Constructive diagonalization of an element X of the Jordan algebra \mathfrak{J} by the exceptional group F_{4}

Takashi Miyasaka and Ichiro Yokota

I. We know that any element X of the exceptional Jordan algebra \mathfrak{J} is transformed to a diagonal form by the compact exceptional Lie group F_{4}. However, its proof is used the method which is reduced a contradiction. In this paper, we give a direct and constructive proof.

Let \boldsymbol{H} be the field of quaternions and $\mathfrak{C}=\boldsymbol{H} \oplus \boldsymbol{H} e_{4}, e_{4}{ }^{2}=-1$ the division Cayley algebra. For $K=\boldsymbol{H}, \mathfrak{C}$, let $\mathfrak{J}(3, K)=\left\{X \in M(3, K) \mid X^{*}=X\right\}$ with the Jordan multiplicaton $X \circ Y$, the inner product (X, Y) and the Freudenthal multiplication $X \times Y$ espectively by

$$
\begin{gathered}
X \circ Y=\frac{1}{2}(X Y+Y X), \quad(X, Y)=\operatorname{tr}(X \circ Y) \\
X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E)
\end{gathered}
$$

(where E is the 3×3 unit matrix).
The simply connected compact Lie group F_{4} is defined by

$$
\begin{aligned}
F_{4} & =\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{J}(3, \mathfrak{C})) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{J}(3, \mathfrak{C})) \mid \alpha(X \times Y)=\alpha X \times \alpha Y\right\}
\end{aligned}
$$

Then, we have the following Theorem ([1],[2]).
Theorem 1. Any element X of $\mathfrak{J}(3, \mathfrak{C})$ can be transformed to a diagonal form by some element $\alpha \in F_{4}$:

$$
\alpha X=\left(\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & 0 \\
0 & 0 & \xi_{3}
\end{array}\right), \quad \xi_{i} \in \boldsymbol{R}
$$

To give a constructive proof of this theorem 1 , we will prepare some elements of F_{4}.
(1) Let $S p(3)=\left\{A \in M(3, \boldsymbol{H}) \mid A^{*} A=E\right\}$. We shall show that the group F_{4} contains $S p(3)$ as subgroup : $S p(3) \subset F_{4}$. An element $X=\mathfrak{J}(3, \mathfrak{C})$ is expressed by

$$
X=\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & m_{3} & \bar{m}_{2} \\
\bar{m}_{3} & \xi_{2} & m_{1} \\
m_{2} & \bar{m}_{1} & \xi_{3}
\end{array}\right)+\left(\begin{array}{ccc}
0 & a_{3} e_{4} & -a_{2} e_{4} \\
-a_{3} e_{4} & 0 & a_{1} e_{4} \\
a_{2} e_{4} & -a_{1} e_{4} & 0
\end{array}\right),
$$

where $x_{i}=m_{i}+a_{i} e_{4} \in \boldsymbol{H} \oplus \boldsymbol{H} e_{4}=\mathfrak{C}$. To such X, we associate an element

$$
\left(\begin{array}{ccc}
\xi_{1} & m_{3} & \bar{m}_{2} \\
\bar{m}_{3} & \xi_{2} & m_{1} \\
m_{2} & \bar{m}_{1} & \xi_{3}
\end{array}\right)+\left(a_{1}, a_{2}, a_{3}\right)
$$

of $\mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H}^{3}$. In $\mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H}^{3}$, we define a multiplication \times by

$$
(M+\boldsymbol{a}) \times(N+\boldsymbol{b})=\left(M \times N-\frac{1}{2}\left(\boldsymbol{a}^{*} \boldsymbol{b}+\boldsymbol{b}^{*} \boldsymbol{a}\right)\right)-\frac{1}{2}(\boldsymbol{a} N+\boldsymbol{b} M) .
$$

Since this multilication corresponds to the Freudenthal multiplication in $\mathfrak{J}(3, \mathfrak{C})$, hereafter, we identify $\mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H}^{3}$ with $\mathfrak{J}(3, \mathfrak{C})$.

Now, we define a map $\varphi: S p(3) \rightarrow F_{4}$ by

$$
\varphi(A)(M+\boldsymbol{a})=A M A^{*}+\boldsymbol{a} A^{*}, \quad M+\boldsymbol{a} \in \mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H}^{3}=\mathfrak{J}(3, \mathfrak{C})
$$

It is not difficult to see that φ is well-defined : $\varphi(A) \in F_{4}$. Since φ is injective, we identify $S p(3)$ with $\varphi(S p(3)): S p(3) \subset F_{4}([3])$.
(2) Let $G_{2}=\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{C}) \mid \alpha(x y)=(\alpha x)(\alpha y)\right\}$. The group F_{4} contains G_{2} as subgroup by the following way. We define a map $\phi: G_{2} \rightarrow F_{4}$ by

$$
\phi(\alpha)\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & \alpha x_{3} & \overline{\alpha x_{2}} \\
\overline{\alpha x_{3}} & \xi_{2} & \alpha x_{1} \\
\alpha x_{2} & \overline{\alpha x_{1}} & \xi_{3}
\end{array}\right)
$$

It is not difficult to see that ϕ is well-defined : $\phi(\alpha) \in F_{4}$. Since ϕ is injective, we identify G_{2} with $\phi\left(G_{2}\right): G_{2} \subset F_{4}$.
(3) For $D=\operatorname{diag}(a, \bar{a}, 1), a \in \mathfrak{C},|a|=1$, we define an \boldsymbol{R}-linear transformation δ_{a} of $\mathfrak{J}(3, \mathfrak{C})$ by

$$
\delta_{a} X=D_{a} X \bar{D}_{a}=\left(\begin{array}{ccc}
\xi_{1} & a x_{3} a & a \bar{x}_{2} \\
\overline{a x}_{3} \bar{a} & \xi_{2} & \bar{a} x_{1} \\
x_{2} \bar{a} & \bar{x}_{1} a & \xi_{3}
\end{array}\right)
$$

Then, $\delta_{a} \in F_{4}$.
(4) For $T \in O(3)=\left\{\left.T \in M(3, \boldsymbol{R})\right|^{t} T T=E\right\}$, we define a transformation $\delta(T)$ of $\mathfrak{J}(3, \mathfrak{C})$ by

$$
\delta(T) X=T X T^{-1}, \quad X \in \mathfrak{J}(3, \mathfrak{C})
$$

then, $\delta(T) \in F_{4}$.
Using (1) - (4), we will give a constructive proof of Theorem 1. Let $X=$ $\left(\begin{array}{lll}\xi_{1} & x_{3} & \bar{x}_{2} \\ \bar{x}_{3} & \xi_{2} & x_{1} \\ x_{2} & \bar{x}_{1} & \xi_{3}\end{array}\right)$ be a given element of $\mathfrak{J}(3, \mathfrak{C})$.
(i) Assume $x_{1} \neq 0$ and let $a=x_{1} /\left|x_{1}\right|$. Applying δ_{a} on X, then, the x_{1}-part of $X^{\prime}=\delta_{a} X$ becomes real.
(ii) Applying some $T=\left(\begin{array}{cc}1 & 0 \\ 0 & T^{\prime}\end{array}\right), T^{\prime} \in O(2)=\left\{\left.T^{\prime} \in M(2, \boldsymbol{R})\right|^{t} T^{\prime} T^{\prime}=E\right\}$, then X^{\prime} can be transformed to the form $X^{\prime \prime}=\left(\begin{array}{ccc}\xi_{1}{ }^{\prime} & x_{3}{ }^{\prime \prime} & \bar{x}_{2}{ }^{\prime \prime} \\ \bar{x}_{3}{ }^{\prime \prime} & \xi_{2}{ }^{\prime \prime} & 0 \\ x_{2}{ }^{\prime \prime} & 0 & \xi_{3}{ }^{\prime \prime}\end{array}\right)$.
(iii) Assume $x_{2}{ }^{\prime \prime} \neq 0$ and let $a=x_{2}{ }^{\prime \prime} /\left|x_{2}{ }^{\prime \prime}\right|$. Applying δ_{a} on X, then, the x_{2}-part of $X^{(3)}=\delta_{a} X^{\prime \prime}$ becomes real. That is, $X^{(3)}$ is of the form $X^{(3)}=\left(\begin{array}{ccc}\xi_{1}{ }^{\prime} & x_{3}{ }^{(3)} & r_{2} \\ \bar{x}_{3}{ }^{(3)} & \xi_{2}{ }^{\prime \prime} & 0 \\ r_{2} & 0 & \xi_{3}{ }^{\prime \prime}\end{array}\right)$, r_{2} is real.
(iv) Let $\boldsymbol{C}=\left\{x+y e_{1} \mid x, y \in \boldsymbol{R}\right\}$ be the field of the complex numbers contained in $\boldsymbol{H}: \boldsymbol{C} \subset \boldsymbol{H} \subset \mathfrak{C}$. Since the group G_{2} acts transitively on $S_{r}{ }^{6}=\{u \in \mathfrak{C} \mid u=$ $-\bar{u},|u|=r\}$, any element $x=x_{0}+u \in \mathfrak{C}, x_{0} \in \boldsymbol{R}, u \in \mathfrak{C}, u=-\bar{u}$ can be deformed to $c_{3}=x_{0}+x_{1} e_{1} \in \boldsymbol{C}$ by some $\alpha \in G_{2}$ ([2]). Applying this α on $X^{(3)}$, then $\alpha X^{(3)}$ is of the form $X^{(4)}=\left(\begin{array}{ccc}\xi_{1}{ }^{\prime} & c_{3} & r_{2} \\ \bar{c}_{3} & \xi_{2}{ }^{\prime \prime} & 0 \\ r_{2} & 0 & \xi_{3}{ }^{\prime \prime}\end{array}\right) \in \mathfrak{J}(4, \boldsymbol{C}) \subset \mathfrak{J}(3, \boldsymbol{H})$.
(v) $X^{(4)}$ can be transformed to diagonal form by some $A \in S p(3)$, that is, $A X^{(4)} A^{*}$ is of the form $\left(\begin{array}{ccc}\xi_{1}{ }^{\prime \prime} & 0 & 0 \\ 0 & \xi_{2}{ }^{(3)} & 0 \\ 0 & 0 & \xi_{3}{ }^{(3)}\end{array}\right)$.
Note that all process of (i) - (v) are constructive. Thus, Theorem 1 is proved.
II. Let $\mathfrak{C}^{\prime}=H \oplus \boldsymbol{H} e_{4}{ }^{\prime}, e_{4}{ }^{\prime 2}=1$ be the split Cayley algebra and $\mathfrak{J}\left(3, \mathfrak{C}^{\prime}\right)=\{X \in$ $\left.M\left(n, \mathfrak{C}^{\prime}\right) \mid X^{*}=X\right\}$ with the Jordan multiplicaton $X \circ Y=\frac{1}{2}(X Y+Y X)$. Then, the connected non-compact Lie group $F_{4(4)}$ is defined by

$$
F_{4(4)}=\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{J}\left(3, \mathfrak{C}^{\prime}\right)\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} .
$$

Then, we have the following Theorem.
Theorem 2. Any element X of \mathfrak{J}^{\prime} can not necessarily be transformed to a dinagonal form by element $\alpha \in F_{4(4)}$.

Proof. We will give a counter example. Assume that the element

$$
X_{0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & e_{4}{ }^{\prime} \\
0 & -e_{4}{ }^{\prime} & 0
\end{array}\right) \in \mathfrak{J}^{\prime}
$$

can be transformed to a diagonal form by some $\alpha \in F_{4(4)}$:

$$
\alpha X_{0}=\left(\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & 0 \\
0 & 0 & \xi_{3}
\end{array}\right), \quad \xi_{i} \in \boldsymbol{R} .
$$

If we define an inner product (X, Y) in $\mathfrak{J}\left(3, \mathfrak{C}^{\prime}\right)$ by $(X, Y)=\operatorname{tr}(X \circ Y)$, then we know that any element $\alpha \in F_{4(4)}$ leaves the inner product invariant : $(\alpha X, \alpha Y)=(X, Y)$.

Now, we have

$$
\left(\alpha X_{0}, \alpha X_{0}\right)=\left(X_{0}, X_{0}\right)=2 e_{4}^{\prime}\left(-e_{4}^{\prime}\right)=-2 .
$$

On the other hand,

$$
\left(\alpha X_{0}, \alpha X_{0}\right)=\left(\left(\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & 0 \\
0 & 0 & \xi_{3}
\end{array}\right),\left(\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & 0 \\
0 & 0 & \xi_{3}
\end{array}\right)\right)=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2} \geq 0
$$

which contradicts the above. Therefore, X_{0} can not be trasformed to a diagonal form.

References

[1] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijks univ. te Utrecht, 1961.
[2] I. Yokota, Linear simple Lie groups of exceptional type (in Japanese), GendaiSugakusha, (1992).
[3] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, G_{2}, F_{4} and E_{6}, Tsukuba J. Math., 14(1990), 185-223.

