Coriolis force are present to
account for the rotation.
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The cosmic-ray diffusion-convection equation sup-
plements the standard set of ideal MHD equations. The
governing equations are written as

∂ρ

∂t
+ ∇ · (ρV) = 0, (1)

∂ρV
∂t

+ ∇ ·

[
ρVV + (Pg + Pc +

B2

8π
)I +

BB
4π

]
− ρg + 2ρΩ × V = 0, (2)

∂B
∂t

+ ∇ × (V × B) = 0, (3)

∂

∂t
(

Pg

γg − 1
+

1
2
ρV2 +

B2

8π
)

+ ∇·

[
(

γg

γg − 1
Pg +

1
2
ρV2)V +

c
4π

E×B
]

+ V·(∇Pc − ρg) = 0, (4)
∂

∂t
(

Pc

γc − 1
) + ∇ · (

γc

γc − 1
Pc)V − V · ∇Pc

− ∇ ·

[
←→κ ∇(

Pc

γc − 1
)
]

= 0. (5)

where V denotes the plasma fluid velocity; I denotes
a unit tensor; γg denotes the adiabatic index, i.e. ratio
of the heat capacity at a constant pressure to that at a
constant volume, of the thermal plasma gas; γc refers
to the adiabatic index of the cosmic rays;←→κ represents
the cosmic-ray diffusivity; Ω represents the rotation an-
gular frequency; and g is the external gravitational ac-
celeration. Deriving this equation set involves use of
the distribution function in Vlasov equation skilling75;
it has also been used in Kuwabara, Nakamura & Ko
(2004), and Lo, Ko & Wang (2010).

Notably, in addition to balancing the energy equa-
tions, the term cosmic-ray pressure Pc affects the mo-
mentum equation Eq.(2). However, particles of cosmic
rays do not interaction with plasma directly; they in-
teract with plasma via the magnetic field. On a micro-
scopic scale, resonant scattering of Alfvén waves keeps
the cosmic rays nearly isotropically distributed every-
where with respect to the thermal plasma background.
A situation in which the cosmic-ray pressure possesses
a gradient ∇ Pc influences the motion of the plasma gas.
Thus, the interaction of cosmic-ray particles with a ther-
mal plasma can be represented by the cosmic-ray pres-
sure Pc and its gradient. The transport of the cosmic-ray
pressure is described by a macroscopic diffusion coef-
ficient, ←→κ , an energy-weighted mean diffusion tensor,
defined as

←→κ = (κ‖ − κ⊥)b̂b̂ + κ⊥δi j, (6)

where b̂ denotes a unit vector along the B direction.
This model is limited mainly in that one must as-

sume a priori knowledge of the cosmic-ray pressure
and energy density that satisfies the adiabaitc index
γc = 1 + Pc/Ec. Here, Eqs.(1)-(5) are solved numeri-
cally in a local reference frame in Cartesian coordinates,
whose center lies at a galactocentric radius Ro and orbits
the galaxy with a fixed angular velocity Ω = Ω(Ro). In
this local frame, the radial, azimuthal, and vertical spa-
tial coordinates are related to the Cartesian coordinates
such that x = R − Ro, y = Ro(φ −Ω t), and z=z.

3. Normalization

The parameters and variables used in the governing
equations withstand an extremely large contrast when
expressed in dimensional units, possibly incurring sig-
nificant errors and thus infeasible for numerical calcu-
lations. To overcome such numerical difficulties, the
above equations are normalized to non-dimensional val-
ues that are close to unity. The non-dimensional values
is denoted by the superscript ”∗” while the scaling fac-
tors are denoted by a ”0” subscript. Some of the scaling
factors also represent the quantities in equilibrium at the
midplane of the Galactic disk.

The length variables are scaled based on the pressure
scale height H0:

x∗ = x/H0 , y∗ = y/H0 and z∗ = z/H0.

H0 is determined by integrating the hydrostatic equilib-
rium equation:

−

∫ Pg0/e

Pg0

dPg

Pg
=

∫ H0

0

γg gz

C2
s0(1 + 1/α + 1/β)

dz,

given the values of sound speed Cs0, the gravitational
acceleration gz in the z-direction, the ratio of plasma
pressure to magnetic pressure α, the ratio of plasma
pressure to cosmic-ray pressure β; and γg. The gas at
the Galactic disk plane is nearly isothermal such that
γg ≈ 1.0. The sound speed at the disk plane is

Cs0 = 10 (km/s) = 1.0 × 106 (cms−1). (7)

Thus, for α = β = 1 and gz = 2.28 × 10−8 (cms−2),

H0 = 50 (pc) = 1.54 × 1020 (cm). (8)

Given Cs0, the velocity is normalized to V∗ = V/Cs0,
and the time scaling factor τ0 is defined as H0/Cs0.

τ0 = H0/Cs0 = 1.54 × 1014 (sec) ∼ 5 (Myr). (9)
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The ISM density is used to normalize the density, with
ρ0 being about one atom per cubic cm in the ISM, or

ρ0 = 1.6 × 10−24 ( gcm−3), (10)

Given the above scalings, the mass equation Eq.(1) is
rewritten as

∂(ρ0ρ
∗)/∂(τ0t∗) + 1/H0∇

∗ · (ρ0ρ
∗Cs0V∗) = 0,

which is then converted into ∂ ρ∗/∂ t∗ + ∇∗ · (ρ∗V∗) = 0
using Eq.(9).

Similarly, the factor ρ0Cs0/(H0/Cs0) = ρ0C2
s0/H0 at

the left hand side of the momentum equation Eq.(2) is
balanced by the same factor at the right hand side. The
normalized plasma gas pressure is P∗g = Pg/Pg0, where

Pg0 = C2
s0ρ0 = 1.6 × 10−12 (g cm−2 s−2), (11)

and so the gradient of plasma pressure becomes
ρ0C2

s0
H0
∇∗P∗g.

Scaling of the cosmic-ray pressure also employs the
gas pressure, P∗c = Pc/Pg0. The scaling factor for the
magnetic field, B0, is determined by B2

0 = Pg0, and for
the Galaxy,

B0 =
√

Pg0 = 1.26 × 10−6 (gauss). (12)

In order normalize the momentum equation, the grav-
itational acceleration is scaled to

g0 =
C2

s0

H0
= 6.49 × 10−9 (cms−2), (13)

while the scaling factor for the rotating angular fre-
quency is the reverse of time:

Ω0 =
Cs0

H0
= 0.65 × 10−26 ( s−1). (14)

Using Eq.(8) to (14), the momentum equation Eq.(2),
the induction equation Eq.(3) and energy equation
Eq.(4) can all be converted to dimensionless values.

Finally, in Eq.(5), the cosmic-ray diffusion coefficient
κ is normalized to κ∗ = κ/κ0, where

κ0 = Cs0H0 = 1.54 × 1024 ( cm2s−1), (15)

and a maximum value of κ∗ = 200 is used.

4. Initial Equilibrium Backgound

This study adopts two initial equilibrium back-
grounds: a temperature distribution that follows a hy-
perbolic tangent profile and a density distribution that
follows an exponential profile. Both of these back-
grounds bear a declining density profile with height.

These backgrounds differ mainly in that the hyper-
bolic tangent model has a transition zone that divides
the distribution into two distinct regions, while the ex-
ponential model shows a smooth distribution. Given
the temperature or density profile, the profiles for the
density/temperature, pressure, magnetic field and other
variables are derived from the hydrostatic equation.

In the isothermal case the criteria for Parker insta-
bility to grow is d

dz (B/ρ) < 0. When the rising field
lines grow, the flow becomes unstable. In our cases, the
growth of the instability depends on additional parame-
ters such as the width of transition region and the height
of Galactic halo (disk thickness).

4.1. Hyperbolic Tangent Temperature

The hyperbolic tangent temperature profile is a two-
temperature, layered disk (Shibata et al. 1989a), de-
scribed by

C2
s (z) = T (z) = T0 + (Th − T0)

1
2

[tanh(
z − zh

wtr
) + 1],

where Cs(z) is the sound speed, T0 = 104 (K) is the
disk temperature and Th = 25T0 is the halo temperature.
The initial dimensionless temeprature is 1.0, equivalent
to 104 (K). Given the ideal gas law Pg =

ρT
γg

and the
gravitational acceleration gz, the initial density profile
is solved using the hydrostatic equation

d
dz

[(1 +
1
α

+
1
β

)Pg] + ρgz = 0. (16)

A constant acceleration gz is assumed because the grid
domain is small and not far way from the disk plane.
The dimensionless gravitational acceleration is set as
1.0/γg (dimensionless units), equivalent to 6.49/γg ×

10−9 (cms−2), or ∼ 6.18 × 10−9 (cms−2), if γg = 1.05.
Notably, this value is a little higher than the value de-
rived from observations of the spatial density distribu-
tion and the velocity-distance correlation 500 pc above
the disk midplane, 4 × 10−9 cms−2 (Oort 1960; Bahcall
1984; Kuijken & Gilmore 1989). Nevertheless, grav-
itational acceleration can vary widely from galaxy to
galaxy. The initial density at the disk plane is 1.0 (di-
mensionless units), equivalent to 1.6 × 10−24(g/cm3 ).

After obtaining the density profile, the plasma pres-
sure profile Pg = C2

sρ/γg is dervied. The magnetic
feld is assumed to align in the x-direction and vary with
height z, and Bx(z) =

√
8πPg/α.

The initial dimensionless pressure at the disk is 1.0,
(2 × 10−12 (g cm−2 s−2)). The initial magnetic field at
the disk for α = 1 is

√
8π ∼ 5 (dimensionless units), or

5B0 = 6.34 (µ gauss), This field strength is very close to
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the radio synchrotron measurement of 6 (µ gauss) aver-
aged over a radius of about 1 kpc around the Sun (Beck
2009) .

The initial cosmic-ray pressure at disk for β = 1 is
1.0 (dimensionless units), or 2×10−12 (g cm−2 s−2). The
rotating angular frequency Ω (not used in this work) is
a free parameter; Ω∗ = 1 gives 0.65 × 10−26 (s−1), or
approximately 7 times the angular freguency at our Sun,
Ω� = 220/7.6 (km s−1/kpc).

5. Grid Setup and Perturbation

2D simulations are performed in a rectangular do-
main in the x−z plane. To excite the instability, velocity
perturbations are added to the quiescient background.
Two perturbation forms are examined: eigen mode si-
nusoidal wave and random seed.

The sinusoidal perturbation employs a perturbing ve-
locity Vx described by

Vx = 0.05 Cs0 sin(
2π(x − x0)

λ
), (17)

where λ = 20H0 is the most unstable wavelength de-
rived from the linear analysis for κ‖ = 200 (Kuwabara,
Nakamura & Ko 2004). Vx is applied within the region
of 4H0 < z < 8H0 and |x − x0| < 1/2λ, where x0 = 40
(dimesionless unit). The grid consists of 102 × 301
zones in a rectangular region of 4 (kpc)×3.5 (kpc). The
horizontal length of each grid zone is ∆x = 0.8H0, while
the vertical length is nonuniform:

∆z =

{
0.15H0, 0 ≤ z < 25H0

min{1.05∆z,∆zmax}, otherwise ,

∆z is increased above z = 25H0 by a ratio of 1.05, until
∆zmax = 5∆ z (at z = 0). The upper grid domain acco-
modates the unperturbed magnetic field, and so spurious
outflows across the grid boundary is avoided.

For the random velocity perturbation (Shore &
Larosa 1999), a series of random velocities Vx and Vz

with a maximum amplitude of 5% is added horizontally
into the background (Chou et al. 2000). The grid covers
an area of 9 (kpc) × 11.5 (kpc) using 512 × 512 zones,
with ∆x = 0.35H0 and

∆z =

{
0.15H0, 0 ≤ z < 35H0

min{1.05∆z,∆zmax}, otherwise .

6. Numerical Algorithms

A hybrid finite difference method called time Split-
ting method or operator splitting method is employed

to solve the equations. Eqs.(1-4), are in the flux-
conservative form and are solved by 2-Steps Lax-
Wendroff explict method. The cosmic-ray energy equa-
tion Eq.(5) is divided into the convection and diffusion
parts. The convection part is first converted to a con-
servative form and then also solved by 2-Steps Lax-
Wendroff explict method. The diffusion part is sovled
by the biconjugate gradients stabilized (BICGStab) im-
plicity method.

In the 2-step Lax-Wendroff method, Eqs.(1-4) and the
convection part of Eq.(5) are rewritten in the conserva-
tive form:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= S , (18)

where U can be density ρ, momentums ρV, energy Eg

and magnetic field B; F,G,H are the flux of U in x-,y-,z-
direction; and S is the source term. The x component of
Eq.(18) is split into two steps:

Un+1/2
i+1/2 −

Un
i +Un

i+1
2

1/2∆t +
Fn

i+1−Fn
i

∆x + S n
i = 0

}
S tep1

Un+1
i −Un

i
∆t +

Fn+1/2
i+1/2 −Fn+1/2

i−1/2

∆x + S n+1/2
i = 0

}
S tep2.

(19)

where superscript n denotes time advection and sub-
script i represents space grid.

The diffusion part of Eq.(5) is written as:

∂Ec

∂t
− ∇ ·

[
←→κ ∇(Ec)

]
= 0,

whose finite-difference form is expressed as Ax = b,
where the submatrix in A = [A1,A2,A3,A4,A5,A6,A7]
and the vector b is the function of time step ∆t, the
cosmic-ray diffusion coefficient ←→κ , the magnetic field
B and the cosmic-ray energy En

c at the nth iteration. The
vector x is the unknown:

x = [En+1
c,i, j,k−1, E

n+1
c,i, j−1,k, E

n+1
c,i−1, j,k, E

n+1
c,i, j,k,

En+1
c,i+1, j,k, E

n+1
c,i, j+1,k, E

n+1
c,i, j,k+1]T . (20)

In order to solve x in Eq.(20), the BICGStab (Bi-
Conjugate Gradient Stabilized) method is employed.
This method can handle asymmetric linear systems and
reduce the operations per iteration to O(N2), where N
is the number of unknowns in the discretized domain,
and is more efficient than the direct solution methods
such as LU decomposition, which require O(N3) op-
erations. The BICGStab is an iteration method that
uses an initial guess x0 to find a corresponding resid-
ual r0 = b−Ax0, and then iterate to the i-th step ri to an
accepted value by means of bi-conjugate matrix-vector
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(a) (b)

Figure 1: Density contours at t ∼ 69 for (1) a case of hyperbolic
tangent temperature; (b) a case of exponential density.

operation. For comparison, when solving the nonlinear
system F(y) = 0 with Newton’s method:

yi = yi−1 −
F(yi−1)
F′(yi−1)

= yi−1 + δi,

the correction δi is determined by solving the gradient
of the function, whereas in the BICGStab method,

r̄ = r0 +
‖r0‖

‖yi−1‖
yi−1,

is used for the iteration. The BICGStab treatment for
cosmic-ray energy diffiusion equation is an implicit
method, and thus the CFL condition is not affected.

7. Results

7.1. Sinusoidal Perturbation
This section examines how cosmic-ray diffusion af-

fects Parker instability by comparing a series of pure
MHD simulations with simulations that include the
cosmic-ray effect. Figure 1 illustrates those results
using sinusoidal eigen mode perturbations. Figure
1a presents the hyperbolic tangent temperature model,
while Fig.1b displays the exponential density model at
the same epoch. Also included in these figures is a grid
domain of z ≤ 60 that just lies within the maximum
height of the magnetic loops. Logarithmic values of
variables in a dimensionless unit are presented in color
contours. White solid lines represent the magnetic field
lines, and small white arrows refer to the velocity vec-
tors. The superscript ”*” denoting dimensionless values
is omitted hereafter.

7.2. Cosmic-Ray Diffusion Coeffieicnt
Figure 2 compares the maximum height of the mag-

netic loops versus the cosmic-ray diffusion coefficient
κ‖ in both models at t = 33, when the numerical time

step becomes very restrained. A maximum of κ‖ = 200
(1.54 × 1024(cm2s−1)) is examined. In both models,
the instability becomes more prominent with an increas-
ing κ‖, and the mixing extends to a similarly maximum
height of z ∼ 55. Notably, since the gradient of cosmic-
ray pressure ∇ Pc declines with an increasing diffu-
sivity, cosmic-ray diffusion facilitates flow instability.
Kuwabara, Nakamura & Ko (2004) studied the insta-
bility in the hyperbolic tangent temperature case. Our
simulations reach a similar outcome for the growth rate.

The perpendicular or cross field lines diffusion coeffi-
cient κ⊥ (see Eq.6) is often substantially smaller than the
parallel coefficient κ‖, which is only around 2%− 4% of
κ‖. Notably, even at a value of 2% of κ‖, the effect of κ⊥
on the mixing is significant (Fig. 3a and 3b). However,
this finding contradicts the estimate made by linear anal-
ysis (Ryu et al. 2003). The role of cosmic rays makes
us speculate whether Parker instability contributes to the
galactic wind flow perpendicular to the galactic disk.

Figure 2: Maximum height of loops z versus cosmic-ray diffusion
coefficient κ‖.

7.3. Parameter α and β
The scale height H0 in Eq.(8) is a set for α = β = 1.

Varying α = Pg/PB modifies the length scale, result-
ing in different flow structures. Figure 4 presents snap-
shots of the hyperbolic tangent temperature model with
α = 10.0, which displays more prominent mixing than
the α = 1 case. Other parameters used are β = 1.0;
γg = 1.05; γc = 4/3; wtr = 0.6 (dimensionless units,
30 (pc) or 0.92 × 1020 (cm); zh = 18 (900 (pc) or
1.39 × 1023 (cm)); κ‖ = 2.0 (1.54 × 1023 (cm2s−1));
and κ⊥ = 0.0.

7.4. Parameter γg and wtr

The temperature distribution is assumed to be uni-
form in the exponential density model. In this case,
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(a) (b)

Figure 3: Density contours at t ∼ 33 for (a) hyperbolic tangent tem-
perature model; (b) exponential density model.

(a) log ρ (b) log Pg (c) log Pc

Figure 4: Snapshots of density, pressure, and cosmic-ray pressure
contours for hyperbolic tangent temperature model at t ∼ 33 with
α = 10.

modifying α and β changes only the isothermal temper-
ature value. Notably, the parameter β = Pg/Pc should
also influence the scale length (see Eq.(8). However,
because cosmic rays largely diffuse along the magnetic
field lines, varying β does not significantly affect the
scale height.

In our simulations, the isothermal case is approxi-
mated using a minimum adiabatic index of γg = 1.01,
where γg = 1.0. In an ISM, γg should be significantly
smaller than the ideal value 5/3 and close to 1.0, be-
cause thermal instability smoothens out the temperature
gradient. However, because the diffusion of cosmic rays
along the magnetic field lines is only slight and the in-
stability growth expedites for more condensed gas, ther-
mal instability is expected to be deterred when cosmic-
ray diffusion is present (Shadmehri 2009). This find-
ing may resemble the effect of increasing γg above the
typical value 1.05 used in most of the simulations for
Parker instability. According to our results, instability
is dampened as γ increases; with gamma = 5/3, the
flow remains quiescient at t × 98 (Fig. 5a).

The criterion for Parker instability to occur is
d
dz (B/ρ) < 0. In the hyperbolic tangent temperature
model, an increasing width of transition region wtr

makes the instability less feasible (Fig. 5b). Suppres-
sion of the instability is attributed to the rapid rise of

(a) t ∼ 98, γg = 5/3 (b) wtr = 10.0

Figure 5: Density contours for (a) γg = 5/3 and (b) wtr = 10.0 in a
hyperbolic tangent model.

(a) (b)

Figure 6: Density contours at t ∼ 49 for (a) hyperbolic tangent tem-
perature (b) exponential density, (based on use of OR using) random
perturbation.

temperature and the flattening of density near the tran-
sition region.

7.5. Results of Random Perturbation

The case using random velocity perturbation may re-
flect the circumstances closer to the actual situation in
an ISM. Although in this case, the development of in-
stability is less faster than the case using eigen mode
perturbation, Fig. 6 reveals that strong mixing and fila-
mentary structures are induced in both models.

7.6. Trebly Sinusoidal Perturbation with κ⊥
When incorporating cosmic-ray cross field line diffu-

sion κ⊥, the magnetic field lines are aligned more verti-
cally to the disk. As such a process may be related to
the acceleration of galactic wind, a new initial condi-
tion using the same equilibrium background is invoked
to examine the case involving κ⊥.

A grid of 512 × 512 zones in a domain of 9(kpc) ×
11.5(kpc) is adopted, with each zone having a size iden-
tical to the case of random perturbation. The applied ve-
locity perturbation is similar to our previous sinusoidal
eigen mode perturbation, but within a finite rectangular
region of |x − x0| < 3/2λ, where x0 = 90.0, along with
other similar parameters: wtr = 0.6; zh = 18; α = β = 1;
γg = 1.05; γc = 4/3; κ‖ = 2.0; and κ⊥ = 0.0.

Figure 7 shows the exponential case at the dimension-
less time t ∼ 30 (150 (Myr)). Three equally-sized loops
arise and extend to z ≥ 50. The flow pattern resembles
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Figure 7: Density contour of the exponential density model at t ∼ 32
using trebly sinusoidal perturbation and a cosmic-ray cross field line
diffusion κ⊥.

the hyperbolic tangent case in Kuwabara et al. (2004).
At t ∼ 40 the interaction between loops is more pro-
nounced; the central one becomes compressed by two
outer adjacent loops, while the loops continually rise to
a height of 2.0 (kpc). At t = 60, the flow reaches a max-
imum vertical height and becomes saturated. Different
from the case without κ⊥, the velocity of the flow is very
high, indicating that Parker instability is likely to con-
tribute to the galactic wind acceleration (Wiegelmann,
Schindler & Neukirch 1997).

8. Conclusion

This study has elucidated the development Parker
instability undergoing cosmic-ray diffusion using 2D
MHD simulations. Exactly how the initial conditions
affect the growth of instability is also examined. Two
equilibrium backgrounds are constructed based on hy-
perbolic tangent temperature and exponential density.
Additionally, the instability is examined using varia-
tions in the physical parameters and perturbations.

Simulations are performed to reproduce the observed
filaments near the Galactic center and the physical con-
ditions giving rise to the structure, which closely resem-
bles the long, thin wave-like sheared helmet plumes in
the solar corona, caused by magnetic buoyancy (Shore
& Larosa 1999). The perpendicular component of
cosmic-ray diffusion coefficient κ⊥ is included as well.
When κ⊥ is only 1% − 2% of the parallel component κ‖,
despite their development, vertical magnetic structures
and outward flow arise, particularly in the exponential
density model. The morphology of the clumpy struc-
ture is filamentary. Conversely, in the hyperbolic tan-
gent temperature model, a more concentrated and round
shape of clumps like the giant molecular cloud are ob-
served at the foot points of rising magnetic arches. No-
tably, the growth of instability in the hyperbolic tangent

model is less rapid than that of the exponential density
case since the pressure in the exponential density de-
creases faster with an increasing height.

The small gradient of cosmic ray pressure along the z
direction caused by diffusion explains why an increase
in κ‖ facilitates the growth of the unstable undular mode.
Consequently, the gas falls down more rapidly, and ad-
jacent loops join together to form a large loop-like bub-
ble.

Exponential density with the adiabatic index γg ∼ 1
(i.e. isothermal) produces the highest magnetic loops
and most flow instability. A decreasing γg decreases
leads to more condensed gas and, ultimately, a more
unstable flow. While examining a situation without
cosmic-ray diffusion, Parker indicated that the criterion
for instability is γg < 1.36. Although the undular mode
is expected to be suppressed when γg > 1.4, in our cases
using 1.3 < γg < 1.4, numerical results indicate that the
high adiabatic index still produces a non-uniform den-
sity distribution. Such instability may still occur if a
stronger perturbation such as a supernova explosion is
invoked.

The hyperbolic tangent temperature model yields a
density distribution that increases with height, whose
steepness depends on the width of the transition zone
wtr. For a smaller wtr, instability is increased as the den-
sity gradient correspondingly diminishes near the unsta-
ble regions.

Applying a larger ratio of plasma pressure to mag-
netic pressure α diminishes the pressure inside the flux
tube, thus facilitating the growing instability. Also, the
length scale decreases, and unstable structures are ob-
served on a smaller scale. In contrast, a small α yields
a larger scale height, complicating the mixing of an un-
stable flow.

Finally, in the proposed model, the ratio of plasma
pressure to cosmic-ray pressure β does not influence the
length scale since the diffusion of the cosmic-ray pres-
sure does not contribute to the scale height.
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