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ABSTRACT

The upper atmospheres of close-in gas giant exoplanets (“hot Jupiters”) are subjected to intense
heating and tidal forces from their parent stars. The atomic (H) and ionized (H+) hydrogen layers
are sufficiently rarefied that magnetic pressure may dominate gas pressure for expected planetary
magnetic field strength. We examine the structure of the magnetosphere using a three-dimensional
(3D) isothermal magnetohydrodynamic model that includes: a static “dead zone” near the magnetic
equator containing gas confined by the magnetic field; a “wind zone” outside the magnetic equator
in which thermal pressure gradients and the magneto-centrifugal-tidal effect give rise to a transonic
outflow; and a region near the poles where sufficiently strong tidal forces may suppress transonic
outflow. Using dipole field geometry, we estimate the size of the dead zone to be several to tens of
planetary radii for a range of parameters. Tides decrease the size of the dead zone, while allowing the
gas density to increase outward where the effective gravity is outward. In the wind zone, the rapid
decrease of density beyond the sonic point leads to smaller densities relative to the neighboring dead
zone, which is in hydrostatic equilibrium. To understand the appropriate base conditions for the 3D
isothermal model, we compute a simple one-dimensional (1D) thermal model in which photoelectric
heating from the stellar Lyman continuum is balanced by collisionally-excited Lyman α cooling. This
1D model exhibits a H layer with temperature T ≃ 5, 000− 10, 000K down to a pressure P ∼ 10− 100
nbar. Using the 3D isothermal model, we compute maps of the H column density as well as the
Lyman α transmission spectra for parameters appropriate to HD 209458b. Line-integrated transit
depths ≃ 5 − 10% can be achieved for the above base conditions, in agreement with the results of
Koskinen et al. A deep, warm H layer results in a higher mass-loss rate relative to that for a more
shallow layer, roughly in proportion to the base pressure. Strong magnetic fields have the effect of
increasing the transit signal while decreasing the mass loss, due to higher covering fraction and density
of the dead zone. Absorption due to bulk fluid velocity is negligible at linewidths & 100 km s−1 from
line center. In our model, most of the transit signal arises from magnetically confined gas, some of
which may be outside the L1 equipotential. Hence the presence of gas outside the L1 equipotential does
not directly imply mass loss. We verify a posteriori that particle mean free paths and ion-neutral drift
are small in the region of interest in the atmosphere, and that flux freezing is a good approximation.
We suggest that resonant scattering of Lyman α by the magnetosphere may be observable due to
the Doppler shift from the planet’s orbital motion, and may provide a complementary probe of the
magnetosphere. Lastly, we discuss the domain of applicability for the magnetic wind model described
in this paper as well as the Roche-lobe overflow model.

1. INTRODUCTION

Hot Jupiters, the gas giant exoplanets found at small
orbital radii, D . 0.1 AU, present an opportunity to
study planets orbiting in an extreme environment very
close to their parent stars. They experience insolation
levels ∼ 104 times greater than solar system gas giants.
As a consequence of the high temperatures generated by
EUV heating, the gas pressure scale height is compara-
ble to the planetary radius, creating an extended upper
atmosphere of gas potentially observable through trans-
mission or reflection spectroscopy. Heating may also cre-
ate an outward pressure force, complemented by outward
centrifugal and tidal forces, which may drive an outflow
leading to mass and angular momentum loss from the
planet.
While most observational effort for the transit-

ing planets has centered on the lower atmosphere,
near the photospheres for optical and infrared contin-
uum radiation at mbar-bar pressures, there has also
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been progress in probing higher levels in the atmo-
sphere. As these observations probe a larger area
surrounding the planet, the transit depth is corre-
spondingly larger than that from the photospheric ra-
dius, Rph. Bound-bound atomic lines in the trans-
mission spectrum from NaI (Charbonneau et al. 2002),
HI (Vidal-Madjar et al. 2003, 2004; Ehrenreich et al.
2008), OI and CII (Vidal-Madjar et al. 2004), and SiIII
(Linsky et al. 2010) have been observed for HD 209458b;
HI in HD 189733b (Lecavelier Des Etangs et al. 2010);
and MgII (Fossati et al. 2010), and possibly other species
at lower signal to noise, in WASP-12b. Bound-free tran-
sitions from a population of hydrogen in the n = 2
state have been detected in the transmission spectrum of
HD 209458b (Ballester et al. 2007), although no bound-
bound transitions from n = 2 were found (Winn et al.
2004).
The large transit depths observed for the Lyman α

line in HD 209458b imply neutral H atoms occupy an
occulting area equivalent to an optically thick disk ex-
tending out to several planetary radii, comparable to
the Roche-lobe radius for this close-in planet. This
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led Vidal-Madjar et al. (2003) to suggest that the H
atoms are escaping from the planet, as they would no
longer be bound to the planet outside the Roche-lobe
radius. The presence of heavy atoms (C, O, etc.),
whose scale height should be far smaller than that of
the H atoms, was suggested to be due to a combina-
tion of efficient turbulent mixing and drag forces from
the escaping gas, entraining the heavier elements in an
outflow (Vidal-Madjar et al. 2004; Garćıa Muñoz 2007).
Ben-Jaffel (2007) used archival HST data to rederive the
transit depth, and challenged the claim that atmospheric
escape was occurring, due to a derived transit depth
that would imply the H atoms are within the Roche
lobe radius. Two subsequent studies (Ben-Jaffel 2008;
Vidal-Madjar et al. 2008) elucidated the dependence of
transit depth on the analysis method and wavelength
range studied. The recent study by Linsky et al. (2010)
attempts to constrain the wind velocity in HD 209458b
using the line profiles for the CII and SiIII lines.
Most theoretical efforts to explain the aforementioned

observations invoke EUV heating to temperatures ∼
104 K, creating a thermally driven, possibly transonic
hydrodynamic outflow from the planet (Yelle 2004, 2006;
Tian et al. 2005; Garćıa Muñoz 2007; Murray-Clay et al.
2009; Stone & Proga 2009). While initiated by outward
gas pressure gradients, a thermally-driven wind can be
significantly accelerated by the tidal gravity2. An alter-
native model is to treat atmospheric escape as Roche-
lobe overflow (Gu et al. 2003; Li et al. 2010; Lai et al.
2010), assuming that the fluid can only reach the sound
speed in the vicinity of the L1 Lagrange point.
For gas giants, H is the most abundant element and

heating is dominated by photoionization of atomic H in
the thermosphere (Yelle 2004). Photoionization leads to
significantly ionized gas at high altitudes that is sub-
ject to magnetic forces. In light of the high ionization
fraction, the planetary magnetic field, due to dynamo
action in the planet’s core, may be dynamically impor-
tant and affect density and velocity profiles in the upper
atmosphere. This paper is a first attempt to include the
effects of the planet’s magnetic field combined with tidal
and centrifugal forces on upper atmosphere structure for
hot Jupiters.
We model the magnetized, hot, rotating portion of the

planet’s upper atmosphere in the context of magneto-
hydrodynamic (MHD) outflows, the theory of which was
originally developed for stars and accretion disks. Figure
1 shows a cartoon of the expected structure for the wind
from an isolated object with a surface dipole field: the
polar region supports an outflow while the equatorial re-
gion contains static, magnetically confined gas (see also
Yelle 2004). This configuration applies interior to the
magnetosphere-stellar wind interaction, for planets not
too near the parent star. Near the parent star, tidal
forces are an important consideration, and we will show
that tides may strongly affect the density profile and size
of the static region, and may even shut the wind off in
the polar region.
In the first half of the paper (§ 2 through § 7), we de-

velop a general theory of isothermal hot Jupiter magne-

2 In this paper we will use the phrase“tidal gravity” to include
the effect of both the stellar tide and the centrifugal force, assuming
synchronized rotation (see § 5.)

Fig. 1.— Schematic model for magnetic field structure (thick
lines and arrows) and fluid velocity (thin arrows). In the polar
“wind zone”, magnetic field lines are open allowing outflow. In
the equatorial “dead zone” close to the planet, the gas has zero
velocity and no outflow occurs. The dead zone ends in a cusp-type
neutral point, denoted by the dashed circle at several planetary
radii, outside of which field lines are open at all angles. This figure
is characteristic of the weak tide limit, while in the strong tide limit
the polar wind would be partially suppressed (see § 7).

tospheres. Section 2 discusses the problem setup and ap-
proximations used to obtain a solution. Planetary mag-
netic field strengths predicted by dynamo models are dis-
cussed in section 3. Section 4 discusses qualitative fea-
tures of atmospheric structure, and motivation for the
existence of a dead zone. Section 5 reviews the centrifu-
gal and tidal forces, and discusses the projection of these
forces along magnetic field lines. The structure of the
dead zone is discussed in section 6, followed by the wind
zone in section 7.
The second half of the paper (§ 8 through § 12) uses

the Lyman α transmission spectra to constrain parame-
ters of the global 3D models. In section 8, we construct a
1D model in hydrostatic, thermal, and ionization balance
to compute appropriate values for the base pressure and
temperature for the 3D global models that we present in
section 9. Mass loss rates are computed and spin-down
torques are estimated, in section 10. Neutral H column
density maps for the global models are used to illustrate
the dependence on key parameters in section 11. Lyman
α transmission spectra in comparison with observations
and scattering of stellar Lyman α by the planet are pre-
sented in section 12. Finally, we compare and contrast
our magnetic wind model with the standard Roche-lobe
overflow model in section 13. Summary and discussion
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are given in section 14. The MHD wind equations and
ion-neutral coupling are discussed in Appendices A and
B, respectively.

2. PROBLEM SETUP AND APPROXIMATIONS

In this section we outline the problem to be solved, and
the simplifying assumptions used to find solutions. Ex-
cept for section 8, this paper discusses a 3D isothermal
model of the upper atmosphere. The isothermal model
is parametrized by an effective sound speed, as well as
the pressure at a fiducial radius. Appropriate values for
these parameters are discussed in a simple 1D spherical
model in section 8, including photoionization and ther-
mal equilibrium.
In the 3D model, we compute approximate solutions

of the one-fluid MHD equations with an inner boundary
at the base of the warm H layer, and an outer boundary
which extends to at least ten planetary radii (or one stel-
lar radius). We treat the gas as having constant isother-

mal sound speed a =
√

kbT/µmp, where T is gas temper-
ature of the fluid, µ is the mean molecular weight, kb is
Boltzmann’s constant, andmp is the proton mass. At the
inner boundary, the density and pressure are assumed to
follow equipotentials. We assume the planet’s rotation
rate is synchronized with its orbital motion around the
parent star, giving orbital and spin angular velocity Ω.
We work in a coordinate system centered on the planet
and rotating at rate Ω. The stellar gravity is included
in the tidal approximation, and an effective potential U
is composed of the planetary gravity, stellar gravity, and
the centrifugal force. We specify a specific magnetic field
geometry which is dipole near the planet and matches
onto a radial field at the dead zone radius. We com-
pute the ionization fraction with a simple, optically thin
model applied to the derived gas densities of the MHD
model. To summarize, we have made several simplifying
assumptions in order to focus on the new physics aris-
ing from MHD effects. We now discuss these simplifying
approximations in more detail.
The simultaneous inclusion of photoionization heat-

ing, chemical reactions and collisional coupling between
different species, stellar tidal forces, and the simultane-
ous interaction with the stellar wind in the presence of
magnetic field is a formidable problem. Our approach
is to first ignore the interaction with the stellar wind,
but to include the effect of the stellar tidal forces felt by
the planet’s atmosphere. The interaction with the stel-
lar wind may alter the results of this paper in several
ways (see e.g., Murray-Clay et al. 2009; Stone & Proga
2009). The stellar wind will limit the size of the mag-
netosphere, as determined by stress balance at the mag-
netopause (e.g., Preusse et al. 2007). Reconnection be-
tween field lines in the stellar wind and magnetosphere
may lead to magnetospheric convection, limiting the high
density region to be inside a plasmapause (Parks 2004),
as for Earth. Finally, reconnection may also generate
non-thermal plasma populations. We do not consider the
interaction with the stellar wind in order to construct the
simplest possible model.
Another key approximation is that we treat photoion-

ization heating as being spherically symmetric, creating
a hot layer uniformly over the planet. In reality, the
night side temperature and ionization state may depend
on day-night heat redistribution, and downward heat

conduction along field lines not in the planet’s shadow.
In perfect MHD, such redistribution would be highly
constrained in the magnetically dominated upper atmo-
sphere, but finite conductivity may allow field lines to
slip through the gas (Gold 1959). Even on the day side,
large gas density outside the Roche lobe may project a
non-spherically symmetric shadow on the deeper layers.
Near the planet, the dynamo-generated, roughly dipole

field from the planets core is expected to dominate. Mov-
ing outward, currents generated in the magnetosphere
comb the field lines into a nearly radial direction beyond
the dead zone radius. Such a geometry has been used
before in the context of the stellar wind (Mestel 1968;
Mestel & Spruit 1987; Okamoto 1974) and we will adopt
it here. This field geometry will be implemented in the
global models presented in section 9, and is motivated in
the discussion of Appendix A.
Finally, the one-fluid approximation assumes that

mean free paths are sufficiently small that relative motion
of different species can be ignored. In Appendix B we will
check this assumption a posteriori for our models, which
estimate particle densities and velocities in the dead and
wind zones. Specifically, we will show that the electron-
proton-hydrogen atom gas is well coupled collisionally
for the parameters of interest, and therefore the drift ve-
locity is small and hydrogen atoms have short mean free
paths in the dead zone region. As a consequence, neutral
hydrogen atoms do not fly ballistically through the mag-
netosphere, and photoionization equilibrium is a good
approximation when computing the ionization fraction.
Further, we compute the rate at which magnetic field can
drift relative to the fluid. For this thermal population of
particles in the magnetosphere, we find that the dead
zone gives the largest observable transit signal, and that
the bulk of the hydrogen atoms in the dead zone are not
escaping.
In the next section we will review expected magnetic

field strengths for hot Jupiters.

3. EXPECTED MAGNETIC FIELD STRENGTHS

The importance of the magnetic field for the upper at-
mosphere depends critically on the field strength. How-
ever, the magnetic fields of hot Jupiters are currently
unconstrained by observation. This section will use the-
oretical considerations to estimate likely field strengths
for hot Jupiters.
Sánchez-Lavega (2004) computed that Rayleigh num-

bers in hot Jupiters are typically much larger than
the critical Rayleigh number for thermal convection in
the metallic core. Using estimates of the fluid veloc-
ity carrying the heat flux, he found that the magnetic
Reynolds number is much larger than unity, and that
dynamo action can occur. He argued that if the dy-
namo operated with Elsasser number of order unity, then
B ∼ (2ρΩλB)

1/2, where ρ is the mass density and λB is
the magnetic diffusivity. The dominant scaling impor-
tant for hot Jupiters is then with rotation: B ∝ Ω1/2.
For synchronized planets with orbital periods of a few
days, this scaling predicts that the field for hot Jupiters
should be smaller than that of Jupiter (equatorial field
BJ,eq = 4.3 G) by a factor of a few.
The opposite conclusion may be drawn from the recent

results of Christensen et al. (2009). As the rotation rate
is increased above a critical value, the field strength no
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longer increases with rotation rate, and dynamo simu-
lations give a magnetic field strength B ∼ (ρF 2

core)
1/3,

nearly independent of rotation rate and magnetic dif-
fusivity, where Fcore is the heat flux escaping from the
conducting core. Christensen et al. (2009) show that
this scaling applies to both planets and rapidly rotat-
ing, low mass stars over many orders of magnitude in
heat flux. They argue that the dependence on Fcore

arises since it is the heat flux reservoir that sustains the
magnetic field against Ohmic dissipation. To be in the
saturated regime, the Rossby number Ro must satisfy
Ro = Ved/Ωℓ . 0.1, where Ved is the typical velocity of
the eddies transporting heat, and ℓ is the size of the con-
ducting region; ℓ ∼ R for Mp & 0.5MJ . Sánchez-Lavega
(2004) estimated synchronized planets in few day orbits
to have Ro ≪ 0.1, using heat fluxes comparable to that
of Jupiter. Hence these planets are expected to be in the
saturated regime.
The large radii of hot Jupiters are currently not well

understood, since the cooling and contraction time for
passively cooling planets, even allowing for irradiation
by the star, is far shorter than the age for a number
of observed planets (e.g., Fortney & Nettelmann 2009).
This has led to the suggestion that these planets are
not passively cooling, but rather have an anomalous
source of internal heating, which is as yet unidentified
but balances the core cooling rate. To assess the re-
quired heating rates, Arras & Socrates (2009) computed
cooling flux from the core for planets as a function
of radius (their Figure 11; see Arras & Bildsten 2006,
for a discussion of the cooling luminosity of irradiated
hot Jupiters). For Jupiter-mass planets in the radius
range Rph = 1.3 − 1.5RJ , the cooling flux is larger
than that of Jupiter by a factor 102 − 103, for which
the Christensen et al. (2009) scaling would give magnetic
fields 5−10 times larger than Jupiter. Larger mass plan-
ets with the same radius would have larger cooling fluxes,
and vice versa. For instance, WASP 12b, WASP 17b
and TRES 4 have radii Rph ∼ 1.8RJ and masses in the
range 0.5 − 1.5MJ

3, for which the cooling fluxes would
be 103 − 104 times higher than Jupiter, implying fields
larger than Jupiter by factors of 10− 20.
In summary, the recent results on dynamo theory from

Christensen et al. (2009), and the assumption that hot
Jupiter cores are subject to an externally powered heat-
ing (Arras & Socrates 2009), argue that field strengths
may be up to an order of magnitude larger than that
of Jupiter. We will take this as motivation to explore a
wide range of parameter space for the magnetic field in
our calculations.
In the next section, we show that the photoionized

H and H+ layers are magnetically dominated for field
strengths comparable to Jupiter or Saturn, and motivate
the existence of a dead zone by a toy problem.

4. DEAD ZONE-WIND ZONE STRUCTURE OF THE UPPER
ATMOSPHERE

Yelle (2004) and Garćıa Muñoz (2007) presented de-
tailed calculations of the transition between the molec-
ular lower atmosphere (H2), the layer dominated by
atomic hydrogen (H), and the ionized upper atmosphere
(H+). In this paper, we restrict attention to the H and

3 http://exoplanet.eu/catalog-transit.php

H+ regions, where the transmission spectrum is formed.
The strong heating in these layers due to UV photon en-
ergy deposition raises the temperature to T ≃ 104 K.
As a consequence of the increased temperature and low
mean molecular weight, the radial extent of the H and H+

layers (& RJ ) is expected to be much larger than that of
the H2 layer above the photosphere (. (0.1− 0.2)×RJ).
We define the lower boundary of our wind model to be

at the base of the warm (T & 5000 K) H layer, at base
radius R and base pressure Pbase. The base of the warm
layer is a crucial parameter for the transit depth. As dis-
cussed in the phenomenological model of Koskinen et al.
(2010), the transit depth of HD 209458b could be under-
stood as being due to thermal ≃ 104 K H gas extending
down to ∼ 10 − 100 nbar pressures. In section 8, we
compute a simple 1D model for ionization and thermal
equilibria in the H and H+ layers which shows that such
base conditions are indeed possible.
The Lyman α transmission spectrum of HD 209458b

shows absorption by the planetary atmosphere at
linewidths ∆v & 100 km s−1 from line center. At
this linewidth, the cross section is σν ≃ 2 × 10−19 cm2

(see Figure 15). Optical depth unity requires a hydro-
gen column NH ≃ 1/σν ≃ 5 × 1018 cm−2. Assum-
ing the gas is dominated by atomic hydrogen, the pres-
sure at this level in the atmosphere is P ≃ gmpNH ≃
2 nbar (g/300 cm s−2) (see Figure 10). This is a fac-
tor ∼ 108 more rarefied than the optical photosphere
for continuum radiation at pressure Pph ≃ 100 mbar.
Magnetic forces dominate in this layer if B2/8π &
2 nbar (g/300 cm s−2), implying a critical field strength
Bcrit & 0.25 G (g/300 cm2 s−1)1/2. This is less than
Jupiter’s equatorial magnetic field BJ,eq = 4.3 G and
comparable to Saturn’s equatorial field BS,eq = 0.22 G.
Moving upward, if the gas pressure drops much faster
than magnetic pressure, the atmosphere can become
highly magnetically dominated — a magnetosphere.
The theory of thermally and magneto-centrifugally

driven MHD winds gives guidance on the upper atmo-
sphere structure in the magnetically dominated case (for
a good review see Spruit 1996). Consider a thought ex-
periment in which a non-magnetic spherically symmetric
wind with velocity v∞ and mass loss rate Ṁ exists at
time t < 0, and at time t = 0 a dipole magnetic field
is turned on. On which field lines can the wind over-
power the magnetic forces and open the field lines to in-
finity? The magnetic pressure on the equator (θ = π/2)
is weaker than at the footpoint (at angle θb) by a factor
[B(π/2)/B(θb)]

2 = [R/r(π/2)]6 = sin12 θb (see eq.12).
This powerful dependence on footpoint position means
there are always field lines near the magnetic poles which
open to infinity on which a wind can outflow (see Fig-
ure 1 for a cartoon). The reason is that at the equa-
tor, the wind ram pressure can overcome the steeply
falling magnetic pressure at sufficiently large distance
from the planet. If we assume the wind ram pressure
decreases outward as ρv2 = Ṁv∞/4πr2, then the criti-
cal footpoint angle inside of which a “polar wind” occurs

is sin θb ≃
(

Ṁv∞/R2B2
0

)1/8

. For fiducial polar mag-

netic field B0 = 8.6 G, R = 1.4RJ , (constant) flow speed

v∞ = 10 km s−1 and mass loss rate Ṁ = 1011 g s−1 (mo-
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tivated by the studies of Yelle 2004; Garćıa Muñoz 2007;
Murray-Clay et al. 2009), we find the polar cap size oc-
cupied by open field lines is θb ≃ 14◦, and the last closed
field lines is at equatorial radius r(π/2) ≃ 16R. This
static, closed field line region is referred to as the “dead
zone” (Mestel 1968). These estimates suggest that the
region within a few planetary radii, where the transit sig-
nal arises, is filled primarily with static gas in the dead
zone, rather than outflowing gas, as has been previously
assumed.
For close-in, tidally-locked planets, tides and centrifu-

gal forces play a key role in upper atmosphere structure.
In the next section we review the effective potential near
the planet, and the projection of forces along dipole field
lines.

5. TIDAL FORCE AND MAGNETIC GEOMETRY

Gas in the upper atmosphere of the planet is subject
to three potential forces: gravity from the planet, tidal
gravity from the star, and the centrifugal force due to
the planetary rotation. For a synchronized planet, the
centrifugal and tidal forces, or just tidal force for short,
are comparable in strength, although their angular de-
pendence is different. For position vector x = (r, θ, φ)
relative to the center of the planet, and star at position
x⋆ = (D, π/2, 0) = Dex, the sum of the three accelera-
tions is

a(x)=−∇U(x), (1)

where the effective potential is given by

U(x)=−GMp

|x| − GM⋆

|x− x⋆|
+

GM⋆x · x⋆

|x⋆|3
− 1

2
|Ω× x|2(2)

≃−GMp

r
− 1

2
Ω2r2

(

f sin2 θ − 1
)

. (3)

Equipotentials are shown in Figure 6.2 of Kopal (1978).
The longitude-dependent function f = 1 + 3 cos2 φ. The
vector angular velocity of the orbit is Ω = Ωez , where
ez is normal to the orbital plane, and Ω = [G(M⋆ +
Mp)/D

3]1/2. The first and second terms in eq.2 are the
potential of the planet and star, respectively. The third
term in eq.2 is due to the motion of the origin of the
coordinate system. The last term in eq.2 is due to the
centrifugal force. It may be shown that eq.2 is equivalent
to the usual Roche potential with origin at the center of
mass by combining the third and fourth terms. The form
in eq.3 is an expansion in the limit r ≪ D, and agrees
with that for “Hill’s limit” found in Murray & Dermott
(2000) when evaluated in the orbital plane (θ = π/2).
The accelerations are given by

ar =−∂U

∂r
= −GMp

r2
+Ω2r

(

f sin2 θ − 1
)

, (4)

aθ =−1

r

∂U

∂θ
= fΩ2r sin θ cos θ (5)

aφ=− 1

r sin θ

∂U

∂φ
= −3Ω2r sin θ sinφ cosφ. (6)

The vector acceleration a should not be confused with
the sound speed a. If we denote the coordinate along
the star-planet line x = r sin θ cosφ, and normal to the
orbit plane z = r cos θ, then the tidal force is outward
when 3x2 > z2, i.e. within latitudes −π/3 to π/3 of the

equator. The tidal force is zero in the y-direction. Hence
when observing a planet in the plane of the sky during
transit, the tidal forces are inward along ez, zero along
ey, and away from the planet along ex, the line of sight
during transit.
The L1 and L2 Lagrangian points at radii rL1 and rL2

are found by using eq.4 along the star-planet line (θ =
π/2, φ = 0), giving

rL1 ≃ rL2 ≃ rL≡D (Mp/3M⋆)
1/3

= (GMp/3Ω
2)1/3.(7)

The near equality rL1 ≃ rL2 is due to Mp/M⋆ ≪ 1 in
eq.7. The photospheres of the observed planets are inside
the L1-L2 radii.
How does the magnetic field alter the radius beyond

which the net gravity points outward? What is needed is
the projection a‖ = a·b along field lines, where b = B/B
is the unit vector along the magnetic field direction. In
dipole geometry, approximately correct near the planet,

B=B0

(

R

r

)3(

er cos θ + eθ
sin θ

2

)

. (8)

and the unit vector is

b=
1

N

(

er cos θ + eθ
sin θ

2

)

(9)

where the normalization factor is

N =

√

cos2 θ + sin2 θ/4 =

√

1− 3 sin2 θ/4. (10)

The parallel acceleration is then

a‖=−b ·∇U =
cos θ

N

[

−
(

GMp

r2
+Ω2r

)

+
3

2
fΩ2r sin2 θ

]

.(11)

The quantity in brackets in eq.11 must be positive in
order for the net acceleration to be away from the planet.
To solve for the radius at which the net acceleration is
zero, we express θ in terms of r along dipole field lines
using

r(θ)=R
sin2 θ

sin2 θb
≡ req sin

2 θ (12)

where

req=R/ sin2 θb (13)

is the equatorial radius of the field line with footpoint at
θb. The “magnetic Roche lobe radius”, rRB, at which the
projected acceleration a‖ = 0 is given by the solution of
the equation

GMp

r2RB

+Ω2rRB=
3

2
fΩ2 r

2
RB

req
. (14)

Solutions can only exist in the range of radii 2req/3f ≤
rRB ≤ req. Solutions for rRB exist first at the looptop
rRB = req for loops of critical size

req,crit=
rL

(f/2− 1/3)1/3
. (15)

That is, when the loop size becomes larger than about the
L1-L2 distance, the outer part of the loop can have net
acceleration pointing away from the planet. Note that
this statement applies even in the plane where cos2 φ = 0,
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where the radial component of the tidal force points in-
ward. The magnetic geometry allows a “magnetic Roche
lobe” rRB ∼ rR to exist at all longitudes, in contrast to
the unmagnetized case.
In the next section we model the gas density in the

dead zone.

6. THE DEAD ZONE

The 3D MHD wind equations are presented in Ap-
pendix A. There we derive the Bernoulli constant along
field lines and discuss how gas pressure discontinuities at
the dead zone - wind zone boundaries give rise to current
sheets which alter the magnetic field configuration. For
the present section which discusses the dead zone, the
main concept needed is that hydrostatic balance applies
along field lines. We will approximate the field lines as
dipolar.
In the dead zone, the velocity along field lines v = 0.

Setting v = 0 in eq.A2 and dotting this equation with
b to eliminate the Lorentz force we find the equation of
hydrostatic balance along field lines

1

ρ

dP

ds
=a2

d ln ρ

ds
= −dU

ds
(16)

where d/ds = b · ∇ is the derivative along field lines.
Under the isothermal assumption, eq.16 can then be in-
tegrated to give the run of pressure and density along a
field line with base position (θb, φ):

P (r, θ, φ)

P (R, θb, φ)
=

ρ(r, θ, φ)

ρ(R, θb, φ)
(17)

=exp

[

−
(

U(r, θ, φ)− U(R, θb, φ)

a2

)]

.

We treat the density and pressure at the base as being
along equipotentials. Defining ρss = Pss/a

2 = ρ(r =
R, θ = π/2, φ = 0) to be the value at the substellar point
at the base radius, the density at the base radius at other
points is

ρb(θb, φ)=ρss exp

[

−
(

U(R, θb, φ) − U(R, π/2, 0)

a2

)]

.(18)

Combining eq.17 and 18 then gives

P (r, θ, φ)

Pss
=

ρ(r, θ, φ)

ρss
(19)

=exp

[

−
(

U(r, θ, φ) − U(R, π/2, 0)

a2

)]

.

Note that because we have assumed the density and pres-
sure surfaces at the base are along equipotentials, eq.19
satisfies

0=−∇P − ρ∇U (20)

in all three directions, not just along field lines. In this
case −∇U is balanced by gas pressure forces due to a
non-spherical distribution of mass. If, on the other hand,
temperature, density or pressure surfaces were not along
equipotentials, then eq.20 would not be satisfied perpen-
dicular to field lines, and the trans-field force balance
(eq.A12) would be required to understand the required
currents.

Fig. 2.— Values of λ calculated using eq.22 for the current
database of transiting exoplanets. The parameters used are a =
9.3 km s−1, appropriate to T = 104 K, µ = 1, and R = Rph. The
open circles, X’s and open triangles are planets with Mp/MJ > 2,
1/2 ≤ Mp/MJ ≤ 2 and Mp/MJ < 1/2, respectively. Values of
Porb, Mp and Rph are taken from the current database of transiting
exoplanets (http://exoplanet.eu/).

The potential difference in eq.19 can be written in di-
mensionless form

U(r, θ, φ)− U(R, π/2, 0)

a2
(21)

=λ

(

1− R

r

)

+
1

2
ǫ

[

3−
( r

R

)2
(

f sin2 θ − 1
)

]

where we have defined the ratio of escape to thermal
speed

λ=
GMp

Ra2

≃ 9.3

(

Mp

0.7MJ

)(

1.4RJ

R

)(

10 km s−1

a

)2

(22)

and the ratio of rotation speed (or tidal potential) to
thermal speed

ǫ=

(

ΩR

a

)2

=0.043

(

3.5 days

Porb

)2(
R

1.4RJ

)2(
10 km s−1

a

)2

.(23)

The photoionization model in section 8 shows outward
increase in T and decrease in µ, implying larger a with
radius. The density will then decrease more slowly than
in the isothermal model for the same quantities at the
base.
Figures 2 and 3 show the values of λ and ǫ versus planet

orbital period for the transiting exoplanets, taking Mp,
transit radius Rph and orbital period Porb = 2π/Ω from

http://exoplanet.eu/
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Fig. 3.— Values of ǫ calculated using eq.23 for the current
database of transiting exoplanets (http://exoplanet.eu/). The
open circles, X’s and open triangles are planets with Mp/MJ > 2,
1/2 ≤ Mp/MJ ≤ 2 and Mp/MJ < 1/2, respectively. The param-
eters used are a = 9.3 km s−1, appropriate to T = 104 K, µ = 1,
and R = Rph.

the Extrasolar Planets Encyclopedia4. The temperature
and mean molecular weight have been set to fiducial val-
ues of µ = 1 and temperature T = 104 K, giving sound
speed of a = 9.3 km s−1.
Note that a substantial number of planets have λ =

2−10, implying the scale height of the gas is large enough
that the density decrease in the dead zone is only by a
factor of 10−104, far less than for planets with cold upper
atmospheres more distant from their parent star. This
increased density leads to the possibility that hot Jupiter
upper atmospheres may be collisional to large distances
from the planet, i.e. that the exobase, if it exists at all,
is at radii r ≫ Rph (Tian et al. 2005; Murray-Clay et al.
2009).
Next, note that for the same fiducial molecular weight

and temperature, the strength of the tide, ǫ, is in the
range 0.1 − 1 for a substantial number of planets. For
large ǫ, the typical rotational speed of a synchronized
planet is comparable to the sound speed, or equivalently,
the free fall speed in the tidal potential is comparable to
the sound speed. Since ǫ is evaluated at the base, the
tidal force will dominate even more at larger distances
from the planet.
Figure 4 shows the run of gas and magnetic pressure

along the equator (θ = π/2) as a function of radius along
the star-planet line (φ = 0). Eq.19 was used for the
gas pressure, and eq.8 for the magnetic pressure. The
magnetic pressure is parametrized by the plasma β at
the substellar point at the base:

β≡ 8πPss

(B0/2)2
= 0.14

(

Pss

0.1 µbar

)(

BJ,eq

B0/2

)2

. (24)

4 http://exoplanet.eu/

Fig. 4.— Gas and magnetic pressure, normalized to the base
gas pressure Pss = P (R, π/2, 0), as a function of equatorial ra-
dius req for the isothermal model. The tidal potential is evalu-
ated along the star-planet line cos2 φ = 1 at the equator θ = π/2.
The two groups of lines starting from r = R and P = Pss are
P (req, π/2, 0)/Pss evaluated for λ = 5, 10. For each group, the
line style gives the value of ǫ. The three lines sloping down to the
right are B2(req, π/2, 0)/(8πPss) = (R/req)6/β for the three dif-
ferent values of equatorial β = 10−4, 10−2, 1. The cusp radius in
Figure 5 is given by the intersection of the gas and magnetic pres-
sure curves. The gas pressure decreases outward faster for larger
λ. Beyond the Roche radius, gravity effectively points outward
and the gas pressure begins to increase outward. For larger ǫ, the
Roche radius moves inward.

The different lines in Figure 4 show gas pressure and
magnetic pressure for different λ, ǫ, and β as a function
of radius.
For small ǫ, the density decreases outward, and even-

tually becomes a constant. When the tidal force is in-
cluded the density increases outward for radii outside the
magnetic Roche radius (eq.14), since the sign of gravity
points outward there. This is a dramatic effect for close-
in planets, whose Roche radii are at only a few plan-
etary radii, and may lead to hydrogen densities orders
of magnitude larger than the ǫ = 0 case. The tidal
gravity plays a role similar to the centrifugal force in
models of the closed field line regions in the solar wind
(Mestel & Spruit 1987) and in Jupiter’s magnetosphere
outside the corotation radius. To specify the current and
field distributions required for this support involves a so-
lution of the trans-field equation, which is beyond the
scope of this work. However, such support should be
possible when magnetic pressure dominates gas pressure.
Next, we follow Mestel (1968) and Mestel & Spruit

(1987) to estimate the size of the dead and wind zones.
Pneuman & Kopp (1971) showed that the dead zone
ends at the equator in a cusp, i.e. the field in the dead
zone approaches zero toward the cusp. Also, for v & a,
the wind zone pressure can be neglected compared to the
dead zone pressure, leading to the condition (also see our

http://exoplanet.eu/
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Fig. 5.— Cusp radius as a function of equatorial plasma β at
the substellar base of the atmosphere for different values of λ =
GMp/(Ra2) and ǫ = (ΩR/a)2 . Here λ is roughly the ratio of escape
speed to isothermal sound speed, and ǫ is the roughly the ratio of
rotation speed to isothermal sound speed. Larger λ (ǫ) implies the
density decreases outward faster (slower). The cusp radius moves
outward (inward) for larger λ (ǫ).

discussion leading up to eq.A14 in Appendix A)

Pdead≃
B2

wind

8π
. (25)

To determine the cusp radius, which we call rd for dead
zone, we use eq.19 for the left hand side and eq.8 for the
right hand side. The resulting equation is

β exp

[

−λ

(

1− R

r

)

+
3

2
ǫ

(

r2

R2
cos2 φ− 1

)]

=

(

R

r

)−6

(26)

Eq.26 shows that the cusp radius will depend on φ in
general due to the tidal potential. When tides can be
ignored (ǫ ≪ 1), a reasonable approximation is rd/R ≃
(eλ/β)1/6.
Figure 5 shows cusp radii as a function of β for different

tidal strength (ǫ) and binding parameter (λ). Consider
the fiducial case with ǫ = 10−3, λ = 10 and β = 10−2.
Initially the magnetic pressure is much larger than the
gas pressure. The more rapid decrease of magnetic pres-
sure implies equality at the cusp radius, rd/R ≃ 10. In-
creasing ǫ, the gas pressure is larger and the cusp radius
moves inward. The cusp radius moves outward with in-
creasing magnetic field, i.e. decreasing β.
Under what conditions does a magnetosphere not

form? Inspection of the β = 1 and λ = 5 curves in
Figure 4 shows that the magnetic and gas pressures
are initially equal at the base, but the gas density de-
creases more slowly and so the magnetic field never dom-
inates. Ignoring tides, there is an analytic criterion for
the critical βcrit = βcrit(λ) for the formation of a dead
zone. This criterion is found by requiring simultane-
ously P = B2/8π and dP/dr = d/dr(B2/8π), and yields

β ≤ βcrit = (6/λ)6 exp(λ − 6). For λ = 5, 10, 15, the val-
ues are βcrit = 1.1, 2.5 and 33, agreeing with the cutoffs
in Figure 5. Hence for large λ, the gas at the base need
not be magnetically dominated in order for the gas well
above to base to become so.
In summary, we have found cusp, or dead zone, radii in

the range of a few to tens of radiiR for the expected range
of λ, β and ǫ. Since transit observations to date probe
the high density gas within a few planetary radii, these
observations may be probing static gas trapped within
the magnetosphere, as opposed to outflowing gas.
Nevertheless, as we will argue in section 7, a wind zone

should exist, and we investigate its structure in the next
section.

7. THE WIND ZONE

In this section we show how the (slow magneto-) sonic
point is affected by the magnetic geometry. Readers un-
familiar with the MHD wind equations can consult Ap-
pendix A for a brief summary of the equations. We sim-
plify the problem by assuming that the sonic point is
close enough to the planet for magnetic stresses to domi-
nate over hydrodynamic stresses — the rigid field line ap-
proximation. In this situation the fluid nearly corotates
with the planet, and can be accelerated like “beads on a
wire” by the magnetic field. This “magneto-centrifugal”
effect from stellar wind theory (Mestel 1968) becomes im-
portant when the rotation velocity approaches the sound
speed at the sonic point (Mestel & Spruit 1987). For a
synchronized hot Jupiter, tidal forces are of comparable
size as centrifugal forces, and the condition that the ro-
tation velocity is comparable to the sound velocity at the
sonic point is equivalent to the Roche-lobe radius being
near the sonic point. The rigid field line assumption will
typically break down near the Alfvén point, which we
estimate lies well outside the dead zone radius for most
latitudes.
Plugging parallel velocity, v = vb, and the no

monopoles condition, eq.A7, into eq.A1, the continuity
equation assumes the simple form

B ·∇
(ρv

B

)

=0 (27)

so that ρv/B is constant on field lines, and has the inter-
pretation of the mass loss rate per unit of magnetic flux
along a flux tube of area∝ B−1. Similarly, the projection
of eq.A2 along the field can be rewritten as

v
dv

ds
=−a2

d ln ρ

ds
− dU

ds
, (28)

which has the Bernoulli integral along field lines (see
eq.A8 and A9). Again, the (J × B) force cancels out
since v ‖ B. Combining eq.27 and 28 gives the momen-
tum equation parallel to field lines:

(

v − a2

v

)

dv

ds
=−a2

d lnB

ds
− dU

ds
. (29)

At the critical point, v = a, and hence to avoid a diver-
gent acceleration, the right hand side must go to zero,
giving

− a2
d lnB

ds
=

dU

ds
(30)
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at the sonic point. The term on the left hand side rep-
resents the pressure gradient due to the geometry set by
the magnetic field. The term on the right hand side is
the net acceleration along the field line.
Since the sonic point is sufficiently close to the surface

that the field geometry is not much perturbed by ex-
ternal currents, we use dipole geometry to evaluate the
sonic point position. The dipole field in eq.8 gives the
intermediate result

− d lnB

ds
=

3 cos θ

Nr

(

1 +
sin2 θ

8N

)

. (31)

The two terms on the right hand side of eq.31 repre-
sent the field line divergence due to the r−3 factor from
dipole field geometry, and the θ-dependent factorN . The
term due to differentiating N is negligible for large loops,
but becomes important for small loops near the equator.
Plugging eq.11 and 31 into eq.30, and eliminating θ us-
ing the field line geometry in eq.12, we find the following
equation to determine the sonic point r = rs:

GMp

r2
+Ω2r=

3a2

r
(32)

where N =
√

1− 3r/4req. This equation, solely in terms
of r, can be solved as a function of the parameters λ, ǫ
and req/R = 1/ sin2 θb.
First we examine the limit in which tidal forces can be

neglected. This simple case highlights the importance of
the magnetic field geometry, and would apply for slow
rotating planets distant from the star. Setting Ω = 0 in
eq.32, the simpler equation

GMp

3a2r
=1 +

r

8req
√

1− 3r/4req
(33)

results. For large field lines req ≫ R, field line curvature
is negligible and the sonic point sits at

rs0≃
GMp

3a2
=

(

λ

3

)

R (34)

which differs from the spherical wind result by the 3,
instead of 2, in the denominator. Including finite sin2 θb,
the sonic point moves inward somewhat.
Next, we include tidal forces, but ignore the field line

curvature terms on the right hand side scaling as r−1
eq ,

a good approximation for field lines near the pole. This
approximation eliminates the possibility that the tidal
force can point outward. In this case, the sonic point
equation becomes

GMp

r2
+Ω2r=

3a2

r
. (35)

The key point is that now the effective gravity on the left
hand side has a minimum. If the pressure term on the
right hand side is smaller than this minimum, a transonic
solution is not possible. The solution of the cubic eq.35
lying near the planet disappears for sufficiently strong
tidal forces

Ω≥Ωcrit = 2
a3

GMp
=

2

3

a

rs0

=

(

2π

3.4 days

)(

0.7 MJ

Mp

)

( a

10 km s−1

)3

. (36)

Fig. 6.— Values of ǫ versus λ for the transiting planets. The
points are the data, with symbol type as in Figures 2 and 3. The
line is the critical tidal strength ǫ = 4/λ2 above which the wind is
suppressed in the polar region. We have used a = 9.3 km s−1 to
make the plot.

Eq.36 can also be written in dimensionless form as

ǫcrit=
4

λ2
. (37)

When eq.36 is satisfied, for planets sufficiently close to
the star, there is no sonic point solution, and the wind is
shut off near the poles. The density distribution on these
field lines will be hydrostatic. Hence, for sufficiently
strong tides such that the rotation velocity Ωcritrs0 at the
sonic point is supersonic, a second dead zone is created in
the polar regions where tides point inward. Whereas the
first dead zone in the equatorial region is due to magnetic
pressure dominating gas pressure, the second dead zone
near the poles arises due to the large potential barrier.
Figure 6 shows ǫ versus λ for the observed transiting

planets. Except for a handful of planets with the smallest
values of both ǫ and λ, most of the planets are in the
strong tide limit with ǫ > ǫcrit. The planets in the upper
right hand corner will have the polar wind partially shut
off, while the planets in the lower left hand corner will
be able to drive a polar wind.
Next, we retain the r−1

eq terms due to the tidal force in
eq.32. Taking the limit Ω → ∞ in eq.32, the sonic point
in the strong tide limit is

rs→
2req
3f

. (38)

In this limit, the sonic point occurs at a fixed fraction
of the loop equatorial radius, dependent only on cos2 φ,
and agrees with the magnetic Roche lobe radius found
in eq.14, where the net force first points outward.
Figure 7 shows an example numerical solution of eq.32

for the sonic point radius as a function of footpoint angle
θb. Dipole geometry was used to produce this plot. In
the weak tide limit (ǫ → 0), the solutions asymptote
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Fig. 7.— Sonic point radius as a function of footpoint co-latitude
for λ = 12, β = 1 and a range of ǫ (dashed lines). The three solid
lines label the ǫ = 0 sonic point, rs0/R = λ/3, the ǫ = 4/λ2 = 0.16
sonic point, rs/R = λ/2, and the ǫ = ∞ sonic point, rs = 2req/3f .
Each dashed line terminates at large θ at the dead zone, θ = θd.
The dead zone shrinks (θd → π/2) as ǫ increases. The value of β is
needed only for the size of the dead zone. The longitude cos2 φ = 1,
along the star-planet line, has been assumed here.

to eq.34 for large loop size, and decrease slightly before
terminating at the dead zone, θ = θd. For small ǫ .
4/λ2, the sonic point moves out in the polar regions, and
inward closer to the equator; the dividing line between
these two behaviors depends on if the net force is outward
or inward near the looptop. Next, for the critical value
ǫ = 4/λ2, the sonic point is at roughly rs ≃ (λ/2)R near
the pole. For larger values ǫ & 4/λ2, the sonic point
near the pole jumps out to a radius much further from
the planet, near rs ∼ 2req/3f , where the net gravity
changes sign. For small values of θb, this solution may
be at tens to hundreds of planetary radii, and is of no
physical interest. Physically, when the sonic point moves
outside the region of interest the field line is effectively
hydrostatic.
Figure 8 shows the velocity at the base, vb, for the

same parameters as in Figure 7. This velocity was found
by using the Bernoulli constant evaluated at the sonic
point and the base. For weak tides (ǫ = 0), the velocity
at the base is nearly constant over the wind zone. As
ǫ increases, the base velocity decreases near the pole,
where the sonic point has moved outward, and increases
closer to the equator, where the sonic point has moved
inward.
At sufficiently large radii, pressure gradients rapidly

become negligible and the fluid should move on a nearly
ballistic trajectory. Using the Bernoulli integral defined
in eq.A9, with the sonic point as reference location, the
velocity parallel to the magnetic field is

v2=a2 + 2a2 ln

(

Bs

B

v

a

)

+ 2 (Us − U) (39)

Fig. 8.— Velocity at the base, in units of a, for the same pa-
rameters as Figure 7.

where the subscript “s” refers to the sonic point. The
transit signal depends only on the gas velocity within
the stellar disk at r ≤ R⋆, where R⋆ is the stellar radius.
The tidal potential term −2U dominates at large radius.
For the purposes of a simple estimate, this asymptotic
expression, evaluated at the stellar radius, gives

vasymp≃ΩR⋆

(

f sin2 θ − 1
)1/2

=24 km s−1

(

3.6 day

Porb

)(

R⋆

R⊙

)(

f sin2 θ − 1

3

)1/2

.(40)

We caution the reader that the (logarithmic) enthalpy
term in eq.39 is not negligible, and can increase the
velocity at r = R⋆ by a factor of order 2 (see Figure
11). Though supersonic, the velocity in eq.40 is much
smaller than the ∼ ±100 km s−1 at which absorption
is observed in the Lyman α spectrum of HD 209458b
(Vidal-Madjar et al. 2003), and hence velocity gradients
cannot be the origin of the observed transit depth.
In the following sections, we will implement the general

theory that describes the structure of the dead zone (§ 6)
and of the wind zone (§ 7) to construct global models of
hot Jupiter magnetospheres for comparison with transit
observations of HD 209458b. A simplified 1D thermal
model motivates our choice of the pressure and sound
speed at the base of the global models, which are key pa-
rameters for determining the magnetospheric structure.

8. THE H AND H+ LAYERS: A SIMPLIFIED 1D THERMAL
MODEL

The thickness of the warm H layer with tempera-
ture T ≃ 5, 000 − 10, 000 K is a crucial parameter in
determining the transit depth, as emphasized in the
phenomenological model of Koskinen et al. (2010) (see
Garćıa Muñoz (2007) for a discussion of the role of base
pressure for an atmosphere undergoing energy-limited es-
cape). The large temperature and small mean molecular
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weight increase the scale height to ∼ 0.1Rph. If the warm
layer extends over & 10 scale heights, the transit radius
can be significantly increased over the photospheric ra-
dius of the optical continuum. In this section, we con-
struct a simple 1D model in photoionization and thermal
equilibrium to determine the depth of the warm H layer.
At sufficiently low density and temperature, the rates

of collisional ionization and 3-body recombination are
slow compared to photoionization and radiative recom-
bination, respectively, and the ionization state is set by
a balance of the latter two processes. We consider a
pure hydrogen gas for simplicity. Let ne, np and nH be
the density of electrons, protons and hydrogen atoms.
Charge neutrality implies ne = np. The ionization frac-
tion in the “on the spot” approximation is found by solv-
ing the algebraic equation (Osterbrock & Ferland 2006)

nHJ(NH)=αB(T )nenp = αB(T )n
2
p. (41)

At the 50% ionization point,

nH =np ≡ neq =
J

αB
. (42)

Here αB(T ) ≃ 2.6 × 10−13 cm3 s−1(104 K/T )0.8

is the case B radiative recombination rate
(Osterbrock & Ferland 2006),

J(NH)=

∫ ∞

ν0

dν ϕν e−NHσpi(ν)σpi(ν) (43)

is the photoionization rate per H atom, ϕν is the pho-
ton flux per unit frequency interval, NH is the atomic
hydrogen column from the point in question to the star,
σpi(ν) = σpi(ν0/ν)

3 is the H atom bound-free cross sec-
tion, the threshold cross section is σpi = 6.3×10−18 cm2,
and the threshold frequency is ν0 = 13.6 eV/h. The ex-
ponential factor in eq.43 takes into account attenuation
of the stellar radiation. Eq.43 may be computed as a
function of NH , as described in Osterbrock & Ferland
(2006).
For the thermal balance, the dominant processes

are photoelectric heating from the ionization of hy-
drogen atoms (Yelle 2004), and cooling by collision-
ally excited Lyman α emission from electron impacts
(Murray-Clay et al. 2009). Assuming 100% efficiency of
turning photoelectron energy into heat, the heating rate
per reaction is

Q(NH)=

∫ ∞

ν0

dν ϕν e−NHσpi(ν) σpi(ν) h(ν − ν0).(44)

Balancing photoelectric heating and cooling by collision-
ally excited Lyman α emission implies

nHQ(NH)=Λ(T )nenH . (45)

Note that nH cancels out of eq.45. The line
cooling coefficient for Lyman α is Λ(T ) =

2.9× 10−19 erg cm3 s−1
√

104 K/T exp(−118, 400 K/T )
(Dalgarno & McCray 1972). Increasing distance from
the star and decreased heating efficiency act to decrease
Q.
Eq. 41 and 45 are two algebraic equations which can

be solved for nH and np in terms of NH and P =
(2np+nH)kbT . In practice, we assume a trial T , compute

Fig. 9.— Photoionization rate (top) panel and heating rate
(bottom) as a function of neutral hydrogen column, for a planet at
D = 0.05 AU around a solar-type star..

nH and np from eq.41, and then compute the imbalance
of heating and cooling in eq.45. The temperature is iter-
ated until thermal balance is achieved. The equations for
dependent variables NH and P and independent variable
r are the definition of column

dNH

dr
=−nH (46)

and hydrostatic balance

dP

dr
=−GMpmp

r2
(nH + np) , (47)

where tides have been ignored for simplicity. The inner
boundary condition is r = R at the chosen base pressure.
The column NH should go to zero at the outer boundary.
We enforce this boundary condition at the finite, but
large, radius r = 40R.
To compute the integrals in eq.43 and eq.44, we

use the quiet solar Lyman continuum spectrum from
Woods et al. (1998), which tabulates

∫

dνϕν in each fre-
quency bin. The results are shown as the solid lines in
Figure 9. Approximate power-law fits are also shown,
along with curves representing pure exponential attenu-
ation for comparison. A similar fit with shallower slope is
shown in the bottom panel for the heating rate Q(NH).
At small optical depth, J0 ≈ 6 hr and the mean pho-
toelectron energy is Q0/J0 ≃ 2.7 eV. Given the form of
the integrand in eq.43, one might have expected an expo-
nential scaling of the form J ∝ exp[−(constant)σpiNH],
implying negligible heating and ionization deep in the H
layer. This is shown as the dot-dashed line in Figure 9,
and cuts off much too sharply. The numerical result is
better fit with a power-law, J ∝ N−1.5

H , leading to larger
heating rate deep into the H layer.
The weak scaling of J with NH can be explained as the

competition between exp[−NHσpi(ν)], which increases to
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Fig. 10.— Temperature (top panel), number densities (second
panel), neutral hydrogen column (third panel), and radius (bottom
panel) versus pressure for a Mp = 0.7MJ , R = 1.3RJ planet. The
red, black and blue lines are for planets at D = 0.1, 0.05, 0.025 AU,
respectively. The hollow circles show the position where Lyman
continuum radiation (at threshold) from the star becomes opti-
cally thick. The crosses show the 50% ionization point. The filled
triangles show the position in the atmosphere where stellar Lyman
α photons at ±100 km s−1 from line center become optically thick.

higher frequencies, and ϕν , which on average decreases
to higher frequency. Ignoring lines in ϕν , the product of
these two functions is a sharp peak, similar to the Gamow
peak in thermonuclear reaction rates. For instance, if
one approximates the Lyman continuum as a blackbody
with temperature T = 8300 K (Noyes & Kalkofen 1970),
steepest descent evaluation of eq.43 gives the weak ex-
ponential scaling J ∝ exp[−15.9(NHσpi)

1/4], which in-

volves N
1/4
H in the exponent rather than NH . However,

the blackbody fit is not adequate, as even this weaker
scaling cuts off too fast. We find a better fit is to use

a power-law form ϕν ∝ ν−γ , leading to J ∝ N
−(γ+2)/3
H ,

with no exponential scaling. Choosing γ = 2.5 then re-
covers the observed scaling. While these analytic scalings
are useful for intuition, the solar Lyman continuum con-
tains many strong lines, and is not well approximated by
a smooth continuum function when computing J .
Figure 10 shows a numerical integration of eqs. 46, 47,

41 and 45. Spherically symmetric irradiation is assumed,
the base pressure is chosen to be P = 1 dyne cm−2, and
the NH → 0 condition is applied at the (arbitrary) ra-
dius r = 40Rph. Parameters appropriate for HD 209458b
have been chosen with Mp = 0.7MJ and R = 1.3RJ . In
each panel, the three different color curves are for differ-
ent semi-major axis; the semi-major axis of HD 209458b
is D ≃ 0.05 AU. In the top panel, note that T increases
slowly as the planet is moved closer to the star. A factor
16 increase in stellar flux translated into only a 10-20%
increase in the pressure range of interest, due to the ex-
ponential T dependence in the cooling rate. Eq.45 can

be solved analytically as

T ≃ 1.1× 104 K

1 + 0.089 ln[(ne/neq,0)(Q0/Q)]
. (48)

This simple estimate shows that the temperature is al-
ways near 104 K near the base of the photoionized layer
where nH = np ≃ neq. As ne decreases below neq, the
temperature rises logarithmically slowly. This temper-
ature rise toward small density will increase the scale
height and density at larger radii relative to an isother-
mal model with the same base conditions.
The second panel shows the rapid inward increase of

nH , with a change in slope at the H-H+ boundary. The
slow decrease of np into the atmosphere is due to the slow
decrease of J with NH . If we had used the exponential
scaling J ∝ exp(−NHσpi) shown in Figure 9, T and np

would have decreased inward much more rapidly. The
hollow circles show the position of nH = np at each D.
Planets further from the star remain neutral higher up
in the atmosphere.
The third panel shows NH , and x’s show the position

of NHσpi = 1, where the Lyman continuum at threshold
is optically thick. The optical depth unity point moves
to lower pressure for planets more distant from the star,
although the radius at this point is relatively constant.
The bottom panel shows radius in units of base radius.

The warm H layer with temperature T ≃ 10, 000 K at
pressures P = (0.1 − 100) nbar contributes an amount
≃ (1−2)×Rph to the radius. Specifically, even the region
below NHσpi = 1 can be warm enough to contribute
significantly to the radius. In our reference global model
below, we use a base pressure Pss = 40 nbar (see Model
1 of Table 1).
We now discuss how the simple 1D model differs from

previous investigations. One crucial difference is that
the dead zone should be hotter than the wind zone,
for which adiabatic expansion is an important coolant.
Yelle (2004) included heating arising from photoioniza-
tion of hydrogen, but ignored the attenuation of the stel-
lar Lyman continuum into the atmosphere, leading to
an overestimate of the heating rate. This attenuation
of EUV in the H layer will also lead to smaller heating
by H2 photoionization much deeper in the atmosphere.
Murray-Clay et al. (2009) included finite optical depth,
but enforced an exponential cutoff which led to a steep
temperature drop below the NHσpi = 1 point. As shown
in Figure 9, the exponential cutoff is too rapid, and the
slower power-law cutoff found here gives additional heat-
ing deeper in the atmosphere.
Figure 10 shows that the nH = np and NHσpi = 1

points occur near each other at D = 0.05 AU, hence
attenuation due to finite optical depth cannot be ignored.
The relative position of the nH = np and NHσpi = 1
layers can be estimated as follows. The number density
at which np = nH is

neq=
J

αB

≃ 1.8× 108 cm−3

(

T

104 K

)0.8(
0.05 AU

D

)2(
J

J0

)

.(49)

This can be converted into a pressure as

Peq=3kbTneq
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=8.0× 10−4 dyne cm−2

(

Mp

MJ

)(

1010 cm

R

)(

10

λ

)

×
(

0.05 au

D

)2(
T

104 K

)0.8(
J

J0

)

(50)

The D−2 scaling implies that the atmosphere becomes
neutral out to smaller pressures as the planet moves
away from the star. To estimate where NHσpi = 1,
we assume np ≫ nH , P ≃ 2kbTnp, and eq.41 gives
nH ≃ n2

p/neq,0, where neq,0 = J0/αB. For H atom scale
height ≃ kbT/mpg, the pressure at which NHσpi = 1 is

PNHσpi=1≃ 2kbT

(

neq,0mpg

kbTσpi

)1/2

∝ D−1. (51)

The scaling with D in eq.51 implies that planets further
from the star will become optically thick at lower pres-
sure. Comparing the scalings in eq.50 and 51, one may
expect 50% ionization to occur outside NHσpi = 1 at
sufficiently large D.
Lastly, we note that since the cooling rate ∝ nenH ,

we may expect Lyman α cooling to be inefficient at both
high and low density, where other cooling mechanisms,
such as heat conduction, may be more efficient.

9. GLOBAL MODELS

We now attempt to construct global models for the
magnetosphere, in order to compute the planetary trans-
mission spectrum and mass loss rates. We assume the
following magnetic field model (Mestel 1968; Okamoto
1974):

B(r, θ)=







B0

(

R
r

)3 (
er cos θ +

1
2eθ sin θ

)

, (r < rd)

B0

(

R
rd

)3
(

rd
r

)2
cos θer, (r > rd).

(52)

This global field model allows a position (r, θ) to be as-
sociated with a base co-latitude θb at r = R. The field
is dipole for r < rd, and radial outside rd. This radial
field is distinct from the split monopole due to the cos θ
factor. Eq.52 is approximately correct for the dead zone,
and also for determining the sonic point position in the
wind zone if the sonic point is close to the planet. How-
ever, as ballistic trajectories with speeds far less than
escape speed are expected to be bent down toward the
orbital plane, the radial field assumption will be unphys-
ical for some latitudes.
Given parameters λ, ǫ, β, and longitude φ, we first

solve eq.26 for rd using dipole geometry. For field lines in-
side the dead zone, sin θb > sin θd =

√

R/rd, the velocity
is zero and the density is given by the hydrostatic expres-
sion in eq.19, where Pss is a model parameter. On field
lines outside the dead zone, sin θb < sin θd =

√

R/rd, we
search for sonic points by looking for minima of the quan-
tity − ln(B/B0) − U/a2 on field lines, between the base
radius R and a chosen maximum radius rmax. Given the
position of the sonic point (rs, θs), the Bernoulli equation
v2/2 + a2 ln(B/v) + U = constant can be used to solve
for the velocity at the base, vb(θb, φ). Given vb and the
base density (eq.18), the Bernoulli equation may again
to used to find the run of v and ρ on the field line.
Detailed results will be presented for the 9 models

listed in Table 1. The planetary mass and radius, and the

stellar mass and radius are characteristic of HD 209458b.
We vary parameters not directly measured, such as Pss,
a, B0, as well as the orbital radius D.
The numerical implementation of the sonic point solver

deserves further discussion. Anywhere from zero to sev-
eral solutions to eq.30 may be found in the interval
R ≤ r ≤ rmax. Some sonic points may be spurious if
a potential barrier exterior to the sonic point decelerates
the flow to subsonic, even zero, speed. These spurious
solutions are discarded by defining the true sonic point
solution to be a global minimum of − ln(B/B0) − U/a2

which occurs within the interval R < r < rmax. If the
global minimum occurs at either of the endpoints of the
interval, then there is no good sonic point solution.
For minimum at the base r = R, the integration is

flagged as a region of parameter space with no solution,
as we should have used a base position deeper in the
planet. For sonic points sufficiently deep in the planet
that ram pressure dominates magnetic pressure at the
sonic point, we expect the Roche lobe overflow model to
be recovered. The other problem is that the global min-
imum can occur at the outer boundary of the integra-
tion, r = rmax. For instance, this can occur in the polar
regions due to the upwardly increasing potential. For
r > rd, field lines with sin θ > sin θcrit = f−1/2 have out-
ward tidal force. Field lines with outward tidal force will
have fluid accelerated outward, promoting the existence
of a sonic point. The field line starting at base co-latitude
sin θb,crit = (R/frd)

1/2 will be the last field line on which
the tidal force points outward. Accordingly, if no sonic
point solution is found in the radial range R < r < rmax,
and the field line has sin θ < sin θb,crit, then we treat
the field line as hydrostatic and set the velocity to zero.
Such field lines have outwardly increasing potential, and
hence outwardly decreasing density. If, however, we had
used a field line model that allowed the field at r > rd
to bend downward toward the orbital plane, it is likely
that a sonic point could have been found. This affects
our later numerical results, as we analytically predicted
the critical tidal strength to be ǫ = 4/λ2 in order to find
sonic points in the polar region, whereas the above pre-
scription would force these field lines to be hydrostatic
due to the potential barrier. This approximate treatment
of the polar regions likely does not affect either the total
mass loss rate, or the column density profiles, since the
sonic point will be so far from the planet that the veloc-
ity near the planet is quite subsonic, and the fluid will
be nearly hydrostatic.
Figure 11 shows the density and speed along a partic-

ular field line in the wind zone. The change in slope near
r = 4.7R is the change in field geometry at r = rd. The
speed along the field line is somewhat larger than the
asymptotic result in eq.40 due to the enthalpy (ln) terms
in eq.39. In the lower panel, the density is approximately
hydrostatic inside the sonic point at rs = 2.4R, and de-
creases roughly as ρ ∝ B/v ∝ r−3 outside that point.
This plot explicitly demonstrates that the gas density in
the wind zone can be orders of magnitude smaller than
nearby gas in the dead zone, which satisfies hydrostatic
balance.
Figure 12 shows contours of mass density on slices

through the center of the planet in the y − z plane, as
viewed during transit, and the x−z plane, as viewed mid-
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TABLE 1
Global Models

model Mp
a Rph

b Dc Rd Pss
e af B0

g λh ǫi βj rL
k rs,0l rd

m δF/F n Ṁo rscatp

# (MJ ) (RJ ) (AU) (RJ ) (µbar) (km/s) (G) (R) (R) (R) (g/s) (R)

1 0.7 1.3 0.05 1.4 0.04 10.0 8.6 9.3 0.032 0.054 4.6 3.1 6.0 0.074 9.3× 1010 6.6
2 0.7 1.3 0.05 1.4 0.4 10.0 8.6 9.3 0.032 0.54 4.6 3.1 3.3 0.31 1.4× 1012 10.0
3 0.7 1.3 0.05 1.4 0.004 10.0 8.6 9.3 0.032 0.0054 4.6 3.1 9.7 0.025 6.6× 109 4.5
4 0.7 1.3 0.05 1.4 0.04 13.0 8.6 5.5 0.019 0.054 4.6 1.8 3.0 0.24 1.7× 1012 9.7
5 0.7 1.3 0.05 1.4 0.04 7.5 8.6 16.6 0.056 0.054 4.6 5.5 23.2 0.030 1.5× 108 2.8
6 0.7 1.3 0.05 1.4 0.04 10.0 43.0 9.3 0.032 0.0022 4.6 3.1 11.6 0.091 5.9× 1010 6.8
7 0.7 1.3 0.05 1.4 0.04 10.0 2.9 9.3 0.032 0.49 4.6 3.1 3.4 0.072 1.4× 1011 7.8
8 0.7 1.3 0.025 1.4 0.04 10.0 8.6 9.3 0.25 0.054 2.3 3.1 6.4 0.075 6.6× 1010 4.2
9 0.7 1.3 0.10 1.4 0.04 10.0 8.6 9.3 0.0040 0.054 9.2 3.1 5.9 0.096 1.4× 1011 7.7

a Planet mass.
b Transit radius.
c Orbital separation.
d Radius at the base of the warm H layer.
e Pressure at base radius (r = R) at the substellar point (θ, φ) = (π/2, 0).
f Isothermal sound speed.
g Magnetic field at pole (θ = 0, π) at base radius (r = R).
h λ = GMp/Ra2
i ǫ = (ΩR/a)2 , where Ω is the orbital frequency.
j β = 8πPss/(B0/2)2 is the base value at the substellar point.
k Radius of L1 − L2 Lagrange points.
l Sonic point radius ignoring tides and field line curvature (eq.34).
m Dead zone radius in φ = π/2 plane.
n Integrated Lyman α transit depth from −200 to 200 km s−1 from line center. The disk inside the base radius is asssumed opaque, and
contributes (R/R⋆)2 ≃ 0.015 to the transit depth for R = 1.4RJ and R⋆ = 1.15R⊙.
o Computed mass loss rate.
p Radius (Ascat/π)1/2 corresponding to area Ascat in x− z plane over which τν ≥ 1 for Lyman α cross section σν = 10−15 cm2. This cross
section corresponds to a velocity ≃ 25 km s−1 from line center.

Fig. 11.— Velocity and density versus radius along a field line
in the wind zone. Model 1 parameters from Table 1 are used. The
field line is located at φ = 0 with θb = 0.35 rad. The dead zone is
at θd = 0.48 rad and the critical field line is at θb,crit = 0.23. The
discontinuity at r/R = 4.7 is the dead zone radius, where the field
changes shape. The line labeled “tide only” is the asymptotic ap-
proximation in eq.39, and the line labeled “hydrostatic” evaluates
the density using the hydrostatic balance approximation in eq.19.

way between primary and secondary transit. The quan-

tity plotted is ρ/mp = nH+np (note that this quantity is
distinct from the total number density ntot = nH + 2np,
which depends on the details of the photoionization
model). Model 1 parameters listed in Table 1 were used.
Near the planet the contours are approximately spheri-
cal, since the velocities are everywhere subsonic and the
tidal force is small. The bulge at the equator is the equa-
torial dead zone. The poles are hydrostatic as tides have
shut down the wind, and the inward tidal force at the
pole causes the density to decrease outward faster than
at the equator. The impact of the tidal force on the dead
zone can be seen by comparing the upper and lower pan-
els in Figure 12. Along the x-direction, the outward tidal
force decreases the size of the dead zone, but the same
tidal force also causes the dead zone to have higher den-
sity. Outside the sonic point, the density in the wind
zone is smaller than in the neighboring dead zone, which
pushes the density contours inward in the wind zone.
Near the equator, outside the dead zone, the density be-
comes quite small, hence the pile-up of contours near the
critical angle sin θcrit.
In the next section, the wind models in Table 1 are used

to compute the planetary mass loss rate in the wind zone.

10. MASS LOSS RATE AND SPIN-DOWN TORQUE

The mass loss rate is computed by integrating ρvr =
ρbrvb over the surface area of the wind zone at the base.
Using the base density from eq.18, the mass loss rate is

Ṁ =R2ρss

∫ 2π

0

dφ

∫

wind zone

dθb sin θb brvb

(

ρb(θb, φ)

ρss

)

=R2Pssa
−1 F(λ, ǫ, β)
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Fig. 12.— Contours of mass density, log10 ρ/mp[cm−3] in the
y − z plane (upper) at x = 0, and in the x − z plane (lower) for
y = 0. Model 1 parameters are used (see Table 1).

=4.0× 1012 g s−1

(

R

1.4RJ

)2

×
(

Pss

0.04µbar

)(

10 km s−1

a

)

F(λ, ǫ, β), (53)

where the dimensionless integral

F(λ, ǫ, β)=8

∫ π/2

0

dφ

∫ θd

0

dθb sin θb br

(vb
a

)

(

ρb(θb, φ)

ρss

)

.(54)

The mass loss rate for fixed M , R and B0, but varying
a, D and Pss is shown in Figure 13. The steep decline
of Ṁ with λ is due to smaller density at the sonic point
radius. The mass loss decreases slightly for large ǫ due
to the smaller fraction of open field lines.
Why is the mass loss rate Ṁ proportional to the base

pressure Pss? Recall that we are approximating the true
atmosphere with an isothermal model. The appropriate
values of a2 and Pss, as determined by photoionization
equilibrium and heating/cooling balance, have been dis-
cussed in section 8. The sonic point lies at a fixed radius,
given roughly by eq.34 based on the choice of sound speed
a. The location of the base of the isothermal layer is also
at a fixed radius, estimated to be 1.1Rph (see § 4). By

Fig. 13.— Total mass loss rate as a function of λ for Mp =
0.7MJ , R = 1.4RJ and B0 = 8.6 G. The upper (lower) set of three
curves uses base pressure Pss = 0.04 (0.004)µbar. The line style in
each set of three curves gives the value of ǫ, the tidal strength.

eq.19, ρ(r = rs) ∝ ρss, therefore the density at the sonic
point is proportional to the base density ρss (and there-
fore also Pss). Consequently, if a larger value of Pss is
required to explain the transit depth, the mass loss must
be increased proportionally.
The mass loss rates in Figure 13 are largely consis-

tent with previous studies (e.g., Murray-Clay et al. 2009)
when comparable gas density is used. By compari-
son, an unmagnetized, spherically symmetric, isother-
mal wind would have (Lamers & Cassinelli 1999) F ≃
πλ2 exp(3/2 − λ), which would be a factor of ≃ 3 − 10
larger than the curves in Figure 13, and with a slightly
flatter slope. Inclusion of the magnetic field decreases
the mass loss rate, mainly due to the decrease in area
occupied by the wind zone.
The angular momentum loss rate depends on the ra-

dius at which the torque is applied. For an isolated
planet, the field lines remain rigid out to the Alfvén ra-
dius. But this location may be at many tens of planetary
radii, and may be pre-empted by the interaction of the
planetary wind with the stellar wind. By assuming the
torque is exerted at a radius rtorque we estimate an an-
gular momentum loss rate

ṀΩr2torque≃ 7.3× 1028 erg

(

1 day

Porb

)

×
( rtorque
1011 cm

)2
(

Ṁ

1011 g s−1

)

. (55)

While this torque may cause moderate changes in the
spin rate for an isolated planet on Gyr timescales, it
likely not large enough to torque the planet away from
synchronous rotation to the extent that significant grav-
itational tidal heating will occur (see Arras & Socrates
2009, for a discussion of the necessary torques).
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11. NEUTRAL HYDROGEN COLUMN DENSITY

Given the global MHD models derived in section 9, we
require a model for the run of ionization in the magneto-
sphere in order to compute observable quantities such as
the transmission spectrum. In section 8, we discussed a
model including only the dominant processes: photoion-
ization and radiative recombination of hydrogen. In the
remainder of the paper, we use the simpler optically thin
limit to evaluate nH given ρ:

nH =





√

neq,0 + 4 ρ
mp

−√
neq,0

2





2

. (56)

Here neq,0 = J0/αB is the density at which nH = np in
the optically thin limit. The use of J0 instead of J simpli-
fies the calculation, as only the local density is required,
and not the column NH . This approximation may un-
derestimate nH near the H-H+ transition, but should be
adequate for our purposes.
To evaluate the neutral hydrogen column density,

we first evaluate ρ (§ 9), and then nH (eq.56), on
a grid of (x, y, z), with each coordinate in the range
(−1.1R⋆, 1.1R⋆). The column is displayed as seen at
transit, i.e. we integrate over the coordinate along the
star planet line to get column

NH(y, z)=

∫ 1.1R⋆

−1.1R⋆

dx nH(x, y, z) (57)

as a function of the impact parameters y and z. Figure
14 shows contours of hydrogen column density for the 9
models listed in Table 1. All models have Mp = 0.7MJ

and R = 1.4RJ , and vary a single parameter Pss, a,
B0 and D in turn. The fiducial case, Model 1, clearly
shows the equatorial and polar dead zones, as well as the
mid-latitude wind zone with comparatively smaller NH .
Model 2 (3) has Pss larger (smaller) by a factor of 10.
This has the effect of decreasing (increasing) the dead
zone size as well as scaling up (down) the density in the
dead zone. Model 4 (5) has larger (smaller) a, leading
to larger (smaller) density at a given distance from the
planet, as well as increasing (decreasing) the size of the
dead zone. Model 6 (7) has larger (smaller) B0, which
increases (decreases) the size of the dead zone. Model 8
(9) has smaller (larger) D. Larger tide is more effective
in shutting down the wind at the pole, but also decreases
the size of the dead zone.
Aside from the overall magnitude mainly set by the

base pressure Pss and sound speed a, the dominant pa-
rameters determining the appearance of each plot are
the equatorial and polar dead zone sizes. The equatorial
dead zone size (see Figure 5) depends on λ, β and ǫ. The
size of the polar dead zone is set by the strength of the
tidal force. The critical tidal strength in eq.37 refers to
shutting down the wind at θb = 0, and assumes dipole
field geometry. For ǫ > ǫcrit, a range of θb near the pole
can have the wind shut off. The result depends on the
which field geometry is chosen. For instance, the sonic
point eq.32 can be rederived for radial field lines. The
discriminant of this cubic equation can be used to show
that no sonic point can be found for

sin2 θ.
1

fǫ

(

ǫ− 32

27λ2

)

. (58)

The critical tidal strength for radial field lines is ǫcrit =
32/(27λ2), a slightly different numerical coefficient than
the dipole case. As ǫ increases above ǫcrit, the size of the
polar dead zone increases. In the limit ǫ ≫ ǫcrit, the wind
is shut down in the entire region sin2 θ ≤ 1/f where the
tidal force is inward. For large ǫ and small β, the polar
and equatorial dead zones can dominate the volume near
the planet (e.g., Model 6).

12. LYMAN α TRANSMISSION SPECTRA

In section 11 we focused on understanding the hydro-
gen column as a function of impact parameter, including
the dependence on unknown parameters such as temper-
ature and magnetic field. An additional effect on the
transmission spectrum is the velocity gradients in the
wind, which were studied in sections 7 and 9. In this
section we compute the Lyman α transmission spectra
for the global models, including both column and veloc-
ity gradient effects.
The transmission function, Tν , is the fraction of stellar

flux at frequency ν which passes through the planet’s
atmosphere without suffering scattering out of the beam.

In terms of the out-of-transit stellar flux, F
(0)
ν , and the

in-transit flux, Fν , Tν is defined as

Tν =
Fν

F
(0)
ν

. (59)

If the interstellar medium (ISM) optical depth, τ
(ISM)
ν , is

constant over the stellar disk, and in time, and the geo-
coronal emission is independent of time, then the ratio in
eq.59 depends solely on the properties of the planetary
atmosphere, and is the fundamental quantity to compare
to the data.
We compute Tν as follows. Let σν be the Lyman α line

cross section. We simplify the problem by assuming the
planet to be at the center of the stellar disk. The optical
depth through the planet’s atmosphere at position (y, z)
on the stellar disk is

τ (p)ν (y, z)=

∫

dx nH(x, y, z) σν(x, y, z). (60)

Assuming the stellar intensity is uniform over the disk,

Tν =
1

πR2
⋆

∫

dydz e−τ (p)
ν (y,z), (61)

where the integral extends over y2 + z2 ≤ R2
⋆. As an

integrated measure of the transit depth, we compute

δF

F
=

∫

dνI
(⋆)
ν e−τ (ISM)

ν (1− Tν)
∫

dνI
(⋆)
ν e−τ

(ISM)
ν

(62)

where I
(⋆)
ν and τ

(ISM)
ν are the unabsorbed stellar in-

tensity and ISM optical depth, both assumed uniform
over the disk. In practice, we follow Ben-Jaffel (2008)
and integrate over −200 km s−1 ≤ ∆v ≤ 200km s−1.
The interstellar medium (ISM) is assumed to have
a temperature Tism = 8000 K and hydrogen column
NH,ism = 1018.4 cm−2 (Wood et al. 2005), implying
the line is dark inside linewidth ∆v = c(ν − ν0)/ν0 .

50 km s−1. For I
(⋆)
ν we use the following (unnor-

malized) fit to the quiet solar Lyman α spectrum
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Fig. 14.— Contours of hydrogen column density, log10(NH [cm−2]), versus impact parameter in the y− z plane observed during transit.
The parameters for each plot are matched to the labeled model numbers in Table 1.

presented in Feldman et al. (1997) (downloaded from
http://www.mps.mpg.de/projects/soho/sumer/FILE/
Atlas.html):

I(∗)ν =

[

1 +

(

∆v

67 km s−1

)3
]−1

. (63)

The Voigt function H(a, u) (Mihalas 1978) is used for
the line profile, giving

σν =
πe2

mec
f12

1√
π∆νD

H(aD, u) (64)

where −e is the electron charge, me is the electron mass,
and f12 = 0.42, λ0 = 1215Å and ν0 = c/λ0 are the Ly-
man α oscillator strength, line center wavelength and fre-
quency. The Doppler width is ∆νD = ν0vth/c where the
hydrogen atom thermal velocity is vth = (2kbT/mp)

1/2.
The damping parameter is aD = Γ/4π∆νD, where the
natural linewidth is Γ = 6.25× 108 s−1. Finally, the dis-
tance from line center, in Doppler widths, including both

bulk motion and thermal broadening, is

u=
ν − ν0
∆νD

+
vx
vth

(65)

where vx is the bulk motion directed from planet toward
star, which is away from the observer.
There are three instructive limits of eq.61 to guide the

intuition. First, if vx = 0 and the gas is optically thick
over an area Atran, with negligible optical thickness out-
side this area, the fraction of flux absorbed by the planet
is

1− Tν =
Atran

πR2
⋆

= 0.013

(

Atran

π(1.3RJ)2

)(

1.15R⊙

R⋆

)2

.(66)

Next, if vx = 0 and the gas is optically thin, then the
transit signal due to the optically thin area is

1− Tν ≃
1

πR2
⋆

∫

τ
(p)
ν ≪1

dydzτ (p)ν (y, z) ≡ 〈τ (p)ν 〉, (67)

which is just the area-averaged optical depth, and is pro-
portional to the total number of hydrogen atoms times

http://www.mps.mpg.de/projects/soho/sumer/FILE/
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Fig. 15.— Lyman α cross section as a function of velocity width
from line center. Both profiles are given for a temperature T = 104

K. The solid line is for zero bulk velocity away from the observer,
while the dashed line is for ∆v = 50 km s−1. For bulk velocity
toward the observer, the dashed curve would be reflected about
∆v = 0.

their mean cross section. The third limit is when ther-
mal motions are much smaller than bulk motions, and
the line profile can be approximated as a delta func-
tion δ [ν − ν0(1− vx/c)]. In this case, the cross section
is only nonzero at those values of x⋆ = x⋆(ν, y, z) where
vx(x∗, y, z) = c(ν0−ν)/ν0 is satisfied, so that the photon
is shifted to line center in the atom’s frame. In this case
the optical depth becomes

τ (p)ν (y, z) = nH(x⋆, y, z)
πe2

mec
f12

λ0

|∂vx(x⋆, y, z)/∂x|

≃ 2× 10−3

(

nH(x⋆, y, z)

1 cm−3

)(

Porb

1 day

)

Ω

|∂vx(x⋆, y, z)/∂x|
,(68)

where in the second equality we have scaled the velocity
gradient to the orbital frequency Ω. Eq.68 shows that for
hydrogen densities nH & 102−3 cm−3, the optical depth
along a line of sight will be high provided that there
is gas with sufficiently large velocity to absorb at that
wavelength.
Figure 15 shows the cross section as a function of fre-

quency in velocity units, at T = 104 K and for ∆v = 0
and ∆v = 50 km s−1. For HD 209458b, the transit radius
is Rph = 1.3RJ and the stellar radius is R⋆ = 1.15R⊙,
giving a transit depth δF/F = 0.013 in the optical con-
tinuum. To explain the line-integrated Lyman α transit
depth ≃ 9% (e.g., see the discussion in Ben-Jaffel 2008)
one could invoke an opaque disk of area ∼ π(2.6Rph)

2.
The central issue is that this disk must be opaque at
∆v & ±100 km s−1 from line center, requiring large
columns of neutral hydrogen at radii 2− 3Rph.
In Figure 10, triangle symbols show where Lyman α

radiation at frequencies ±100 km s−1 from line center
is optically thick on a radial line outward. This point
is much deeper in the atmosphere from where Lyman
continuum at threshold becomes optically thick, due to

the rapid decrease in Lyman α cross section. Clearly
in order to model the transit spectrum in the wave-
length region of interest, one must include regions down
to ∼ 1 − 10 nbar in the atmosphere. To quantify this
statement, we compute the optical depth through the H
layer where nH ≃ ρ/mp is given by eq.17. Assuming the
dominant contribution arises from the layer of steeply
falling density, the slant optical depth is dominated by
the region near x = 0 and we find

τ (p)ν (y, z) = σν

(

ρ(x = 0, y, z)

mp

)

×
∫

dx exp

[

− 1

2a2

(

GMp

b3
− 3Ω2

)

x2

]

≃σν

(

ρ(x = 0, y, z)

mp

)(

2πb3/λR

1− (b/rL)3

)1/2

≃ 1.2

(

100 km s−1

∆v

)2(
P (x = 0, y, z)

1 nbar

)(

10 km s−1

a

)2

×
(

10

λ

)1/2(
b

R

)3/2(
R

1.3 RJ

)

(

1− (b/rL)
3
)−1/2

. (69)

Here b =
√

y2 + z2 is the impact parameter, eq.3 was
used for the tidal potential, rL is given by eq.7, and the
last equality assumes the cross section is on the damping
wing (see Figure 15). In the H+ layer, eq.69 should be
multiplied by 1/2 to account for the smaller H atom scale
height. Eq.69 agrees roughly with the position of the
triangles in Figure 10, keeping in mind that the slant
length is a factor of a few larger than the scale height.
Eq.69 shows that the Lyman α transmission spectrum at
∆v = ±100 km s−1 is probing down to . nbar pressures,
depending on the value of b/R.
To give a more precise numerical estimate of the transit

depth, we first compute the integrated quantity δF/F as
in eq.62 for the 9 models in Table 1. The result is given
in the table. The velocity range is taken to be −200 ≤
∆v[km s−1] ≤ 200. Since 1 − Tν decreases away from

line center, (1−Tν)F
(0)
ν is peaked somewhat closer to line

center than F
(0)
ν , the amount depending on the details of

the atmosphere. Transit depths of the correct magnitude
δF/F ∼ 5− 10% can be achieved by adjusting the main
parameters, Pss ≃ 10− 100 nbar and a ≃ 8− 12 km s−1

to have values as expected from the 1D model in Figure
10. The parameters B0 and D have a lesser impact by
comparison.
The frequency dependent transit depth, 1 − Tν , was

computed as in eq.61 for the 9 models listed in Table

1, and compared to the data for (F
(0)
ν − Fν)/F

(0)
ν from

Figure 6 of Ben-Jaffel (2008). The results are shown in
Figure 16. Near line center, nearly the entire planetary
atmosphere is optically thick, and absorption is nearly
complete. Moving out from line center in the Doppler
core, the cross section eventually becomes small enough
that part of the atmosphere becomes optically thin, after
which 1 − Tν decreases rapidly. The curves level out
when the damping wing is reached, after which 1 − Tν

decreases slowly as the τ
(p)
ν = 1 point moves deeper into

the atmosphere as P (x = 0, y, z) ∝ ∆v2.
Given the large error bars, a range of parameter space



19

Fig. 16.— Fractional flux decrease, 1 − Tν , versus frequency in velocity units for HD 209458b. Curves for Models 1-9 from Table 1 are
computed from eq.61 and points with error bars are the data from Figure 6 of Ben-Jaffel (2008).

agrees with the data if the warm H layer extends suf-
ficiently deep. For instance, Model 3 with base pres-
sure Pss = 4 nbar is well below the data points with the
smallest error bars, in agreement with Murray-Clay et al.
(2009). The most sensitive parameter dependencies are
with the base pressure, Pss, and the sound speed (temper-
ature), a. Increasing the magnetic field has the effect of
increasing 1−Tν due to larger NH in the magnetosphere.
Somewhat offsetting this effect is that increasing B0 de-
creases the size of the wind zone, which decreases absorp-
tion near line center due to velocity gradients. Perhaps
counter-intuitively, moving the planet further from the
star increases the transit depth. Inspection of Figure 10
shows that the H extends to both lower pressure and
larger radius for more distant planets with atmospheres
in photoionization equilibrium. Lastly, we note that ve-
locity gradients are only important for ∆v . 50 km s−1,
and are more important for smaller D due to the larger
tidal force.
We end this section with a brief discussion of scatter-

ing of Lyman α from H atoms in the magnetosphere.
The problem with observing Lyman α during transit

is that large NH is required to create τ
(p)
ν ≃ 1 at

∆v & 100 km s−1. By contrast, at line center the cross
section is ∼ 105 times larger, implying the atmosphere
is optically thick at line center out to much larger radii.
We suggest that scattering of stellar Lyman α during the
orbital phases in which the planet is moving toward or
away from the observer may be detectable, and provides
a probe of thermal gas in the magnetosphere, comple-
mentary to the transmission spectrum measured during
transit. During the orbit, the Doppler shift of the scat-
tered spectrum varies in time due to the variation in
line-of-sight orbital motion. The orbital velocities natu-
rally produces a feature in the spectrum well outside the
line core where ISM absorption dominates.
For a planet in circular orbit, there is no relative radial

motion with respect to the star, and the stellar spectrum
at the planet is not Doppler shifted. However, when an
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H atom in the planet resonantly scatters a stellar photon,
that H atom is moving with respect to the observer due to
the planet’s orbital motion. Photons emitted by the star
near line center (∆v . 67 km s−1) have their frequen-
cies shifted by vorb = 210 km s−1(1 day/Porb)

1/3 (for a
solar mass star) due to the planet’s orbital motion. To
assess the area presented by the magnetosphere, we com-

puted the area in the x − z plane for which τ
(p)
ν & 1 for

σν = 10−15 cm2, which corresponds to ∆v = 25 km s−1

from line center for T = 104 K. The results are tabulated
in Table 1. We find that the effective radius of the scat-
tering disk is rsc ∼ (5− 10)R for the models shown. The
scattering disk for Lyman α is significantly larger than
the radius inferred during transit. Assuming none of
the resonantly scattered Lyman α photons are absorbed,
and also assuming the Lambert phase function (Hapke
1993) as an estimate, the reflected flux is Frefl(ν) =
F⋆(ν

′)(2/3π)(rsc/D)2, where ν ≃ ν0±vorb is the observed
frequency, ν′ ≃ ν0 was the frequency emitted by the star
before Doppler shift, and F⋆(ν) is the stellar Lyman α
spectrum. The size of the reflected flux relative to the
flux emitted by the star out on the wing at frequency ν
is then Frefl(ν)/F⋆(ν) = (F⋆(ν

′)/F⋆(ν))(2/3π)(rsc/D)2.
Inspection of eq.63 shows that the line center flux is ≃
30(∆v/200 km s−1)3 times larger than that at ∆v. This
acts to enhance the scattered flux signal relative to the
background flux level. Numerically we find the ratio of
scattered, Doppler shifted flux to background stellar flux
is then Frefl(ν)/F⋆(ν) ≃ 0.4(rsc/10RJ)

2(1 day/Porb)
7/3.

While this signal may be small for HD 209458b at
Porb = 3.5 days, Frefl(ν)/F⋆(ν) ≃ 0.02(rsc/10RJ)

2, for
planets with Porb = 1 − 2 days it may be large enough
to be observable.

13. COMPARISON TO ROCHE-LOBE OVERFLOW

The magnetic wind model developed in this paper dif-
fers in several respects from purely hydrodynamic mass
loss models (e.g., Lubow & Shu 1975). In the standard
Roche-lobe model for nearly equal mass stars, nearly all
the gas leaves the donor in a narrow, cold stream through
the L1 Lagrange point. The first assumption underly-
ing this solution is that rs,0 ≫ rL1, so that the gas is
subsonic at the L1 equipotential for most (θ, φ). From
eq.7 and eq.34, this ratio is rs,0/rL = (ǫλ2/9)1/3, and
hydrodynamic Roche lobe overflow requires ǫ ≫ 9/λ2.
Figure 6 plots ǫ versus λ, and shows that most, but
not all, transiting planets are indeed in the rs,0 ≫ rL
regime; ignoring magnetic effects, Roche lobe overflow
would then be a good approximation. In the opposite
limit of ǫ ≪ 9/λ2, the solution would more closely re-
semble a thermally driven wind weakly perturbed by
tides. The second assumption underlying a narrow flow
through L1 is that the mass ratio of the two bodies
is near unity. Although the tidal expansion r ≪ D
in eq.3 ignores the difference in potential between the
L1 and L2 Lagrange points, inclusion of higher order
terms gives UL2 − UL1 ≃ 2GMp/(3D) for the potential
difference (Murray & Dermott 2000). When the ratio
2GMp/(3Da2) = (2/3)(ǫλMp/M⋆)

1/3 ≪ 1, the density
difference between the L1 and L2 points is small, and
nearly equal mass loss is expected through L1 and L2.
While mass loss through L1 enters into an orbit around
the star, mass loss through L2 leads to gas in a circumbi-

nary orbit.
MHD effects, in particular the existence of a dead zone,

further limit the applicability of the Roche lobe model. If
the planet has a sufficiently large magnetic field that the
L1 Lagrange point lies inside the dead zone, gas pressure
is insufficient to open the magnetic field lines and the
flow through the L1 point is expected to be choked off.
Also, the magnetic field may torque the gas, keeping it
in corotation with the planet out to the Alfvén radius.
By contrast, if B2/8π ≪ P ≃ ρv2 at the sonic point, and
rs,0 ≫ rL, magnetic stresses and tides may be ignored
the Roche-lobe model is expected to be recovered.
For the models of HD 209458b considered in this pa-

per, inspection of Table 1 shows that rs,0, rL and the
dead zone radius rd may be within factors of a few of
each other, and the situation is more complex than the
simplified Roche-lobe overflow model permits.

14. SUMMARY AND DISCUSSION

The objective of this paper was to develop a model
for the upper atmospheres of hot Jupiters, including the
influence of a dynamically important magnetic field. Our
starting point (§’s 2, 3, 4, 6, 7, 9 and Appendix A) was to
estimate field strengths for hot Jupiters, and to apply the
theoretical model developed for MHD winds from stars
to the case of winds escaping from the upper atmospheres
of planets. In the process, we included strong tidal forces
from the parent star (§’s 5, 6, and 7). We computed a
1D model of the temperature profile and ionization state
of the atmosphere (§ 8), and constructed maps of neutral
hydrogen column and fluid velocities to understand the
mass loss and transmission spectra of HD 209458b (§’s 9,
10, 11, and 12). We contrast this model to the standard
Roche-lobe overflow model (§ 13) and verify, a posteriori,
the validity of the MHD approximation (Appendix B).
In section 3, we discussed the application of dy-

namo models to understand the magnetic field strength
generated by the planet, which is currently uncon-
strained by observations. Using the recent results of
Christensen et al. (2009), which showed that the dynamo
field increases with heat flux in the planet’s core, we ar-
gued that the large radii of hot Jupiters, and hence large
core flux, imply that the magnetic fields of inflated hot
Jupiters may be larger than Jupiter’s field. This moti-
vated exploring a wide range of possible magnetic field
strengths, both smaller and larger than Jupiter’s field.
The formation of a dead zone, in which gas pressure

is insufficient to open up magnetic field lines, was mo-
tivated with a toy problem (§ 2) as intuition for under-
standing the detailed structure of the hydrostatic model
(§ 6). The projection of the tidal force along magnetic
field lines was used to derive the “magnetic Roche lobe
radius” (§ 5), outside of which gravity points outward
along the magnetic loop. Net gravity can point out-
ward for loops slightly larger than the distance to the
L1-L2 Lagrange points, even in the plane perpendicular
to the star-planet line. As a result of net outward gravity,
the density may increase outward, as shown in Figure 4.
We defined the key parameters λ and ǫ, characterizing
the binding energy of the gas and the strength of tides,
and their values for the observed transiting planets were
given in Figures 2 and 3. Many close-in planets have
weakly bound atmospheres with λ . 10, and are subject
to strong tidal forces with ǫ & 0.1. The magnetic field
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strength was characterized by the plasma β evaluated at
the base of the atmosphere. Solutions for the radius of
the dead zone depend on the parameters λ, β and ǫ, as
shown in Figure 5. We found that for typical param-
eters, the dead zone extends to ≃ (3 − 20)R, implying
that much of the volume of the magnetosphere near the
planet is occupied by bound gas with no bulk velocity.
Even gas outside the Roche-lobe radius can be static, if
the dead zone is larger than the Roche-lobe radius.
Open field lines, which are capable of supporting an

outflow, were discussed in section 7. The momentum
equation along field lines was used to compute the posi-
tions of the (slowmagneto)sonic points for a set of models
using dipole geometry. Analytic solutions in the limit of
strong and weak tides were given, which illustrated that
inward tidal forces at the magnetic poles (for a magnetic
dipole moment aligned with the orbital angular momen-
tum axis) may eliminate the sonic point solutions near
the planet. Thus, sufficiently strong tides effectively shut
off the wind, creating a second dead zone at the poles.
Figures 7 and 8 show solutions for sonic point radius and
base velocity versus footpoint position. When the sonic
point position moves far from the planet, the base veloc-
ity becomes small, and the field lines are effectively hy-
drostatic. Depending on ǫ and β, the equatorial and po-
lar dead zones may dominate the volume near the planet.
Lastly, we estimated the asymptotic flow speed due to
tides in eq.40, showing that vasymp ≪ 100 km s−1 for
the orbital periods and stellar radii of interest. Con-
sequently, bulk motion cannot affect the Lyman α line
profile at ∆v & 100 km s−1 from line center.
As a prelude to discussion of global models of the mag-

netosphere, and the Lyman α transmission spectrum,
we presented a simple spherical model of photoioniza-
tion and thermal balance (§ 8) in order to assess the size
of the “warm” neutral H layer. We computed the depth
dependence of photoelectric heating in Figure 9, showing
that the heating drops off with pressure as a power-law,
rather than an exponential, into the atmosphere. The
resulting photoelectric heating, which we assumed was
balanced by collisionally-excited Lyman α cooling, gives
temperatures T ≃ (5 − 10) × 103K down to pressures
P ≃ (10 − 100) nbar. As a result, this neutral H layer
contributes significantly to the radius, as shown in Fig-
ure 10. As first stressed by Koskinen et al. (2010), the
location of the warm H layer is key in understanding the
large observed transit depths δF/F ∼ 5 − 10%. The
transit depth due to the layer extending upward from
the H-H+ ionization layer alone is too small to explain
the observations of HD 209458b, as discussed in detail
by Murray-Clay et al. (2009).
Global models of the magnetosphere were constructed

(§ 9), both to compute mass loss rates (§ 10), and to con-
struct maps of the neutral hydrogen column densities for
a range of parameters as observed during transit (§ 11).
A by-product of the warm, deep H layer is a larger mass
loss rate than in studies with more shallow H layers (e.g.,
Murray-Clay et al. 2009). The net mass loss rates are
still insufficient to evaporate the planet, and are reduced
by a factor of 3-10 due to the presence of the magnetic
field for the parameters used. The largest columns within
a few R of the planet occur in the dead zones, and may
receive a contribution from H atoms outside the Roche
lobe, but which are still bound to the planet. Hence,

the observation of H atoms outside the Roche lobe alone
cannot be stated as evidence for mass loss.
The 9 global models in Table 1 were used to compute

Lyman α transmission spectra in section 12. We stress
that the observational quantity most directly compara-
ble with models of the magnetosphere is the fractional
flux decrease between in and out of transit spectra —
this quantity is relatively independent of ISM absorption,
geocoronal contamination, and the background stellar
spectrum, and is directly computable from atmosphere
models. The comparison between the models and data
for HD 209458b from Ben-Jaffel (2008) is shown in Fig-
ure 16. By variation of the base pressure of the warm H
layer, and temperature, models can be made to bracket
the data points, although the large error bars do not
allow precise determination of the atmosphere’s param-
eters. Increased magnetic field is shown to increase the
transit depth, as does moving the planet further from the
star.
A comparison of the MHD wind model presented in

this paper with the more commonly-used Roche-lobe
overflow model was given in section 13. It was argued
that different regimes of accretion are possible depend-
ing on the position of the sonic point (of an isolated
body), the L1-L2 Lagrange points, and the size of the
dead zone. In particular, if the L1 Lagrange point is in-
side the dead zone, gas pressure is insufficient to open up
the magnetic field lines, and a narrow flow through L1
is not possible. These considerations suggest that mass
loss from hot Jupiters may be more complex than the
simple Roche-lobe overflow model. Estimates of collision
rates in the atmosphere (Appendix B) demonstrate the
validity of the MHD approximation, that the e-p-H gas
is well-coupled collisionally at the expected densities and
temperatures in the atmosphere, and that even neutral
H gas cannot ballistically escape the planet.
The model presented in this paper shows that mag-

netic fields may strongly affect theoretical estimates of
fluid density and velocity in the upper atmosphere, and
even the interpretation of transit depths, since neutral
H atoms outside the Roche-lobe radius may not be es-
caping. In future work, we hope to include additional
physical effects, such as the interaction with the stellar
wind, more detailed photoionization calculations includ-
ing heavy elements, and collisional (non-MHD) effects,
which will allow a more comprehensive physical picture
of the upper atmospheres of hot Jupiters.
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APPENDIX

A. MHD WIND EQUATIONS

In this appendix, we present the MHD equations and discuss how currents produced in the magnetosphere modify
the field produced by the planet’s core. This discussion motivates our choice of field geometry used in the global
models.
There is a well developed literature for axisymmetric winds from rotating, magnetized stars. An excellent review is

given by Spruit (1996). Here we rely heavily on the analytic studies in Mestel (1968) and Mestel & Spruit (1987). The
inclusion of the magnetic field can greatly affect the mass loss rate and wind speed for sufficiently fast rotation. We are
not aware of detailed studies of wind launching from rotating magnetized bodies including the non-axisymmetric tidal
acceleration. We postpone a numerical study of such a problem to a future investigation, here using a semi-analytic
treatment.
The three-dimensional MHD equations for steady isothermal flow in the frame corotating with the planet are mass

continuity

∇ · (ρv)=0, (A1)

the Euler equation

v ·∇v + 2Ω× v=−a2∇ ln ρ−∇U +
J ×B

cρ
, (A2)

Ohm’s law for infinite conductivity

E=−v ×B/c, (A3)

the induction equation

∇×E=−1

c
∇× (v ×B) = 0, (A4)

Ampere’s equation

∇×B=
4π

c
J , (A5)

the isothermal equation of state

P =ρa2, (A6)

and the no monopoles condition

∇ ·B = 0. (A7)

We have used constant a2 to rewrite the pressure gradient as −∇p/ρ = −a2∇ ln ρ. The isothermal approximation is
justified in section 8. The Coriolis and centrifugal forces appear in eq.A2 as we work in a corotating frame (see section
5).
To gain further insight, we rewrite eq.A2 using the vector identity v ·∇v = ∇(v2/2)− v × (∇ × v) to obtain

∇W =v × (2Ω+∇× v) +
1

ρc
J ×B (A8)

where

W ≡ 1

2
v2 + a2 ln ρ+ U. (A9)

Constants of the motion can be derived by dotting eq.A8 with B to eliminate the Lorentz force. We find

B ·∇W =− (2Ω+∇× v) · (v ×B) = 0, (A10)

since the electric field vanishes in the co-rotating frame (Spruit 1996). Hence W , the Bernoulli constant, is constant
along field lines. Another way to understand the work done on the gas is to dot eq.A8 with v:

ρv ·∇W =∇ · (ρvW ) = −1

c
v · (B × J) = J ·E = 0. (A11)

In the rotating frame, work is done on the gas by −∇U , while in the inertial frame the electromagnetic field performs
J ·E work on the gas (Spruit 1996).
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To understand the magnetic field structure in more detail, we take the cross product of eq.A8 with B to obtain the
equation of trans-field force balance. Solving this equation for the component of current perpendicular to B we find

4π

c
J⊥≡ 4π

c
(J − bb · J) = 1

v2A
B × [∇W + (2Ω+∇× v)× v] . (A12)

Here vA = B/
√
4πρ is the Alfvén speed. This equation describes the perpendicular currents that must flow in order

to achieve perpendicular force balance. In axisymmetry, this equation is often called the modified Grad-Shafronov
equation (Heinemann & Olbert 1978; Lovelace et al. 1986). Perpendicular currents arise due to either vorticity in the
flow, or variation of the Bernoulli constant from one field line to the next. In the dead zone, the fact that v = 0, and
the further assumption that W is constant at the base, implies that J⊥ = 0 in the dead zone. Parallel currents are
determined from J⊥ by charge conservation, ∇ · J = 0.
An order of magnitude estimate for the fields δB created by volume currents J⊥, compared to the planetary

dynamo-generated fields Bp is

B⊥

Bp
∼ r

B

4π

c
J⊥ ∼ max(a2, v2, Ωrv, (Ωr)2)

v2A,p

, (A13)

where vA,p = Bp/
√
4πρ. The terms separated by commas on the right hand side of eq.A13 are estimates of the

individual terms in eq.A12. This estimate shows that volume currents can only significantly perturb the field out near
the Alfvén radius where v ∼ Ωr ∼ vA,p. As we now discuss, at much smaller radii, of order the dead zone radius, the
field is already strongly perturbed by current sheets.
Mestel (1968) and Mestel & Spruit (1987) discussed the matching conditions between the dead and wind zones. The

finite velocity in the wind zone acts to decrease the pressure there relative to the dead zone. Integrating the momentum
equation across the dead zone-wind zone boundary, the total gas plus magnetic pressure must be continuous, so that
the magnetic field strength must increase moving from the dead to the wind zone. This implies the existence of a
current sheet separating the dead and wind zone boundaries, as shown in Figure 1. Letting the subscripts “d” and
“w” denote quantities just inside the dead and wind zones, respectively, total pressure continuity can be written

Pd +
B2

d

8π
=Pw +

B2
w

8π
. (A14)

For identical conditions at the base, the Bernoulli equation relates the pressures as Pw ≃ Pd exp(−v2/2a2). Considering
only the dipole field from the planet, Bp, and the field δB ≃ 2πK/c produced by current per unit length, K, the fields
in the dead and wind zones are Bw = Bp + δB and Bd = Bp − δB. Plugging in to eq.A14 the solution for the line
density is

K

c
=

Pd

Bp

(

1− e−v2/2a2
)

. (A15)

The ratio of the field produced by the sheet current compared to that from the planet’s core is then

δB

Bp
≃ 1

4
βd

(

1− e−v2/2a2
)

(A16)

where βd = 8πPd/B
2
p is the beta for the planetary field just inside the dead zone. Inside the sonic point in the wind

zone, v ≪ a and sheet currents only slightly perturb the field since δB/B ∼ βdv
2/8a2 ∼ (v/2vA)

2 ≪ 1. Outside the
sonic point, where v/a ≫ 1, we find δB/Bp ∼ βd/4, which increases outward. Hence the field configuration is expected
to be significantly altered from the dipole outside the βd ∼ 1 point in the wind zone. As we have assumed that β ≫ 1
at the sonic point, we expect the field to be altered in between the sonic and Alfvén points.
In addition to the sheet currents at the dead zone-wind zone boundary, there is a sheet current at the equator in the

wind zone. This sheet current causes the reversal in sign of the field near the equator, approaching the split monopole
form B ∝ r−2er sufficiently distant from other current sources near the planet. Since K ∝ Br ∝ 1/r2 in the wind
zone, and K ∝ βd increases in the dead zone, we expect the maximum current to occur near the cusp in the magnetic
field. The polar dead zone is expected to have a smooth transition from dead to wind zone, as Figure 8 shows a gradual
transition. We expect volume currents in this transition, rather than true sheet currents.
Based on these analytic estimates, an approximate field geometry in the wind zone is roughly dipolar inside the

dead zone radius and roughly straight field lines outside. To go beyond this would require a detailed solution of the
trans-field force balance for the field geometry, which is beyond the scope of the present work.

B. MEAN FREE PATHS, ION-NEUTRAL DRIFT AND OHM’S LAW

In this section we discuss the relative motion of the e-p-H gas as well as the magnetic field for the conditions relevant
to hot Jupiters (see Figure 10). Equations and collision rates are taken from Schunk & Nagy (2004), SN hereafter.
To simplify the calculation, we assume all three species are isothermal with temperature T , and we work in the

“diffusion approximation” in which inertial terms are ignored in the fluid equations of each species. Let vj be the
mean velocity of species j, E the electric field, and νjk the momentum-transfer collision rate between species j and
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Fig. 17.— Gyration and collision frequencies versus depth for the model shown in Figure 10.

TABLE 2
Collision and gyration frequencies

Ωe = eB
mec

= 1.8× 107 rad s−1 (B/1G) electron cyclotron

Ωi =
eB
mpc

= 9.6× 103 rad s−1 (B/1G) proton cyclotron

νeH = 6.4 s−1
(

nH/108 cm−3
)

polarization SN eq.4.88 and table 4.1
νHe = 3.5 × 10−3s−1

(

ne/108 cm−3
)

polarization SN eq.4.88 and table 4.1

νep = 3700.0 s−1
(

np/108 cm−3
) (

104 K/T
)3/2

(lnΛep/10) Coulomb SN eq.4.140, 4.56

νpe = 2.0 s−1
(

ne/108 cm−3
) (

104 K/T
)3/2

(lnΛpe/10) Coulomb SN eq.4.140, 4.56

νpH = 1.2 s−1
(

nH/108 cm−3
) (

T/104 K
)1/2

Charge exchange SN table 4.5

νHp = 1.2 s−1
(

np/108 cm−3
) (

T/104 K
)1/2

Charge exchange SN table 4.5

k. Momentum conservation implies njmjνjk = nkmkνkj . We follow Braginskii (1965) and ignore anisotropy in the
collision frequencies, using the parallel value here for simplicity. The effective gravity be denoted g = −∇U and the
pressures are Pj = njkbT . The momentum equations for e, p and H are, respectively,

−ene

(

E +
1

c
ve ×B

)

−∇Pe + neme [g + νep (vp − ve) + νeH (vH − ve)] = 0 (B1)

enp

(

E +
1

c
vp ×B

)

−∇Pp + npmp [g + νpe (ve − vp) + νpH (vH − vp)] = 0 (B2)

−∇PH + nHmp [g + νHe (ve − vH) + νHp (vp − vH)] = 0. (B3)

In order, the terms in eq.B1 are the Lorentz force, the pressure gradient, gravitational force, and collision drag force
between e-p and e-H. We further impose charge neutrality

ne=np, (B4)

and define the center of mass velocity (used throughout the paper)

v=
nemeve + npmpvp + nHmpvH

mene +mpnp +mpnH
≃ npvp + nHvH

np + nH
, (B5)

where the second equality is valid in the me/mp ≪ 1 limit.
The momentum transfer and cyclotron frequencies are given in Table 2. They are shown as a function of depth in

Figure 17 using values of np, nH , T and B = BJ,eq(R/r)3 for the hydrostatic model of the equatorial dead zone shown
in Figure 10. For these parameters, the gyration frequencies are larger than the e and p collision frequencies over the
entire H+ and H layers, implying motion of both e and p perpendicular to magnetic field lines is greatly restricted by
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the magnetic field. Collisions with e are dominated by p well into the H layer, while H dominates collisions with p
deeper than the H-H+ transition. H atom collisions with p dominate over those from e.
For a hydrogen atom traveling at a typical speed cH ≃ 10 km s−1(T/104 K)1/2, the mean free path against collisions

with p is ≃ cH/νHp ≃ 10 km (108 cm−3/np). The proton density is sufficiently large that the mean free path is
smaller than the scale height, ≃ r2/λR, over the entire range shown in Figure 10. We conclude that, due to proximity
to the star, the high temperature and large scale height cause the density to be large enough that a fluid treatment
is appropriate. The hot Jupiter magnetospheres discussed here are collisional, and the exobase is sufficiently distant
from the planet to be of little practical importance. A corollary is that H atoms do not fly ballistically through the
magnetosphere, and hence acceleration by stellar tidal gravity or radiation pressure does not cause acceleration of
H atoms away from the planet (Lyman α radiation pressure is only effective in a thin outer skin where Lyman α
optical depth is less than unity (Murray-Clay et al. 2009)). Rather, acceleration induces a drift velocity, which we now
estimate.
Ignoring the νHe term in eq.B3, the ion-neutral drift velocity is

vH − vp≃
1

νHp

(

g − 1

nHmp
∇PH

)

. (B6)

For a simple estimate of the drift speed, we ignore the pressure gradient term, and use fiducial values g ≃ 103 cm s−2

and νHp ≃ 1 s−1, giving vH − vp ∼ 10 m s−1, and a drift time over a distance RJ of months. However, ignoring
the pressure gradient is a poor approximation. In the H layer, hydrogen atoms provide the pressure support and
so hydrostatic balance implies the quantity in parenthesis in eq.B6 is small. In the H+ layer, in photoionization
equilibrium, the same cancellation occurs, but for a different reason. There, both protons and electrons provide the
pressure support, and so the proton scale height is ≃ 2kbT/mpg. But in photoionization equilibrium, eq.41 implies
nH ∝ n2

p, giving hydrogen scale height ≃ kbT/mpg, so that the terms in parenthesis in eq.B6 very nearly cancel. The

deviations from photoionization equilibrium implies the drift velocity is proportional to a factor np/neq in the H+

layer and neq/nH in the H layer, and the drift velocity is much smaller than the naive estimate ≃ g/νHp, except near
the H-H+ transition. Hence the drift time over a distance ≃ R is much longer than the photoionization time of ≃ hrs,
hence photoionization equilibrium is a good approximation, as little diffusion can occur in between photoionization
events.
Next we discuss deviations from perfect flux freezing. To derive Ohm’s law, we follow Braginskii (1965) and solve

eq.B3 for vH , plug the result into eq.B1, and change references frames from ve to v in the Lorentz force, with the
result

E +
1

c
v ×B=

(

J ×B

neec

)[

ρp
ρ

− ρH
ρ

νHe

νH

]

+
ρH
ρ

1

νHc

(

g − 1

ρH
∇PH

)

×B +
J

σ
+

me

e
g

(

1 +
νeH
νH

)

− ∇Pe

ene
− νeH

νH

∇PH

ene
.(B7)

Here νH = νHe + νHp, σ−1 = (me/nee
2)(νep + νeHνHp/νH) is the conductivity, ρp = mpnp, ρH = mpnH , and

ρ ≃ ρp + ρH . The second term on the left hand side is due to induction. The terms on the right hand side are the
Hall term, drift due to net force on the neutrals, the Ohmic term, the (small) term due to gravity on the electrons, the
electron pressure gradient term, which gives rise to the charge separation field, and its correction due to collisions with
neutrals. The second term on the right hand side may be put in the form of “ambipolar diffusion”, in astrophysical
parlance, by using the total momentum equation

ρHg −∇PH ≃−ρpg +∇(Pe + Pp)−
1

c
J ×B, (B8)

yielding a term

B × (J ×B)

ρc2νH
(B9)

on the right hand side.
Applying eq.B7 to compute magnetic field evolution requires knowledge currents and particle densities. As argued

in Appendix A, the cross-field currents are zero in the dead zone if the Bernoulli constant is uniform at the base
of the atmosphere. While true for the simple case considered in this paper (isothermal, hydrostatic equilibrium),
non-isothermal conditions and/or fluid motion at the base may induce perpendicular currents.
We now discuss the relative size of terms in Ohm’s law. In the H+ layer, the Ohmic diffusivity is η = c2/4πσ ≃

(c2/4π)(meνep/nee
2) ≃ 107 cm2 s−1 (T/104 K)3/2, independent of density. Assuming Ohmic decay is balanced through

the induction term, and that the currents are of order J ∼ (c/4π)(B/r), the required (center of mass) fluid velocity
is v ∼ η/r ∼ 10−3 cm s−1, many orders of magnitude smaller than any characteristic velocity in the problem.
Deep in the H layer, Figure 17 shows that the collision rates, and hence diffusivity, may increase by an order of
magnitude. For nonzero cross field currents, the ratio of the Hall to the Ohmic term is roughly ∼ Ωe/νe ∼ 104, where
νe ≡ νep + νeHνHp/νH . When significant cross field currents exist, the Hall drift speed can be much larger than the
Ohmic drift speed, but still much smaller than the gas sound speed. Lastly, if the neutral drift speed has a cross field
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component, the second term on the right hand side may generate a fluid velocity v ∼ (ρH/ρ)(vH − vp). This drift
speed is much larger than the Ohmic drift speed, although it is still much smaller than the sound speed.
We conclude that, for the ionization models discussed in this paper, the ion-neutral drift velocity and deviations

from flux freezing in the H and H+ layers are small, and single-fluid MHD is a good approximation.

REFERENCES

Arras, P., & Bildsten, L. 2006, ApJ, 650, 394
Arras, P., & Socrates, A. 2009, arXiv:0901.0735
Ballester, G. E., Sing, D. K., & Herbert, F. 2007, Nature, 445, 511
Ben-Jaffel, L. 2007, ApJ, 671, L61
Ben-Jaffel, L. 2008, ApJ, 688, 1352
Ben-Jaffel, L., & Sona Hosseini, S. 2010, ApJ, 709, 1284
Braginskii, S. I. 1965, Reviews of Plasma Physics , 1, 205
Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland, R. L.

2002, ApJ, 568, 377
Christensen, U. R., Holzwarth, V., & Reiners, A. 2009, Nature,

457, 167
Dalgarno, A., & McCray, R. A. 1972, ARA&A, 10, 375
Ehrenreich, D., Lecavelier Des Etangs, A., Hébrard, G., Désert,
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Hébrard, G., Ballester, G. E., Ehrenreich, D., Ferlet, R.,
McConnell, J. C., Mayor, M., & Parkinson, C. D. 2004, ApJ,
604, L69

Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M.,
Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2003,
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