THE STRUCTURE OF THE C^{*}-ALGEBRA OF A LOCALLY INJECTIVE SURJECTION

TOKE MEIER CARLSEN AND KLAUS THOMSEN

1. Introduction

The classical connection between dynamical systems and C^{*}-algebras is the crossed product construction which associates a C^{*}-algebra to a homeomorphism of a compact metric space. This construction has been generalized stepwise by J. Renault ($[\mathrm{Re}]$), V. Deaconu ($[\mathrm{De}]]$) and C. Anantharaman-Delaroche ($[\boxed{A n}]$) to local homeomorphisms and recently also to locally injective surjections by the second named author in [Th1]. The main motivation for the last generalisation was the wish to include the Matsumoto-type C^{*}-algebra of a subshift which was introduced by the first named author in Ca.

In this paper we continue the investigation of the structure of the C^{*}-algebra of a locally injective surjection which was begun in [Th1. The main goal here is to give necessary and sufficient conditions for the algebras, or at least any simple quotient of them, to be purely infinite; a property they are known to have in many cases. Recall that a simple C^{*}-algebra is said to be purely infinite when all its non-zero hereditary C^{*}-subalgebras contain an infinite projection. Our main result is that a simple quotient of the C^{*}-algebra arising from a locally injective surjection on a compact metric space of finite covering dimension, as in Section 4 of [Th1], is one of the following kinds:

1) a full matrix algebra $M_{n}(\mathbb{C})$ for some $n \in \mathbb{N}$, or
2) the crossed product $C(K) \times{ }_{f} \mathbb{Z}$ corresponding to a minimal homeomorphism f of a compact metric space K of finite covering dimension, or
3) a unital purely infinite simple C^{*}-algebra.

In particular, when the algebra itself is simple it must be one of the three types, and in fact purely infinite unless the underlying map is a homeomorphism. Hence the problem of finding necessary and sufficient conditions for the C^{*}-algebra of a locally injective surjection on a compact metric space of finite covering dimension to be both simple and purely infinite has a strikingly straightforward solution: If the algebra is simple (and [Th1] gives necessary and sufficient conditions for this to happen) then it is automatically purely infinite unless the map in question is a homeomorphism. A corollary of this result is that if the C^{*}-algebra of a one-sided subshift is simple, then it is also purely infinite.

On the way to the proof of the main result we study the ideal structure. We find first the gauge invariant ideals, obtaining an insight which combined with methods and results of Katsura ($[\mathrm{Ka}]$) leads to a list of the primitive ideals. We then identify the maximal ideals among the primitive ones and obtain in this way a description of the simple quotients which we use to obtain the conclusions described above. A fundamental tool all the way is the canonical locally homeomorphic extension

[^0]discovered in [Th2] which allows us to replace the given locally injective map with a local homeomorphism. It means, however, that much of the structure we investigate gets described in terms of the canonical locally homeomorphic extension, and this is unfortunate since it may not be easy to obtain a satisfactory understanding of it for a given locally injective surjection. Still, it allows us to obtain qualitative conclusions of the type mentioned above.

Besides the C^{*}-algebras of subshifts our results cover of course also the C^{*}-algebras associated to a local homeomorphism by the construction of Renault, Deaconu and Anantharaman-Delaroche, provided the map is surjective and the space is of finite covering dimension. This means that the results have bearing on many classes of C^{*} algebras which have been associated to various structures, for example the λ-graph systems of Matsumoto ([Ma]) and the continuous graphs of Deaconu ([De2]).

Acknowledgement: This work was supported by the NordForsk Research Network 'Operator Algebras and Dynamics' (grant 11580). The first named author was also supported by the Research Council of Norway through project 191195/V30.

2. The C^{*}-algebra of a locally injective surjection

Let X be a compact metric space and $\varphi: X \rightarrow X$ a locally injective surjection. Set

$$
\Gamma_{\varphi}=\left\{(x, k, y) \in X \times \mathbb{Z} \times X: \exists n, m \in \mathbb{N}, k=n-m, \varphi^{n}(x)=\varphi^{m}(y)\right\}
$$

This is a groupoid with the set of composable pairs being

$$
\Gamma_{\varphi}^{(2)}=\left\{\left((x, k, y),\left(x^{\prime}, k^{\prime}, y^{\prime}\right)\right) \in \Gamma_{\varphi} \times \Gamma_{\varphi}: y=x^{\prime}\right\}
$$

The multiplication and inversion are given by

$$
(x, k, y)\left(y, k^{\prime}, y^{\prime}\right)=\left(x, k+k^{\prime}, y^{\prime}\right) \text { and }(x, k, y)^{-1}=(y,-k, x) .
$$

Note that the unit space of Γ_{φ} can be identified with X via the map $x \mapsto(x, 0, x)$. To turn Γ_{φ} into a locally compact topological groupoid, fix $k \in \mathbb{Z}$. For each $n \in \mathbb{N}$ such that $n+k \geq 0$, set

$$
\Gamma_{\varphi}(k, n)=\left\{(x, l, y) \in X \times \mathbb{Z} \times X: l=k, \varphi^{k+i}(x)=\varphi^{i}(y), i \geq n\right\}
$$

This is a closed subset of the topological product $X \times \mathbb{Z} \times X$ and hence a locally compact Hausdorff space in the relative topology. Since φ is locally injective $\Gamma_{\varphi}(k, n)$ is an open subset of $\Gamma_{\varphi}(k, n+1)$ and hence the union

$$
\Gamma_{\varphi}(k)=\bigcup_{n \geq-k} \Gamma_{\varphi}(k, n)
$$

is a locally compact Hausdorff space in the inductive limit topology. The disjoint union

$$
\Gamma_{\varphi}=\bigcup_{k \in \mathbb{Z}} \Gamma_{\varphi}(k)
$$

is then a locally compact Hausdorff space in the topology where each $\Gamma_{\varphi}(k)$ is an open and closed set. In fact, as is easily verified, Γ_{φ} is a locally compact groupoid in the sense of $[\mathrm{Re}]$ and a semi étale groupoid in the sense of [Th1]. The paper [Th1] contains a construction of a C^{*}-algebra from any semi étale groupoid, but we give here only a description of the construction for Γ_{φ}.

Consider the space $B_{c}\left(\Gamma_{\varphi}\right)$ of compactly supported bounded functions on Γ_{φ}. They form a $*$-algebra with respect to the convolution-like product

$$
f \star g(x, k, y)=\sum_{z, n+m=k} f(x, n, z) g(z, m, y)
$$

and the involution

$$
f^{*}(x, k, y)=\overline{f(y,-k, x)} .
$$

To turn it into a C^{*}-algebra, let $x \in X$ and consider the Hilbert space H_{x} of square summable functions on $\left\{\left(x^{\prime}, k, y^{\prime}\right) \in \Gamma_{\varphi}: y^{\prime}=x\right\}$ which carries a representation π_{x} of the $*$-algebra $B_{c}\left(\Gamma_{\varphi}\right)$ defined such that

$$
\begin{equation*}
\left(\pi_{x}(f) \psi\right)\left(x^{\prime}, k, x\right)=\sum_{z, n+m=k} f\left(x^{\prime}, n, z\right) \psi(z, m, x) \tag{2.1}
\end{equation*}
$$

when $\psi \in H_{x}$. One can then define a C^{*}-algebra $B_{r}^{*}\left(\Gamma_{\varphi}\right)$ as the completion of $B_{c}\left(\Gamma_{\varphi}\right)$ with respect to the norm

$$
\|f\|=\sup _{x \in X}\left\|\pi_{x}(f)\right\| .
$$

The space $C_{c}\left(\Gamma_{\varphi}\right)$ of continuous and compactly supported functions on Γ_{φ} generate a $*$-subalgebra $\operatorname{alg}^{*} \Gamma_{\varphi}$ of $B_{r}^{*}\left(\Gamma_{\varphi}\right)$ which completed with respect to the above norm becomes the C^{*}-algebra $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ which is our object of study. When φ is open, and hence a local homeomorphism, $C_{c}\left(\Gamma_{\varphi}\right)$ is a $*$-subalgebra of $B_{c}\left(\Gamma_{\varphi}\right)$ so that alg* $\Gamma_{\varphi}=$ $C_{c}\left(\Gamma_{\varphi}\right)$ and $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ is then the completion of $C_{c}\left(\Gamma_{\varphi}\right)$. In this case $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ is the algebra studied by Renault in Re, by Deaconu in [De1], and by AnantharamanDelaroche in An.

The algebra $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ contains several canonical C^{*}-subalgebras which we shall need in our study of its structure. One is the C^{*}-algebra of the open sub-groupoid

$$
R_{\varphi}=\Gamma_{\varphi}(0)
$$

which is a semi étale groupoid (equivalence relation, in fact) in itself. The corresponding C^{*}-algebra $C_{r}^{*}\left(R_{\varphi}\right)$ is the C^{*}-subalgebra of $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ generated by the continuous and compactly supported functions on R_{φ}. Equally important are two canonical abelian C^{*}-subalgebras, $D_{\Gamma_{\varphi}}$ and $D_{R_{\varphi}}$. They arise from the fact that the C^{*}-algebra $B(X)$ of bounded functions on X sits canonically inside $B_{r}^{*}\left(\Gamma_{\varphi}\right)$, cf. p. 765 of [Th1], and are then defined as

$$
D_{\Gamma_{\varphi}}=C_{r}^{*}\left(\Gamma_{\varphi}\right) \cap B(X)
$$

and

$$
D_{R_{\varphi}}=C_{r}^{*}\left(R_{\varphi}\right) \cap B(X),
$$

respectively. There are faithful conditional expectations $P_{\Gamma_{\varphi}}: C_{r}^{*}\left(\Gamma_{\varphi}\right) \rightarrow D_{\Gamma_{\varphi}}$ and $P_{R_{\varphi}}: C_{r}^{*}\left(R_{\varphi}\right) \rightarrow D_{R_{\varphi}}$, obtained as extensions of the restriction map alg* $\Gamma_{\varphi} \rightarrow$ $B(X)$ to $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ and $C_{r}^{*}\left(R_{\varphi}\right)$, respectively. When φ is open and hence a local homeomorphism, the two algebras $D_{\Gamma_{\varphi}}$ and $D_{R_{\varphi}}$ are identical and equal to $C(X)$, but in general the inclusion $D_{R_{\varphi}} \subseteq D_{\Gamma_{\varphi}}$ is strict.

Our approach to the study of $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ hinges on a construction introduced in Th2 of a compact Hausdorff space Y and a local homeomorphic surjection $\phi: Y \rightarrow Y$ such that (X, φ) is a factor of (Y, ϕ) and

$$
\begin{equation*}
C_{r}^{*}\left(\Gamma_{\varphi}\right) \simeq C_{r}^{*}\left(\Gamma_{\phi}\right) . \tag{2.2}
\end{equation*}
$$

Everything we can say about ideals and simple quotients of $C_{r}^{*}\left(\Gamma_{\phi}\right)$ will have bearing on $C_{r}^{*}\left(\Gamma_{\varphi}\right)$, but while the isomorphism (2.2) is equivariant with respect to the canonical gauge actions (see Section [4), it will not in general take $C_{r}^{*}\left(R_{\varphi}\right)$ onto $C_{r}^{*}\left(R_{\phi}\right)$. This is one reason why we will work with $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ whenever possible, instead of using (2.2) as a valid excuse for working with local homeomorphisms only. Another is that it is generally not so easy to get a workable description of (Y, ϕ). As in [Th2] we will refer to (Y, ϕ) as the canonical locally homeomorphic extension of (X, φ). The space Y is the Gelfand spectrum of $D_{\Gamma_{\varphi}}$ so when φ is already a local homeomorphism itself, the extension is redundant and $(Y, \phi)=(X, \varphi)$.

$$
\text { 3. IdEALS IN } C_{r}^{*}\left(R_{\varphi}\right)
$$

Recall from Th1 that there is a semi étale equivalence relation

$$
R\left(\varphi^{n}\right)=\left\{(x, y) \in X \times X: \varphi^{n}(x)=\varphi^{n}(y)\right\}
$$

for each $n \in \mathbb{N}$. They will be considered as open sub-equivalence relations of R_{φ} via the embedding $(x, y) \mapsto(x, 0, y) \in \Gamma_{\varphi}(0)$. In this way we get embeddings $C_{r}^{*}\left(R\left(\varphi^{n}\right)\right) \subseteq C_{r}^{*}\left(R\left(\varphi^{n+1}\right)\right) \subseteq C_{r}^{*}\left(R_{\varphi}\right)$ by Lemma 2.10 of [Th1], and then

$$
\begin{equation*}
C_{r}^{*}\left(R_{\varphi}\right)=\overline{\bigcup_{n} C_{r}^{*}\left(R\left(\varphi^{n}\right)\right)}, \tag{3.1}
\end{equation*}
$$

cf. (4.2) of [Th1]. This inductive limit decomposition of $C_{r}^{*}\left(R_{\varphi}\right)$ defines in a natural way a similar inductive limit decomposition of $D_{R_{\varphi}}$. Set

$$
D_{R\left(\varphi^{n}\right)}=C_{r}^{*}\left(R\left(\varphi^{n}\right)\right) \cap B(X) .
$$

Lemma 3.1. $D_{R_{\varphi}}=\overline{\bigcup_{n=1}^{\infty} D_{R\left(\varphi^{n}\right)}}$.
Proof. Since $C_{r}^{*}\left(R\left(\varphi^{n}\right)\right) \subseteq C_{r}^{*}\left(R_{\varphi}\right)$, it follows that

$$
D_{R\left(\varphi^{n}\right)}=C_{r}^{*}\left(R\left(\varphi^{n}\right)\right) \cap B(X) \subseteq C_{r}^{*}\left(R_{\varphi}\right) \cap B(X)=D_{R_{\varphi}} .
$$

Hence

$$
\begin{equation*}
\overline{\bigcup_{n=1}^{\infty} D_{R\left(\varphi^{n}\right)}} \subseteq D_{R_{\varphi}} \tag{3.2}
\end{equation*}
$$

Let $x \in D_{R_{\varphi}}$ and let $\epsilon>0$. It follows from (3.1) that there is an $n \in \mathbb{N}$ and an element $y \in \operatorname{alg}^{*} R\left(\varphi^{n}\right)$ such that

$$
\left\|x-P_{R_{\varphi}}(y)\right\| \leq \epsilon
$$

On alg* R_{φ} the conditional expectation $P_{R_{\varphi}}$ is just the map which restricts functions to X and the same is true for the conditional expectation $P_{R\left(\varphi^{n}\right)}$ on $\operatorname{alg}^{*} R\left(\varphi^{n}\right)$, where $P_{R\left(\varphi^{n}\right)}$ is the conditional expectation of Lemma 2.8 in Th1] obtained by considering $R\left(\varphi^{n}\right)$ as a semi étale groupoid in itself. Hence $P_{R_{\varphi}}(y)=P_{R\left(\varphi^{n}\right)}(y) \in D_{R\left(\varphi^{n}\right)}$. It follows that we have equality in (3.2).

In the following, by an ideal of a C^{*}-algebra we will always mean a closed and two-sided ideal. The next lemma is well known and crucial for the sequel.
Lemma 3.2. Let Y be a compact Hausdorff space, M_{n} the C^{*}-algebra of n-by-n matrices for some natural number $n \in \mathbb{N}$ and p a projection in $C\left(Y, M_{n}\right)$. Set $A=p C\left(Y, M_{n}\right) p$ and let C_{A} be the center of A.

For every ideal I in A there is an approximate unit for I in $I \cap C_{A}$.

Lemma 3.3. Let $I, J \subseteq C_{r}^{*}\left(R_{\varphi}\right)$ be two ideals. Then

$$
I \cap D_{R_{\varphi}} \subseteq J \cap D_{R_{\varphi}} \Rightarrow I \subseteq J
$$

Proof. If $I \cap D_{R_{\varphi}} \subseteq J \cap D_{R_{\varphi}}$ it follows that $I \cap D_{R\left(\varphi^{n}\right)} \subseteq J \cap D_{R\left(\varphi^{n}\right)}$ for all n. Note that the center of $C_{r}^{*}\left(R\left(\varphi^{n}\right)\right)$ is contained in $D_{R\left(\varphi^{n}\right)}$ since $D_{R\left(\varphi^{n}\right)}$ is maximal abelian in $C_{r}^{*}\left(R\left(\varphi^{n}\right)\right)$ by Lemma 2.19 of [Th1. By using Corollary 3.3 of [Th1] it follows therefore from Lemma 3.2 that there is a sequence $\left\{x_{n}\right\}$ in $I \cap D_{R\left(\varphi^{n}\right)}$ such that $\lim _{n \rightarrow \infty} x_{n} a=a$ for all $a \in I \cap C_{r}^{*}\left(R\left(\varphi^{n}\right)\right)$. Since $x_{n} \in J \cap D_{R\left(\varphi^{n}\right)}$ this implies that $I \cap C_{r}^{*}\left(R\left(\varphi^{n}\right)\right) \subseteq J \cap C_{r}^{*}\left(R\left(\varphi^{n}\right)\right)$ for all n. Combining with (3.1) we find that

$$
I=\overline{\bigcup_{n} I \cap C_{r}^{*}\left(R\left(\varphi^{n}\right)\right)} \subseteq \overline{\bigcup_{n} J \cap C_{r}^{*}\left(R\left(\varphi^{n}\right)\right)}=J
$$

Recall from [Th1 that an ideal J in $D_{R_{\varphi}}$ is said to be R_{φ}-invariant when $n^{*} J n \subseteq J$ for all $n \in \operatorname{alg}^{*} R_{\varphi}$ supported in a bisection of R_{φ}. For every R_{φ}-invariant ideal J in $D_{R_{\varphi}}$, set

$$
\widehat{J}=\left\{a \in C_{r}^{*}\left(R_{\varphi}\right): P_{R_{\varphi}}\left(a^{*} a\right) \in J\right\} .
$$

Theorem 3.4. The map $J \mapsto \widehat{J}$ is a bijection between the R_{φ}-invariant ideals in $D_{R_{\varphi}}$ and the ideals in $C_{r}^{*}\left(R_{\varphi}\right)$. The inverse is given by the map $I \mapsto I \cap D_{R_{\varphi}}$
Proof. It follows from Lemma 2.13 of [h1] that $\widehat{J} \cap D_{R_{\varphi}}=J$ for any R_{φ}-invariant ideal in $D_{R_{\varphi}}$. It suffices therefore to show that every ideal in $C_{r}^{*}\left(R_{\varphi}\right)$ is of the form \widehat{J} for some R_{φ}-invariant ideal J in $D_{R_{\varphi}}$. Let I be an ideal in $C_{r}^{*}\left(R_{\varphi}\right)$. Set $J=I \cap D_{R_{\varphi}}$, which is clearly a R_{φ}-invariant ideal in $D_{R_{\varphi}}$. Since $\widehat{J} \cap D_{R_{\varphi}}=J=I \cap D_{R_{\varphi}}$ by Lemma 2.13 of [Th1], we conclude from Lemma 3.3 that $\widehat{J}=I$.

A subset $A \subseteq Y$ is said to be ϕ-saturated when $\phi^{-k}\left(\phi^{k}(A)\right)=A$ for all $k \in \mathbb{N}$.
Corollary 3.5. (Cf. Proposition II.4.6 of [Re]) The map

$$
L \mapsto I_{L}=\left\{a \in C_{r}^{*}\left(R_{\phi}\right): P_{R_{\phi}}\left(a^{*} a\right)(x)=0 \forall x \in L\right\}
$$

is a bijection from the non-empty closed ϕ-saturated subsets L of Y onto the set of proper ideals in $C_{r}^{*}\left(R_{\phi}\right)$.
Proof. Since ϕ is a local homeomorphism, we have that $D_{R_{\phi}}=C(Y)$ so the corollary follows from Theorem 3.4 by use of the well-known bijection between ideals in $C(Y)$ and closed subsets of Y. The only thing to show is that an open subset U of Y is ϕ-saturated if and only if the ideal $C_{0}(U)$ of $C(Y)$ is R_{ϕ}-invariant which is straightforward, cf. the proof of Corollary 2.18 in Th1].

The next issue will be to determine which closed ϕ-saturated subsets of Y correspond to primitive ideals. For a point $x \in Y$ we define the ϕ-saturation of x to be the set

$$
H(x)=\bigcup_{n=1}^{\infty}\left\{y \in Y: \phi^{n}(y)=\phi^{n}(x)\right\}
$$

The closure $\overline{H(x)}$ of $H(x)$ will be referred to as the closed ϕ-saturation of x. Observe that both $H(x)$ and $\overline{H(x)}$ are ϕ-saturated.

Proposition 3.6. Let $L \subseteq Y$ be a non-empty closed ϕ-saturated subset. The ideal I_{L} is primitive if and only L is the closed ϕ-saturation of a point in Y.
Proof. Since $C_{r}^{*}\left(R_{\phi}\right)$ is separable an ideal is primitive if and only if it is prime, cf. [Pe]. We show that I_{L} is prime if and only if $L=\overline{H(x)}$ for some $x \in Y$.

Assume first that $L=\overline{H(x)}$ and consider two ideals, I_{1} and I_{2}, in $C_{r}^{*}\left(R_{\phi}\right)$ such that $I_{1} I_{2} \subseteq I_{\overline{H(x)}}$. By Corollary 3.5 there are closed ϕ-saturated subsets, L_{1} and L_{2}, in Y such that $I_{j}=I_{L_{j}}, j=1,2$. It follows from Corollary 3.5 that $\overline{H(x)} \subseteq L_{1} \cup L_{2}$. At least one of the L_{j} 's must contain x, say $x \in L_{1}$. Since L_{1} is ϕ-saturated and closed it follows that $\overline{H(x)} \subseteq L_{1}$, and hence that $I_{1} \subseteq I_{\overline{H(x)}}$. Thus $I_{\overline{H(x)}}$ is prime.

Assume next that I_{L} is prime. Let $\left\{U_{k}\right\}_{k=0}^{\infty}$ be a base for the topology of L consisting of non-empty sets. We will construct sequences $\left\{B_{k}\right\}_{k=0}^{\infty}$ of compact nonempty neighbourhoods in L and non-negative integers $\left\{n_{k}\right\}_{k=0}^{\infty}$ such that
i) $B_{k} \subseteq B_{k-1}$ for $k \geq 1$, and
ii) $\phi^{n_{k}}\left(B_{k}\right) \subseteq \phi^{n_{k}}\left(U_{k}\right)$ for $k \geq 0$.

We start the induction by letting B_{0} be any compact non-empty neighbourhood in U_{0} and $n_{0}=0$. Assume then that $B_{0}, B_{1}, B_{2}, \ldots, B_{m}$ and $n_{0}, n_{1}, \ldots, n_{m}$ have been constructed. Choose a non-empty open subset $V_{m+1} \subseteq B_{m}$. Note that both of

$$
L \backslash \bigcup_{l} \phi^{-l}\left(\phi^{l}\left(V_{m+1}\right)\right)
$$

and

$$
L \backslash \bigcup_{l} \phi^{-l}\left(\phi^{l}\left(U_{m+1}\right)\right)
$$

are closed ϕ-saturated subsets of L, and hence of Y, and none of them is all of L. It follows from Corollary 3.5 and primeness of I_{L} that L is not contained in their union, which in turn implies that

$$
\phi^{-n_{m+1}}\left(\phi^{n_{m+1}}\left(V_{m+1}\right)\right) \cap \phi^{-n_{m+1}}\left(\phi^{n_{m+1}}\left(U_{m+1}\right)\right)
$$

is non-empty for some $n_{m+1} \in \mathbb{N}$. There is therefore a point $z \in V_{m+1}$ such that $\phi^{n_{m+1}}(z) \in \phi^{n_{m+1}}\left(U_{m+1}\right)$, and therefore also a compact non-empty neighbourhood $B_{m+1} \subseteq V_{m+1}$ of z such that $\phi^{n_{m+1}}\left(B_{m+1}\right) \subseteq \phi^{n_{m+1}}\left(U_{m+1}\right)$. This completes the induction. Let $x \in \bigcap_{m} B_{m}$. By construction every U_{k} contains an element from $H(x)$. It follows that $\overline{H(x)}=L$.

4. On the ideals of $C_{r}^{*}\left(\Gamma_{\varphi}\right)$

The C^{*}-algebra $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ carries a canonical circle action β, called the gauge action, defined such that

$$
\beta_{\lambda}(f)(x, k, y)=\lambda^{k} f(x, k, y)
$$

when $f \in C_{c}\left(\Gamma_{\varphi}\right)$ and $\lambda \in \mathbb{T}$, cf. [Th1]. As the next step we describe in this section the gauge-invariant ideals in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$.

Consider first the function $m: X \rightarrow \mathbb{N}$ defined such that

$$
\begin{equation*}
m(x)=\#\{y \in X: \varphi(y)=\varphi(x)\} \tag{4.1}
\end{equation*}
$$

As shown in [Th1], $m \in D_{R(\varphi)} \subseteq D_{R_{\varphi}}$. Define a function $V_{\varphi}: \Gamma_{\varphi} \rightarrow \mathbb{C}$ such that

$$
V_{\varphi}(x, k, y)= \begin{cases}m(x)^{-\frac{1}{2}} & \text { when } k=1 \text { and } y=\varphi(x) \\ 0 & \text { otherwise }\end{cases}
$$

Then V_{φ} is the product $V_{\varphi}=m^{-\frac{1}{2}} 1_{\Gamma_{\varphi}(1,0)}$ in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ and in fact an isometry which induces an endomorphism $\widehat{\varphi}$ of $C_{r}^{*}\left(R_{\varphi}\right)$, viz.

$$
\widehat{\varphi}(a)=V_{\varphi} a V_{\varphi}^{*}
$$

Together with $C_{r}^{*}\left(R_{\varphi}\right)$ the isometry V_{φ} generates $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ which in this way becomes a crossed product $C_{r}^{*}\left(R_{\varphi}\right) \times_{\widehat{\varphi}} \mathbb{N}$ in the sense of Stacey, cf. [St] and Th1]; in particular Theorem 4.6 in Th1.
4.1. Gauge invariant ideals. Let $C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}$ denote the fixed point algebra of the gauge action.

Lemma 4.1. For each $k \in \mathbb{N}$ we have that $V_{\varphi}^{* k} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k}$ is a C^{*}-subalgebra of $C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}$,

$$
\begin{equation*}
V_{\varphi}^{* k} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k} \subseteq V_{\varphi}^{* k+1} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k+1} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}=\overline{\bigcup_{k=0}^{\infty} V_{\varphi}^{* k} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k}} \tag{4.3}
\end{equation*}
$$

Proof. Since $V_{\varphi}^{k} V_{\varphi}^{* k} \in C_{r}^{*}\left(R_{\varphi}\right)$, it is easy to check that $V_{\varphi}^{* k} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k}$ is a $*$-algebra. To see that $V_{\varphi}^{* k} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k}$ is closed let $\left\{a_{n}\right\}$ be a sequence in $C_{r}^{*}\left(R_{\varphi}\right)$ such that $\left\{V_{\varphi}^{* k} a_{n} V_{\varphi}^{k}\right\}$ converges in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$, say $\lim _{n \rightarrow \infty} V_{\varphi}^{* k} a_{n} V_{\varphi}^{k}=b$. It follows that

$$
\left\{V_{\varphi}^{k} V_{\varphi}^{* k} a_{n} V_{\varphi}^{k} V_{\varphi}^{* k}\right\}
$$

is Cauchy in $C_{r}^{*}\left(R_{\varphi}\right)$ and hence convergent, say to $a \in C_{r}^{*}\left(R_{\varphi}\right)$. But then $b=$ $\lim _{n \rightarrow \infty} V_{\varphi}^{* k} a_{n} V_{\varphi}^{k}=\lim _{n \rightarrow \infty} V_{\varphi}^{* k} V_{\varphi}^{k} V_{\varphi}^{* k} a_{n} V_{\varphi}^{k} V_{\varphi}^{* k} V_{\varphi}^{k}=V_{\varphi}^{* k} a V_{\varphi}^{k}$. It follows that

$$
V_{\varphi}^{* k} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k}
$$

is closed and hence a C^{*}-subalgebra. The inclusion (4.2) follows from the observation that $V_{\varphi}^{k}=V_{\varphi}^{*} V_{\varphi}^{k+1}$ and $V_{\varphi} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{*} \subseteq C_{r}^{*}\left(R_{\varphi}\right)$.

It is straightforward to check that $\beta_{\lambda}\left(V_{\varphi}\right)=\lambda V_{\varphi}$ and that $C_{r}^{*}\left(R_{\varphi}\right) \subseteq C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}$. The inclusion \supseteq in (4.3) follows from this. To obtain the other, let $x \in C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}$ and let $\epsilon>0$. It follows from Theorem 4.6 of [Th1] and Lemma 1.1. of [BoKR] that there is an $n \in \mathbb{N}$ and an element

$$
y \in \operatorname{Span} \bigcup_{i, j \leq n} V_{\varphi}^{* i} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{j}
$$

such that $\|x-y\| \leq \epsilon$. Then $\left\|x-\int_{\mathbb{T}} \beta_{\lambda}(y) d \lambda\right\| \leq \epsilon$ and since

$$
\int_{\mathbb{T}} \beta_{\lambda}(y) d \lambda \in V_{\varphi}^{* n} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{n}
$$

we see that (4.3) holds.
Lemma 4.2. Let I be a gauge invariant ideal in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$. It follows that

$$
I=\left\{a \in C_{r}^{*}\left(\Gamma_{\varphi}\right): \int_{\mathbb{T}} \beta_{\lambda}\left(a^{*} a\right) d \lambda \in I \cap C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}\right\} .
$$

Proof. Set $B=C_{r}^{*}\left(\Gamma_{\varphi}\right) / I$. Since I is gauge-invariant there is an action $\hat{\beta}$ of \mathbb{T} on B such that $q \circ \beta=\hat{\beta} \circ q$, where $q: C_{r}^{*}\left(\Gamma_{\varphi}\right) \rightarrow B$ is the quotient map. Thus, if

$$
y \in\left\{a \in C_{r}^{*}\left(\Gamma_{\varphi}\right): \int_{\mathbb{T}} \beta_{\lambda}\left(a^{*} a\right) d \lambda \in I \cap C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}\right\}
$$

we find that

$$
\int_{\mathbb{T}} \hat{\beta}_{\lambda}\left(q\left(y^{*} y\right)\right) d \lambda=q\left(\int_{\mathbb{T}} \beta_{\lambda}\left(y^{*} y\right) d \lambda\right)=0 .
$$

Since $\int_{\mathbb{T}} \hat{\beta}_{\lambda}(\cdot) d \lambda$ is faithful we conclude that $q(y)=0$, i.e. $y \in I$. This establishes the non-trivial part of the asserted identity.
Lemma 4.3. Let I, I^{\prime} be gauge invariant ideals in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$. Then

$$
I \cap D_{R_{\varphi}} \subseteq I^{\prime} \cap D_{R_{\varphi}} \Rightarrow I \subseteq I^{\prime}
$$

Proof. Assume that $I \cap D_{R_{\varphi}} \subseteq I^{\prime} \cap D_{R_{\varphi}}$. It follows from Lemma3.3 that $I \cap C_{r}^{*}\left(R_{\varphi}\right) \subseteq$ $I^{\prime} \cap C_{r}^{*}\left(R_{\varphi}\right)$. Then

$$
\begin{aligned}
I \cap V_{\varphi}^{* k} C_{r}^{*} & \left(R_{\varphi}\right) V_{\varphi}^{k}=V_{\varphi}^{* k}\left(I \cap C_{r}^{*}\left(R_{\varphi}\right)\right) V_{\varphi}^{k} \\
& \subseteq V_{\varphi}^{* k}\left(I^{\prime} \cap C_{r}^{*}\left(R_{\varphi}\right)\right) V_{\varphi}^{k}=I^{\prime} \cap V_{\varphi}^{* k} C_{r}^{*}\left(R_{\varphi}\right) V_{\varphi}^{k}
\end{aligned}
$$

for all $k \in \mathbb{N}$. Hence Lemma 4.1]implies that $I \cap C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}} \subseteq I^{\prime} \cap C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}$. It follows then from Lemma 4.2 that $I \subseteq I^{\prime}$.

Proposition 4.4. The map $J \mapsto \widehat{J}$, where

$$
\widehat{J}=\left\{a \in C_{r}^{*}\left(\Gamma_{\varphi}\right): P_{\Gamma_{\varphi}}\left(a^{*} a\right) \in J\right\}
$$

is a bijection from the Γ_{φ}-invariant ideals of $D_{\Gamma_{\varphi}}$ onto the gauge invariant ideals of $C_{r}^{*}\left(\Gamma_{\varphi}\right)$. Its inverse is the map $I \mapsto I \cap D_{\Gamma_{\varphi}}$.
Proof. Since $P_{\Gamma_{\varphi}} \circ \beta=P_{\Gamma_{\varphi}}$ the ideal \widehat{J} is gauge invariant. It follows from Lemma 2.13 of [Th1] that $\widehat{J} \cap D_{\Gamma_{\varphi}}=J$ so it suffices to show that

$$
\begin{equation*}
\widehat{I \cap D_{\Gamma_{\varphi}}}=I \tag{4.4}
\end{equation*}
$$

when I is a gauge invariant ideal in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$. It follows from Lemma 2.13 of [h1] that $\widehat{\cap D_{\Gamma_{\varphi}}} \cap D_{\Gamma_{\varphi}}=I \cap D_{\Gamma_{\varphi}}$. Since $D_{R_{\varphi}} \subseteq D_{\Gamma_{\varphi}}$ this implies that $\widehat{\cap D_{\Gamma_{\varphi}}} \cap D_{R_{\varphi}}=$ $I \cap D_{R_{\varphi}}$. Then (4.4) follows from Lemma 4.3,

To simplify notation, set $D=D_{\Gamma_{\phi}}=C(Y)$. Every ideal I in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ determines a closed subset $\rho(I)$ of Y defined such that

$$
\begin{equation*}
\rho(I)=\{y \in Y: f(y)=0 \forall f \in I \cap D\} . \tag{4.5}
\end{equation*}
$$

We say that a subset $F \subseteq Y$ is totally ϕ-invariant when $\phi^{-1}(F)=F$.
Lemma 4.5. $\rho(I)$ is totally ϕ-invariant for every ideal I in $C_{r}^{*}\left(\Gamma_{\phi}\right)$.
Proof. It suffices to show that $Y \backslash \rho(I)$ is totally ϕ-invariant, which is what we will do. Assume first that $x \in Y \backslash \rho(I)$. Then there is an $f \in I \cap D$ such that $f(x) \neq 0$. Choose an open bisection $W \subseteq \Gamma_{\phi}$ such that $(x, 1, \phi(x)) \in W$. Choose then $\eta \in C_{c}\left(\Gamma_{\phi}\right)$ such that $\eta((x, 1, \phi(x))=1$ and $\operatorname{supp} \eta \subseteq W$. It is not difficult to check that $\eta^{*} f \eta \in D$ and that $\eta^{*} f \eta(\phi(x))=f(x) \neq 0$, and since $\eta^{*} f \eta \in I$, it follows
that $\phi(x) \in Y \backslash \rho(I)$. Assume then that $\phi(x) \in Y \backslash \rho(I)$. Then there is a $g \in I \cap D$ such that $g(\phi(x)) \neq 0$. Choose an open bisection $W \subseteq \Gamma_{\phi}$ such that $(x, 1, \phi(x)) \in W$ and $\eta \in C_{c}\left(\Gamma_{\phi}\right)$ such that $\eta\left((x, 1, \phi(x))=1\right.$ and $\operatorname{supp} \eta \subseteq W$. Then $\eta g \eta^{*} \in D$ and $\eta g \eta^{*}(\phi(x))=g(x) \neq 0$, and since $\eta g \eta^{*} \in I$, this shows that $x \in Y \backslash \rho(I)$, proving that $\phi^{-1}(\rho(I))=\rho(I)$.

Thus every ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ gives rise to a closed totally ϕ-invariant subset of Y. To go in the other direction, let F be a closed totally ϕ-invariant subset of Y. Then $Y \backslash F$ is open and totally ϕ-invariant so that the reduction $\left.\Gamma_{\phi}\right|_{Y \backslash F}$ is an étale groupoid in its own right, cf. An. In fact, ϕ restricts to local homeomorphic surjections $\phi: Y \backslash F \rightarrow Y \backslash F$ and $\phi: F \rightarrow F$, and

$$
\left.\Gamma_{\phi}\right|_{Y \backslash F}=\Gamma_{\left.\phi\right|_{Y \backslash F}} .
$$

Note that $C_{r}^{*}\left(\left.\Gamma_{\phi}\right|_{Y \backslash F}\right)=C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{Y \backslash F}}\right)$ is an ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ because $Y \backslash F$ is totally ϕ-invariant.

Proposition 4.6. (Cf. Proposition II.4.5 of [Re].) Let F be a non-empty, closed and totally ϕ-invariant subset of Y. There is then a surjective $*$-homomorphism $\pi_{F}: C_{r}^{*}\left(\Gamma_{\phi}\right) \rightarrow C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right)$ which extends the restriction map $C_{c}\left(\Gamma_{\phi}\right) \rightarrow C_{c}\left(\Gamma_{\left.\phi\right|_{F}}\right)$ and has the property that $\operatorname{ker} \pi_{F}=C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{Y \backslash F}}\right)$, i.e.

$$
0 \longrightarrow C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{Y \backslash F}}\right) \longrightarrow C_{r}^{*}\left(\Gamma_{\phi}\right) \xrightarrow{\pi_{F}} C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right) \longrightarrow 0
$$

is exact. Furthermore,

$$
\begin{equation*}
\rho\left(\operatorname{ker} \pi_{F}\right)=F . \tag{4.6}
\end{equation*}
$$

Proof. Let $\pi_{F}: C_{c}\left(\Gamma_{\phi}\right) \rightarrow C_{c}\left(\Gamma_{\left.\phi\right|_{F}}\right)$ denote the restriction map which is surjective by Tietze's theorem. By using that F is totally ϕ-invariant, it follows straightforwardly that π_{F} is a $*$-homomorphism. Since $\pi_{x} \circ \pi_{F}=\pi_{x}$ when $x \in F$, it follows that π_{F}^{\prime} extends by continuity to a $*$-homomorphism $\pi_{F}: C_{r}^{*}\left(\Gamma_{\phi}\right) \rightarrow C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right)$ which is surjective because π_{F}^{\prime} is. To complete the proof observe that

$$
\operatorname{ker} \pi_{F} \cap D=C_{0}(Y \backslash F)=C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{Y \backslash F}}\right) \cap D .
$$

The first identity shows that (4.6) holds, and since ker π_{F} and $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{Y \backslash F}}\right)$ are both gauge-invariant ideals the second that they are identical by Lemma 4.3.

By combining Proposition 4.4. Lemma 4.5 and Proposition 4.6 we obtain the following.

Theorem 4.7. The map ρ is a bijection from the gauge-invariant ideals in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ onto the set of closed totally ϕ-invariant subsets of Y. The inverse is the map which sends a closed totally ϕ-invariant subset $F \subseteq Y$ to the ideal

$$
\operatorname{ker} \pi_{F}=\left\{a \in C_{r}^{*}\left(\Gamma_{\phi}\right): P_{\Gamma_{\phi}}\left(a^{*} a\right)(x)=0 \forall x \in F\right\} .
$$

We remark that since the isomorphism (2.2) is equivariant with respect to the gauge actions, Theorem 4.7 gives also a description of the gauge invariant ideals in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$, as a complement to the one of Proposition 4.4.
4.2. The primitive ideals. We are now in position to obtain a complete description of the primitive ideals of $C_{r}^{*}\left(\Gamma_{\phi}\right)$. Much of what we do is merely a translation of Katsuras description of the primitive ideals in the more general C^{*}-algebras considered by him in Ka. Recall that because we only deal with separable C^{*}-algebras the primitive ideals are the same as the prime ideals, cf. 3.13.10 and 4.3.6 in [Pe].

Lemma 4.8. Let I be an ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ and let A be a closed totally ϕ-invariant subset of Y. If $\rho(I) \subseteq A$, then $\operatorname{ker} \pi_{A} \subseteq I$.

Proof. Since $\rho(I) \subseteq A$ it follows from the Stone-Weierstrass theorem that $C_{0}(Y \backslash$ $A) \subseteq I \cap C(Y)$. Let $\left\{i_{n}\right\}$ be an approximate unit in $C_{0}(Y \backslash A)$. It follows from Proposition 4.6 that $\left\{i_{n}\right\}$ is also an approximate unit in $\operatorname{ker} \pi_{A}$. Since $\left\{i_{n}\right\} \subseteq I$ it follows that ker $\pi_{A} \subseteq I$.

We say that a closed totally ϕ-invariant subset A of Y is prime when it has the property that if B and C also are closed and totally ϕ-invariant subsets of Y and $A \subseteq B \cup C$, then either $A \subseteq B$ or $A \subseteq C$.

Let $\mathcal{M}:=\{A \subseteq Y: A$ is non-empty, closed, totally ϕ-invariant and prime $\}$. For $x \in Y$ let

$$
\operatorname{Orb}(x)=\left\{y \in Y: \exists m, n \in \mathbb{N}: \phi^{n}(x)=\phi^{m}(y)\right\} .
$$

We call $\operatorname{Orb}(x)$ the total ϕ-orbit of x.
Proposition 4.9. (Cf. Proposition 4.13 and 4.4 of Ka .)

$$
\mathcal{M}=\{\overline{\operatorname{Orb}(x)}: x \in Y\}
$$

Proof. It is clear that $\overline{\operatorname{Orb}(x)} \in \mathcal{M}$ for every $x \in Y$. Assume that $A \in \mathcal{M}$ and let $\left\{U_{k}\right\}_{k=1}^{\infty}$ be a basis for A. We will by induction show that we can choose compact neighbourhoods $\left\{C_{k}\right\}_{k=0}^{\infty}$ and $\left\{C_{k}^{\prime}\right\}_{k=0}^{\infty}$ in A and positive integers $\left(n_{k}\right)_{k=0}^{\infty}$ and $\left(n_{k}^{\prime}\right)_{k=0}^{\infty}$ such that $C_{k} \subseteq U_{k}$ and $C_{k}^{\prime} \subseteq \phi^{n_{k-1}}\left(C_{k-1}\right) \cap \phi^{n_{k-1}^{\prime}}\left(C_{k-1}^{\prime}\right)$ for $k \geq 1$. For this set $C_{0}=C_{0}^{\prime}=A$. Assume then that $n \geq 1$ and that $C_{1}, \ldots, C_{n}, C_{1}^{\prime}, \ldots, C_{n}^{\prime}, n_{0}, \ldots, n_{n-1}$ and $n_{0}^{\prime}, \ldots, n_{n-1}^{\prime}$ satisfying the conditions above have been chosen. Choose nonempty open subsets $V_{n} \subseteq C_{n}$ and $V_{n}^{\prime} \subseteq C_{n}^{\prime}$. We then have that

$$
\bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}\right)\right) \text { and } \bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}^{\prime}\right)\right)
$$

are non-empty open and totally ϕ-invariant subsets of A, and thus that

$$
\begin{equation*}
A \backslash \bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}\right)\right) \text { and } A \backslash \bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}^{\prime}\right)\right) \tag{4.7}
\end{equation*}
$$

are closed, totally ϕ-invariant subsets of Y. Since A is prime and is not contained in either of the sets from (4.7), it follows that A is not contained in

$$
\left(A \backslash \bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}\right)\right)\right) \bigcup\left(A \backslash \bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}^{\prime}\right)\right)\right)
$$

whence

$$
\left(\bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}\right)\right)\right) \bigcap\left(\bigcup_{l, m=0}^{\infty} \phi^{-l}\left(\phi^{m}\left(V_{n}^{\prime}\right)\right)\right) \neq \emptyset
$$

It follows that there are positive integers n_{n} and n_{n}^{\prime} such that $\phi^{n_{n}}\left(V_{n}\right) \cap \phi^{n_{n}^{\prime}}\left(V_{n}^{\prime}\right)$ is non-empty. Thus we can choose a compact neighbourhood $C_{n+1} \subseteq U_{n+1}$ and a compact neighbourhood $C_{n+1}^{\prime} \subseteq \phi^{n_{n}}\left(V_{n}\right) \cap \phi^{n_{n}^{\prime}}\left(V_{n}^{\prime}\right) \subseteq \phi^{n_{n}}\left(C_{n}\right) \cap \phi^{n_{n}^{\prime}}\left(C_{n}^{\prime}\right)$ which is what is required for the induction step.

It is easy to check that

$$
C_{0}^{\prime} \cap \phi^{-n_{0}^{\prime}}\left(C_{1}^{\prime}\right) \cap \ldots \cdots \cap \phi^{-n_{0}^{\prime}-\cdots-n_{k}^{\prime}}\left(C_{k+1}^{\prime}\right), \quad k=0,1, \ldots
$$

is a decreasing sequence of non-empty compact sets. It follows that there is an

$$
x \in \bigcap_{k=0}^{\infty} \phi^{-n_{0}^{\prime}-\ldots \cdots-n_{k}^{\prime}}\left(C_{k+1}^{\prime}\right) \cap C_{0}^{\prime} .
$$

We have for every $k \in \mathbb{N}$ that $\phi^{n_{0}^{\prime}+\cdots+n_{k}^{\prime}}(x) \in C_{k+1}^{\prime} \subseteq \phi^{n_{k}}\left(C_{k}\right) \subseteq \phi^{n_{k}}\left(U_{k}\right)$, and it follows that $\operatorname{Orb}(x)$ is dense in A, and thus that $A=\overline{\operatorname{Orb}(x)}$.
Proposition 4.10. (Cf. Proposition 9.3 of [Ka].) Assume that I is a prime ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$. It follows that $\rho(I) \in \mathcal{M}$.
Proof. It follows from Lemma 4.5 that $\rho(I)$ is closed and totally ϕ-invariant. To show that $\rho(I)$ is also prime, assume that B and C are closed totally ϕ-invariant subsets such that $\rho(I) \subseteq B \cup C$. It follows then from Lemma 4.8 that $\operatorname{ker}\left(\pi_{B \cup C}\right) \subseteq I$. Since ker $\pi_{B} \cap \operatorname{ker} \pi_{C} \cap D=C_{0}(Y \backslash B) \cap C_{0}(Y \backslash C)=C_{0}(Y \backslash(B \cup C))=\operatorname{ker} \pi_{B \cup C} \cap D$ it follows from Lemma 4.3 that $\operatorname{ker} \pi_{B} \cap \operatorname{ker} \pi_{C}=\operatorname{ker} \pi_{B \cup C}$. Therefore $\operatorname{ker}\left(\pi_{B}\right) \subseteq I$ or $\operatorname{ker}\left(\pi_{C}\right) \subseteq I$ since I is prime. Hence $\rho(I) \subseteq B$ or $\rho(I) \subseteq C$, thanks to (4.6).

We say that a point $x \in Y$ is ϕ-periodic if $\phi^{n}(x)=x$ for some $n>0$. Let Per denote the set of ϕ-periodic points $x \in Y$ which are isolated in $\operatorname{Orb}(x)$ and let

$$
\mathcal{M}_{\mathrm{Per}}=\{\overline{\operatorname{Orb}(x)}: x \in \operatorname{Per}\}
$$

and

$$
\mathcal{M}_{\mathrm{Aper}}=\mathcal{M} \backslash \mathcal{M}_{\mathrm{Per}} .
$$

Let $A \subseteq Y$ be a closed totally ϕ-invariant subset. We say that $\left.\phi\right|_{A}$ is topologically free if the set of ϕ-periodic points in A has empty interior in A.

Proposition 4.11. (Cf. Proposition 11.3 of [Ka].) Let $A \in \mathcal{M}$. Then $\left.\phi\right|_{A}$ is topologically free if and only if $A \in \mathcal{M}_{\text {Aper }}$.
Proof. We will show that $\left.\phi\right|_{A}$ is not topologically free if and only if $A \in \mathcal{M}_{\text {Per }}$. If $x \in \operatorname{Per}$ and $A=\overline{\operatorname{Orb}(x)}$, then $\left.\phi\right|_{A}$ is not topologically free because x is periodic and isolated in $\operatorname{Orb}(x)$ and thus in A. Assume then that $\left.\phi\right|_{A}$ is not topologically free. There is then a non-empty open subset $U \subseteq A$ such that every element of U is ϕ-periodic. Choose $x \in A$ such that $A=\overline{\operatorname{Orb}(x)}$. Then $U \cap \operatorname{Orb}(x) \neq \emptyset$. Let $y \in U \cap \operatorname{Orb}(x)$. Then y is ϕ-periodic and $\overline{\operatorname{Orb}(y)}=\overline{\operatorname{Orb}(x)}=A$, so if we can show that y is isolated in $\operatorname{Orb}(y)$, then we have that $A \in \mathcal{M}_{\text {Per }}$. Since y is ϕ-periodic there is an $n \geq 1$ such that $\phi^{n}(y)=y$. We claim that $U \subseteq\left\{y, \phi(y), \ldots, \phi^{n-1}(y)\right\}$. It will then follow that y is isolated in A and thus in $\operatorname{Orb}(y)$.

Assume that $U \backslash\left\{y, \phi(y), \ldots, \phi^{n-1}(y)\right\}$ is non-empty. Since it is also open it follows that $\operatorname{Orb}(y) \cap U \backslash\left\{y, \phi(y), \ldots, \phi^{n-1}(y)\right\}$ is non-empty. Let $z \in \operatorname{Orb}(y) \cap U \backslash$ $\left\{y, \phi(y), \ldots, \phi^{n-1}(y)\right\}$. Since $z \in U$ there is an $m \geq 1$ so that $\phi^{m}(z)=z$, and since $z \in \operatorname{Orb}(y)$ there are $k, l \in \mathbb{N}$ such that $\phi^{k}(z)=\phi^{l}(y)$. But then $z=\phi^{m k}(z)=$ $\phi^{(m-1) k+l}(y) \in\left\{y, \phi(y), \ldots, \phi^{n-1}(y)\right\}$ and we have a contradiction. It follows that $U \subseteq\left\{y, \phi(y), \ldots, \phi^{n-1}(y)\right\}$.

In particular, it follows from Proposition 4.11 that the elements of $\mathcal{M}_{\text {Aper }}$ are infinite sets.

Proposition 4.12. (Cf. Proposition 11.5 of [Ka].) Let $A \in \mathcal{M}_{\text {Aper }}$. Then ker π_{A} is the unique ideal I in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ with $\rho(I)=A$.

Proof. We have already in Proposition 4.6 seen that $\rho\left(\operatorname{ker} \pi_{A}\right)=A$. Assume that I is an ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ with $\rho(I)=A$. It follows then from Lemma4.8 that ker $\pi_{A} \subseteq I$. Thus it sufficies to show that $\pi_{A}(I)=\{0\}$. Note that $\pi_{A}(I)$ is an ideal in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$ with $\rho\left(\pi_{A}(I)\right)=A$. It follows that $\pi_{A}(I) \cap C(A)=\{0\}$. To conclude from this that $\pi_{A}(I)=\{0\}$ we will show that the points of A whose isotropy group in $\Gamma_{\left.\phi\right|_{A}}$ is trivial are dense in A. It will then follow from Lemma 2.15 of [Th1] that $\pi_{A}(I)=\{0\}$ because $\pi_{A}(I) \cap C(A)=\{0\}$. That the points of A with trivial isotropy in $\Gamma_{\left.\phi\right|_{A}}$ are dense in A is established as follows: The points in A with non-trivial isotropy in $\Gamma_{\phi \mid A}$ are the pre-periodic points in A. Let $\operatorname{Per}_{n} A$ denote the set of points in A with minimal period n under ϕ and note that $\operatorname{Per}_{n} A$ is closed and has empty interior since $\left.\phi\right|_{A}$ is topologically free by Proposition 4.11. It follows that $A \backslash \phi^{-k}\left(\operatorname{Per}_{n} A\right)$ is open and dense in A for all k, n. By the Baire category theorem it follows that

$$
A \backslash\left(\bigcup_{k, n} \phi^{-k}\left(\operatorname{Per}_{n} A\right)\right)=\bigcap_{k, n} A \backslash \phi^{-k}\left(\operatorname{Per}_{n} A\right)
$$

is dense in A, proving the claim.

Lemma 4.13. Let $A \in \mathcal{M}_{\text {Aper }}$. Then $\operatorname{ker} \pi_{A}$ is a primitive ideal.
Proof. Let $A=\overline{\operatorname{Orb}(x)}$. To show that ker π_{A} is primitive it suffices to show that it is prime, cf. Proposition 4.3.6 of [Pe]. Equivalently, it suffices to show that $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$ is a prime C^{*}-algebra. Consider therefore two ideals $I_{j} \subseteq C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right), j=1,2$, such that $I_{1} I_{2}=\{0\}$. Then

$$
\left\{y \in A: f(y)=0 \forall f \in I_{1} \cap C(A)\right\} \cup\left\{y \in A: f(y)=0 \forall f \in I_{2} \cap C(A)\right\}=A
$$

In particular, x must be in $\left\{y \in A: f(y)=0 \forall f \in I_{j} \cap C(A)\right\}$, either for $j=1$ or $j=2$. It follows then from Lemma 4.5, applied to $\left.\phi\right|_{A}$, that

$$
A=\left\{y \in A: f(y)=0 \forall f \in I_{j} \cap C(A)\right\} .
$$

Hence $I_{j}=\{0\}$ by Proposition 4.12 applied to $\left.\phi\right|_{A}$.
Let $A \in \mathcal{M}_{\text {Per }}$. Choose $x \in \operatorname{Per}$ such that $\overline{\operatorname{Orb}(x)}=A$, and let n be the minimal period of x. Then x is isolated in A. It follows that the characteristic functions $1_{(x, 0, x)}$ and $1_{(x, n, x)}$ belong to $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$. Let $p_{x}=1_{(x, 0, x)}$ and $u_{x}=1_{(x, n, x)}$. For $w \in \mathbb{T}$ let $\dot{P}_{x, w}$ denote the ideal in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$ generated by $u_{x}-w p_{x}$.
Lemma 4.14. Suppose that $x, y \in \operatorname{Per}$ and that $\overline{\operatorname{Orb}(x)}=\overline{\operatorname{Orb}(y)}$ and let $w \in \mathbb{T}$. Then $\dot{P}_{x, w}=\dot{P}_{y, w}$.
Proof. By symmetry, it is enough to show that $\dot{P}_{y, w} \subseteq \dot{P}_{x, w}$. Since y is isolated in $\operatorname{Orb}(y)$, it is isolated in $\overline{\operatorname{Orb}(y)}=\overline{\operatorname{Orb}(x)}$. Thus y must belong to $\operatorname{Orb}(x)$. This means that there are $k, l \in \mathbb{N}$ such that $\phi^{k}(x)=\phi^{l}(y)$. Since y is ϕ-periodic, it follows that there is an $i \in \mathbb{N}$ such that $y=\phi^{i}(x)$. Let $A=\overline{\operatorname{Orb}(y)}=\overline{\operatorname{Orb}(x)}$. Since x and y are isolated in A we have that $1_{(x, i, y)} \in C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$. Let $v=1_{(x, i, y)}$. It is easy to
check that $v^{*} p_{x} v=p_{y}$ and that $v^{*} u_{x} v=u_{y}$. Thus $u_{y}-w p_{y}=v^{*}\left(u_{x}-w p_{x}\right) v \in \dot{P}_{x, w}$ and it follows that $\dot{P}_{y, w} \subseteq \dot{P}_{x, w}$.

Let $A \in \mathcal{M}_{\text {Per }}$ and let $w \in \mathbb{T}$. It follows from Lemma 4.14 that the ideal $\dot{P}_{x, w}$ does not depend of the particular choice of $x \in A \cap$ Per, as long as $\overline{\operatorname{Orb}(x)}=A$. We will therefore simply write $\dot{P}_{A, w}$ for $\dot{P}_{x, w}$. We then define $P_{A, w}$ to be the ideal $\pi_{A}^{-1}\left(\dot{P}_{A, w}\right)$ in $C_{r}^{*}\left(\Gamma_{\phi}\right)$.

Proposition 4.15. (Cf. Proposition 11.13 of Ka.) Let $A \in \mathcal{M}_{\mathrm{Per}}$. Then

$$
w \mapsto P_{A, w}
$$

is a bijection between \mathbb{T} and the set of primitive ideals P in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ with $\rho(P)=A$.
Proof. The map $P \mapsto \pi_{A}(P)$ gives a bijection between the primitive ideals in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ with $\operatorname{ker} \pi_{A} \subseteq P$ and the primitive ideals in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$, cf. Theorem 4.1.11 (ii) in Pe]. The inverse of this bijection is the map $Q \mapsto \pi_{A}^{-1}(Q)$. If P is a primitive ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ with $\rho(P)=A$, it follows from Lemma 4.8 that ker $\pi_{A} \subseteq P$. In addition $\rho\left(\pi_{A}(P)\right)=A$. If on the other hand Q is a primitive ideal in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$ with $\rho(Q)=A$, then $\pi_{A}^{-1}(Q)$ is a primitive ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ and $\rho\left(\pi_{A}^{-1}(Q)\right)=A$. Thus $P \mapsto \pi_{A}(P)$ gives a bijection between the primitive ideals in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ with $\rho(P)=A$ and the primitive ideals Q in $C_{r}^{*}\left(\Gamma_{\phi \mid A}\right)$ with $\rho(Q)=A$.

Choose $x \in$ Per such that $\overline{\operatorname{Orb}(x)}=A$. Let $\left\langle p_{x}\right\rangle$ be the ideal in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$ generated by p_{x}. Observe that $\dot{P}_{A, w} \subseteq\left\langle p_{x}\right\rangle$ for all $w \in \mathbb{T}$ since $p_{x}\left(u_{x}-w p_{x}\right)=u_{x}-w p_{x}$. The map $Q \mapsto Q \cap\left\langle p_{x}\right\rangle$ gives a bijection between the primitive ideals in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$ with $\left\langle p_{x}\right\rangle \nsubseteq Q$ and the primitive ideals in $\left\langle p_{x}\right\rangle$, cf. Theorem 4.1.11 (ii) in [Pe]. We claim that $\left\langle p_{x}\right\rangle \nsubseteq Q$ if and only if $\rho(Q)=A$. To see this, let Q be an ideal in $C_{r}^{*}\left(\Gamma_{\phi \mid A}\right)$. If $p_{x} \in Q$, then $x \notin \rho(Q)$ and $\rho(Q) \neq A$. If on the other hand $\rho(Q) \neq A$, then $x \notin \rho(Q)$ because $\rho(Q)$ is closed and totally ϕ-invariant and $\overline{\operatorname{Orb}(x)}=A$. It follows that there is an $f \in Q \cap C(A)$ such that $f(x) \neq 0$, whence $p_{x} \in Q$. This proves the claim and it follows that $Q \mapsto Q \cap\left\langle p_{x}\right\rangle$ gives a bijection between the primitive ideals in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$ with $\rho(Q)=A$ and the primitive ideals in $\left\langle p_{x}\right\rangle$.

The C^{*}-algebra $\left\langle p_{x}\right\rangle$ is Morita equivalent to $p_{x} C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right) p_{x}$ via the $p_{x} C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right) p_{x^{-}}$ $\left\langle p_{x}\right\rangle$ imprimitivity bimodule $p_{x} C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{A}}\right)$, and therefore $T \mapsto p_{x} T p_{x}$ gives a bijection between the primitive ideals T in $\left\langle p_{x}\right\rangle$ and the primitive ideals in $p_{x} C_{r}^{*}\left(\Gamma_{\phi \mid A}\right) p_{x}$, cf. Proposition 3.24 and Corollary 3.33 in [RW]. Now note that

$$
\left\{\left(x^{\prime}, n^{\prime}, y^{\prime}\right) \in \Gamma_{\left.\phi\right|_{A}}: x^{\prime}=y^{\prime}=x\right\}=\{(x, k n, x): k \in \mathbb{Z}\}
$$

where n is the smallest positive integer such that $\phi^{n}(x)=x$. It follows that $p_{x} C_{r}^{*}\left(\Gamma_{\phi \mid A}\right) p_{x}$ is isomorphic to $C(\mathbb{T})$ under an isomorphism taking the canonical unitary generator of $C(\mathbb{T})$ to u_{x}. In this way we conclude that the primitive ideals of $p_{x} C_{r}^{*}\left(\Gamma_{\phi \mid A}\right) p_{x}$ are in one-to-one correspondance with \mathbb{T} under the map

$$
\mathbb{T} \ni w \mapsto p_{x} \overline{C_{r}^{*}\left(\Gamma_{\phi \mid A}\right)\left(u_{x}-w p_{x}\right) C_{r}^{*}\left(\Gamma_{\phi \mid A}\right)} p_{x}=p_{x} \dot{P}_{A, w} p_{x} .
$$

This completes the proof.
By combining Proposition 4.10, 4.12 and 4.15 we get the following theorem.
Theorem 4.16. The set of primitive ideals in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ is the disjoint union of $\left\{\operatorname{ker} \pi_{A}: A \in \mathcal{M}_{\text {Aper }}\right\}$ and $\left\{P_{A, w}: A \in \mathcal{M}_{\text {Per }}, w \in \mathbb{T}\right\}$.
4.3. The maximal ideals. The next step is to identify the maximal ideals among the primitive ones.

Lemma 4.17. Assume that not all points of Y are pre-periodic and that $C_{r}^{*}\left(\Gamma_{\phi}\right)$ contains a non-trivial ideal. It follows that there is a non-trivial gauge-invariant ideal J in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ such that $J \cap C(Y) \neq\{0\}$.

Proof. Let I be a non-trivial ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$. Assume first that $I \cap C(Y)=\{0\}$. Since we assume that not all points of Y are pre-periodic we can apply Lemma 2.16 of [Th1] to conclude that $J_{0}=\overline{P_{\Gamma_{\phi}}(I)}$ is a non-trivial Γ_{ϕ}-invariant ideal in $C(Y)$. Then

$$
J=\left\{a \in C_{r}^{*}\left(\Gamma_{\phi}\right): P_{\Gamma_{\phi}}\left(a^{*} a\right) \in J_{0}\right\}
$$

is a non-trivial gauge-invariant ideal by Theorem 4.4, and $J \cap C(Y)=J_{0} \neq\{0\}$. Note that J contains I in this case. If $I \cap C(X) \neq\{0\}$ we set

$$
J=\left\{a \in C_{r}^{*}\left(\Gamma_{\phi}\right): P_{\Gamma_{\phi}}\left(a^{*} a\right) \in I \cap C(Y)\right\}
$$

which is a non-trivial ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ such that $J \cap C(Y)=I \cap C(Y)$ by Lemma 2.13 of [Th1]. Since J is gauge-invariant, this completes the proof.

Lemma 4.18. Let $F \subseteq Y$ be a minimal closed non-empty totally ϕ-invariant subset. Then either

1) $F \in \mathcal{M}_{\text {Aper }}$ and $\operatorname{ker} \pi_{F}$ is a maximal ideal, or
2) $F=\operatorname{Orb}(x)=\left\{\phi^{n}(x): n \in \mathbb{N}\right\}$, where $x \in \operatorname{Per}$.

Proof. It follows from the minimality of F that $\overline{\operatorname{Orb}(x)}=F$ for all $x \in F$. We will show that 1) holds when F does not contain an element of Per, and that 2) holds when it does. Assume first that F does not contain any elements of Per. Then $F \in \mathcal{M}_{\text {Aper }}$. If there is a proper ideal I in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ such that $\operatorname{ker} \pi_{F} \subsetneq I$, then $\pi_{F}(I)$ is a non-trivial ideal in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right)$, and then it follows from Lemma 4.17 that there is a non-trivial gauge-invariant ideal J in $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right)$. By Theorem $4.7 \rho\left(\pi_{F}^{-1}(J)\right)$ is then a non-trivial closed totally ϕ-invariant subset of F, contradicting the minimality of F. Thus 1) holds when F does not contain an element from Per.

Assume instead that there is an $x \in F \cap$ Per. Then x is isolated in $\operatorname{Orb}(x)$, and thus in F. It follows that $F=\operatorname{Orb}(x)$, because if $y \in F \backslash \operatorname{Orb}(x)$ we would have that $x \notin \overline{\operatorname{Orb}(y)}=F$, which is absurd. Since F is compact, $\operatorname{Orb}(x)$ must be finite. Since ϕ is surjective we must then have that $\operatorname{Orb}(x)=\left\{\phi^{n}(x): n \in \mathbb{N}\right\}$. Thus 2) holds if F contains an element from Per.

Lemma 4.19. Let I be a maximal ideal in $C_{r}^{*}\left(\Gamma_{\phi}\right)$. Then either $I=\operatorname{ker} \pi_{F}$ for some minimal closed totally ϕ-invariant subset $F \in \mathcal{M}_{\text {Aper }}$, or $I=P_{\operatorname{Orb}(x), w}$ for some $w \in \mathbb{T}$ and some $x \in \operatorname{Per}$ such that $\operatorname{Orb}(x)=\left\{\phi^{n}(x): n \in \mathbb{N}\right\}$.

Proof. Since I is also primitive we know from Theorem 4.16 that $I=\operatorname{ker} \pi_{A}$ for some $A \in \mathcal{M}_{\text {Aper }}$ or $I=P_{A, w}$ for some $A \in \mathcal{M}_{\text {Per }}$ and some $w \in \mathbb{T}$. In the first case it follows that A must be a minimal closed totally ϕ-invariant subset since I is a maximal ideal. Assume then that $I=P_{A, w}$ for some $A \in \mathcal{M}_{\text {Per }}$ and some $w \in \mathbb{T}$. In the notation from the proof of Proposition 4.15, observe that $\dot{P}_{A, w} \subseteq\left\langle p_{x}\right\rangle$ since $p_{x}\left(u_{x}-w p_{x}\right)=u_{x}-w p_{x}$. Note that $\dot{P}_{A, w} \neq\left\langle p_{x}\right\rangle$ because the latter of these ideals is gauge-invariant and the first is not. By maximality of I this implies that $\left\langle p_{x}\right\rangle=C_{r}^{*}\left(\Gamma_{\phi \mid A}\right)$. On the other hand, $\operatorname{Orb}(x)$ is an open totally ϕ-invariant subset
of A and $p_{x} \in C_{r}^{*}\left(\Gamma_{\phi \mid \operatorname{Orb}(x)}\right)$, so we see that $\left\langle p_{x}\right\rangle=C_{r}^{*}\left(\Gamma_{\phi \mid A}\right)=C_{r}^{*}\left(\Gamma_{\phi \mid \operatorname{Orb}(x)}\right)$. This implies that

$$
C_{0}(\operatorname{Orb}(x))=C(A) \cap C_{r}^{*}\left(\Gamma_{\phi \mid \operatorname{Orb}(x)}\right)=C(A),
$$

and hence that $A=\operatorname{Orb}(x)$. Compactness of A implies that $\operatorname{Orb}(x)$ is finite and surjectivity of ϕ that $\operatorname{Orb}(x)=\left\{\phi^{n}(x): n \in \mathbb{N}\right\}$.
Theorem 4.20. The maximal ideals in $C_{r}^{*}\left(\Gamma_{\phi}\right)$ consist of the primitive ideals of the form $\operatorname{ker} \pi_{F}$ for some infinite minimal closed totally ϕ-invariant subset $F \subseteq Y$ and the primitive ideals $P_{A, w}$ for some $w \in \mathbb{T}$, where $A=\operatorname{Orb}(x)=\left\{\phi^{n}(x): n \in \mathbb{N}\right\}$ for $a \phi$-periodic point $x \in Y$.

Proof. This follows from the last two lemmas, after the observation that a primitive ideal $P_{A, w}$ of the form described in the statement is maximal.

Corollary 4.21. Let A be a simple quotient of $C_{r}^{*}\left(\Gamma_{\phi}\right)$. Assume A is not finite dimensional. It follows that there is an infinite minimal closed totally ϕ-invariant subset F of Y such that $A \simeq C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right)$.

To make more detailed conclusions about the simple quotients we need to restrict to the case where Y is of finite covering dimension so that the result of [Th3] applies. For this reason we prove first that finite dimensionality of Y follows from finite dimensionality of X.

5. On the dimension of Y

Let $\operatorname{Dim} X$ and $\operatorname{Dim} Y$ denote the covering dimensions of X and Y, respectively. The purpose with this section is to establish

Proposition 5.1. $\operatorname{Dim} Y \leq \operatorname{Dim} X$.
Proof. By definition Y is the Gelfand spectrum of $D_{\Gamma_{\varphi}}$. Since the conditional expectation $P_{\Gamma_{\varphi}}: C_{r}^{*}\left(\Gamma_{\varphi}\right) \rightarrow D_{\Gamma_{\varphi}}$ is invariant under the gauge action, in the sense that $P_{\Gamma_{\varphi}} \circ \beta_{\lambda}=P_{\Gamma_{\varphi}}$ for all λ, it follows that

$$
D_{\Gamma_{\varphi}}=P_{\Gamma_{\varphi}}\left(C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}\right) .
$$

To make use of this description of $D_{\Gamma_{\varphi}}$ we need a refined version of (4.3). Note first that it follows from (4.4) and (4.5) of [Th1] that $V_{\varphi} C_{r}^{*}\left(R\left(\varphi^{l}\right)\right) V_{\varphi}^{*} \subseteq C_{r}^{*}\left(R\left(\varphi^{l+1}\right)\right)$ for all $l \in \mathbb{N}$. Consequently

$$
V_{\varphi}^{* k} C_{r}^{*}\left(R\left(\varphi^{l}\right)\right) V_{\varphi}^{k}=V_{\varphi}^{* k+1} V_{\varphi} C_{r}^{*}\left(R\left(\varphi^{l}\right)\right) V_{\varphi}^{*} V_{\varphi}^{k+1} \subseteq V_{\varphi}^{* k+1} C_{r}^{*}\left(R\left(\varphi^{l+1}\right)\right) V_{\varphi}^{k+1}
$$

for all $k, l \in \mathbb{N}$. It follows therefore from (3.1) and (4.3) that there are sequences $\left\{k_{n}\right\}$ and $\left\{l_{n}\right\}$ in \mathbb{N} such that $l_{n} \geq k_{n}$,

$$
\begin{equation*}
V_{\varphi}^{* k_{n}} C_{r}^{*}\left(R\left(\varphi^{l_{n}}\right)\right) V_{\varphi}^{k_{n}} \subseteq V_{\varphi}^{* k_{n+1}} C_{r}^{*}\left(R\left(\varphi^{l_{n+1}}\right)\right) V_{\varphi}^{k_{n+1}} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{r}^{*}\left(\Gamma_{\varphi}\right)^{\mathbb{T}}=\overline{\bigcup_{n} V_{\varphi}^{* k_{n}} C_{r}^{*}\left(R\left(\varphi^{l_{n}}\right)\right) V_{\varphi}^{k_{n}}} ; \tag{5.2}
\end{equation*}
$$

we can for example use $k_{n}=n$ and $l_{n}=2 n$.
Let D_{n} denote the C^{*}-subalgebra of $D_{\Gamma_{\varphi}}$ generated by

$$
P_{\Gamma_{\varphi}}\left(V_{\varphi}^{* k_{n}} C_{r}^{*}\left(R\left(\varphi^{l_{n}}\right)\right) V_{\varphi}^{k_{n}}\right)
$$

and let Y_{n} be the character space of D_{n}. Note that $C(X) \subseteq D_{n}$ since $V_{\varphi}^{k_{n}} g V_{\varphi}^{* k_{n}} \in$ $C_{r}^{*}\left(R\left(\varphi^{l_{n}}\right)\right)$ and $g=P_{\Gamma_{\varphi}}\left(V_{\varphi}^{* k_{n}} V_{\varphi}^{k_{n}} g V_{\varphi}^{* k_{n}} V_{\varphi}^{k_{n}}\right)$ when $g \in C(X)$. There is therefore a continuous surjection

$$
\pi_{n}: Y_{n} \rightarrow X
$$

defined such that $g\left(\pi_{n}(y)\right)=y(g), g \in C(X)$. We claim that $\# \pi_{n}^{-1}(x)<\infty$ for all $x \in X$. To show this note that by definition D_{n} is generated as a C^{*}-algebra by functions of the form

$$
\begin{equation*}
x \mapsto P_{\Gamma_{\varphi}}\left(V_{\varphi}^{* k_{n}} f V_{\varphi}^{k_{n}}\right)(x)=\sum_{z, z^{\prime} \in \varphi^{-k_{n}}(x)} f\left(z, z^{\prime}\right) \prod_{j=0}^{k_{n}-1} m\left(\varphi^{j}(z)\right)^{-\frac{1}{2}} m\left(\varphi^{j}\left(z^{\prime}\right)\right)^{-\frac{1}{2}} \tag{5.3}
\end{equation*}
$$

for some $f \in C_{r}^{*}\left(R\left(\varphi^{l_{n}}\right)\right)$. In fact, since $\operatorname{alg}^{*} R\left(\varphi^{l_{n}}\right)$ is dense in $C_{r}^{*}\left(R\left(\varphi^{l_{n}}\right)\right)$, already functions of the form (5.3) with

$$
\begin{equation*}
f=f_{1} \star f_{2} \star \cdots \star f_{N} \tag{5.4}
\end{equation*}
$$

for some $f_{i} \in C\left(R\left(\varphi^{l_{n}}\right)\right), i=1,2, \ldots, N$, will generate D_{n}.
Fix $x \in X$ and consider an element $y \in \pi_{n}^{-1}(x)$. Every $x^{\prime} \in X$ defines a character $\iota_{x^{\prime}}$ of D_{n} by evaluation, viz. $\iota_{x^{\prime}}(h)=h\left(x^{\prime}\right)$, and $\left\{\iota_{x^{\prime}}: x^{\prime} \in X\right\}$ is dense in Y_{n} because the implication

$$
h \in D_{n}, h\left(x^{\prime}\right)=0 \forall x^{\prime} \in X \Rightarrow h=0
$$

holds. In particular, there is a sequence $\left\{x_{l}\right\}$ in X such that $\lim _{l \rightarrow \infty} \iota_{x_{l}}=y$ in Y_{n}. Recall now from Lemma 3.6 of Th1 that there is an open neighbourhood U of x and open sets $V_{j}, j=1,2, \ldots, d$, where $d=\# \varphi^{-k_{n}}(x)$, in X such that

1) $\varphi^{-k_{n}}(\bar{U}) \subseteq V_{1} \cup V_{2} \cup \cdots \cup V_{d}$,
2) $\overline{V_{i}} \cap \overline{V_{j}}=\emptyset, i \neq j$, and
3) $\varphi^{k_{n}}$ is injective on $\overline{V_{j}}$ for each j.

Since $\lim _{l \rightarrow \infty} x_{l}=x$ in X we can assume that $x_{l} \in U$ for all l. For each l, set

$$
F_{l}=\left\{j: \varphi^{-k_{n}}\left(x_{l}\right) \cap V_{j} \neq \emptyset\right\} \subseteq\{1,2, \ldots, d\} .
$$

Note that there is a subset $F \subseteq\{1,2, \ldots, d\}$ such that $F_{l}=F$ for infinitely many l. Passing to a subsequence we can therefore assume that $F_{l}=F$ for all l. For each $k \in F$ we define a continuous map $\lambda_{k}: \varphi^{k_{n}}\left(\overline{V_{k}}\right) \rightarrow \overline{V_{k}}$ such that $\varphi^{k_{n}} \circ \lambda_{k}(z)=z$. Set $T=\max _{z \in X} \# \varphi^{-1}(z)$. For each $j \in\{1,2, \ldots, T\}$, set

$$
A_{j}=\left\{z \in X: \# \varphi^{-1}(\varphi(z))=j\right\}=m^{-1}(j) .
$$

For each l and each $k \in F$ there is a unique tuple $\left(j_{0}(k), j_{1}(k), \ldots, j_{k_{n}-1}(k)\right) \in$ $\{1,2, \ldots, T\}^{k_{n}}$ such that

$$
\varphi^{-k_{n}}\left(x_{l}\right) \cap V_{k} \cap A_{j_{0}(k)} \cap \varphi^{-1}\left(A_{j_{1}(k)}\right) \cap \varphi^{-2}\left(A_{j_{2}(k)}\right) \cap \cdots \cap \varphi^{-k_{n}+1}\left(A_{j_{k_{n}-1}(k)}\right) \neq \emptyset
$$

Since there are only finitely many choices we can arrange that the same tuples, $\left(j_{0}(k), j_{1}(k), \ldots, j_{k_{n}-1}(k)\right), k \in F$, work for all l. Then

$$
\begin{equation*}
\iota_{x_{l}}\left(P_{\Gamma_{\varphi}}\left(V_{\varphi}^{* k_{n}} f V_{\varphi}^{k_{n}}\right)\right)=\sum_{k, k^{\prime} \in F} f\left(\lambda_{k}\left(x_{l}\right), \lambda_{k^{\prime}}\left(x_{l}\right)\right) \prod_{i=0}^{k_{n}-1} j_{i}(k)^{-\frac{1}{2}} j_{i}\left(k^{\prime}\right)^{-\frac{1}{2}} \tag{5.5}
\end{equation*}
$$

for all $f \in C_{r}^{*}\left(R\left(\varphi^{l_{n}}\right)\right)$ and all l.
There is an open neighbourhood U^{\prime} of $\varphi^{l_{n}-k_{n}}(x)$ and open sets $V_{j}^{\prime}, j=1,2, \ldots, d^{\prime}$, where $d^{\prime}=\# \varphi^{-l_{n}}\left(\varphi^{l_{n}-k_{n}}(x)\right)$, in X such that

1') $\varphi^{-l_{n}}\left(\overline{U^{\prime}}\right) \subseteq V_{1}^{\prime} \cup V_{2}^{\prime} \cup \cdots \cup V_{d^{\prime}}^{\prime}$,
2') $\overline{V_{i}^{\prime}} \cap \overline{V_{j}^{\prime}}=\emptyset, i \neq j$, and
3) $\varphi^{l_{n}}$ is injective on $\overline{V_{j}^{\prime}}$ for each j.

Since $\lim _{l \rightarrow \infty} \varphi^{l_{n}-k_{n}}\left(x_{l}\right)=\varphi^{l_{n}-k_{n}}(x)$ we can assume that $\varphi^{l_{n}-k_{n}}\left(x_{l}\right) \in U^{\prime}$ for all l. By an argument identical to the way we found F above we can now find a subset $F^{\prime} \subseteq\left\{1,2, \ldots, d^{\prime}\right\}$ such that

$$
F^{\prime}=\left\{j: \varphi^{-l_{n}}\left(\varphi^{l_{n}-k_{n}}\left(x_{l}\right)\right) \cap V_{j}^{\prime} \neq \emptyset\right\}
$$

for all l. For $i \in F^{\prime}$ we define a continuous map $\mu_{i}^{\prime}: \varphi^{l_{n}}\left(\overline{V_{i}^{\prime}}\right) \rightarrow \overline{V_{i}^{\prime}}$ such that $\mu_{i}^{\prime} \circ \varphi^{l_{n}}(z)=z$ when $z \in \overline{V_{i}^{\prime}}$. Set

$$
\mu_{i}=\mu_{i}^{\prime} \circ \varphi^{l_{n}-k_{n}}
$$

on $\varphi^{-\left(l_{n}-k_{n}\right)}\left(\varphi^{l_{n}}\left(\overline{V_{i}^{\prime}}\right)\right)$. Assuming that f has the form (5.4) we find now that
$f\left(\lambda_{k}\left(x_{l}\right), \lambda_{k^{\prime}}\left(x_{l}\right)\right)=$

$$
\begin{equation*}
\sum_{i_{1}, i_{2}, \ldots, i_{N-1} \in F^{\prime}} f_{1}\left(\lambda_{k}\left(x_{l}\right), \mu_{i_{1}}\left(x_{l}\right)\right) f_{2}\left(\mu_{i_{1}}\left(x_{l}\right), \mu_{i_{2}}\left(x_{l}\right)\right) \ldots \ldots f_{N}\left(\mu_{i_{N-1}}\left(x_{l}\right), \lambda_{k^{\prime}}\left(x_{l}\right)\right) \tag{5.6}
\end{equation*}
$$

for all $k, k^{\prime} \in F$. By combining (5.6) with (5.5) we find by letting l tend to infinity that

$$
y\left(P_{\Gamma_{\varphi}}\left(V_{\varphi}^{* k_{n}} f V_{\varphi}^{k_{n}}\right)\right)=\sum_{k, k^{\prime} \in F} H_{k, k^{\prime}}(x) \prod_{i=0}^{k_{n}-1} j_{i}(k)^{-\frac{1}{2}} j_{i}\left(k^{\prime}\right)^{-\frac{1}{2}},
$$

where
$H_{k, k^{\prime}}(x)=\sum_{i_{1}, i_{2}, \ldots, i_{N-1} \in F^{\prime}} f_{1}\left(\lambda_{k}(x), \mu_{i_{1}}(x)\right) f_{2}\left(\mu_{i_{1}}(x), \mu_{i_{2}}(x)\right) \ldots \ldots f_{N}\left(\mu_{i_{N-1}}(x), \lambda_{k^{\prime}}(x)\right)$.
Since this expression only depends on F, F^{\prime} and the tuples

$$
\left(j_{0}(k), j_{1}(k), \ldots, j_{k_{n}-1}(k)\right), k \in F
$$

it follows that the number of possible values of an element from $\pi_{n}^{-1}(x)$ on the generators of the form (5.3) does not exceed $2^{d} 2^{d^{\prime}} T^{k_{n}}$, proving that $\# \pi_{n}^{-1}(x)<\infty$ as claimed.

We can then apply Theorem 4.3.6 on page 281 of En to conclude that $\operatorname{Dim} Y_{n} \leq$ $\operatorname{Dim} X$. Note that $D_{n} \subseteq D_{n+1}$ and $D_{\Gamma_{\varphi}}=\overline{\bigcup_{n} D_{n}}$ by (5.1) and (5.2). Hence Y is the projective limit of the sequence $Y_{1} \leftarrow Y_{2} \leftarrow Y_{3} \leftarrow \ldots$ Since $\operatorname{Dim} Y_{n} \leq \operatorname{Dim} X$ for all n we conclude now from Theorem 1.13.4 in En that $\operatorname{Dim} Y \leq \operatorname{Dim} X$.

6. The simple quotients

Following [DS we say that ϕ is strongly transitive when for any non-empty open subset $U \subseteq Y$ there is an $n \in \mathbb{N}$ such that $Y=\bigcup_{j=0}^{n} \phi^{j}(U)$, cf. [DS]. By Proposition 4.3 of DS, $C_{r}^{*}\left(\Gamma_{\phi}\right)$ is simple if and only if Y is infinite and ϕ is strongly transitive.

Lemma 6.1. Assume that ϕ is strongly transitive but not injective. It follows that

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \log \left(\inf _{x \in Y} \# \phi^{-k}(x)\right)>0
$$

Proof. Note that $U=\left\{x \in Y: \# \phi^{-1}(x) \geq 2\right\}$ is open and not empty since ϕ is a local homeomorphism and not injective. It follows that there is an $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\bigcup_{j=0}^{m-1} \phi^{j}(U)=Y \tag{6.1}
\end{equation*}
$$

because ϕ is strongly transitive. We claim that

$$
\begin{equation*}
\inf _{z \in Y} \# \phi^{-k}(z) \geq 2^{\left[\frac{k}{m}\right]} \tag{6.2}
\end{equation*}
$$

for all $k \in \mathbb{N}$ where $\left[\frac{k}{m}\right]$ denotes the integer part of $\frac{k}{m}$. This follows by induction: Assume that it true for all $k^{\prime}<k$. Consider any $z \in Y$. If $k<m$ there is nothing to prove so assume that $k \geq m$. By (6.1) we can then write $z=\phi^{j}\left(z_{1}\right)=\phi^{j}\left(z_{2}\right)$ for some $j \in\{1,2, \ldots, m\}$ and some $z_{1} \neq z_{2}$. It follows that

$$
\# \phi^{-k}(z) \geq \# \phi^{-(k-j)}\left(z_{1}\right)+\# \phi^{-(k-j)}\left(z_{2}\right) \geq 2 \cdot 2^{\left[\frac{k-j}{m}\right]} \geq 2^{\left[\frac{k}{m}\right]}
$$

It follows from (6.2) that $\lim _{k \rightarrow \infty} \frac{1}{k} \log \left(\inf _{x \in Y} \# \phi^{-k}(x)\right) \geq \frac{1}{m} \log 2$.
Let M_{l} denote the C^{*}-algebra of complex $l \times l$-matrices. In the following a homogeneous C^{*}-algebra will be a C^{*}-algebra isomorphic to a C^{*}-algebra of the form $e C\left(X, M_{l}\right) e$ where X is a compact metric space and e is a projection in $C\left(X, M_{l}\right)$ such that $e(x) \neq 0$ for all $x \in X$.
Definition 6.2. A unital C^{*}-algebra A is an $A H$-algebra when there is an increasing sequence $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$ of unital C^{*}-subalgebras of A such that $A=\overline{\bigcup_{n} A_{n}}$ and each A_{n} is a homogeneous C^{*}-algebra. We say that A has no dimension growth when the sequence $\left\{A_{n}\right\}$ can be chosen such that

$$
A_{n} \simeq e_{n} C\left(X_{n}, M_{l_{n}}\right) e_{n}
$$

with $\sup _{n} \operatorname{Dim} X_{n}<\infty$ and $\lim _{n \rightarrow \infty} \min _{x \in X_{n}} \operatorname{Rank} e_{n}(x)=\infty$.
Note that the no dimension growth condition is stronger than the slow dimension growth condition used in [Th3].
Proposition 6.3. Assume that $\operatorname{Dim} Y<\infty$ and that ϕ is strongly transitive and not injective. It follows $C_{r}^{*}\left(R_{\phi}\right)$ is an AH-algebra with no dimension growth.
Proof. For each n we have that

$$
\begin{equation*}
C_{r}^{*}\left(R\left(\phi^{n}\right)\right) \simeq e_{n} C\left(Y, M_{m_{n}}\right) e_{n} \tag{6.3}
\end{equation*}
$$

for some $m_{n} \in \mathbb{N}$ and some projection $e_{n} \in C\left(Y, M_{m_{n}}\right)$. Although this seems to be well known it is hard to find a proof anywhere so we point out that it can proved by specializing the proof of Theorem 3.2 in [Th1 to the case of a surjective local homeomorphism ϕ. In fact, it suffices to observe that the C^{*}-algebra A_{ϕ} which features in Theorem 3.2 of Th1] is $C(Y)$ in this case. Since $\min _{y \in Y} \operatorname{Rank} e_{n}(y)$ is the minimal dimension of an irreducible representation of $C_{r}^{*}\left(R\left(\phi^{n}\right)\right)$ it therefore now suffices to show that the minimal dimension of the irreducible representations of $C_{r}^{*}\left(R\left(\phi^{n}\right)\right)$ goes to infinity when n does. It follows from Lemma 3.4 of [Th1] that the minimal dimension of the irreducible representations of $C_{r}^{*}\left(R\left(\phi^{n}\right)\right)$ is the same as the number $\min _{y \in Y} \# \phi^{-n}(y)$. It follows from Lemma 6.1 that

$$
\lim _{n \rightarrow \infty} \min _{y \in Y} \# \phi^{-n}(y)=\infty
$$

exponentially fast in fact.

Lemma 6.4. Assume that $C_{r}^{*}\left(\Gamma_{\phi}\right)$ is simple. Then either ϕ is a homeomorphism or else

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x \in Y} m(x)^{-1} m(\phi(x))^{-1} m\left(\phi^{2}(x)\right)^{-1} \ldots m\left(\phi^{n-1}(x)\right)^{-1}=0 \tag{6.4}
\end{equation*}
$$

where $m: Y \rightarrow \mathbb{N}$ is the function (4.1).
Proof. Assume (6.4) does not hold. Since ϕ is a local homeomorphism, the function m is continuous so it follows from Dini's theorem that there is at least one x for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m(x)^{-1} m(\phi(x))^{-1} m\left(\phi^{2}(x)\right)^{-1} \ldots m\left(\phi^{n-1}(x)\right)^{-1} \tag{6.5}
\end{equation*}
$$

is not zero. For this x there is a K such that $\# \phi^{-1}\left(\phi^{k}(x)\right)=1$ when $k \geq K$, whence the set

$$
F=\left\{y \in Y: \# \phi^{-1}\left(\phi^{k}(y)\right)=1 \forall k \geq 0\right\}
$$

is not empty. Note that F is closed and that $\phi^{-k}\left(\phi^{k}(F)\right)=F$ for all k, i.e. F is ϕ-saturated. It follows from Corollary 3.5 that F determines a proper ideal I_{F} in $C_{r}^{*}\left(R_{\phi}\right)$. Since $\phi(F) \subseteq F$, it follows that $\widehat{\phi}\left(I_{F}\right) \subseteq I_{F}$. Then Theorem 4.10 of Th1] and the simplicity of $C_{r}^{*}\left(\Gamma_{\phi}\right)$ imply that either ϕ is injective or $I_{F}=\{0\}$. But $I_{F}=\{0\}$ means that $F=Y$ and thus that ϕ is injective. Hence ϕ is a homeormophism in both cases.

Theorem 6.5. Let $\varphi: X \rightarrow X$ be a locally injective surjection on a compact metric space X of finite covering dimension, and let (Y, ϕ) be its canonical locally homeomorphic extension. Let A be a simple quotient of $C_{r}^{*}\left(\Gamma_{\varphi}\right)$. It follows that A is *-isomorphic to either

1) a full matrix algebra $M_{n}(\mathbb{C})$ for some $n \in \mathbb{N}$, or
2) the crossed product $C(F) \times_{\phi_{\mid}} \mathbb{Z}$ corresponding to an infinite minimal closed totally ϕ-invariant subset $F \subseteq Y$ on which ϕ is injective, or
3) a purely infinite, simple, nuclear, separable C^{*}-algebra; more specifically to the crossed product $C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right) \times_{\left.\widehat{\phi \mid}\right|_{F}} \mathbb{N}$ where F is an infinite minimal closed totally ϕ-invariant subset of Y and $C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right)$ is an AH-algebra with no dimension growth.

Proof. If A is not a matrix algebra it has the form $C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right)$ for some infinite minimal closed totally ϕ-invariant subset $F \subseteq Y$ by (2.2) and Corollary 4.21. If ϕ is injective on F we are in case 2). Assume not. Since $\operatorname{Dim} F \leq \operatorname{Dim} Y \leq \operatorname{Dim} X$ by Proposition 5.1 it follows from Proposition 6.3 that $C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right)$ is an AH-algebra with no dimension growth. By [An] (or Theorem 4.6 of [Th1]) we have an isomorphism

$$
C_{r}^{*}\left(\Gamma_{\left.\phi\right|_{F}}\right) \simeq C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right) \times_{\widehat{\left.\phi\right|_{F}}} \mathbb{N},
$$

where $\widehat{\left.\phi\right|_{F}}$ is the endomorphism of $C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right)$ given by conjugation with $V_{\left.\phi\right|_{F}}$. We claim that the pure infiniteness of $C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right) \times \widehat{\left.\right|_{F}} \mathbb{N}$ follows from Theorem 1.1 of [Th3]. For this it remains only to check that $\widehat{\left.\phi\right|_{F}}=\operatorname{Ad} V_{\left.\phi\right|_{F}}$ satisfies the two conditions on β in Theorem 1.1 of [Th3], i.e. that $\widehat{\left.\phi\right|_{F}}(1)=V_{\left.\phi\right|_{F}} V_{\left.\phi\right|_{F}}^{*}$ is a full projection and that there is no $\widehat{\left.\phi\right|_{F}}$-invariant trace state on $C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right)$. The first thing was observed already in Lemma 4.7 of [Th1] so we focus on the second. Observe that it follows
from Lemma 2.24 of [Th1] that $\omega=\omega \circ P_{R_{\phi}}$ for every trace state ω of $C_{r}^{*}\left(R_{\phi}\right)$. By using this, a direct calculation as on page 787 of [Th1] shows that

$$
\omega\left(V_{\left.\phi\right|_{F}}^{n} V_{\left.\phi\right|_{F}}^{*}\right) \leq \sup _{y \in Y}\left[m(y) m(\phi(y)) \ldots m\left(\phi^{n-1}(y)\right)\right]^{-1}
$$

Then Lemma 6.4 implies that $\lim _{n \rightarrow \infty} \omega\left(V_{\phi \mid F}^{n} V_{\left.\phi\right|_{F}}^{*}{ }^{n}\right)=0$. In particlar, ω is not $\widehat{\left.\phi\right|_{F} \text {-invariant. }}$
Corollary 6.6. Assume that $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ is simple and that $\operatorname{Dim} X<\infty$. It follows that $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ is purely infinite if and only if φ is not injective.
Proof. Assume first that φ is injective. Then $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ is the crossed product $C(X) \times{ }_{\varphi}$ \mathbb{Z} which is stably finite and thus not purely infinite.

Conversely, assume that φ is not injective. Then a direct calculation, as in the proof of Theorem 4.8 in [Th1], shows that V_{φ} is a non-unitary isometry in $C_{r}^{*}\left(\Gamma_{\varphi}\right)$. Since the C^{*}-algebras which feature in case 1) and case 2) of Theorem 6.5 are stably finite, the presence of a non-unitary isometry implies that $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ is purely infinite.

Corollary 6.7. Let S be a one-sided subshift. If the C^{*}-algebra \mathcal{O}_{S} associated with S in Ca is simple, then it is also purely infinite.

Proof. It follows from Theorem 4.18 in [Th1] that \mathcal{O}_{S} is isomorphic to $C_{r}^{*}\left(\Gamma_{\sigma}\right)$ where σ is the shift map on S. If \mathcal{O}_{S} is simple, S must be infinite and it then follows from Proposition 2.4.1 in [BS] (cf. Theorem 3.9 in (BL]) that σ is not injective. The conclusion follows then from Corollary 6.6.

In Corollary 6.7 we assume that the shift map σ on S is surjective. It is not clear if the result holds without this assumption.

For completeness we point out that when X is totally disconnected (i.e. zero dimensional) the algebra $C_{r}^{*}\left(R_{\left.\phi\right|_{F}}\right)$ which features in case 3) of Theorem 6.5 is approximately divisible, cf. BKR. We don't know if this is the case in general, but a weak form of divisibility is always present in $C_{r}^{*}\left(R_{\phi}\right)$ when $C_{r}^{*}\left(\Gamma_{\varphi}\right)$ is simple and ϕ not injective, cf. Th3].
Proposition 6.8. Assume that Y is totally disconnected and ϕ strongly transitive and not injective. It follows that $C_{r}^{*}\left(R_{\phi}\right)$ is an approximately divisible AF-algebra.

Proof. It follows from Proposition 6.8 of [DS] that $C_{r}^{*}\left(R_{\phi}\right)$ is an AF-algebra. As pointed out in Proposition 4.1 of BKR a unital AF-algebra fails to be approximately divisible only if it has a quotient with a non-zero abelian projection. If $C_{r}^{*}\left(R_{\phi}\right)$ has such a quotient there is also a primitive quotient with an abelian projection; i.e. by Proposition 3.6 there is an $x \in Y$ such that $C_{r}^{*}\left(R_{\phi \mid \overline{H(x)}}\right)$ has a non-zero abelian projection p. It follows from (3.1) that every projection of $C_{r}^{*}\left(R_{\phi \left\lvert\, \frac{}{H(x)}\right.}\right)$ is unitarily equivalent to a projection in $C_{r}^{*}\left(R\left(\left.\phi^{n}\right|_{\overline{H(x)}}\right)\right)$ for some n. Since $\overline{H(x)}$ is totally disconnected we can use Proposition 6.1 of [DS] to conclude that every projection in $C_{r}^{*}\left(R\left(\left.\phi^{n}\right|_{\overline{H(x)}}\right)\right)$ is unitarily equivalent to a projection in $D_{R_{\phi \mid \overline{H(x)}}}=C(\overline{H(x)})$. We may therefore assume that $p \in C(\overline{H(x)})$ so that $p=1_{A}$ for some clopen
$A \subseteq \overline{H(x)}$. Then $H(x) \cap A \neq \emptyset$ so by exchanging x with some element in $H(x)$ we may assume that $x \in A$. If there is a $y \neq x$ in A such that $\phi^{k}(x)=\phi^{k}(y)$ for some $k \in \mathbb{N}$, consider functions $g \in C(\overline{H(x)})$ and $f \in C_{c}\left(R_{\phi}\right)$ such that $g(x)=1, g(y)=0, \operatorname{supp} g \subseteq A, \operatorname{supp} f \subseteq R_{\phi} \cap(A \times A)$ and $f(x, y) \neq 0$. Then $f, g \in$ $1_{A} C_{r}^{*}\left(R_{\phi \left\lvert\, \frac{}{H(x)}\right.}\right) 1_{A}$ and $g f \neq 0$ while $f g=0$, contradicting that $1_{A} C_{r}^{*}\left(R_{\phi \left\lvert\, \frac{H(x)}{}\right.}\right) 1_{A}$ is abelian. Thus no such y can exist which implies that $\pi_{x}\left(1_{A}\right)=1_{\{x\}}$, where π_{x} is the representation (2.1), restricted to the subspace of H_{x} consisting of the functions supported in $\left\{\left(x^{\prime}, k, x\right) \in \Gamma_{\phi}: k=0\right\}$. It follows that $\pi_{x}\left(1_{A} C_{r}^{*}\left(R_{\phi \mid \overline{H(x)}}\right) 1_{A}\right) \simeq \mathbb{C}$. Consider a non-zero ideal $J \subseteq \pi_{x}\left(C_{r}^{*}\left(R_{\phi \mid \overline{H(x)}}\right)\right)$. Then $\pi_{x}^{-1}(J)$ is a non-zero ideal in $C_{r}^{*}\left(R_{\phi \left\lvert\, \frac{1}{H(x)}\right.}\right)$ and it follows from Corollary 3.5 that there is an open non-empty subset U of $\overline{H(x)}$ such that $\phi^{-k}\left(\phi^{k}(U)\right)=U$ for all k and $C_{0}(U)=\pi_{x}^{-1}(J) \cap$ $C(\overline{H(x)})$. Since $H(x) \cap U \neq \emptyset$, it follows that $x \in U$ so there is a function $g \in \pi_{x}^{-1}(J) \cap C(\overline{H(x)})$ such that $g(x)=1$. It follows that $\pi_{x}\left(g 1_{A}\right)=1_{\{x\}}=$ $\pi_{x}\left(1_{A}\right) \in J$. This shows that $\pi_{x}\left(1_{A}\right)$ is a full projection in $\pi_{x}\left(C_{r}^{*}\left(R_{\phi \mid \overline{H(x)}}\right)\right)$ and Brown's theorem, $\left[\mathrm{Br}\right.$, shows now that $\pi_{x}\left(C_{r}^{*}\left(R_{\phi \left\lvert\, \frac{}{H(x)}\right.}\right)\right)$ is stably isomorphic to $\pi_{x}\left(1_{A} C_{r}^{*}\left(R_{\phi \left\lvert\, \frac{}{H(x)}\right.}\right) 1_{A}\right) \simeq \mathbb{C}$. Since $\pi_{x}\left(C_{r}^{*}\left(R_{\phi \left\lvert\, \frac{\mid(x)}{}\right.}\right)\right)$ is unital this means that it is a full matrix algebra. In conclusion we deduce that if $C_{r}^{*}\left(R_{\phi}\right)$ is not approximately divisible it has a full matrix algebra as a quotient. By Corollary 3.5 this implies that there is a finite set $F^{\prime} \subseteq Y$ such that $F^{\prime}=\phi^{-k}\left(\phi^{k}\left(F^{\prime}\right)\right)$ for all $k \in \mathbb{N}$. Since

$$
\phi^{-k}\left(\phi^{k}(x)\right) \subseteq \phi^{-k-1}\left(\phi^{k+1}(x)\right) \subseteq F^{\prime}
$$

for all k when $x \in F^{\prime}$, there is for each $x \in F$ a natural number K such that $\phi^{-k}\left(\phi^{k}(x)\right)=\phi^{-K}\left(\phi^{K}(x)\right)$ when $k \geq K$. Then $\# \phi^{-1}\left(\phi^{k}(x)\right)=1$ for $k \geq K+1$, so that $m\left(\phi^{k}(x)\right)=1$ for all $k \geq K$, which by Lemma 6.1 contradicts that ϕ is not injective. This contradiction finally shows that $C_{r}^{*}\left(R_{\phi}\right)$ is approximately divisible, as desired.

References

[An] C. Anantharaman-Delaroche, Purely infinite C^{*}-algebras arising from dynamical systems, Bull. Soc. Math. France 125 (1997), 199-225.
[BKR] B. Blackadar, A. Kumjian and M. Rørdam, Approximately central matrix units and the structure of noncommative tori, K-theory 6 (1992), 267-284.
[BoKR] S. Boyd, N. Keswari and I. Raeburn, Faithful Representations of Crossed Products by Endomorphisms, Proc. Amer. Math. Soc. 118 (1993), 427-436.
[BL] M. Boyle and D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), 55-102.
[BS] M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002.
[Br] L. Brown, Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pacific J. Math. 71 (1977), 335-348.
[Ca] T. M. Carlsen, Cuntz-Pimsner C^{*}-algebras associated with subshifts, Internat. J. Math. 19 (2008), 47-70.
[De1] V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), 1779-1786.
[De2] _, Generalized solenoids and C^{*}-algebras, Pacific J. Math. 190 (1999), 247-260.
[DS] V. Deaconu and F. Schultz, C^{*}-algebras associated with interval maps, Trans. Amer. Math. Soc. 359 (2007), 1889-1924.
[En] R. Engelking, Dimension Theory, North-Holland, Amsterdam, Oxford, New York (1978)
[Ka] T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism algebras. III Ideal structures, Ergodic Th. Dyn. Syst. 26 (2006), 1805-1854.
[Ma] K. Matsumoto, C^{*}-algebras associated with presentations of subshifts, Doc. Math. 7 (2002), 1-30.
[Pe] G. K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, London, New York, San Francisco, 1979.
[RW] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C ${ }^{*}$-algebras, American Mathematical Society, 1998.
[Re] J. Renault, A Groupoid Approach to C^{*}-algebras, LNM 793, Springer Verlag, Berlin, Heidelberg, New York, 1980.
[St] P.J. Stacey, Crossed products of C^{*}-algebras by endomorphisms, J. Austral. Math. Soc. 54 (1993), 204-212.
[Th1] K. Thomsen, Semi-étale groupoids and applications, Annales de l'Institute Fourier 60 (2010), 759-800.
[Th2] , On the C^{*}-algebra of a locally injective surjection and its KMS states, Comm. Math. Phys., to appear.
[Th3] , Pure infiniteness of the crossed product of an AH-algebra by an endomorphism, arXiv:1010.0960
E-mail address: tokemeie@math.ntnu.no, matkt@imf.au.dk
Department of Mathematics, Norwegian University of Science and Technology, NO-7034 Trondheim, Norway

Institut for matematiske fag, Ny Munkegade, DK-8000 Aarhus C, Denmark

[^0]: Version: November 3, 2010.

