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THE STRUCTURE OF THE C∗-ALGEBRA OF A LOCALLY

INJECTIVE SURJECTION

TOKE MEIER CARLSEN AND KLAUS THOMSEN

1. Introduction

The classical connection between dynamical systems and C∗-algebras is the crossed
product construction which associates a C∗-algebra to a homeomorphism of a com-
pact metric space. This construction has been generalized stepwise by J. Renault
([Re]), V. Deaconu ([De1]) and C. Anantharaman-Delaroche ([An]) to local homeo-
morphisms and recently also to locally injective surjections by the second named
author in [Th1]. The main motivation for the last generalisation was the wish to
include the Matsumoto-type C∗-algebra of a subshift which was introduced by the
first named author in [Ca].
In this paper we continue the investigation of the structure of the C∗-algebra of a

locally injective surjection which was begun in [Th1]. The main goal here is to give
necessary and sufficient conditions for the algebras, or at least any simple quotient
of them, to be purely infinite; a property they are known to have in many cases.
Recall that a simple C∗-algebra is said to be purely infinite when all its non-zero
hereditary C∗-subalgebras contain an infinite projection. Our main result is that
a simple quotient of the C∗-algebra arising from a locally injective surjection on a
compact metric space of finite covering dimension, as in Section 4 of [Th1], is one
of the following kinds:

1) a full matrix algebra Mn(C) for some n ∈ N, or
2) the crossed product C(K)×f Z corresponding to a minimal homeomorphism

f of a compact metric space K of finite covering dimension, or
3) a unital purely infinite simple C∗-algebra.

In particular, when the algebra itself is simple it must be one of the three types,
and in fact purely infinite unless the underlying map is a homeomorphism. Hence
the problem of finding necessary and sufficient conditions for the C∗-algebra of a
locally injective surjection on a compact metric space of finite covering dimension
to be both simple and purely infinite has a strikingly straightforward solution: If
the algebra is simple (and [Th1] gives necessary and sufficient conditions for this
to happen) then it is automatically purely infinite unless the map in question is a
homeomorphism. A corollary of this result is that if the C∗-algebra of a one-sided
subshift is simple, then it is also purely infinite.
On the way to the proof of the main result we study the ideal structure. We find

first the gauge invariant ideals, obtaining an insight which combined with methods
and results of Katsura ([Ka]) leads to a list of the primitive ideals. We then identify
the maximal ideals among the primitive ones and obtain in this way a description
of the simple quotients which we use to obtain the conclusions described above.
A fundamental tool all the way is the canonical locally homeomorphic extension
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discovered in [Th2] which allows us to replace the given locally injective map with a
local homeomorphism. It means, however, that much of the structure we investigate
gets described in terms of the canonical locally homeomorphic extension, and this
is unfortunate since it may not be easy to obtain a satisfactory understanding of
it for a given locally injective surjection. Still, it allows us to obtain qualitative
conclusions of the type mentioned above.
Besides the C∗-algebras of subshifts our results cover of course also the C∗-algebras

associated to a local homeomorphism by the construction of Renault, Deaconu and
Anantharaman-Delaroche, provided the map is surjective and the space is of finite
covering dimension. This means that the results have bearing on many classes of C∗-
algebras which have been associated to various structures, for example the λ-graph
systems of Matsumoto ([Ma]) and the continuous graphs of Deaconu ([De2]).

Acknowledgement: This work was supported by the NordForsk Research Network
’Operator Algebras and Dynamics’ (grant 11580). The first named author was also
supported by the Research Council of Norway through project 191195/V30.

2. The C∗-algebra of a locally injective surjection

Let X be a compact metric space and ϕ : X → X a locally injective surjection.
Set

Γϕ = {(x, k, y) ∈ X × Z×X : ∃n,m ∈ N, k = n−m, ϕn(x) = ϕm(y)} .

This is a groupoid with the set of composable pairs being

Γ(2)
ϕ = {((x, k, y), (x′, k′, y′)) ∈ Γϕ × Γϕ : y = x′} .

The multiplication and inversion are given by

(x, k, y)(y, k′, y′) = (x, k + k′, y′) and (x, k, y)−1 = (y,−k, x).

Note that the unit space of Γϕ can be identified with X via the map x 7→ (x, 0, x).
To turn Γϕ into a locally compact topological groupoid, fix k ∈ Z. For each n ∈ N
such that n+ k ≥ 0, set

Γϕ(k, n) =
{
(x, l, y) ∈ X × Z×X : l = k, ϕk+i(x) = ϕi(y), i ≥ n

}
.

This is a closed subset of the topological product X × Z × X and hence a locally
compact Hausdorff space in the relative topology. Since ϕ is locally injective Γϕ(k, n)
is an open subset of Γϕ(k, n+ 1) and hence the union

Γϕ(k) =
⋃

n≥−k

Γϕ(k, n)

is a locally compact Hausdorff space in the inductive limit topology. The disjoint
union

Γϕ =
⋃

k∈Z

Γϕ(k)

is then a locally compact Hausdorff space in the topology where each Γϕ(k) is an
open and closed set. In fact, as is easily verified, Γϕ is a locally compact groupoid in
the sense of [Re] and a semi étale groupoid in the sense of [Th1]. The paper [Th1]
contains a construction of a C∗-algebra from any semi étale groupoid, but we give
here only a description of the construction for Γϕ.
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Consider the space Bc (Γϕ) of compactly supported bounded functions on Γϕ.
They form a ∗-algebra with respect to the convolution-like product

f ⋆ g(x, k, y) =
∑

z,n+m=k

f(x, n, z)g(z,m, y)

and the involution

f ∗(x, k, y) = f(y,−k, x).

To turn it into a C∗-algebra, let x ∈ X and consider the Hilbert space Hx of square
summable functions on {(x′, k, y′) ∈ Γϕ : y′ = x} which carries a representation πx
of the ∗-algebra Bc (Γϕ) defined such that

(πx(f)ψ) (x
′, k, x) =

∑

z,n+m=k

f(x′, n, z)ψ(z,m, x) (2.1)

when ψ ∈ Hx. One can then define a C∗-algebra B∗
r (Γϕ) as the completion of

Bc (Γϕ) with respect to the norm

‖f‖ = sup
x∈X
‖πx(f)‖ .

The space Cc (Γϕ) of continuous and compactly supported functions on Γϕ generate
a ∗-subalgebra alg∗ Γϕ of B∗

r (Γϕ) which completed with respect to the above norm
becomes the C∗-algebra C∗

r (Γϕ) which is our object of study. When ϕ is open, and
hence a local homeomorphism, Cc (Γϕ) is a ∗-subalgebra of Bc (Γϕ) so that alg∗ Γϕ =
Cc (Γϕ) and C∗

r (Γϕ) is then the completion of Cc (Γϕ). In this case C∗
r (Γϕ) is the

algebra studied by Renault in [Re], by Deaconu in [De1], and by Anantharaman-
Delaroche in [An].
The algebra C∗

r (Γϕ) contains several canonical C∗-subalgebras which we shall
need in our study of its structure. One is the C∗-algebra of the open sub-groupoid

Rϕ = Γϕ(0)

which is a semi étale groupoid (equivalence relation, in fact) in itself. The cor-
responding C∗-algebra C∗

r (Rϕ) is the C∗-subalgebra of C∗
r (Γϕ) generated by the

continuous and compactly supported functions on Rϕ. Equally important are two
canonical abelian C∗-subalgebras, DΓϕ and DRϕ . They arise from the fact that the
C∗-algebra B(X) of bounded functions on X sits canonically inside B∗

r (Γϕ), cf. p.
765 of [Th1], and are then defined as

DΓϕ = C∗
r (Γϕ) ∩ B(X)

and

DRϕ = C∗
r (Rϕ) ∩ B(X),

respectively. There are faithful conditional expectations PΓϕ : C∗
r (Γϕ) → DΓϕ and

PRϕ : C∗
r (Rϕ) → DRϕ , obtained as extensions of the restriction map alg∗ Γϕ →

B(X) to C∗
r (Γϕ) and C∗

r (Rϕ), respectively. When ϕ is open and hence a local
homeomorphism, the two algebras DΓϕ and DRϕ are identical and equal to C(X),
but in general the inclusion DRϕ ⊆ DΓϕ is strict.
Our approach to the study of C∗

r (Γϕ) hinges on a construction introduced in [Th2]
of a compact Hausdorff space Y and a local homeomorphic surjection φ : Y → Y
such that (X,ϕ) is a factor of (Y, φ) and

C∗
r (Γϕ) ≃ C∗

r (Γφ) . (2.2)
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Everything we can say about ideals and simple quotients of C∗
r (Γφ) will have bear-

ing on C∗
r (Γϕ), but while the isomorphism (2.2) is equivariant with respect to the

canonical gauge actions (see Section 4), it will not in general take C∗
r (Rϕ) onto

C∗
r (Rφ). This is one reason why we will work with C∗

r (Γϕ) whenever possible, in-
stead of using (2.2) as a valid excuse for working with local homeomorphisms only.
Another is that it is generally not so easy to get a workable description of (Y, φ).
As in [Th2] we will refer to (Y, φ) as the canonical locally homeomorphic extension
of (X,ϕ). The space Y is the Gelfand spectrum of DΓϕ so when ϕ is already a local
homeomorphism itself, the extension is redundant and (Y, φ) = (X,ϕ).

3. Ideals in C∗
r (Rϕ)

Recall from [Th1] that there is a semi étale equivalence relation

R (ϕn) = {(x, y) ∈ X ×X : ϕn(x) = ϕn(y)}

for each n ∈ N. They will be considered as open sub-equivalence relations of Rϕ

via the embedding (x, y) 7→ (x, 0, y) ∈ Γϕ(0). In this way we get embeddings
C∗

r (R (ϕn)) ⊆ C∗
r (R (ϕn+1)) ⊆ C∗

r (Rϕ) by Lemma 2.10 of [Th1], and then

C∗
r (Rϕ) =

⋃

n

C∗
r (R (ϕn)), (3.1)

cf. (4.2) of [Th1]. This inductive limit decomposition of C∗
r (Rϕ) defines in a natural

way a similar inductive limit decomposition of DRϕ. Set

DR(ϕn) = C∗
r (R (ϕn)) ∩ B(X).

Lemma 3.1. DRϕ =
⋃∞

n=1DR(ϕn).

Proof. Since C∗
r (R (ϕn)) ⊆ C∗

r (Rϕ), it follows that

DR(ϕn) = C∗
r (R (ϕn)) ∩ B(X) ⊆ C∗

r (Rϕ) ∩B(X) = DRϕ .

Hence
∞⋃

n=1

DR(ϕn) ⊆ DRϕ . (3.2)

Let x ∈ DRϕ and let ǫ > 0. It follows from (3.1) that there is an n ∈ N and an
element y ∈ alg∗R (ϕn) such that

∥∥x− PRϕ(y)
∥∥ ≤ ǫ.

On alg∗Rϕ the conditional expectation PRϕ is just the map which restricts functions
toX and the same is true for the conditional expectation PR(ϕn) on alg∗R (ϕn), where
PR(ϕn) is the conditional expectation of Lemma 2.8 in [Th1] obtained by considering
R (ϕn) as a semi étale groupoid in itself. Hence PRϕ(y) = PR(ϕn)(y) ∈ DR(ϕn). It
follows that we have equality in (3.2). �

In the following, by an ideal of a C∗-algebra we will always mean a closed and
two-sided ideal. The next lemma is well known and crucial for the sequel.

Lemma 3.2. Let Y be a compact Hausdorff space, Mn the C∗-algebra of n-by-n
matrices for some natural number n ∈ N and p a projection in C(Y,Mn). Set
A = pC(Y,Mn)p and let CA be the center of A.
For every ideal I in A there is an approximate unit for I in I ∩ CA.
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Lemma 3.3. Let I, J ⊆ C∗
r (Rϕ) be two ideals. Then

I ∩DRϕ ⊆ J ∩DRϕ ⇒ I ⊆ J.

Proof. If I ∩DRϕ ⊆ J ∩DRϕ it follows that I ∩DR(ϕn) ⊆ J ∩DR(ϕn) for all n. Note
that the center of C∗

r (R (ϕn)) is contained in DR(ϕn) since DR(ϕn) is maximal abelian
in C∗

r (R (ϕn)) by Lemma 2.19 of [Th1]. By using Corollary 3.3 of [Th1] it follows
therefore from Lemma 3.2 that there is a sequence {xn} in I ∩ DR(ϕn) such that
limn→∞ xna = a for all a ∈ I ∩ C∗

r (R (ϕn)). Since xn ∈ J ∩DR(ϕn) this implies that
I ∩ C∗

r (R (ϕn)) ⊆ J ∩ C∗
r (R (ϕn)) for all n. Combining with (3.1) we find that

I =
⋃

n

I ∩ C∗
r (R (ϕn)) ⊆

⋃

n

J ∩ C∗
r (R (ϕn)) = J.

�

Recall from [Th1] that an ideal J inDRϕ is said to be Rϕ-invariant when n
∗Jn ⊆ J

for all n ∈ alg∗Rϕ supported in a bisection of Rϕ. For every Rϕ-invariant ideal J in
DRϕ , set

Ĵ =
{
a ∈ C∗

r (Rϕ) : PRϕ(a
∗a) ∈ J

}
.

Theorem 3.4. The map J 7→ Ĵ is a bijection between the Rϕ-invariant ideals in
DRϕ and the ideals in C∗

r (Rϕ). The inverse is given by the map I 7→ I ∩DRϕ

Proof. It follows from Lemma 2.13 of [Th1] that Ĵ ∩DRϕ = J for any Rϕ-invariant

ideal in DRϕ . It suffices therefore to show that every ideal in C∗
r (Rϕ) is of the form Ĵ

for some Rϕ-invariant ideal J in DRϕ . Let I be an ideal in C∗
r (Rϕ). Set J = I∩DRϕ ,

which is clearly a Rϕ-invariant ideal in DRϕ . Since Ĵ∩DRϕ = J = I∩DRϕ by Lemma

2.13 of [Th1], we conclude from Lemma 3.3 that Ĵ = I.
�

A subset A ⊆ Y is said to be φ-saturated when φ−k
(
φk(A)

)
= A for all k ∈ N.

Corollary 3.5. (Cf. Proposition II.4.6 of [Re]) The map

L 7→ IL =
{
a ∈ C∗

r (Rφ) : PRφ
(a∗a)(x) = 0 ∀x ∈ L

}

is a bijection from the non-empty closed φ-saturated subsets L of Y onto the set of
proper ideals in C∗

r (Rφ).

Proof. Since φ is a local homeomorphism, we have that DRφ
= C(Y ) so the corollary

follows from Theorem 3.4 by use of the well-known bijection between ideals in C(Y )
and closed subsets of Y . The only thing to show is that an open subset U of
Y is φ-saturated if and only if the ideal C0(U) of C(Y ) is Rφ-invariant which is
straightforward, cf. the proof of Corollary 2.18 in [Th1]. �

The next issue will be to determine which closed φ-saturated subsets of Y corre-
spond to primitive ideals. For a point x ∈ Y we define the φ-saturation of x to be
the set

H(x) =
∞⋃

n=1

{y ∈ Y : φn(y) = φn(x)} .

The closure H(x) of H(x) will be referred to as the closed φ-saturation of x. Observe

that both H(x) and H(x) are φ-saturated.
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Proposition 3.6. Let L ⊆ Y be a non-empty closed φ-saturated subset. The ideal
IL is primitive if and only L is the closed φ-saturation of a point in Y .

Proof. Since C∗
r (Rφ) is separable an ideal is primitive if and only if it is prime, cf.

[Pe]. We show that IL is prime if and only if L = H(x) for some x ∈ Y .

Assume first that L = H(x) and consider two ideals, I1 and I2, in C
∗
r (Rφ) such

that I1I2 ⊆ I
H(x). By Corollary 3.5 there are closed φ-saturated subsets, L1 and L2,

in Y such that Ij = ILj
, j = 1, 2. It follows from Corollary 3.5 that H(x) ⊆ L1∪L2.

At least one of the Lj ’s must contain x, say x ∈ L1. Since L1 is φ-saturated and

closed it follows that H(x) ⊆ L1, and hence that I1 ⊆ I
H(x). Thus IH(x) is prime.

Assume next that IL is prime. Let {Uk}
∞
k=0 be a base for the topology of L

consisting of non-empty sets. We will construct sequences {Bk}
∞
k=0 of compact non-

empty neighbourhoods in L and non-negative integers {nk}
∞
k=0 such that

i) Bk ⊆ Bk−1 for k ≥ 1, and
ii) φnk (Bk) ⊆ φnk (Uk) for k ≥ 0.

We start the induction by letting B0 be any compact non-empty neighbourhood in
U0 and n0 = 0. Assume then that B0, B1, B2, . . . , Bm and n0, n1, . . . , nm have been
constructed. Choose a non-empty open subset Vm+1 ⊆ Bm. Note that both of

L\
⋃

l

φ−l
(
φl(Vm+1)

)

and
L\
⋃

l

φ−l
(
φl(Um+1)

)

are closed φ-saturated subsets of L, and hence of Y , and none of them is all of L.
It follows from Corollary 3.5 and primeness of IL that L is not contained in their
union, which in turn implies that

φ−nm+1 (φnm+1(Vm+1)) ∩ φ
−nm+1 (φnm+1(Um+1))

is non-empty for some nm+1 ∈ N. There is therefore a point z ∈ Vm+1 such that
φnm+1(z) ∈ φnm+1 (Um+1), and therefore also a compact non-empty neighbourhood
Bm+1 ⊆ Vm+1 of z such that φnm+1(Bm+1) ⊆ φnm+1 (Um+1). This completes the
induction. Let x ∈

⋂
mBm. By construction every Uk contains an element from

H(x). It follows that H(x) = L. �

4. On the ideals of C∗
r (Γϕ)

The C∗-algebra C∗
r (Γϕ) carries a canonical circle action β, called the gauge action,

defined such that
βλ(f)(x, k, y) = λkf(x, k, y)

when f ∈ Cc (Γϕ) and λ ∈ T, cf. [Th1]. As the next step we describe in this section
the gauge-invariant ideals in C∗

r (Γϕ).
Consider first the function m : X → N defined such that

m(x) = # {y ∈ X : ϕ(y) = ϕ(x)} . (4.1)

As shown in [Th1], m ∈ DR(ϕ) ⊆ DRϕ . Define a function Vϕ : Γϕ → C such that

Vϕ(x, k, y) =

{
m(x)−

1
2 when k = 1 and y = ϕ(x)

0 otherwise.



THE C
∗
-ALGEBRA OF A LOCALLY INJECTIVE SURJECTION 7

Then Vϕ is the product Vϕ = m− 1
21Γϕ(1,0) in C

∗
r (Γϕ) and in fact an isometry which

induces an endomorphism ϕ̂ of C∗
r (Rϕ), viz.

ϕ̂(a) = VϕaV
∗
ϕ

Together with C∗
r (Rϕ) the isometry Vϕ generates C∗

r (Γϕ) which in this way becomes
a crossed product C∗

r (Rϕ)×ϕ̂N in the sense of Stacey, cf. [St] and [Th1]; in particular
Theorem 4.6 in [Th1].

4.1. Gauge invariant ideals. Let C∗
r (Γϕ)

T denote the fixed point algebra of the
gauge action.

Lemma 4.1. For each k ∈ N we have that V ∗
ϕ
kC∗

r (Rϕ)V
k
ϕ is a C∗-subalgebra of

C∗
r (Γϕ)

T,

V ∗
ϕ
kC∗

r (Rϕ) V
k
ϕ ⊆ V ∗

ϕ
k+1C∗

r (Rϕ)V
k+1
ϕ , (4.2)

and

C∗
r (Γϕ)

T =

∞⋃

k=0

V ∗
ϕ
kC∗

r (Rϕ) V k
ϕ . (4.3)

Proof. Since V k
ϕ V

∗
ϕ
k ∈ C∗

r (Rϕ), it is easy to check that V ∗
ϕ
kC∗

r (Rϕ)V
k
ϕ is a ∗-algebra.

To see that V ∗
ϕ
kC∗

r (Rϕ)V
k
ϕ is closed let {an} be a sequence in C∗

r (Rϕ) such that{
V ∗
ϕ
kanV

k
ϕ

}
converges in C∗

r (Γϕ), say limn→∞ V ∗
ϕ
kanV

k
ϕ = b. It follows that

{
V k
ϕ V

∗
ϕ
kanV

k
ϕ V

∗
ϕ
k
}

is Cauchy in C∗
r (Rϕ) and hence convergent, say to a ∈ C∗

r (Rϕ). But then b =
limn→∞ V ∗

ϕ
kanV

k
ϕ = limn→∞ V ∗

ϕ
kV k

ϕ V
∗
ϕ
kanV

k
ϕ V

∗
ϕ
kV k

ϕ = V ∗
ϕ
kaV k

ϕ . It follows that

V ∗
ϕ
kC∗

r (Rϕ) V
k
ϕ

is closed and hence a C∗-subalgebra. The inclusion (4.2) follows from the observation
that V k

ϕ = V ∗
ϕV

k+1
ϕ and VϕC

∗
r (Rϕ) V

∗
ϕ ⊆ C∗

r (Rϕ).

It is straightforward to check that βλ(Vϕ) = λVϕ and that C∗
r (Rϕ) ⊆ C∗

r (Γϕ)
T.

The inclusion ⊇ in (4.3) follows from this. To obtain the other, let x ∈ C∗
r (Γϕ)

T

and let ǫ > 0. It follows from Theorem 4.6 of [Th1] and Lemma 1.1. of [BoKR] that
there is an n ∈ N and an element

y ∈ Span
⋃

i,j≤n

V ∗
ϕ
iC∗

r (Rϕ)V
j
ϕ

such that ‖x− y‖ ≤ ǫ. Then
∥∥x−

∫
T βλ(y) dλ

∥∥ ≤ ǫ and since
∫

T
βλ(y) dλ ∈ V

∗
ϕ
nC∗

r (Rϕ) V
n
ϕ ,

we see that (4.3) holds. �

Lemma 4.2. Let I be a gauge invariant ideal in C∗
r (Γϕ). It follows that

I =

{
a ∈ C∗

r (Γϕ) :

∫

T
βλ(a

∗a) dλ ∈ I ∩ C∗
r (Γϕ)

T

}
.
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Proof. Set B = C∗
r (Γϕ) /I. Since I is gauge-invariant there is an action β̂ of T on

B such that q ◦ β = β̂ ◦ q, where q : C∗
r (Γϕ)→ B is the quotient map. Thus, if

y ∈

{
a ∈ C∗

r (Γϕ) :

∫

T
βλ(a

∗a) dλ ∈ I ∩ C∗
r (Γϕ)

T

}
,

we find that ∫

T
β̂λ(q(y

∗y)) dλ = q

(∫

T
βλ(y

∗y) dλ

)
= 0.

Since
∫
T β̂λ(·) dλ is faithful we conclude that q(y) = 0, i.e. y ∈ I. This establishes

the non-trivial part of the asserted identity. �

Lemma 4.3. Let I, I ′ be gauge invariant ideals in C∗
r (Γϕ). Then

I ∩DRϕ ⊆ I ′ ∩DRϕ ⇒ I ⊆ I ′.

Proof. Assume that I∩DRϕ ⊆ I ′∩DRϕ . It follows from Lemma 3.3 that I∩C∗
r (Rϕ) ⊆

I ′ ∩ C∗
r (Rϕ). Then

I ∩ V ∗
ϕ
kC∗

r (Rϕ)V
k
ϕ = V ∗

ϕ
k (I ∩ C∗

r (Rϕ))V
k
ϕ

⊆ V ∗
ϕ
k (I ′ ∩ C∗

r (Rϕ))V
k
ϕ = I ′ ∩ V ∗

ϕ
kC∗

r (Rϕ)V
k
ϕ

for all k ∈ N. Hence Lemma 4.1 implies that I ∩C∗
r (Γϕ)

T ⊆ I ′∩C∗
r (Γϕ)

T. It follows
then from Lemma 4.2 that I ⊆ I ′.

�

Proposition 4.4. The map J 7→ Ĵ , where

Ĵ =
{
a ∈ C∗

r (Γϕ) : PΓϕ(a
∗a) ∈ J

}
,

is a bijection from the Γϕ-invariant ideals of DΓϕ onto the gauge invariant ideals of
C∗

r (Γϕ). Its inverse is the map I 7→ I ∩DΓϕ.

Proof. Since PΓϕ ◦ β = PΓϕ the ideal Ĵ is gauge invariant. It follows from Lemma

2.13 of [Th1] that Ĵ ∩DΓϕ = J so it suffices to show that

̂I ∩DΓϕ = I (4.4)

when I is a gauge invariant ideal in C∗
r (Γϕ). It follows from Lemma 2.13 of [Th1]

that ̂I ∩DΓϕ ∩DΓϕ = I ∩DΓϕ . Since DRϕ ⊆ DΓϕ this implies that ̂I ∩DΓϕ ∩DRϕ =
I ∩DRϕ . Then (4.4) follows from Lemma 4.3.

�

To simplify notation, set D = DΓφ
= C(Y ). Every ideal I in C∗

r (Γφ) determines
a closed subset ρ(I) of Y defined such that

ρ(I) = {y ∈ Y : f(y) = 0 ∀f ∈ I ∩D} . (4.5)

We say that a subset F ⊆ Y is totally φ-invariant when φ−1(F ) = F .

Lemma 4.5. ρ(I) is totally φ-invariant for every ideal I in C∗
r (Γφ).

Proof. It suffices to show that Y \ ρ(I) is totally φ-invariant, which is what we
will do. Assume first that x ∈ Y \ ρ(I). Then there is an f ∈ I ∩ D such that
f(x) 6= 0. Choose an open bisection W ⊆ Γφ such that (x, 1, φ(x)) ∈ W . Choose
then η ∈ Cc(Γφ) such that η((x, 1, φ(x)) = 1 and supp η ⊆ W . It is not difficult to
check that η∗fη ∈ D and that η∗fη(φ(x)) = f(x) 6= 0, and since η∗fη ∈ I, it follows
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that φ(x) ∈ Y \ ρ(I). Assume then that φ(x) ∈ Y \ ρ(I). Then there is a g ∈ I ∩D
such that g(φ(x)) 6= 0. Choose an open bisection W ⊆ Γφ such that (x, 1, φ(x)) ∈ W
and η ∈ Cc(Γφ) such that η((x, 1, φ(x)) = 1 and supp η ⊆ W . Then ηgη∗ ∈ D and
ηgη∗(φ(x)) = g(x) 6= 0, and since ηgη∗ ∈ I, this shows that x ∈ Y \ρ(I), proving
that φ−1 (ρ(I)) = ρ(I). �

Thus every ideal in C∗
r (Γφ) gives rise to a closed totally φ-invariant subset of

Y . To go in the other direction, let F be a closed totally φ-invariant subset of
Y . Then Y \F is open and totally φ-invariant so that the reduction Γφ|Y \F is an
étale groupoid in its own right, cf. [An]. In fact, φ restricts to local homeomorphic
surjections φ : Y \F → Y \F and φ : F → F , and

Γφ|Y \F = Γφ|Y \F
.

Note that C∗
r

(
Γφ|Y \F

)
= C∗

r

(
Γφ|Y \F

)
is an ideal in C∗

r (Γφ) because Y \F is totally

φ-invariant.

Proposition 4.6. (Cf. Proposition II.4.5 of [Re].) Let F be a non-empty, closed
and totally φ-invariant subset of Y . There is then a surjective ∗-homomorphism
πF : C∗

r (Γφ)→ C∗
r (Γφ|F ) which extends the restriction map Cc (Γφ)→ Cc

(
Γφ|F

)
and

has the property that ker πF = C∗
r

(
Γφ|Y \F

)
, i.e.

0 C∗
r

(
Γφ|Y \F

)
C∗

r (Γφ)
πF

C∗
r (Γφ|F ) 0

is exact. Furthermore,

ρ(ker πF ) = F. (4.6)

Proof. Let π̇F : Cc (Γφ)→ Cc

(
Γφ|F

)
denote the restriction map which is surjective by

Tietze’s theorem. By using that F is totally φ-invariant, it follows straightforwardly
that π̇F is a ∗-homomorphism. Since πx ◦ π̇F = πx when x ∈ F , it follows that
π̇F extends by continuity to a ∗-homomorphism πF : C∗

r (Γφ) → C∗
r (Γφ|F ) which is

surjective because π̇F is. To complete the proof observe that

ker πF ∩D = C0 (Y \F ) = C∗
r

(
Γφ|Y \F

)
∩D.

The first identity shows that (4.6) holds, and since ker πF and C∗
r

(
Γφ|Y \F

)
are both

gauge-invariant ideals the second that they are identical by Lemma 4.3. �

By combining Proposition 4.4, Lemma 4.5 and Proposition 4.6 we obtain the
following.

Theorem 4.7. The map ρ is a bijection from the gauge-invariant ideals in C∗
r (Γφ)

onto the set of closed totally φ-invariant subsets of Y . The inverse is the map which
sends a closed totally φ-invariant subset F ⊆ Y to the ideal

ker πF =
{
a ∈ C∗

r (Γφ) : PΓφ
(a∗a)(x) = 0 ∀x ∈ F

}
.

We remark that since the isomorphism (2.2) is equivariant with respect to the
gauge actions, Theorem 4.7 gives also a description of the gauge invariant ideals in
C∗

r (Γϕ), as a complement to the one of Proposition 4.4.
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4.2. The primitive ideals. We are now in position to obtain a complete descrip-
tion of the primitive ideals of C∗

r (Γφ). Much of what we do is merely a translation
of Katsuras description of the primitive ideals in the more general C∗-algebras con-
sidered by him in [Ka]. Recall that because we only deal with separable C∗-algebras
the primitive ideals are the same as the prime ideals, cf. 3.13.10 and 4.3.6 in [Pe].

Lemma 4.8. Let I be an ideal in C∗
r (Γφ) and let A be a closed totally φ-invariant

subset of Y . If ρ(I) ⊆ A, then ker πA ⊆ I.

Proof. Since ρ(I) ⊆ A it follows from the Stone-Weierstrass theorem that C0(Y \
A) ⊆ I ∩ C(Y ). Let {in} be an approximate unit in C0(Y \A). It follows from
Proposition 4.6 that {in} is also an approximate unit in ker πA. Since {in} ⊆ I it
follows that ker πA ⊆ I. �

We say that a closed totally φ-invariant subset A of Y is prime when it has the
property that if B and C also are closed and totally φ-invariant subsets of Y and
A ⊆ B ∪ C, then either A ⊆ B or A ⊆ C.
Let M := {A ⊆ Y : A is non-empty, closed, totally φ-invariant and prime}. For

x ∈ Y let

Orb(x) = {y ∈ Y : ∃m,n ∈ N : φn(x) = φm(y)}.

We call Orb(x) the total φ-orbit of x.

Proposition 4.9. (Cf. Proposition 4.13 and 4.4 of [Ka].)

M = {Orb(x) : x ∈ Y }.

Proof. It is clear that Orb(x) ∈ M for every x ∈ Y . Assume that A ∈ M and let
{Uk}

∞
k=1 be a basis for A. We will by induction show that we can choose compact

neighbourhoods {Ck}
∞
k=0 and {C

′
k}

∞
k=0 in A and positive integers (nk)

∞
k=0 and (n′

k)
∞
k=0

such that Ck ⊆ Uk and C ′
k ⊆ φnk−1(Ck−1) ∩ φ

n′
k−1(C ′

k−1) for k ≥ 1. For this set
C0 = C ′

0 = A. Assume then that n ≥ 1 and that C1, . . . , Cn, C
′
1, . . . , C

′
n, n0, . . . , nn−1

and n′
0, . . . , n

′
n−1 satisfying the conditions above have been chosen. Choose non-

empty open subsets Vn ⊆ Cn and V ′
n ⊆ C ′

n. We then have that

∞⋃

l,m=0

φ−l(φm(Vn)) and

∞⋃

l,m=0

φ−l(φm(V ′
n))

are non-empty open and totally φ-invariant subsets of A, and thus that

A \
∞⋃

l,m=0

φ−l(φm(Vn)) and A \
∞⋃

l,m=0

φ−l(φm(V ′
n)) (4.7)

are closed, totally φ-invariant subsets of Y . Since A is prime and is not contained
in either of the sets from (4.7), it follows that A is not contained in

(
A \

∞⋃

l,m=0

φ−l(φm(Vn))

)⋃(
A \

∞⋃

l,m=0

φ−l(φm(V ′
n))

)
,

whence (
∞⋃

l,m=0

φ−l(φm(Vn))

)⋂(
∞⋃

l,m=0

φ−l(φm(V ′
n))

)
6= ∅.
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It follows that there are positive integers nn and n′
n such that φnn(Vn) ∩ φ

n′
n(V ′

n)
is non-empty. Thus we can choose a compact neighbourhood Cn+1 ⊆ Un+1 and a
compact neighbourhood C ′

n+1 ⊆ φnn(Vn) ∩ φ
n′
n(V ′

n) ⊆ φnn(Cn) ∩ φ
n′
n(C ′

n) which is
what is required for the induction step.
It is easy to check that

C ′
0 ∩ φ

−n′
0(C ′

1) ∩ . . . · · · ∩ φ
−n′

0−···−n′
k(C ′

k+1), k = 0, 1, . . .

is a decreasing sequence of non-empty compact sets. It follows that there is an

x ∈
∞⋂

k=0

φ−n′
0−...···−n′

k(C ′
k+1) ∩ C

′
0.

We have for every k ∈ N that φn′
0+···+n′

k(x) ∈ C ′
k+1 ⊆ φnk(Ck) ⊆ φnk(Uk), and it

follows that Orb(x) is dense in A, and thus that A = Orb(x). �

Proposition 4.10. (Cf. Proposition 9.3 of [Ka].) Assume that I is a prime ideal
in C∗

r (Γφ). It follows that ρ(I) ∈M.

Proof. It follows from Lemma 4.5 that ρ(I) is closed and totally φ-invariant. To
show that ρ(I) is also prime, assume that B and C are closed totally φ-invariant
subsets such that ρ(I) ⊆ B∪C. It follows then from Lemma 4.8 that ker(πB∪C) ⊆ I.
Since ker πB ∩ ker πC ∩D = C0(Y \B)∩C0(Y \C) = C0 (Y \(B ∪ C)) = ker πB∪C ∩D
it follows from Lemma 4.3 that ker πB ∩ ker πC = ker πB∪C . Therefore ker(πB) ⊆ I
or ker(πC) ⊆ I since I is prime. Hence ρ(I) ⊆ B or ρ(I) ⊆ C, thanks to (4.6). �

We say that a point x ∈ Y is φ-periodic if φn(x) = x for some n > 0. Let Per
denote the set of φ-periodic points x ∈ Y which are isolated in Orb(x) and let

MPer = {Orb(x) : x ∈ Per}

and
MAper =M\MPer.

Let A ⊆ Y be a closed totally φ-invariant subset. We say that φ|A is topologically
free if the set of φ-periodic points in A has empty interior in A.

Proposition 4.11. (Cf. Proposition 11.3 of [Ka].) Let A ∈ M. Then φ|A is
topologically free if and only if A ∈MAper.

Proof. We will show that φ|A is not topologically free if and only if A ∈ MPer. If

x ∈ Per and A = Orb(x), then φ|A is not topologically free because x is periodic
and isolated in Orb(x) and thus in A. Assume then that φ|A is not topologically
free. There is then a non-empty open subset U ⊆ A such that every element of U
is φ-periodic. Choose x ∈ A such that A = Orb(x). Then U ∩ Orb(x) 6= ∅. Let

y ∈ U ∩Orb(x). Then y is φ-periodic and Orb(y) = Orb(x) = A, so if we can show
that y is isolated in Orb(y), then we have that A ∈ MPer. Since y is φ-periodic
there is an n ≥ 1 such that φn(y) = y. We claim that U ⊆ {y, φ(y), . . . , φn−1(y)}.
It will then follow that y is isolated in A and thus in Orb(y).
Assume that U \ {y, φ(y), . . . , φn−1(y)} is non-empty. Since it is also open it

follows that Orb(y)∩U \ {y, φ(y), . . . , φn−1(y)} is non-empty. Let z ∈ Orb(y)∩U \
{y, φ(y), . . . , φn−1(y)}. Since z ∈ U there is an m ≥ 1 so that φm(z) = z, and since
z ∈ Orb(y) there are k, l ∈ N such that φk(z) = φl(y). But then z = φmk(z) =
φ(m−1)k+l(y) ∈ {y, φ(y), . . . , φn−1(y)} and we have a contradiction. It follows that
U ⊆ {y, φ(y), . . . , φn−1(y)}. �
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In particular, it follows from Proposition 4.11 that the elements of MAper are
infinite sets.

Proposition 4.12. (Cf. Proposition 11.5 of [Ka].) Let A ∈MAper. Then ker πA is
the unique ideal I in C∗

r (Γφ) with ρ(I) = A.

Proof. We have already in Proposition 4.6 seen that ρ(ker πA) = A. Assume that I
is an ideal in C∗

r (Γφ) with ρ(I) = A. It follows then from Lemma 4.8 that ker πA ⊆ I.
Thus it sufficies to show that πA(I) = {0}. Note that πA(I) is an ideal in C∗

r (Γφ|A)
with ρ(πA(I)) = A. It follows that πA(I)∩C(A) = {0}. To conclude from this that
πA(I) = {0} we will show that the points of A whose isotropy group in Γφ|A is trivial
are dense in A. It will then follow from Lemma 2.15 of [Th1] that πA(I) = {0}
because πA(I) ∩ C(A) = {0}. That the points of A with trivial isotropy in Γφ|A are
dense in A is established as follows: The points in A with non-trivial isotropy in
Γφ|A are the pre-periodic points in A. Let PernA denote the set of points in A with
minimal period n under φ and note that PernA is closed and has empty interior
since φ|A is topologically free by Proposition 4.11. It follows that A\φ−k (PernA) is
open and dense in A for all k, n. By the Baire category theorem it follows that

A\

(⋃

k,n

φ−k (PernA)

)
=
⋂

k,n

A\φ−k (PernA)

is dense in A, proving the claim.
�

Lemma 4.13. Let A ∈MAper. Then ker πA is a primitive ideal.

Proof. Let A = Orb(x). To show that ker πA is primitive it suffices to show that it is
prime, cf. Proposition 4.3.6 of [Pe]. Equivalently, it suffices to show that C∗

r

(
Γφ|A

)

is a prime C∗-algebra. Consider therefore two ideals Ij ⊆ C∗
r

(
Γφ|A

)
, j = 1, 2, such

that I1I2 = {0}. Then

{y ∈ A : f(y) = 0 ∀f ∈ I1 ∩ C(A)} ∪ {y ∈ A : f(y) = 0 ∀f ∈ I2 ∩ C(A)} = A.

In particular, x must be in {y ∈ A : f(y) = 0 ∀f ∈ Ij ∩ C(A)}, either for j = 1 or
j = 2. It follows then from Lemma 4.5, applied to φ|A, that

A = {y ∈ A : f(y) = 0 ∀f ∈ Ij ∩ C(A)} .

Hence Ij = {0} by Proposition 4.12 applied to φ|A. �

Let A ∈ MPer. Choose x ∈ Per such that Orb(x) = A, and let n be the minimal
period of x. Then x is isolated in A. It follows that the characteristic functions
1(x,0,x) and 1(x,n,x) belong to C∗

r (Γφ|A). Let px = 1(x,0,x) and ux = 1(x,n,x). For w ∈ T
let Ṗx,w denote the ideal in C∗

r (Γφ|A) generated by ux − wpx.

Lemma 4.14. Suppose that x, y ∈ Per and that Orb(x) = Orb(y) and let w ∈ T.
Then Ṗx,w = Ṗy,w.

Proof. By symmetry, it is enough to show that Ṗy,w ⊆ Ṗx,w. Since y is isolated in

Orb(y), it is isolated in Orb(y) = Orb(x). Thus y must belong to Orb(x). This
means that there are k, l ∈ N such that φk(x) = φl(y). Since y is φ-periodic, it

follows that there is an i ∈ N such that y = φi(x). Let A = Orb(y) = Orb(x). Since
x and y are isolated in A we have that 1(x,i,y) ∈ C

∗
r (Γφ|A). Let v = 1(x,i,y). It is easy to
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check that v∗pxv = py and that v∗uxv = uy. Thus uy −wpy = v∗(ux −wpx)v ∈ Ṗx,w

and it follows that Ṗy,w ⊆ Ṗx,w. �

Let A ∈MPer and let w ∈ T. It follows from Lemma 4.14 that the ideal Ṗx,w does

not depend of the particular choice of x ∈ A ∩ Per, as long as Orb(x) = A. We will
therefore simply write ṖA,w for Ṗx,w. We then define PA,w to be the ideal π−1

A (ṖA,w)
in C∗

r (Γφ).

Proposition 4.15. (Cf. Proposition 11.13 of [Ka].) Let A ∈MPer. Then

w 7→ PA,w

is a bijection between T and the set of primitive ideals P in C∗
r (Γφ) with ρ(P ) = A.

Proof. The map P 7→ πA(P ) gives a bijection between the primitive ideals in C∗
r (Γφ)

with ker πA ⊆ P and the primitive ideals in C∗
r (Γφ|A), cf. Theorem 4.1.11 (ii) in [Pe].

The inverse of this bijection is the map Q 7→ π−1
A (Q). If P is a primitive ideal in

C∗
r (Γφ) with ρ(P ) = A, it follows from Lemma 4.8 that ker πA ⊆ P . In addition

ρ(πA(P )) = A. If on the other hand Q is a primitive ideal in C∗
r (Γφ|A) with ρ(Q) = A,

then π−1
A (Q) is a primitive ideal in C∗

r (Γφ) and ρ(π
−1
A (Q)) = A. Thus P 7→ πA(P )

gives a bijection between the primitive ideals in C∗
r (Γφ) with ρ(P ) = A and the

primitive ideals Q in C∗
r (Γφ|A) with ρ(Q) = A.

Choose x ∈ Per such that Orb(x) = A. Let 〈px〉 be the ideal in C
∗
r (Γφ|A) generated

by px. Observe that ṖA,w ⊆ 〈px〉 for all w ∈ T since px (ux − wpx) = ux −wpx. The
map Q 7→ Q ∩ 〈px〉 gives a bijection between the primitive ideals in C∗

r (Γφ|A) with
〈px〉 * Q and the primitive ideals in 〈px〉, cf. Theorem 4.1.11 (ii) in [Pe]. We claim
that 〈px〉 * Q if and only if ρ(Q) = A. To see this, let Q be an ideal in C∗

r (Γφ|A).
If px ∈ Q, then x /∈ ρ(Q) and ρ(Q) 6= A. If on the other hand ρ(Q) 6= A, then

x /∈ ρ(Q) because ρ(Q) is closed and totally φ-invariant and Orb(x) = A. It follows
that there is an f ∈ Q ∩ C(A) such that f(x) 6= 0, whence px ∈ Q. This proves the
claim and it follows that Q 7→ Q∩〈px〉 gives a bijection between the primitive ideals
in C∗

r (Γφ|A) with ρ(Q) = A and the primitive ideals in 〈px〉.
The C∗-algebra 〈px〉 is Morita equivalent to pxC

∗
r (Γφ|A)px via the pxC

∗
r (Γφ|A)px-

〈px〉 imprimitivity bimodule pxC
∗
r (Γφ|A), and therefore T 7→ pxTpx gives a bijection

between the primitive ideals T in 〈px〉 and the primitive ideals in pxC
∗
r (Γφ|A)px, cf.

Proposition 3.24 and Corollary 3.33 in [RW]. Now note that

{(x′, n′, y′) ∈ Γφ|A : x′ = y′ = x} = {(x, kn, x) : k ∈ Z}

where n is the smallest positive integer such that φn(x) = x. It follows that
pxC

∗
r (Γφ|A)px is isomorphic to C(T) under an isomorphism taking the canonical

unitary generator of C(T) to ux. In this way we conclude that the primitive ideals
of pxC

∗
r (Γφ|A)px are in one-to-one correspondance with T under the map

T ∋ w 7→ pxC∗
r (Γφ|A) (ux − wpx)C∗

r (Γφ|A)px = pxṖA,wpx.

This completes the proof. �

By combining Proposition 4.10, 4.12 and 4.15 we get the following theorem.

Theorem 4.16. The set of primitive ideals in C∗
r (Γφ) is the disjoint union of

{ker πA : A ∈MAper} and {PA,w : A ∈MPer, w ∈ T}.
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4.3. The maximal ideals. The next step is to identify the maximal ideals among
the primitive ones.

Lemma 4.17. Assume that not all points of Y are pre-periodic and that C∗
r (Γφ)

contains a non-trivial ideal. It follows that there is a non-trivial gauge-invariant
ideal J in C∗

r (Γφ) such that J ∩ C(Y ) 6= {0}.

Proof. Let I be a non-trivial ideal in C∗
r (Γφ). Assume first that I ∩ C(Y ) = {0}.

Since we assume that not all points of Y are pre-periodic we can apply Lemma 2.16
of [Th1] to conclude that J0 = PΓφ

(I) is a non-trivial Γφ-invariant ideal in C(Y ).
Then

J =
{
a ∈ C∗

r (Γφ) : PΓφ
(a∗a) ∈ J0

}

is a non-trivial gauge-invariant ideal by Theorem 4.4, and J ∩ C(Y ) = J0 6= {0}.
Note that J contains I in this case. If I ∩ C(X) 6= {0} we set

J =
{
a ∈ C∗

r (Γφ) : PΓφ
(a∗a) ∈ I ∩ C(Y )

}

which is a non-trivial ideal in C∗
r (Γφ) such that J ∩ C(Y ) = I ∩ C(Y ) by Lemma

2.13 of [Th1]. Since J is gauge-invariant, this completes the proof. �

Lemma 4.18. Let F ⊆ Y be a minimal closed non-empty totally φ-invariant subset.
Then either

1) F ∈ MAper and ker πF is a maximal ideal, or
2) F = Orb(x) = {φn(x) : n ∈ N}, where x ∈ Per.

Proof. It follows from the minimality of F that Orb(x) = F for all x ∈ F . We will
show that 1) holds when F does not contain an element of Per, and that 2) holds
when it does. Assume first that F does not contain any elements of Per. Then
F ∈MAper. If there is a proper ideal I in C∗

r (Γφ) such that ker πF ( I, then πF (I)
is a non-trivial ideal in C∗

r

(
Γφ|F

)
, and then it follows from Lemma 4.17 that there is

a non-trivial gauge-invariant ideal J in C∗
r

(
Γφ|F

)
. By Theorem 4.7 ρ(π−1

F (J)) is then
a non-trivial closed totally φ-invariant subset of F , contradicting the minimality of
F . Thus 1) holds when F does not contain an element from Per.
Assume instead that there is an x ∈ F ∩ Per. Then x is isolated in Orb(x), and

thus in F . It follows that F = Orb(x), because if y ∈ F \ Orb(x) we would have

that x /∈ Orb(y) = F , which is absurd. Since F is compact, Orb(x) must be finite.
Since φ is surjective we must then have that Orb(x) = {φn(x) : n ∈ N}. Thus 2)
holds if F contains an element from Per. �

Lemma 4.19. Let I be a maximal ideal in C∗
r (Γφ). Then either I = ker πF for

some minimal closed totally φ-invariant subset F ∈ MAper, or I = POrb(x),w for
some w ∈ T and some x ∈ Per such that Orb(x) = {φn(x) : n ∈ N}.

Proof. Since I is also primitive we know from Theorem 4.16 that I = ker πA for
some A ∈ MAper or I = PA,w for some A ∈ MPer and some w ∈ T. In the first
case it follows that A must be a minimal closed totally φ-invariant subset since I
is a maximal ideal. Assume then that I = PA,w for some A ∈ MPer and some

w ∈ T. In the notation from the proof of Proposition 4.15, observe that ṖA,w ⊆ 〈px〉

since px (ux − wpx) = ux − wpx. Note that ṖA,w 6= 〈px〉 because the latter of these
ideals is gauge-invariant and the first is not. By maximality of I this implies that
〈px〉 = C∗

r

(
Γφ|A

)
. On the other hand, Orb(x) is an open totally φ-invariant subset



THE C
∗
-ALGEBRA OF A LOCALLY INJECTIVE SURJECTION 15

of A and px ∈ C
∗
r

(
Γφ|Orb(x)

)
, so we see that 〈px〉 = C∗

r

(
Γφ|A

)
= C∗

r

(
Γφ|Orb(x)

)
. This

implies that

C0 (Orb(x)) = C(A) ∩ C∗
r

(
Γφ|Orb(x)

)
= C(A),

and hence that A = Orb(x). Compactness of A implies that Orb(x) is finite and
surjectivity of φ that Orb(x) = {φn(x) : n ∈ N}. �

Theorem 4.20. The maximal ideals in C∗
r (Γφ) consist of the primitive ideals of the

form ker πF for some infinite minimal closed totally φ-invariant subset F ⊆ Y and
the primitive ideals PA,w for some w ∈ T, where A = Orb(x) = {φn(x) : n ∈ N} for
a φ-periodic point x ∈ Y .

Proof. This follows from the last two lemmas, after the observation that a primitive
ideal PA,w of the form described in the statement is maximal. �

Corollary 4.21. Let A be a simple quotient of C∗
r (Γφ). Assume A is not finite

dimensional. It follows that there is an infinite minimal closed totally φ-invariant
subset F of Y such that A ≃ C∗

r

(
Γφ|F

)
.

To make more detailed conclusions about the simple quotients we need to restrict
to the case where Y is of finite covering dimension so that the result of [Th3] applies.
For this reason we prove first that finite dimensionality of Y follows from finite
dimensionality of X .

5. On the dimension of Y

Let DimX and DimY denote the covering dimensions of X and Y , respectively.
The purpose with this section is to establish

Proposition 5.1. DimY ≤ DimX.

Proof. By definition Y is the Gelfand spectrum of DΓϕ. Since the conditional expec-
tation PΓϕ : C∗

r (Γϕ) → DΓϕ is invariant under the gauge action, in the sense that
PΓϕ ◦ βλ = PΓϕ for all λ, it follows that

DΓϕ = PΓϕ

(
C∗

r (Γϕ)
T
)
.

To make use of this description of DΓϕ we need a refined version of (4.3). Note first

that it follows from (4.4) and (4.5) of [Th1] that VϕC
∗
r

(
R
(
ϕl
))
V ∗
ϕ ⊆ C∗

r

(
R
(
ϕl+1

))

for all l ∈ N. Consequently

V ∗
ϕ
kC∗

r

(
R
(
ϕl
))
V k
ϕ = V ∗

ϕ
k+1VϕC

∗
r

(
R
(
ϕl
))
V ∗
ϕV

k+1
ϕ ⊆ V ∗

ϕ
k+1C∗

r

(
R
(
ϕl+1

))
V k+1
ϕ

for all k, l ∈ N. It follows therefore from (3.1) and (4.3) that there are sequences
{kn} and {ln} in N such that ln ≥ kn,

V ∗
ϕ
knC∗

r

(
R
(
ϕln
))
V kn
ϕ ⊆ V ∗

ϕ
kn+1C∗

r

(
R
(
ϕln+1

))
V kn+1
ϕ (5.1)

and

C∗
r (Γϕ)

T =
⋃

n

V ∗
ϕ
knC∗

r (R (ϕln)) V kn
ϕ ; (5.2)

we can for example use kn = n and ln = 2n.
Let Dn denote the C∗-subalgebra of DΓϕ generated by

PΓϕ

(
V ∗
ϕ
knC∗

r

(
R
(
ϕln
))
V kn
ϕ

)
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and let Yn be the character space of Dn. Note that C(X) ⊆ Dn since V kn
ϕ gV ∗

ϕ
kn ∈

C∗
r

(
R
(
ϕln
))

and g = PΓϕ

(
V ∗
ϕ
knV kn

ϕ gV ∗
ϕ
knV kn

ϕ

)
when g ∈ C(X). There is therefore

a continuous surjection
πn : Yn → X

defined such that g (πn(y)) = y(g), g ∈ C(X). We claim that #π−1
n (x) <∞ for all

x ∈ X . To show this note that by definition Dn is generated as a C∗-algebra by
functions of the form

x 7→ PΓϕ

(
V ∗
ϕ
knfV kn

ϕ

)
(x) =

∑

z,z′∈ϕ−kn(x)

f(z, z′)
kn−1∏

j=0

m(ϕj(z))−
1
2m(ϕj(z′))−

1
2 (5.3)

for some f ∈ C∗
r

(
R
(
ϕln
))
. In fact, since alg∗R

(
ϕln
)
is dense in C∗

r

(
R
(
ϕln
))
,

already functions of the form (5.3) with

f = f1 ⋆ f2 ⋆ · · · ⋆ fN , (5.4)

for some fi ∈ C
(
R
(
ϕln
))
, i = 1, 2, . . . , N , will generate Dn.

Fix x ∈ X and consider an element y ∈ π−1
n (x). Every x′ ∈ X defines a character

ιx′ of Dn by evaluation, viz. ιx′(h) = h(x′), and {ιx′ : x′ ∈ X} is dense in Yn because
the implication

h ∈ Dn, h(x
′) = 0 ∀x′ ∈ X ⇒ h = 0

holds. In particular, there is a sequence {xl} in X such that liml→∞ ιxl
= y in Yn.

Recall now from Lemma 3.6 of [Th1] that there is an open neighbourhood U of x
and open sets Vj, j = 1, 2, . . . , d, where d = #ϕ−kn(x), in X such that

1) ϕ−kn
(
U
)
⊆ V1 ∪ V2 ∪ · · · ∪ Vd,

2) Vi ∩ Vj = ∅, i 6= j, and

3) ϕkn is injective on Vj for each j.

Since liml→∞ xl = x in X we can assume that xl ∈ U for all l. For each l, set

Fl =
{
j : ϕ−kn(xl) ∩ Vj 6= ∅

}
⊆ {1, 2, . . . , d} .

Note that there is a subset F ⊆ {1, 2, . . . , d} such that Fl = F for infinitely many
l. Passing to a subsequence we can therefore assume that Fl = F for all l. For each
k ∈ F we define a continuous map λk : ϕkn

(
Vk
)
→ Vk such that ϕkn ◦ λk(z) = z.

Set T = maxz∈X #ϕ−1(z). For each j ∈ {1, 2, . . . , T}, set

Aj =
{
z ∈ X : #ϕ−1 (ϕ(z)) = j

}
= m−1(j).

For each l and each k ∈ F there is a unique tuple (j0(k), j1(k), . . . , jkn−1(k)) ∈

{1, 2, . . . , T}kn such that

ϕ−kn(xl) ∩ Vk ∩ Aj0(k) ∩ ϕ
−1
(
Aj1(k)

)
∩ ϕ−2

(
Aj2(k)

)
∩ · · · ∩ ϕ−kn+1

(
Ajkn−1(k)

)
6= ∅.

Since there are only finitely many choices we can arrange that the same tuples,
(j0(k), j1(k), . . . , jkn−1(k)) , k ∈ F , work for all l. Then

ιxl

(
PΓϕ

(
V ∗
ϕ
knfV kn

ϕ

))
=
∑

k,k′∈F

f (λk(xl), λk′(xl))

kn−1∏

i=0

ji(k)
− 1

2 ji(k
′)−

1
2 (5.5)

for all f ∈ C∗
r

(
R
(
ϕln
))

and all l.

There is an open neighbourhood U ′ of ϕln−kn(x) and open sets V ′
j , j = 1, 2, . . . , d′,

where d′ = #ϕ−ln
(
ϕln−kn(x)

)
, in X such that
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1’) ϕ−ln
(
U ′
)
⊆ V ′

1 ∪ V
′
2 ∪ · · · ∪ V

′
d′,

2’) V ′
i ∩ V

′
j = ∅, i 6= j, and

3’) ϕln is injective on V ′
j for each j.

Since liml→∞ ϕln−kn(xl) = ϕln−kn(x) we can assume that ϕln−kn(xl) ∈ U ′ for all l.
By an argument identical to the way we found F above we can now find a subset
F ′ ⊆ {1, 2, . . . , d′} such that

F ′ =
{
j : ϕ−ln

(
ϕln−kn(xl)

)
∩ V ′

j 6= ∅
}

for all l. For i ∈ F ′ we define a continuous map µ′
i : ϕln

(
V ′
i

)
→ V ′

i such that

µ′
i ◦ ϕ

ln(z) = z when z ∈ V ′
i . Set

µi = µ′
i ◦ ϕ

ln−kn

on ϕ−(ln−kn)
(
ϕln
(
V ′
i

))
. Assuming that f has the form (5.4) we find now that

f (λk(xl), λk′(xl)) =∑

i1,i2,...,iN−1∈F ′

f1 (λk(xl), µi1(xl)) f2 (µi1(xl), µi2(xl)) . . . . . . fN
(
µiN−1

(xl), λk′(xl)
)

(5.6)

for all k, k′ ∈ F . By combining (5.6) with (5.5) we find by letting l tend to infinity
that

y
(
PΓϕ

(
V ∗
ϕ
knfV kn

ϕ

))
=
∑

k,k′∈F

Hk,k′(x)
kn−1∏

i=0

ji(k)
− 1

2 ji(k
′)−

1
2 ,

where

Hk,k′(x) =
∑

i1,i2,...,iN−1∈F ′

f1 (λk(x), µi1(x)) f2 (µi1(x), µi2(x)) . . . . . . fN
(
µiN−1

(x), λk′(x)
)
.

Since this expression only depends on F, F ′ and the tuples

(j0(k), j1(k), . . . , jkn−1(k)) , k ∈ F,

it follows that the number of possible values of an element from π−1
n (x) on the

generators of the form (5.3) does not exceed 2d2d
′
T kn, proving that #π−1

n (x) < ∞
as claimed.
We can then apply Theorem 4.3.6 on page 281 of [En] to conclude that DimYn ≤

DimX . Note that Dn ⊆ Dn+1 and DΓϕ =
⋃

nDn by (5.1) and (5.2). Hence Y is the
projective limit of the sequence Y1 ← Y2 ← Y3 ← . . . . Since DimYn ≤ DimX for
all n we conclude now from Theorem 1.13.4 in [En] that DimY ≤ DimX . �

6. The simple quotients

Following [DS] we say that φ is strongly transitive when for any non-empty open
subset U ⊆ Y there is an n ∈ N such that Y =

⋃n
j=0 φ

j(U), cf. [DS]. By Proposition

4.3 of [DS], C∗
r (Γφ) is simple if and only if Y is infinite and φ is strongly transitive.

Lemma 6.1. Assume that φ is strongly transitive but not injective. It follows that

lim
k→∞

1

k
log

(
inf
x∈Y

#φ−k(x)

)
> 0.
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Proof. Note that U = {x ∈ Y : #φ−1(x) ≥ 2} is open and not empty since φ is a
local homeomorphism and not injective. It follows that there is an m ∈ N such that

m−1⋃

j=0

φj(U) = Y (6.1)

because φ is strongly transitive. We claim that

inf
z∈Y

#φ−k(z) ≥ 2[
k
m ] (6.2)

for all k ∈ N where
[
k
m

]
denotes the integer part of k

m
. This follows by induction:

Assume that it true for all k′ < k. Consider any z ∈ Y . If k < m there is nothing
to prove so assume that k ≥ m. By (6.1) we can then write z = φj(z1) = φj(z2) for
some j ∈ {1, 2, . . . , m} and some z1 6= z2. It follows that

#φ−k(z) ≥ #φ−(k−j)(z1) + #φ−(k−j)(z2) ≥ 2 · 2[
k−j
m ] ≥ 2[

k
m ].

It follows from (6.2) that limk→∞
1
k
log
(
infx∈Y #φ−k(x)

)
≥ 1

m
log 2. �

Let Ml denote the C∗-algebra of complex l × l-matrices. In the following a ho-
mogeneous C∗-algebra will be a C∗-algebra isomorphic to a C∗-algebra of the form
eC(X,Ml)e where X is a compact metric space and e is a projection in C(X,Ml)
such that e(x) 6= 0 for all x ∈ X .

Definition 6.2. A unital C∗-algebra A is an AH-algebra when there is an increasing
sequence A1 ⊆ A2 ⊆ A3 ⊆ . . . of unital C∗-subalgebras of A such that A =

⋃
nAn

and each An is a homogeneous C∗-algebra. We say that A has no dimension growth
when the sequence {An} can be chosen such that

An ≃ enC (Xn,Mln) en

with supnDimXn <∞ and limn→∞minx∈Xn Rank en(x) =∞.

Note that the no dimension growth condition is stronger than the slow dimension
growth condition used in [Th3].

Proposition 6.3. Assume that DimY < ∞ and that φ is strongly transitive and
not injective. It follows C∗

r (Rφ) is an AH-algebra with no dimension growth.

Proof. For each n we have that

C∗
r (R (φn)) ≃ enC (Y,Mmn) en (6.3)

for some mn ∈ N and some projection en ∈ C (Y,Mmn). Although this seems to be
well known it is hard to find a proof anywhere so we point out that it can proved
by specializing the proof of Theorem 3.2 in [Th1] to the case of a surjective local
homeomorphism φ. In fact, it suffices to observe that the C∗-algebra Aφ which
features in Theorem 3.2 of [Th1] is C(Y ) in this case. Since miny∈Y Rank en(y) is
the minimal dimension of an irreducible representation of C∗

r (R (φn)) it therefore
now suffices to show that the minimal dimension of the irreducible representations
of C∗

r (R(φ
n)) goes to infinity when n does. It follows from Lemma 3.4 of [Th1] that

the minimal dimension of the irreducible representations of C∗
r (R(φ

n)) is the same
as the number miny∈Y #φ−n(y). It follows from Lemma 6.1 that

lim
n→∞

min
y∈Y

#φ−n(y) =∞,

exponentially fast in fact. �
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Lemma 6.4. Assume that C∗
r (Γφ) is simple. Then either φ is a homeomorphism

or else

lim
n→∞

sup
x∈Y

m(x)−1m(φ(x))−1m
(
φ2(x)

)−1
. . .m

(
φn−1(x)

)−1
= 0, (6.4)

where m : Y → N is the function (4.1).

Proof. Assume (6.4) does not hold. Since φ is a local homeomorphism, the function
m is continuous so it follows from Dini’s theorem that there is at least one x for
which

lim
n→∞

m(x)−1m(φ(x))−1m
(
φ2(x)

)−1
. . .m

(
φn−1(x)

)−1
(6.5)

is not zero. For this x there is a K such that #φ−1
(
φk(x)

)
= 1 when k ≥ K, whence

the set

F =
{
y ∈ Y : #φ−1

(
φk(y)

)
= 1 ∀k ≥ 0

}

is not empty. Note that F is closed and that φ−k
(
φk(F )

)
= F for all k, i.e. F

is φ-saturated. It follows from Corollary 3.5 that F determines a proper ideal IF
in C∗

r (Rφ). Since φ(F ) ⊆ F , it follows that φ̂(IF ) ⊆ IF . Then Theorem 4.10 of
[Th1] and the simplicity of C∗

r (Γφ) imply that either φ is injective or IF = {0}.
But IF = {0} means that F = Y and thus that φ is injective. Hence φ is a
homeormophism in both cases. �

Theorem 6.5. Let ϕ : X → X be a locally injective surjection on a compact metric
space X of finite covering dimension, and let (Y, φ) be its canonical locally home-
omorphic extension. Let A be a simple quotient of C∗

r (Γϕ). It follows that A is
∗-isomorphic to either

1) a full matrix algebra Mn(C) for some n ∈ N, or
2) the crossed product C(F )×φ|F Z corresponding to an infinite minimal closed

totally φ-invariant subset F ⊆ Y on which φ is injective, or
3) a purely infinite, simple, nuclear, separable C∗-algebra; more specifically to

the crossed product C∗
r

(
Rφ|F

)
×

φ̂|F
N where F is an infinite minimal closed

totally φ-invariant subset of Y and C∗
r

(
Rφ|F

)
is an AH-algebra with no di-

mension growth.

Proof. If A is not a matrix algebra it has the form C∗
r

(
Γφ|F

)
for some infinite minimal

closed totally φ-invariant subset F ⊆ Y by (2.2) and Corollary 4.21. If φ is injective
on F we are in case 2). Assume not. Since DimF ≤ DimY ≤ DimX by Proposition
5.1 it follows from Proposition 6.3 that C∗

r

(
Rφ|F

)
is an AH-algebra with no dimension

growth. By [An] (or Theorem 4.6 of [Th1]) we have an isomorphism

C∗
r

(
Γφ|F

)
≃ C∗

r

(
Rφ|F

)
×

φ̂|F
N,

where φ̂|F is the endomorphism of C∗
r

(
Rφ|F

)
given by conjugation with Vφ|F . We

claim that the pure infiniteness of C∗
r

(
Rφ|F

)
×

φ̂|F
N follows from Theorem 1.1 of [Th3].

For this it remains only to check that φ̂|F = AdVφ|F satisfies the two conditions on

β in Theorem 1.1 of [Th3], i.e. that φ̂|F (1) = Vφ|FV
∗
φ|F

is a full projection and that

there is no φ̂|F -invariant trace state on C∗
r

(
Rφ|F

)
. The first thing was observed

already in Lemma 4.7 of [Th1] so we focus on the second. Observe that it follows
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from Lemma 2.24 of [Th1] that ω = ω ◦ PRφ
for every trace state ω of C∗

r (Rφ). By
using this, a direct calculation as on page 787 of [Th1] shows that

ω
(
V n
φ|F
V ∗
φ|F

n
)
≤ sup

y∈Y

[
m(y)m(φ(y)) . . .m

(
φn−1(y)

)]−1

Then Lemma 6.4 implies that limn→∞ ω
(
V n
φ|F
V ∗
φ|F

n
)

= 0. In particlar, ω is not

φ̂|F -invariant. �

Corollary 6.6. Assume that C∗
r (Γϕ) is simple and that DimX < ∞. It follows

that C∗
r (Γϕ) is purely infinite if and only if ϕ is not injective.

Proof. Assume first that ϕ is injective. Then C∗
r (Γϕ) is the crossed product C(X)×ϕ

Z which is stably finite and thus not purely infinite.
Conversely, assume that ϕ is not injective. Then a direct calculation, as in the

proof of Theorem 4.8 in [Th1], shows that Vϕ is a non-unitary isometry in C∗
r (Γϕ).

Since the C∗-algebras which feature in case 1) and case 2) of Theorem 6.5 are
stably finite, the presence of a non-unitary isometry implies that C∗

r (Γϕ) is purely
infinite. �

Corollary 6.7. Let S be a one-sided subshift. If the C∗-algebra OS associated with
S in [Ca] is simple, then it is also purely infinite.

Proof. It follows from Theorem 4.18 in [Th1] that OS is isomorphic to C∗
r (Γσ) where

σ is the shift map on S. If OS is simple, S must be infinite and it then follows from
Proposition 2.4.1 in [BS] (cf. Theorem 3.9 in [BL]) that σ is not injective. The
conclusion follows then from Corollary 6.6. �

In Corollary 6.7 we assume that the shift map σ on S is surjective. It is not clear
if the result holds without this assumption.
For completeness we point out that when X is totally disconnected (i.e. zero

dimensional) the algebra C∗
r

(
Rφ|F

)
which features in case 3) of Theorem 6.5 is

approximately divisible, cf. [BKR]. We don’t know if this is the case in general, but
a weak form of divisibility is always present in C∗

r (Rφ) when C
∗
r (Γϕ) is simple and

φ not injective, cf. [Th3].

Proposition 6.8. Assume that Y is totally disconnected and φ strongly transitive
and not injective. It follows that C∗

r (Rφ) is an approximately divisible AF-algebra.

Proof. It follows from Proposition 6.8 of [DS] that C∗
r (Rφ) is an AF-algebra. As

pointed out in Proposition 4.1 of [BKR] a unital AF-algebra fails to be approximately
divisible only if it has a quotient with a non-zero abelian projection. If C∗

r (Rφ) has
such a quotient there is also a primitive quotient with an abelian projection; i.e.

by Proposition 3.6 there is an x ∈ Y such that C∗
r

(
Rφ|

H(x)

)
has a non-zero abelian

projection p. It follows from (3.1) that every projection of C∗
r

(
Rφ|

H(x)

)
is unitarily

equivalent to a projection in C∗
r

(
R
(
φn|H(x)

))
for some n. Since H(x) is totally

disconnected we can use Proposition 6.1 of [DS] to conclude that every projection

in C∗
r

(
R
(
φn|

H(x)

))
is unitarily equivalent to a projection in DRφ|

H(x)
= C

(
H(x)

)
.

We may therefore assume that p ∈ C
(
H(x)

)
so that p = 1A for some clopen
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A ⊆ H(x). Then H(x) ∩ A 6= ∅ so by exchanging x with some element in H(x)
we may assume that x ∈ A. If there is a y 6= x in A such that φk(x) = φk(y)

for some k ∈ N, consider functions g ∈ C
(
H(x)

)
and f ∈ Cc (Rφ) such that

g(x) = 1, g(y) = 0, supp g ⊆ A, supp f ⊆ Rφ∩ (A×A) and f(x, y) 6= 0. Then f, g ∈

1AC
∗
r

(
Rφ|

H(x)

)
1A and gf 6= 0 while fg = 0, contradicting that 1AC

∗
r

(
Rφ|

H(x)

)
1A

is abelian. Thus no such y can exist which implies that πx(1A) = 1{x}, where πx is
the representation (2.1), restricted to the subspace of Hx consisting of the functions

supported in {(x′, k, x) ∈ Γφ : k = 0}. It follows that πx
(
1AC

∗
r

(
Rφ|

H(x)

)
1A

)
≃ C.

Consider a non-zero ideal J ⊆ πx

(
C∗

r

(
Rφ|

H(x)

))
. Then π−1

x (J) is a non-zero ideal

in C∗
r

(
Rφ|

H(x)

)
and it follows from Corollary 3.5 that there is an open non-empty

subset U of H(x) such that φ−k
(
φk(U)

)
= U for all k and C0(U) = π−1

x (J) ∩

C
(
H(x)

)
. Since H(x) ∩ U 6= ∅, it follows that x ∈ U so there is a function

g ∈ π−1
x (J) ∩ C

(
H(x)

)
such that g(x) = 1. It follows that πx (g1A) = 1{x} =

πx (1A) ∈ J . This shows that πx(1A) is a full projection in πx

(
C∗

r

(
Rφ|

H(x)

))
and

Brown’s theorem, [Br], shows now that πx

(
C∗

r

(
Rφ|

H(x)

))
is stably isomorphic to

πx

(
1AC

∗
r

(
Rφ|

H(x)

)
1A

)
≃ C. Since πx

(
C∗

r

(
Rφ|

H(x)

))
is unital this means that it is

a full matrix algebra. In conclusion we deduce that if C∗
r (Rφ) is not approximately

divisible it has a full matrix algebra as a quotient. By Corollary 3.5 this implies
that there is a finite set F ′ ⊆ Y such that F ′ = φ−k

(
φk(F ′)

)
for all k ∈ N. Since

φ−k
(
φk(x)

)
⊆ φ−k−1

(
φk+1(x)

)
⊆ F ′

for all k when x ∈ F ′, there is for each x ∈ F a natural number K such that
φ−k

(
φk(x)

)
= φ−K

(
φK(x)

)
when k ≥ K. Then #φ−1

(
φk(x)

)
= 1 for k ≥ K + 1,

so that m
(
φk(x)

)
= 1 for all k ≥ K, which by Lemma 6.1 contradicts that φ is not

injective. This contradiction finally shows that C∗
r (Rφ) is approximately divisible,

as desired. �
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