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Constructive diagonalization of an element X of the

Jordan algebra J by the exceptional group F4

Takashi Miyasaka and Ichiro Yokota

I. We know that any element X of the exceptional Jordan algebra J is transformed

to a diagonal form by the compact exceptional Lie group F4. However, its proof is

used the method which is reduced a contradiction. In this paper, we give a direct and

constructive proof.

Let H be the field of quaternions and C = H⊕He4, e4
2 = −1 the division Cayley

algebra. For K = H,C, let J(3,K) = {X ∈ M(3,K) |X∗ = X} with the Jordan

multiplicaton X ◦ Y , the inner product (X,Y ) and the Freudenthal multiplication

X × Y espectively by

X ◦ Y =
1

2
(XY + Y X), (X,Y ) = tr(X ◦ Y ),

X × Y =
1

2
(2X ◦ Y − tr(X)Y − tr(Y )X + (tr(X)tr(Y )− (X,Y ))E)

(where E is the 3× 3 unit matrix).

The simply connected compact Lie group F4 is defined by

F4 = {α ∈ IsoR(J(3,C)) |α(X ◦ Y ) = αX ◦ αY }

= {α ∈ IsoR(J(3,C)) |α(X × Y ) = αX × αY }.

Then, we have the following Theorem ([1],[2]).

Theorem 1. Any element X of J(3,C) can be transformed to a diagonal form by

some element α ∈ F4:

αX =





ξ1 0 0
0 ξ2 0
0 0 ξ3



 , ξi ∈ R.

To give a constructive proof of this theorem 1, we will prepare some elements of F4.

(1) Let Sp(3) = {A ∈ M(3,H) |A∗A = E}. We shall show that the group F4

contains Sp(3) as subgroup : Sp(3) ⊂ F4. An element X = J(3,C) is expressed by

X =





ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3



 =





ξ1 m3 m2

m3 ξ2 m1

m2 m1 ξ3



+





0 a3e4 −a2e4
−a3e4 0 a1e4
a2e4 −a1e4 0



 ,
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where xi = mi + aie4 ∈ H ⊕He4 = C. To such X , we associate an element





ξ1 m3 m2

m3 ξ2 m1

m2 m1 ξ3



+ (a1, a2, a3)

of J(3,H)⊕H
3. In J(3,H)⊕H

3, we define a multiplication × by

(M + a)× (N + b) =
(

M ×N −
1

2
(a∗

b+ b
∗
a)

)

−
1

2
(aN + bM).

Since this multilication corresponds to the Freudenthal multiplication in J(3,C), here-

after, we identify J(3,H)⊕H
3 with J(3,C).

Now, we define a map ϕ : Sp(3) → F4 by

ϕ(A)(M + a) = AMA∗ + aA∗, M + a ∈ J(3,H)⊕H
3 = J(3,C).

It is not difficult to see that ϕ is well-defined : ϕ(A) ∈ F4. Since ϕ is injective, we

identify Sp(3) with ϕ(Sp(3)) : Sp(3) ⊂ F4 ([3]).

(2) Let G2 = {α ∈ IsoR(C) |α(xy) = (αx)(αy)}. The group F4 contains G2 as

subgroup by the following way. We define a map φ : G2 → F4 by

φ(α)





ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3



 =





ξ1 αx3 αx2

αx3 ξ2 αx1

αx2 αx1 ξ3



 .

It is not difficult to see that φ is well-defined : φ(α) ∈ F4. Since φ is injective, we

identify G2 with φ(G2) : G2 ⊂ F4.

(3) For D = diag(a, a, 1), a ∈ C, |a| = 1, we define an R-linear transformation δa

of J(3,C) by

δaX = DaXDa =





ξ1 ax3a ax2

ax3a ξ2 ax1

x2a x1a ξ3



 .

Then, δa ∈ F4.

(4) For T ∈ O(3) = {T ∈ M(3,R) | tTT = E}, we define a transformation δ(T ) of

J(3,C) by

δ(T )X = TXT−1, X ∈ J(3,C),

then, δ(T ) ∈ F4.

Using (1) - (4), we will give a constructive proof of Theorem 1. Let X =




ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3



 be a given element of J(3,C).

(i) Assume x1 6= 0 and let a = x1/|x1|. Applying δa on X , then, the x1-part of

X ′ = δaX becomes real.
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(ii) Applying some T =

(

1 0
0 T ′

)

, T ′ ∈ O(2) = {T ′ ∈ M(2,R) | tT ′T ′ = E}, then

X ′ can be transformed to the form X ′′ =





ξ1
′ x3

′′ x2
′′

x3
′′ ξ2

′′ 0
x2

′′ 0 ξ3
′′



.

(iii) Assume x2
′′ 6= 0 and let a = x2

′′/|x2
′′|. Applying δa onX , then, the x2-part of

X(3) = δaX
′′ becomes real. That is,X(3) is of the formX(3) =





ξ1
′ x3

(3) r2
x3

(3) ξ2
′′ 0

r2 0 ξ3
′′



 ,

r2 is real.

(iv) Let C = {x + ye1 |x, y ∈ R} be the field of the complex numbers contained

in H : C ⊂ H ⊂ C. Since the group G2 acts transitively on Sr
6 = {u ∈ C |u =

−u, |u| = r}, any element x = x0 + u ∈ C, x0 ∈ R, u ∈ C, u = −u can be deformed to

c3 = x0 + x1e1 ∈ C by some α ∈ G2 ([2]). Applying this α on X(3), then αX(3) is of

the form X(4) =





ξ1
′ c3 r2

c3 ξ2
′′ 0

r2 0 ξ3
′′



 ∈ J(4,C) ⊂ J(3,H).

(v) X(4) can be transformed to diagonal form by some A ∈ Sp(3), that is, AX(4)A∗

is of the form





ξ1
′′ 0 0
0 ξ2

(3) 0
0 0 ξ3

(3)



.

Note that all process of (i) - (v) are constructive. Thus, Theorem 1 is proved.

II. Let C′ = H ⊕He4
′, e4

′ 2 = 1 be the split Cayley algebra and J(3,C′) = {X ∈

M(n,C′) |X∗ = X} with the Jordan multiplicaton X ◦Y =
1

2
(XY + Y X). Then, the

connected non-compact Lie group F4(4) is defined by

F4(4) = {α ∈ IsoR(J(3,C
′)) |α(X ◦ Y ) = αX ◦ αY }.

Then, we have the following Theorem.

Theorem 2. Any element X of J
′ can not necessarily be transformed to a dinag-

onal form by element α ∈ F4(4).

Proof. We will give a counter example. Assume that the element

X0 =





0 0 0
0 0 e4

′

0 −e4
′ 0



 ∈ J
′

can be transformed to a diagonal form by some α ∈ F4(4):

αX0 =





ξ1 0 0
0 ξ2 0
0 0 ξ3



 , ξi ∈ R.

If we define an inner product (X,Y ) in J(3,C′) by (X,Y ) = tr(X ◦ Y ), then we know

that any element α ∈ F4(4) leaves the inner product invariant : (αX,αY ) = (X,Y ).

3



Now, we have

(αX0, αX0) = (X0, X0) = 2e4
′(−e4

′) = −2.

On the other hand,

(αX0, αX0) =
(





ξ1 0 0
0 ξ2 0
0 0 ξ3



 ,





ξ1 0 0
0 ξ2 0
0 0 ξ3





)

= ξ1
2 + ξ2

2 + ξ3
2 ≥ 0,

which contradicts the above. Therefore, X0 can not be trasformed to a diagonal form.
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