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Constructive diagonalization of an element X of the
Jordan algebra J by the exceptional group £}

Takashi Miyasaka and Ichiro Yokota

I. We know that any element X of the exceptional Jordan algebra J is transformed
to a diagonal form by the compact exceptional Lie group Fy. However, its proof is
used the method which is reduced a contradiction. In this paper, we give a direct and
constructive proof.

Let H be the field of quaternions and ¢ = H @ Hey, e4?> = —1 the division Cayley
algebra. For K = H,¢, let J(3,K) = {X € M(3,K)|X* = X} with the Jordan
multiplicaton X o Y, the inner product (X,Y) and the Freudenthal multiplication
X x Y espectively by

1
XoY = §(XY +YX), (X,)Y)=tr(XoY),
1
XxY= 5(2X oY —tr(X)Y —tr(Y) X + (tr(X)tr(Y) — (X,Y))E)
(where E is the 3 X 3 unit matrix).
The simply connected compact Lie group Fy is defined by

Fy = {a €Is0r(JB,€) |a(X oY) =aXoaY}
= {a €Is0r(J(3,9) |a(X xY) =aX x aY}.

Then, we have the following Theorem ([1],[2]).

Theorem 1. Any element X of J(3,€) can be transformed to a diagonal form by
some element o € Fy:

& 000
aX = 0 & 0 , & € R.
0 0 &

To give a constructive proof of this theorem 1, we will prepare some elements of Fj.
(1) Let Sp(3) = {A € M(3,H)|A*A = E}. We shall show that the group Fy
contains Sp(3) as subgroup : Sp(3) C Fy. An element X = J(3,€) is expressed by

&1 T3 T & mg Mo 0 ases —agey
X=|T3 & x| =|m3 & mi |+ | —azes 0 aies |,
T2 T1 &3 my My &3 ases —aieq4 0
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where x; = m; + a;eq € H ® Hey = €. To such X, we associate an element
&1 m3 Mo
ms & my | + (a1, az,a3)

meo ml 53

of 3(3, H) ® H®. In J(3, H) ® H?, we define a multiplication x by
1 ., N 1
(M +a)x (N +b)= (Mx N - S(ab+b a)) — 5(aN +bM).

Since this multilication corresponds to the Freudenthal multiplication in J(3, €), here-
after, we identify J(3, H) ® H® with J(3, ©).

Now, we define a map ¢ : Sp(3) — Fy by
©(A)(M +a) = AMA* +aA*, M+ac3(3,H) o H =3(3,¢).
It is not difficult to see that ¢ is well-defined : ¢(A) € Fy. Since ¢ is injective, we
identify Sp(3) with ¢(Sp(3)) : Sp(3) C Fy ([3]).

(2) Let G2 = {a € Isog(€)|a(zy) = (ax)(ay)}. The group Fy contains G as
subgroup by the following way. We define a map ¢ : Go — Fy by

§&1 w3 T {1 axz Tz
dla)| T3 & x| =|azs & am
T2 T1 &3 ary oTy &3

It is not difficult to see that ¢ is well-defined : ¢(«) € Fy. Since ¢ is injective, we
identify G with ¢(G2) : Go C Fy.
(3) For D = diag(a,a,1),a € €,|a] =1, we define an R-linear transformation J,
of 3(3,€) by
. & arsa als
6,X =Dy XD, = | azsa & an
xgﬁ Ela 53

Then, 6, € Fy.
(4) For T € O(3) ={T € M(3,R)|'TT = E}, we define a transformation §(7") of
3(3,€) by
S(T)X =TXT™', X eJ33,0¢),

then, 6(T) € Fy.

Using (1) - (4), we will give a constructive proof of Theorem 1. Let X =
&1 T3 T2
Ty & 1 | be a given element of J(3, ).
Ty Ty &3
(i) Assume x1 # 0 and let a = 21 /|z1|. Applying é, on X, then, the z;1-part of
X' = 6,X becomes real.



(ii) Applying some T' = ((1) ﬁ) T € 0(2) = {T' € M(2, R)|'T'T' = EY, then
51/ xg// 52//
X' can be transformed to the form X” = | Z3"” &” 0
" 0 &
(iii) Assume zo” # 0 and let a = 22" /|z2”|. Applying d, on X, then, the zo-part of
51/ $3(3) T2
XB) = §, X" becomes real. Thatis, X® is of the form X®) = | 5@  &” 0 |,
T2 0 53”
r9 is real.

(iv) Let C = {z 4+ ye1 |z,y € R} be the field of the complex numbers contained
in H: C ¢ H C ¢ Since the group Go acts transitively on 5,5 = {u € ¢|u =
-, lu| =1}, any element © = g + u € €, z9 € R,u € €,u = —7 can be deformed to
c3 =z +x1e1 € C by some a € G5 ([2]). Applying this o on X @), then aX®) is of

&' e o
the foom X = | 23 &” 0 | €34,C)C 3(3,H).

o O 53//
(v) X@ can be transformed to diagonal form by some A € Sp(3), that is, AX (4 A*
&" o 0
is of the form 0 {2(3) 0
0 0 &Y
Note that all process of (i) - (v) are constructive. Thus, Theorem 1 is proved.

II. Let ¢’ = H @ Hey4',e4'? =1 be the split Cayley algebra and J(3,¢") = {X €

1
M(n,¢)| X* = X} with the Jordan multiplicaton X oY = §(XY + Y X). Then, the
connected non-compact Lie group Fj) is defined by

Fyay ={a €Is0r(33,¢) [a(X oY) =aX oaY}.
Then, we have the following Theorem.

Theorem 2. Any element X of J can not necessarily be transformed to a dinag-
onal form by element o € Fy(y).

Proof. We will give a counter example. Assume that the element

0 0 0
Xo=(0 0 e’ |ed
0 —64/ 0

can be transformed to a diagonal form by some a € Fy4):

& 000
aXg = 0 52 0 s 51 cR.
0 0 &

If we define an inner product (X,Y) in J(3,¢’) by (X,Y) = tr(X oY), then we know
that any element a € Fy4 leaves the inner product invariant : (aX,aY) = (X,Y).



Now, we have

(CYX0,0(XQ) = (Xo,XQ) = 264/(—64/) = -2.
On the other hand,

& 0 0 & 00
(@Xo,aXo)= ([0 & 0], [0 & 0])=a’+&*+&’ >0,
0 0 & 0 0 &

which contradicts the above. Therefore, Xy can not be trasformed to a diagonal form.
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