Holes or Empty Pseudo-Triangles in Planar Point Sets

Bhaswar B. Bhattacharya ${ }^{1}$ and Sandip Das ${ }^{2}$
${ }^{1}$ Indian Statistical Institute, Kolkata, India, bhaswar.bhattacharya@gmail.com
${ }^{2}$ Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India, sandipdas@isical.ac.in

Abstract

Let $E(k, \ell)$ denote the smallest integer such that any set of at least $E(k, \ell)$ points in the plane, no three on a line, contains either an empty convex polygon with k vertices or an empty pseudo-triangle with ℓ vertices. The existence of $E(k, \ell)$ for positive integers $k, \ell \geq 3$, is the consequence of a result proved by Valtr [Discrete and Computational Geometry, Vol. 37, $565-576,2007]$. In this paper, following a series of new results regarding the existence of empty pseudo-triangles in point sets with triangular convex hulls, we determine the exact values of $E(k, 5)$ and $E(5, \ell)$, and prove new bounds on $E(k, 6)$ and $E(6, \ell)$, for $k, \ell \geq 3$. By dropping the emptiness condition from $E(k, \ell)$, we get another related quantity $F(k, \ell)$, which is the smallest integer such that any set of at least $F(k, \ell)$ points in the plane, no three on a line, contains a convex polygon with k vertices or a pseudo-triangle with ℓ vertices. Extending a result of Bisztriczky and Tóth [Discrete Geometry, Marcel Dekker, 49-58, 2003], we obtain the exact values of $F(k, 5)$ and $F(k, 6)$, and obtain non-trivial bounds on $F(k, 7)$.

Keywords. Convex hull, Discrete geometry, Empty convex polygons, Erdős-Szekeres theorem, Pseudo-triangles, Ramsey-type results.

1 Introduction

The famous Erdős-Szekeres theorem [9] states that for every positive integer m, there exists a smallest integer $E S(m)$, such that any set of at least $E S(m)$ points in the plane, no three on a line, contains m points which lie on the vertices of a convex polygon. Evaluating the exact value of $E S(m)$ is a long standing open problem. A construction due to Erdős [10] shows that $E S(m) \geq 2^{m-2}+1$, which is conjectured to be sharp. It is known that $E S(4)=5$ and $E S(5)=9$ [14]. Following a long computer search, Szekeres and Peters [22] recently proved that $E S(6)=17$. The value of $E S(m)$ is unknown for all $m>6$. The best known upper bound for $m \geq 7$ is due to Tóth and Valtr [23]: $E S(m) \leq\binom{ 2 m-5}{m-3}+1$.

In 1978 Erdős [8] asked whether for every positive integer k, there exists a smallest integer $H(k)$, such that any set of at least $H(k)$ points in the plane, no three on a line, contains k points which lie on the vertices of a convex polygon whose interior contains no points of the set. Such a subset is called an empty convex k-gon or a k-hole. Esther Klein showed $H(4)=5$ and Harborth [12] proved that $H(5)=10$. Horton [13] showed that it is possible to construct arbitrarily large set of points without a 7 -hole, thereby proving that $H(k)$ does not exist for $k \geq 7$. Recently, after a long wait, the existence of $H(6)$ has been proved by Gerken [11] and independently by Nicolás [19]. Later, Valtr [26] gave a simpler version of Gerken's proof.

These problems can be naturally generalized to polygons that are not necessarily convex. In particular, we are interested in pseudo-triangles, which are considered to be the natural counterpart of convex polygons. A pseudo-triangle is a simple polygon with exactly three vertices having interior angles less than 180°. A pseudo-triangle with ℓ vertices is called a ℓ-pseudo-triangle, and a set is said to contain an empty ℓ-pseudo-triangle if there exists a subset of ℓ points forming a pseudo-triangle which contains no point of the set in its interior. A pseudo-triangle with a, b, c as the convex vertices has three concave side chains
between the vertices a, b and b, c, and c, a. Based on the length of the three side chains, a pseudo-triangle can be distinguished into three types: a standard pseudo-triangle, where each side chain has at least two edges, a mountain, where exactly one side chain has only one edge, and a fan, where exactly two side chains consists of only one edge (Figure 1). The apex of a fan pseudo-triangle is the convex vertex having exactly one edge in both its incident side chains.

(a)

Fig. 1. Pseudo-triangles: (a) Types of 5-pseudo-triangles, (b) Standard 6-pseudo-triangle, (c) 6-mountain, (d) 6 -fan.

In spite of the avalanche of research on the various combinatorial and algorithmic aspects of pseudo-triangles in recent times [21], little is known about the existence of empty pseudotriangles in planar point sets. Kreveld and Speckmann [15] devised techniques to analyze the maximum and minimum number of empty pseudo-triangles defined by any planar point set. Ahn et al. [3] considered the optimization problems of computing an empty pseudo-triangle with minimum perimeter, maximum area, and minimum longest maximal concave chain.

In this paper, analogous to the quantity $H(k)$, we define a Ramsey-type quantity $E(k, \ell)$ as the smallest integer such that any set of at least $E(k, \ell)$ points in the plane, no three on a line, contains a k-hole or an empty ℓ-pseudo-triangle. The existence of $E(k, \ell)$ for all $k, \ell \geq 3$, is a consequence of the following result proved by Valtr [25], and later by Cěrný [7].

Theorem 1. [7, 25] For any $k, \ell \leq 3$, there is a least integer $n(k, \ell)$ such that any point p in any set S of size at least $n(k, \ell)$, in general position, is the apex of an empty k-fan in S or it is one of the vertices of a ℓ-hole in S.

Clearly, $E(k, \ell) \leq n(k, \ell)$. However, the general upper bound on $n(k, \ell)$ as proved by Valtr [25] is $2^{\binom{k+\ell-2}{k+1}}+1$, which is double exponential in $k+\ell$. Therefore, following the long and illustrious history of the quantities $E S(k)$ and $H(k)$, evaluating exact values of $E(k, \ell)$ for small values of k, ℓ is an interesting problem, which has not been addressed before. In this paper, following a series of new results regarding the existence of empty pseudotriangles in point sets with triangular convex hulls, we determine new bounds on $E(k, \ell)$ for small values of k and ℓ. We begin by proving that any set whose convex hull is a triangle
and which contains at least two, three, or five interior points always contains an empty 5 -pseudo-triangle, an empty 6 -pseudo-triangle, or an empty 7 -pseudo-triangle, respectively. Using these three results and some existing results in the literature, we determine the exact values of $E(k, 5)$ and $E(5, \ell)$, for all $k, \ell \geq 3$. We also obtain some new bounds on $E(k, 6)$ and $E(\ell, 6)$, for different values of k and ℓ and discuss other implications of our results.

If the condition of emptiness is dropped from $E(k, \ell)$ we get another related quantity $F(k, \ell)$. Let $F(k, \ell)$ be the smallest integer such that any set of at least $F(k, \ell)$ points in the plane, no three on a line, contains a convex k-gon or a ℓ-pseudo-triangle. From the Erdős-Szekeres theorem it follows that $F(k, \ell) \leq E S(k)$ for all $k, \ell \geq 3$. Evaluating non-trivial bounds of $F(k, \ell)$ is also an interesting problem. While addressing a problem related to covering by convex and pseudo-convex polygons, Aichholzer et al. [2] showed that $F(6,6)=12$. In this paper, using our results on empty-pseudo-triangles and extending a result of Bisztriczky and Fejes Tóth [6], we show that $F(k, 5)=2 k-3, F(k, 6)=3 k-6$, and obtain non-trivial on $F(k, 7)$, for $k \geq 3$. As a consequence, we also get the exact value of $F(5, \ell)$ and new bounds on $F(6, \ell)$, for $\ell \geq 3$.

The paper is organized as follows. In Section 2 we introduce notations and definitions. In Section 3 we prove two preliminary observations. The results regarding the existence of empty pseudo-triangles in point sets with triangular convex hulls are presented in Section 4. The new bounds on $E(k, \ell)$ are presented in Sections 5 and 5.4 , and bounds on $F(k, \ell)$ are given in Section 6. In Section 7 we summarize our results and give directions for future works.

2 Notations and Definitions

We first introduce the definitions and notations required for the remaining part of the paper. Let S be a finite set of points in the plane in general position, that is, no three on a line. Denote the convex hull of S by $C H(S)$. The boundary vertices of $C H(S)$, and the points of S in the interior of $C H(S)$ are denoted by $\mathcal{V}(C H(S))$ and $\mathcal{I}(C H(S))$, respectively. A region R in the plane is said to be empty in S if R contains no elements of S in its interior. Moreover, for any set $T,|T|$ denotes the cardinality of T.

By $P:=p_{1} p_{2} \ldots p_{k}$ we denote a convex k-gon with vertices $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ taken in anti-clockwise order. $\mathcal{V}(P)$ denotes the set of vertices of P and $\mathcal{I}(P)$ the interior of P.

For any three points $p, q, r \in S, \mathcal{H}(p q, r)$ (respectively $\mathcal{H}_{c}(p q, r)$) denotes the open (respectively closed) halfplane bounded by the line $p q$ containing the point r. Similarly, $\overline{\mathcal{H}}(p q, r)$ (respectively $\overline{\mathcal{H}}_{c}(p q, r)$) is the open (respectively closed) halfplane bounded by $p q$ not containing the point r.

The j-th convex layer of S, denoted by $L\{j, S\}$, is the set of points that lie on the boundary of $C H\left(S \backslash\left\{\bigcup_{i=1}^{j-1} L\{i, S\}\right\}\right)$, where $L\{1, S\}=\mathcal{V}(C H(S))$. $|L\{j, S\}|$ denotes the number of points of S in j-th convex layer.

Moreover, if $\angle r p q<\pi$, Cone $(r p q)$ denotes the interior of the angular domain $\angle r p q$. A point $s \in C o n e(r p q) \cap S$ is called the nearest angular neighbor of $\overrightarrow{p q}$ in Cone(rpq) if Cone (spq) is empty in S. Similarly, for any convex region R a point $s \in R \cap S$ is called the nearest angular neighbor of $\overrightarrow{p q}$ in R if Cone $(s p q) \cap R$ is empty in S. Also, for any convex region R, the point $s \in S$, which has the shortest perpendicular distance to the line segment $p q, p, q \in S$, is called the nearest neighbor of $p q$ in R.

3 Empty Pseudo-Triangles: Preliminary Observations

A pseudo-triangle with a, b, c as the convex vertices has three concave side chains between the vertices a, b and b, c, and c, a. We denote the vertices of the pseudo-triangle lying on the concave side chain between a and b by $C(a, b)$. Similarly, we denote by $C(b, c)$ and $C(c, a)$, the vertices on the concave side chains between b, c and c, a, respectively.

In this section, we prove two observations about transformation and reduction of pseudotriangles.

Fig. 2. Illustration for the proofs of Observation 1 and Observation 2.

Observation 1 Any ℓ-pseudo-triangle can transformed to a standard ℓ-pseudo-triangle, for every $\ell \geq 6$, by appropriate insertion and deletion of edges.

Proof. Let \mathcal{P} be a ℓ-pseudo-triangle with $\ell \geq 6$, having convex vertices a, b, c, which is not standard. Then, we have the following two cases:

Case 1: \mathcal{P} is a ℓ-mountain with convex chains $C(a, b)=\left\{a, p_{1}, p_{2}, \ldots, p_{i}, b\right\}, C(b, c)=$ $\{b, c\}$, and $C(a, c)=\left\{a, q_{1}, q_{2}, \ldots, q_{j}, b\right\}$, such that $i+j+3=\ell$, arranged as shown in Figure 2(a). Let s_{α} be the nearest neighbor of $b c$ in $C(a, b) \cup C(a, c)$. Then, $\left\{b, s_{\alpha}, c\right\}$ are the vertices a concave chain. If $i, j>1$, then both $\left|C(a, b) \backslash\left\{s_{\alpha}\right\}\right| \geq 1$ and $\left|C(a, c) \backslash\left\{s_{\alpha}\right\}\right| \geq 1$, and w. l. o. g. we can assume that $s_{\alpha} \in C(a, b)$. In this case $s_{\alpha}=p_{i}$ and $\left\{a, p_{1}, p_{2}, \ldots, p_{i-1}, b\right\}$, $\left\{b, p_{i}, c\right\}$, and $\left\{a, q_{1}, q_{2}, \ldots, q_{j}, c\right\}$ are the vertices of the convex chains which form a standard ℓ-pseudo-triangle as shown in Figure 2(a). Otherwise, w. l. o. g. it suffices to assume that $i=1$ (Figure 2(b)). If $C o n e\left(p_{1} b c\right)$ contains a point of $C(a, c) \backslash\{a, c\}$, then $\left\{a, p_{1}, b\right\}$, $\left\{b, q_{j}, c\right\}$, and $\left\{a, q_{1}, q_{2}, \ldots, q_{j-1}, b\right\}$ are the vertices of the three concave chains of a standard ℓ-pseudo-triangle. Otherwise, all the points of $C(a, c) \backslash\{a, c\}$ are in $C o n e\left(a b p_{1}\right)$, and $\left\{a, q_{1}, b\right\},\left\{b, p_{1}, c\right\}$, and $\left\{a, q_{2}, q_{3}, \ldots, q_{i}, c\right\}$ are the vertices of the three concave chains of a standard ℓ-pseudo-triangle.
Case 2: \mathcal{P} is a ℓ-fan with $C(a, b)=\{a, b\}, C(b, c)=\left\{b, p_{1}, p_{2}, \ldots, p_{i}, c\right\}$ and $C(a, c)=\{a, b\}$, where $i+3=\ell$, as shown in Figure 2(c). Then, the ℓ-pseudo-triangle with concave chains formed by the set of vertices $\left\{a, p_{1}, b\right\},\left\{b, p_{2}, p_{3}, \ldots, p_{i-1}, c\right\}$, and $\left\{a, p_{i}, b\right\}$ is standard (Figure 2(c)).

Observation 2 An empty ℓ-mountain contains an empty m-mountain whenever $3 \leq m<$ ℓ.

Proof. It suffices to show that every empty ℓ-mountain contains an empty ($\ell-1$)-mountain for any $\ell \geq 4$. Let \mathcal{P} be a ℓ-mountain with $\ell \geq 4$, having convex vertices a, b, c. Let
$C(a, b)=\left\{a, p_{1}, p_{2}, \ldots, p_{i}, b\right\}, C(b, c)=\{b, c\}$, and $C(a, c)=\left\{a, q_{1}, q_{2}, \ldots, q_{j}, b\right\}$ be the vertices of the three concave chains of \mathcal{P}, such that $i+j+3=\ell$, as shown in Figure 2(a). If both $i, j>1$, an empty $(\ell-1)$-mountain can be easily obtained by taking the nearest neighbor of $b c$ in $C(a, b) \cup C(a, c)$ and removing either b or c.

Otherwise, w. l. o. g. assume that $i=1$. If $C o n e\left(p_{1} b c\right) \cap(C(a, c) \backslash\{a, c\})$ is non-empty, then $\left\{a, p_{1}, b\right\},\left\{b, q_{j}\right\}$, and $\left\{a, q_{1}, q_{2}, \ldots, q_{j}\right\}$ forms an empty ($\ell-1$)-mountain (Figure $2(\mathrm{~b}))$. Similarly, if Cone $\left(a b p_{1}\right) \cap(C(a, c) \backslash\{a, c\})$ is non-empty, then $\left\{b, p_{1}, q_{1}\right\},\{b, c\}$, and $\left\{q_{1}, q_{2}, \ldots q_{j}, c\right\}$ form an empty $(\ell-1)$-mountain.

4 Empty Pseudo-Triangles in Point Sets with Triangular Convex Hulls

In this section we prove three results about the existence of empty pseudo-triangles in point sets with triangular convex hulls. These results will be used later to obtain new bounds on $E(k, \ell)$ and $F(k, \ell)$.

4.1 Empty 5-Pseudo-Triangle

Lemma 1. Any set S of points in the plane, in general position, with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))| \geq 2$, contains an empty 5-pseudo-triangle.

Fig. 3. Illustration for the proof of Lemma 1.

Proof. Let $\mathcal{V}(C H(S))=\{a, b, c\}$, with the vertices taken in counter-clockwise order. Consider two points $p, q \in \mathcal{I}(C H(S))$, which are consecutive in the radial order around the vertex b of $\mathcal{V}(C H(S))$, that is, Cone $(p b q)$ is empty in S. Let $C_{p}=\mathcal{V}\left(C H\left(\mathcal{H}_{c}(b p, a) \cap S\right)\right)$ and $C_{q}=\mathcal{V}\left(C H\left(\mathcal{H}_{c}(b q, c) \cap S\right)\right)$ (Figure 3). Observe that $C_{p} \cup C_{q}$ form an empty ℓ-mountain with $\ell \geq 5$. The existence of an empty 5 -pseudo-triangle now follows from Observation 2.

4.2 Empty 6-Pseudo-Triangle

Lemma 2. Any set S of points in the plane, in general position, with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))| \geq 3$, contains an empty standard 6 -pseudo-triangle.

Proof. Let $\mathcal{V}(C H(S))=\{a, b, c\}$, with the vertices taken in counter-clockwise order. To begin with, suppose that $|\mathcal{I}(C H(S))|=3$. Let $p, q, r \in \mathcal{I}(C H(S))$ be such that $\mathcal{I}(q b c)$ is empty in S (Figure $4(\mathrm{a})$). When both $\mathcal{I}(q a b)$ and $\mathcal{I}(q a c)$ are non-empty in S, either apbqcr or arbqcp forms an empty 6 -pseudo-triangle. Therefore, w. l. o. g. assume that $\mathcal{I}(q a b) \cap S$ is

Fig. 4. Illustration for the proof of Lemma 2
empty and $p, r \in \mathcal{I}(q a c) \cap S$. Let r be the first angular neighbor of $\overrightarrow{a c}$ in Cone(qac) and α be the point where $\overrightarrow{c r}$ intersects the boundary of $C H(S)$. If $p \in C o n e(a r \alpha)$, then aprcqb is an empty 6-pseudo-triangle. Otherwise, Cone (ar α) is empty and either arcpbq or arcqbp is an empty 6 -pseudo-triangle. The empty pseudo-triangle thus obtained can be transformed to an empty standard 6-pseudo-triangle by Observation 1.

Next, suppose that there are more than three points in $\mathcal{I}(C H(S))$. It follows from the previous arguments and from Observation 1 that there are three points $p, q, r \in \mathcal{I}(C H(S))$ $\mathcal{A}_{1}=a p b q c r$ such that is a standard 6 -pseudo-triangle. If \mathcal{A}_{1} is empty, we are done.

If \mathcal{A}_{1} is not empty, there exists a point $x \in S$ in the interior of \mathcal{A}_{1}. The three line segments $x a, x b$, and $x c$ may or may not intersect the boundary of \mathcal{A}_{1}. If any two of these line segments, say $x a$ and $x c$, do not intersect with the edges of \mathcal{A}_{1}, then $\mathcal{A}_{2}=a p b q c x$ is a standard 6 -pseudo-triangle which is contained in \mathcal{A}_{1} (Figure 4(b)). Otherwise, there are two segments, say $x a$ and $x b$, which intersect with the edges of \mathcal{A}_{1}. In this case, $\mathcal{A}_{2}=a p b q x r$ is a standard 6 -pseudo-triangle contained in \mathcal{A}_{1} (Figure $4(\mathrm{c})$). If \mathcal{A}_{2} is not empty, we repeat the above argument and after finitely many such repetitions, we finally obtain an empty standard 6-pseudo-triangle.

4.3 Empty 7-Pseudo-Triangles

Let S be a set of points in the plane in general position. For $|\mathcal{V}(C H(S))|=3$, an interior point $p \in S$ is called a $(x, y, z)-$ splitter of $C H(S)$ if the three triangles formed inside $C H(S)$ by the three line segments $p a, p b$, and $p c$ contain $x \geq y \geq z$ interior points of S, respectively.

We use this definition to establish a sufficient condition for the existence of an empty 7-pseudo-triangle in sets having triangular convex hull.

Theorem 2. Any set S of points in the plane, in general position, with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))| \geq 5$, contains an empty 7-pseudo-triangle. Moreover, there exists a set S with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))|=4$, that does not contain a 7-pseudo-triangle.

Proof of Theorem 2 We begin the proof of Theorem 2 with the following lemma:
Lemma 3. Any set S of points in the plane, in general position, with $|\operatorname{CH}(S)|=3$ and $|\mathcal{I}(C H(S))| \geq 5$, contains a 7-pseudo-triangle.

Proof. Let $\mathcal{V}(C H(S))=\{a, b, c\}$ with the vertices taken in counter-clockwise order. Since we have to find a 7 -pseudo-triangle, which is not necessarily empty, it suffices to assume that $|\mathcal{I}(C H(S))|=5$. First assume that $p \in \mathcal{I}(C H(S))$ is such that $\mathcal{I}(p a b), \mathcal{I}(p b c)$, and $\mathcal{I}(p c a)$

Fig. 5. Illustration for the proof of Lemma 3.
are all non-empty in S. Therefore, p must be a $(2,1,1)$-splitter of $C H(S)$. Without loss of generality, let $q, r \in \mathcal{I}(p b c) \cap S, s \in \mathcal{I}(p a b) \cap S$, and $t \in \mathcal{I}(p a c) \cap S$ be such that q is the nearest angular neighbor of $\overrightarrow{b c}$ in $\mathcal{I}(p b c)$. Let α, β, γ be the points where $\overrightarrow{c q}, \overrightarrow{a p}, \overrightarrow{b q}$ intersect the boundary of $C H(S)$, respectively. Let $R_{1}=\mathcal{I}(b q \alpha) \cap \mathcal{I}(b p c)$ and $R_{2}=\mathcal{I}(c q \gamma) \cap \mathcal{I}(b p c)$ (see Figure $5(\mathrm{a}))$. If $r \in R_{1} \cup R_{2}$, then asbqrcp or asbrqcp is a 7-pseudo-triangle. Thus, assume that $\left(R_{1} \cup R_{2}\right) \cap S$ is empty. If $r \in \mathcal{I}(\beta p c) \cap S$, then asbqcrp is a 7-pseudo-triangle. Otherwise, $r \in \mathcal{I}(\beta p b) \cap S$, and aprbqct is a 7 -pseudo-triangle.

Therefore, suppose that none of the interior points of $C H(S)$ is a $(2,1,1)$-splitter of $C H(S)$. The three vertices of $C H(S)$ along with the interior points p, q, r form a standard 6 -pseudo-triangle $\mathcal{P}=a p b q c r$ by Lemma 2 . Now, there are two cases:

Case 1: \mathcal{P} is empty in S. The remaining two points s and t in $\mathcal{I}(C H(S))$, must be in either of the three triangles - $p a b, q b c$, and $r c a$. W. l. o. g., assume that $s \in \mathcal{I}(q b c) \cap S$. Since q is not a $(2,1,1)$-splitter, either $\mathcal{I}(q a b) \cap S$ or $\mathcal{I}(q a c) \cap S$ is empty in S. If $\mathcal{I}(q a c) \cap S$ is empty, apbscqr is a 7-pseudo-triangle (Figure $5(\mathrm{~b})$). Otherwise, $\mathcal{I}(q a b)$ is empty in S then apqbscr is a 7 -pseudo-triangle. .
Case 2: \mathcal{P} is non-empty in S. Let $s \in \mathcal{I}(\mathcal{P}) \cap S$. If any one of three line segments $s a$, $s b$, or $s c$ intersects the boundary of \mathcal{P} we get a 7 -pseudo-triangle. Otherwise, two of these three segments go directly, and we have a smaller 6 -pseudo-triangle with a, b, c as its convex vertices (Figure $5(\mathrm{c})$). Continuing in this way, we finally get a 7 -pseudo-triangle or an empty 6 -pseudo-triangle with a, b, c as its convex vertices, which then reduces to Case 1.

Fig. 6. Existence of an empty 7-pseudo-triangle: (a) $q, r \notin \mathcal{I}(\operatorname{Cone}($ pas $)) \cap S$, (b) $q \in \mathcal{I}(\operatorname{Cone}($ pas $)) \cap S$ and $r \notin \mathcal{I}($ Cone $($ pas $)) \cap S$, and (c) $q, r \in \mathcal{I}($ Cone (pas) $) \cap S$.

The above lemma implies that any triangle with more than 4 interior points contains a standard 7 -pseudo-triangle. We now proceed to show that we can, in fact, obtain an empty 7-pseudo-triangle. Let S be a set of points with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))| \geq 5$. Let $\mathcal{P}_{0}=$ apbqres be a standard 7-pseudo-triangle contained in S with the least number of interior points, among all the standard 7 -pseudo-triangles contained in S. Note that the points a, b, c may not be the vertices of $C H(S)$. Now, we have the following three cases:

Case 1: $q, r \notin \operatorname{Cone}($ pas $) \cap S$. Let β be the point of intersection of $\overrightarrow{b q}$ and $\overrightarrow{c r}$, and $x \in$ $\mathcal{I}\left(\mathcal{P}_{0}\right) \cap S$. If $x \in \mathcal{I}(q r \beta) \cap S$, then $\mathcal{P}_{1}=$ apqxrcs is a smaller 7 -pseudo-triangle contained in \mathcal{P}_{0}. Therefore, $\mathcal{I}(q r \beta) \cap S$ can be assumed to be empty. Observe that, if (i) the line segment $x a$, and either of the line segments $x b$ or $x c$ do not intersect the boundary of \mathcal{P}_{0}, or (ii) both the line segments $x b$ and $x c$ intersect the boundary of \mathcal{P}_{0}, then we can easily construct a 7 -pseudo-triangle with lesser interior points than \mathcal{P}_{0}. Therefore, the shaded region inside \mathcal{P}_{0}, shown in Figure 6(a), must be empty. Thus, x lies outside this shaded region and either apqrcxs or apxbqrs is a 7 -pseudo-triangle with fewer interior points than \mathcal{P}_{0} (Figure $6(\mathrm{a})$).
Case 2: $q \in \operatorname{Cone}($ pas $) \cap S$ and $r \notin \mathcal{I}($ Cone $($ pas $)) \cap S$. By similar arguments as in Case 1, the lightly shaded region inside \mathcal{P}_{0} shown in Figure 6(b) is empty in S. Moreover, if there exists a point $x \in S$ in the deeply shaded region R shown in Figure 6(b), then apxbqrs is a 7 -pseudo-triangle with fewer interior points than \mathcal{P}. Therefore, the points of S in $\mathcal{I}\left(\mathcal{P}_{0}\right)$ must lie outside these shaded regions. If $x \in \mathcal{I}\left(\mathcal{P}_{0}\right) \cap S$ is such that it lies below the line $\overrightarrow{b r}$, then both $x a$ and $x b$ intersect the boundary of \mathcal{P}_{0} and apbqrxs is a 7 -pseudo-triangle with fewer interior points. If x lies above $\overrightarrow{b r}$ but below $\overrightarrow{b q}$, then apbqxcs is a 7 -pseudo-triangle with fewer interior points. Therefore, all the interior points of \mathcal{P}_{0} must be above the line $\overrightarrow{b q}$. If $\mathcal{I}(b q r) \cap S$ is empty, aqbrcxs is a 7 -pseudo-triangle with fewer interior points. Otherwise, $\mathcal{I}(b q r) \cap S$ is non-empty. Let $Z=(\mathcal{I}(b q r) \cap S) \cup\{b, r\}$. If $|C H(Z)| \geq 4$, then $\mathcal{V}(C H(Z)) \cup\left\{q, x_{0}, c\right\}$ forms an empty k-mountain, with $k \geq 7$, where x_{0} is the nearest angular neighbor of $\overrightarrow{b q}$ in $\mathcal{H}(b q, a) \cap \mathcal{I}\left(\mathcal{P}_{0}\right)$. Thus, \mathcal{P}_{0} contains an empty 7-pseudo-triangle from Observation 2. Finally, assume that $|C H(Z)|=3$. Let $\mathcal{V}(C H(S))=\{b, y, r\}$. In this case, $\mathcal{P}_{1}=b y r c x s q$ is a 7 -pseudo-triangle having fewer interior points than \mathcal{P}_{0}.
Case 3: $q, r \in \operatorname{Cone}($ pas $) \cap S$. By similar arguments as in Case 1 and Case 2, the lightly shaded regions inside \mathcal{P}_{0}, shown in Figure 6(c), are empty. At first, assume $\mathcal{I}(q r \beta) \cap S$ is non-empty. If there exists another point $x \in R_{1} \cup R_{2}$ (where R_{1} and R_{2} are as shown in Figure 6(c)), then either $\mathcal{P}_{1}=a p x b q z r$ (if $x \in R_{1}$) or $\mathcal{P}_{1}=a q z r c x s$ (if $x \in R_{2}$) is a 7-pseudo-triangle with $\left|\mathcal{I}\left(\mathcal{P}_{1}\right) \cap S\right|<\left|\mathcal{I}\left(\mathcal{P}_{0}\right) \cap S\right|$, where z is any point in $\mathcal{I}(q r \beta)$. Therefore, assume that $R_{1} \cup R_{2}$ is empty in S. Let $Z=\mathcal{V}(C H((\mathcal{I}(q r \beta) \cap S) \cup\{q, r\}))$. If $|Z| \geq 4$, then $\{a, p, b\} \cup Z$ is an empty k-mountain, with $k \geq 7$. This can be shortened to obtain an empty 7 -mountain by Observation 2 . Therefore, assume that $|Z|=3$ and let $\mathcal{I}(q r \beta)=\{y\}$. If $|\mathcal{I}(q b y) \cap S|=0$ then aqbyrcs is 7-pseudo-triangle contained in \mathcal{P}_{0} with less interior points. Otherwise, $|\mathcal{I}(q b y) \cap S| \geq 1$ and let $Z_{1}=\mathcal{V}(C H((\mathcal{I}(b \beta r) \cap S) \cup\{b, r\}))$. Now, as $|\mathcal{I}(q b y) \cap S| \geq 1$, we have $\left|Z_{1}\right| \geq 4$. If $\left|Z_{1}\right| \geq 5, Z_{1} \cup\{a, q\}$ forms an empty k mountain, with $k \geq 7$. Thus, \mathcal{P}_{0} contains an empty 7-pseudo-triangle from Observation 2. Therefore, $\left|Z_{1}\right|=4$, which implies that $|\mathcal{I}(q b y) \cap S|=1$. Similarly, we can assume that $|\mathcal{I}(r c y) \cap S|=1$. Let $\mathcal{I}(q b y) \cap S=\left\{z_{1}\right\}$ and $\mathcal{I}(r c y) \cap S=\left\{z_{2}\right\}$. Then, depending upon the location of z_{1}, either $a q z_{1} y z_{2} c r$ or $a z_{1} b y z_{2} c r$ is a 7 -pseudo-triangle with fewer interior points than \mathcal{P}_{0}. Finally, if $\mathcal{I}(q r \beta) \cap S$ is empty, we have a 7 -pseudo-triangle with fewer interior points from arguments similar to those in Case 2.

Lemma 3 together with the discussions in the above three cases prove that any set S, of points in the plane, in general position, with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))| \geq 5$, contains an empty 7 -pseudo-triangle.

To show that this is tight, observe that one of the side chains of a 7 -pseudo-triangle must have at least three edges. Therefore, any set S with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))|=4$ containing a 7 -pseudo-triangle must contain a 4 -hole with exactly two consecutive vertices belonging to the vertices of $\mathcal{V}(C H(S))$. It is easy to see that this condition is violated in the point set shown in Figure 7(a), and the result follows.

$5 \quad E(k, \ell)$

As mentioned earlier, $E(k, \ell)$ is the smallest integer such that any set of at least $E(k, \ell)$ points in the plane, no three on a line, contains a k-hole or an empty ℓ-pseudo-triangle. The existence of $E(k, \ell)$ for all $k, \ell \geq 3$, is a consequence of a result of Valtr [25] and Cěrný [7] (Theorem 1). However, the general upper bound on $E(k, \ell)$ obtained from Valtr's [25] result is double exponential in $k+\ell$. In this section we obtain new bounds on $E(k, \ell)$ for small values of k and ℓ.

It is clear that $E(k, 3)=E(3, \ell)=3$, for all $k, \ell \geq 3$. Also, $E(k, 4)=k$ for $k \geq 4$ and $E(4, \ell)=5, \ell \geq 5$, since $H(4)=5$. Using the results proved in the previous section we now proceed to obtain new bounds on $E(k, \ell)$ for several small values of $k, \ell \geq 5$.

We begin by introducing the notion of λ-convexity, where λ is a non-negative integer. A set S of points in the plane, in general position, is said to be λ-convex if every triangle determined by S contains at most λ points of S. Valtr [24, 25] and Kun and Lippner [18] proved that for any $\lambda \geq 1$ and $\nu \leq 3$, there is a least integer $N(\lambda, \nu)$ such that any λ-convex point set of size at least $N(\lambda, \nu)$ contains a ν-hole. The best known upper bound on $N(\lambda, \nu)$ for general λ and ν, due to Valtr [25], is $N(\lambda, \nu) \leq 2^{\binom{\lambda+\nu}{\lambda+2}-1}+1$, which is double-exponential in $\lambda+\nu$. No lower bound on $N(\lambda, \nu)$ better than exponential in $\lambda+\nu$ is known.

$5.1 \quad E(k, 5)$

In this section we determine the exact value of $E(k, 5)$ by using Lemma 1 and a result of Károlyi et al. [16].

Although, in general, the there is a gap of an exponential factor of $\lambda+\nu$ between the best known upper and lower bounds of $N(\lambda, \nu)$, in the special when $\lambda=1$ much more can be said. Kun and Lippner [18] proved the general upper bound $N(1, \nu) \leq 2^{\lceil(2 \nu+5) / 3\rceil}$. Károlyi et al. [17] proved that $N(1, \nu) \geq M_{\nu}$ for odd values of ν, where

$$
M_{\nu}:=\left\{\begin{array}{l}
2^{(\nu+1) / 2}-1, \text { for } \nu \geq 3 \text { odd } \\
\frac{3}{2} 2^{\nu / 2}-1, \quad \text { for } \nu \geq 4 \text { even. }
\end{array}\right.
$$

Finally, Károlyi et al. [16] proved that for any $\nu \geq 3, N(1, \nu)=M_{\nu}$.
Using this result, now we prove the following theorem:
Theorem 3. For every positive integer $k \geq 3, E(k, 5)=M_{k}$.
Proof. Let S be a set of M_{k} points in the plane, in general position. If there are three points in S such that the triangle determined by them contains more than 1 point of S in its interior, then by Lemma $1 S$ contains an empty 5 -pseudo-triangle. Therefore, S contains a empty 5 -pseudo-triangle unless S is 1 -convex. However, the maximum size of a 1 -convex
set not containing a 5 -hole is $N(1, k)-1=M_{k}-1$. Therefore, if S is 1 -convex, it always contains a 5 -hole. This implies that $E(k, 5) \leq M_{k}$.

Moreover, if a set is 1-convex, it does not contain any empty 5-pseudo-triangle. This implies that $E(k, 5) \geq N(1, k)-1=M_{k}-1$, which together with the upper bound mentioned above proves that for every $k \geq 3, E(k, 5)=M_{k}$.

$5.2 \quad E(5, \ell)$

It is obvious that $E(5,3)=3$ and $E(5,4)=5$. It follows from Theorem 3 that $E(5,5)=7$. In this section using the following result, proved by the authors in [5], we determine the values of $E(5, \ell)$, for $\ell \geq 6$

Theorem 4. [5]Any set Z of 9 points in the plane in general position, with $|C H(Z)| \geq 4$, contains a 5-hole.

Fig. 7. (a) Triangle with 4 interior points and no 7 -pseudo-triangle, (b) 8 points with no 5 -hole and no 6 -pseudo triangle or 7 -pseudo-triangle, and (c) 9 points with no 5 -hole and no 8 -pseudo-triangle.

Using Lemma 1 and the above theorem, we now determine the exact values of $E(5, \ell)$ for $\ell \geq 6$.

Theorem 5. $E(5,6)=E(5,7)=9$, and $E(5, \ell)=10$, for $\ell \geq 8$.
Proof. The set of 8 points shown in Figure 7(b) contains no 5-hole and no empty 6-pseudotriangle and no empty 7-pseudo-triangle. This implies that $E(5,6)>8$ and $E(5,7)>8$.

Now, consider a set S of 9 points in general position. It follows from Theorem 4 that S contains a 5-hole whenever $|C H(S)| \geq 4$. Now, if $|C H(S)|=3$, then $|\mathcal{I}(C H(S))|=5$, and the existence of an empty 6-pseudo-triangle and an empty 7-pseudo-triangle in S follows from Lemma 2 and Lemma 3, respectively. Therefore, $E(5,6) \leq 9$ and $E(5,7) \leq 9$, which together with the lower bound mentioned above implies that $E(5,6)=E(5,7)=9$.

We know that for $\ell \geq 3, E(5, \ell) \leq H(5)=10$, since every set of 10 points in general position, contains a 5 -hole. The set of 9 points shown in Figure 7(c) contains no 5 -hole and no empty ℓ-pseudo-triangle for $l \geq 8$. This implies that for $\ell \geq 8, E(5, \ell)=10$.

$5.3 \quad E(k, 6)$

In Lemma 2 it was proved that any set S of points in the plane, in general position, with $|C H(S)|=3$ and $|\mathcal{I}(C H(S))| \geq 3$, contains an empty standard 6 -pseudo-triangle. This
together with the fact that any 2 -convex point set cannot contain a 6-pseudo-triangle, implies that $E(k, 6)=N(2, k) \leq 2^{\binom{k+2}{4}-1}+1$.

However, in the special case when $k=6$, we can obtain better bounds. For this reason, we need the following technical lemma:

Fig. 8. Illustration for the proof of Lemma 4: (a) $|\mathcal{I}(C H(Z))|=3$, (b) $|\mathcal{I}(C H(Z))|=4$ and $|L\{2, Z\}|=3$, and (c) $|\mathcal{I}(C H(Z))|=4$ and $|L\{2, Z\}|=4$.

Lemma 4. If Z is a set of points in the plane in general position, with $|C H(Z)| \geq 8$ and $|\mathcal{I}(C H(Z))| \geq 4$, then Z contains a 6 -hole.

Proof. As it is always possible to reduce a convex 9 -gon to a convex 8 -gon with at most as many interior points, it suffices to prove the theorem for $|C H(Z)|=8$.

If $|\mathcal{I}(C H(Z))|=1$, then a 6 -hole can be obtained easily. Now, if $|\mathcal{I}(C H(Z))|=2$, then the line joining these two points divides the plane into two halfplanes one of which must contain at least four points of $\mathcal{V}(C H(Z))$. These 4 points along with the two points in $\mathcal{I}(C H(Z))$ form a 6 -hole.

The remaining two cases are dealt with separately as follows:
Case 1: $|\mathcal{I}(C H(Z))|=3$. Consider the partition of the exterior of the triangle formed in the second layer into disjoint regions R_{i} as shown in Figure 8 (a). Clearly, Z contains 6 -hole, unless the following inequalities hold:

$$
\begin{gather*}
\left|R_{1}\right| \leq 2, \quad\left|R_{3}\right| \leq 2, \quad\left|R_{5}\right| \leq 2, \tag{1}\\
\left|R_{6}\right|+\left|R_{1}\right|+\left|R_{2}\right| \leq 3 \\
\left|R_{2}\right|+\left|R_{3}\right|+\left|R_{4}\right| \leq 3 \\
\left|R_{4}\right|+\left|R_{5}\right|+\left|R_{6}\right| \leq 3 \tag{2}
\end{gather*}
$$

Adding the inequalities of (2) and using the fact $|\mathcal{V}(C H(Z))|=8$ we get $\left|R_{2}\right|+\left|R_{4}\right|+$ $\left|R_{6}\right| \leq 1$. On adding this inequality together with those of (1) we finally get $\sum_{i=1}^{6}\left|R_{i}\right| \leq$ $7<8=|\mathcal{V}(C H(Z))|$, which is a contradiction.
Case 2: $|\mathcal{I}(C H(Z))|=4$. We have the following two subcases based on the size of the second layer.
Case 2.1: $|L\{2, Z\}|=3$. Then $|L\{3, Z\}|=1$, and consider the partition of the exterior of $C H(L\{2, Z\})$ into three disjoint regions R_{i} as shown in Figure 8(b). Clearly, S contains a 6 -hole whenever $\left|R_{i}\right| \geq 3$, for $i \in\{1,2,3\}$. Otherwise, $\left|R_{1}\right|+\left|R_{2}\right|+\left|R_{3}\right| \leq$ $6<8=|\mathcal{V}(C H(Z))|$, which is a contradiction.

Case 2.2: $|L\{2, Z\}|=4$. Let $L\{2, Z\}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ be the vertices of the second layer taken in counter-clockwise order. Let R_{1} and R_{2} be the shaded regions as shown in Figure $8(\mathrm{c})$. It is easy to see that S contains a 6-hole unless $\left|R_{1}\right|+\left|R_{2}\right| \leq$ $1,\left|\overline{\mathcal{H}}\left(p_{1} p_{2}, p_{3}\right) \cap S\right| \leq 3$, and $\left|\overline{\mathcal{H}}\left(p_{1} p_{2}, p_{3}\right) \cap S\right| \leq 3$. However, by adding these three inequalities together we get $|\mathcal{V}(C H(Z))| \leq 7<8$, which is a contradiction.

Using this lemma we now prove the following theorem:

Fig. 9. (a) Illustration for the proof of Theorem 6 and (b) Illustration for the proof of Lemma 5.

Theorem 6. $12 \leq E(6,6) \leq 18$.
Proof. Using the order-type database, Aichholzer et al. [2] obtained a set of 11 points that contains neither a convex hexagon nor a 6 -pseudo-triangle [2]. This implies that $E(6,6) \geq 12$.

Now, consider a set S of 18 points in general position. Suppose $|C H(S)|=k \leq 7$ and partition $C H(S)$ into $k-2$ triangles whose vertex set is $\mathcal{V}(C H(S))$. Since, there are $18-k$ points inside $C H(S)$, there exists a triangle which has at least $\left\lceil\frac{18-k}{k-2}\right\rceil$ points of S inside it. Observe that $\left\lceil\frac{18-k}{k-2}\right\rceil \geq 3$, since $k \leq 7$. Therefore, whenever $|C H(S)| \leq 7$, a triangle with at least three interior points exists and Lemma 2 ensures the existence of an empty 6-pseudo-triangle.

Next, suppose that $|C H(S)|=8$. Let $\mathcal{V}(C H(S))=\left\{s_{1}, s_{2}, \ldots, s_{8}\right\}$, where the vertices are taken in counter-clockwise order. If $\left|\mathcal{I}\left(s_{1} s_{3} s_{5} s_{7}\right) \cap S\right| \geq 5$, a triangle with at least three interior points exists and the existence of an empty 6 -pseudo-triangle follows from Lemma 2. Therefore, suppose that $\left|\mathcal{I}\left(s_{1} s_{3} s_{5} s_{7}\right) \cap S\right| \leq 4$. Let p be the nearest neighbor of the line segment $s_{1} s_{3}$ in $\mathcal{H}\left(s_{1} s_{3}, s_{2}\right) \cap S$. Note that p can be the same as s_{2}, whenever $\mathcal{I}\left(s_{1} s_{2} s_{3}\right) \cap S$ is empty. Similarly, let $q, r, s \in S$ be the nearest neighbors of the line segments $s_{3} s_{5}, s_{5} s_{7}$, and $s_{7} s_{1}$, respectively as shown in Figure 9. Observe that the convex octagon $s_{1} p s_{3} q s_{5} r s_{7} s$ can have at most four points of S inside it. Lemma 4 now implies that this convex octagon always contains a 6-hole.

Finally, if $|C H(S)| \geq 9$, then $C H(S)$ can be reduced to a convex octagon with at most as many interior points, and the same argument as before works. Therefore, we have $E(6,6) \leq 18$.

Remark 1: Using the order type data-base Aichholzer et al. [2] observed that there exist precisely 9 out of over 2.33 billion realizable order types of 11 points which do not contain a convex hexagon nor a pseudo-triangle with 6 vertices. Experimenting with Overmars' empty 6 -gon program [20] we were unable to find a set of 12 points which contains no 6 -hole and empty 6 -pseudo-triangle. In fact, it follows from Lemma 2 and the proof of Theorem 6 that a set S of 12 points contains an empty 6-pseudo-triangle or a 6 -hole whenever $|C H(S)| \leq 5$ or $|C H(S)| \geq 8$. Therefore, a set of 12 points not containing a 6 -hole or an empty 6 -pseudo-triangle must have $|C H(S)|=6$ or $|C H(S)|=7$. Although we were unable to geometrically show the existence of a 6 -hole or an empty 6 -pseudo-triangle in these two cases, experimental evidence motivates us to conjecture that $E(6,6)=12$. We believe that a very detailed analysis for the different cases that arise when $|C H(S)|$ is either 6 or 7 , or some computer-aided enumeration method might be useful in settling the conjecture.

5.4 Other Improvements and Remarks

We now turn our attention to $E(6, \ell)$. Clearly, $E(6, \ell) \leq H(6)$ and $E(6, \ell) \geq N(\ell-4,6)$, since an $(\ell-4)$-convex set cannot contain an ℓ-pseudo-triangle. However, when $\ell=7$, Theorem 2 and a result of Gerken [11] can be used to obtain a better upper bound. Consider a set S of 33 points in general position. Gerken [11] proved that any set which contains a 9-gon contains a 6 -hole. Therefore, it suffices to assume that $|C H(S)|=k \leq 8 . C H(S)$ can be partitioned into $k-2$ triangles whose vertex set is exactly $\mathcal{V}(C H(S))$. Since $\mid \mathcal{I}(C H(S) \mid=33-k$, one of these $k-2$ triangles contains at least $\left\lceil\frac{33-k}{k-2}\right\rceil$ interior points. As $k \leq 8$, we have $\left\lceil\frac{33-k}{k-2}\right\rceil \geq 5$, and the existence of an empty 7-pseudo-triangle in S follows from Theorem 2.

Remark 2: Note that Theorem 2 gives a proof of the existence of $E(7,7)$, which does not use Theorem 1. Valtr's result $[24,25]$ implies that any 4 -convex set without a 7 -hole has at most $N(4,7)-1$ points. This together with Theorem 2 proves that, $E(7,7) \leq N(4,7)$. Moreover, a three convex set cannot contain a 7-pseudo-triangle, which implies that $E(7,7) \geq N(3,7)$.

Observe that if it is possible to show that for every integer $k \geq 3$, there exists a smallest integer $\Delta(k)$ such that any triangle with more than $\Delta(k)$ interior points contains an empty k-pseudo-triangle, then from Valtr's $\Delta(k)$-convexity result it will follow that $E(k) \leq N(\Delta(k), k)$.

The bounds obtained on the values $E(k, 5), E(5, \ell), E(k, 6)$, and $E(6, \ell)$ for different values of k and ℓ are summarized in Table 1 .

$6 \quad F(k, \ell)$

In the previous sections we have discussed about the existence of empty convex polygons or pseudo-triangles in point sets. If the empty condition is dropped, we get another related quantity $F(k, \ell)$, which we define as the smallest integer such that any set of at least $F(k, \ell)$ points in the plane, in general position, contains a convex k-gon or a ℓ-pseudo-triangle. From the Erdős-Szekeres theorem it follows that $F(k, \ell) \leq E S(k)$ for all $k, \ell \geq 3$. Evaluating nontrivial bounds on $F(k, \ell)$ is also an interesting problem. While addressing problems related to partitions and decompositions of planar point sets, Aichholzer et al. [2] showed that $F(6,6)=12$. Moreover, Aichholzer et al. [2] claim that $21 \leq F(7,7) \leq 23$, though the result is still unpublished. In this section, using our results on empty pseudo-triangles and the

Table 1. Bounds on $E(k, \ell)$

$E(k, 5)=M_{k}:=\left\{\begin{array}{l} 2^{(k+1) / 2}-1, \text { for } k \geq 3 \text { odd; } \\ \frac{3}{2} 2^{k / 2}-1, \quad \text { for } k \geq 4 \text { even. } \end{array}\right.$
$E(5, \ell)=\left\{\begin{array}{l} 3 \text { for } \ell=3, \\ 4 \text { for } \ell=4, \\ 7 \text { for } \ell=5, \\ 9 \text { for } \ell=6, \\ 9 \text { for } \ell=7, \\ 1 \text { for } \ell \geq 8 . \end{array}\right.$
$E(k, 6)=N(2, k)= \begin{cases}3 & \text { for } k=3, \\ 5 & \text { for } k=4, \\ 9 & \text { for } k=5, \\ {[12,18]} & \text { for } k=6,\end{cases}$
$E(6, \ell)= \begin{cases}3 & \text { for } \ell=3, \\ 4 & \text { for } \ell=4, \\ 7 & \text { for } \ell=5, \\ {[12,18]} & \text { for } \ell=6, \\ {[N(3,6), 33]} & \text { for } \ell=7, \\ {[N(\ell-4,6), H(6)]} & \text { for } \ell \geq 8 .\end{cases}$

extending a result of Bisztriczky and Fejes Tóth [6], we obtain the exact values of $F(k, 5)$ and $F(k, 6)$, and obtain non-trivial bounds on $F(k, 7)$.

We shall see that any ℓ-convex point set with at least $(k-3)(\ell+1)+3$ points contains a convex k-gon. Relaxing the general position assumption Bisztriczky and Fejes Tóth [6] proved that, this bound is, in fact, tight. This means that there exists a set of $(k-3)(\ell+1)+2$ points, not necessarily in general position, which is ℓ-convex but has no convex k-gon.

In the following lemma, we generalize the construction of Bisztriczky and Fejes Tóth [6] to obtain a set of $(k-3)(\ell+1)+2$ points, in general position, which is ℓ-convex but has no convex k-gon, if $k<\ell / 2$.

Lemma 5. Let k, ℓ denote natural numbers such that $k \geq 3$ and $\ell<k / 2$. Any set of at least $(k-3)(\ell+1)+3$ points in general position in the plane, which is ℓ-convex, contains k points in convex position, and in this respect the bound tight.

Proof. Consider a set S of $(k-3)(\ell+1)+3$ points in the plane, in general position, which is ℓ-convex. If $|C H(S)|=k$, we are done. Otherwise, let $|C H(S)|=m \leq k-1$, and consider a triangulation of $C H(S)$ into $m-2$ triangles. Since S is ℓ-convex, this implies that $|S| \leq m+(m-2) \ell \leq(k-3)(\ell+1)+2$, which is a contradiction.

We now construct an ℓ-convex set Z of $(k-3)(\ell+1)+2$ points in general position, which contains no k-gon. Refer to Figure 9 (b). Let $s_{1}^{1}, s_{2}^{1}, \ldots, s_{k-1}^{1}$ be a set of $k-1$ lying on the vertices of a convex $k-1$-gon in counter-clockwise direction. Consider, $Z=$ $\left\{s_{i}^{j} \mid i=2,3, \ldots, k-2 ; j=1,2, \ldots, \ell+1\right\}$, where s_{i}^{j} is inside the triangle $s_{i-1}^{1} s_{i}^{1} s_{i+1}^{1}$, for $j=2,3, \ldots, \ell+1$. Moreover, depending on whether $k-1$ is even or odd the points in Z satisfy the following property.

Case A: $k-1=2 m$ is even. The set of points $\left\{s_{i}^{j} \mid j=2,3, \ldots, \ell+1\right\}$ lies on a concave chain $C\left(s_{i}^{1}, s_{1}^{1}\right)$ from s_{i}^{1} to s_{1}^{1}, for $i=2,3, \ldots, m$. Similarly, the set of points $\left\{s_{i}^{j} \mid j=\right.$ $2,3, \ldots, \ell+1\}$ lies on a concave chain $C\left(s_{i}^{1}, s_{k-1}^{1}\right)$ from s_{i}^{1} to s_{k-1}^{1}, for $i=m+1, m+$ $2, \ldots, 2 m-1(=k-2)$.
Case B: $k-1=2 m+1$ is odd. The set of points $\left\{s_{i}^{j} \mid j=2,3, \ldots, \ell+1\right\}$ lies on a concave chain $C\left(s_{i}^{1}, s_{1}^{1}\right)$ from s_{i}^{1} to s_{1}^{1}, for $i=2,3, \ldots, m$. Similarly, the set of points $\left\{s_{i}^{j} \mid j=\right.$
$2,3, \ldots, \ell+1\}$ lies on a concave chain $C\left(s_{i}^{1}, s_{k-1}^{1}\right)$ from s_{i}^{1} to s_{k-1}^{1}, for $i=m+1, m+$ $2, \ldots, 2 m(=k-2)$.

Clearly, $|Z|=(k-3)(\ell+1)+2$. We shall now show that the set Z constructed above is ℓ-convex. Consider three distinct points s_{i}^{p}, s_{j}^{q}, and s_{k}^{r} in S. To begin with let $p<q<r$, and consider the following three different cases:

Case 1: $i=j=k$. Then $\mathcal{I}\left(s_{i}^{p} s_{j}^{q} s_{k}^{r}\right)$ is empty in Z.
Case 2: $i=j \neq k$. Then the points of Z contained in $\mathcal{I}\left(s_{i}^{p} s_{j}^{q} s_{k}^{r}\right)$ are $s_{i}^{p+1}, s_{i}^{p+2}, \ldots, s_{i}^{q-1}$.
Therefore, $\left|\mathcal{I}\left(s_{i}^{p} s_{j}^{q} s_{k}^{r}\right) \cap S\right|=q-p-1 \leq \ell-1$.
Case 3: $i \neq j \neq k$. This implies, the points of S contained in $\mathcal{I}\left(s_{i}^{p} s_{j}^{q} s_{k}^{r}\right)$ are $s_{j}^{q+1}, s_{j}^{q+2}, \ldots, s_{j}^{\ell+1}$.
Hence, $\left|\mathcal{I}\left(s_{i}^{p} s_{j}^{q} s_{k}^{r}\right) \cap S\right|=\ell-q+1 \leq \ell$.
From the above three cases, we conclude that the set Z is ℓ-convex. It remains to show that it contains no convex k-gon. Let $\mathcal{P} \subset Z$ be a set of points which lie on the vertices of a convex polygon. Let $\mathcal{P}_{i} \subset \mathcal{P}$ be the set of points in \mathcal{P} which has subscript i, for $i \in\{2,3, \ldots, k-2\}$.

If for all $i \in\{2,3, \ldots, k-2\},\left|\mathcal{P}_{i}\right| \leq 1$, then clearly $|\mathcal{P}| \leq k-1<k$. Otherwise assume that $\left|\mathcal{P}_{i}\right| \geq 2$, for at least some $i \in\{2, \ldots, k-2\}$. Note that due to the orientations of the arrangements of the points in \mathcal{P}_{i} along concave chains as described above, there can be at most one subscripts i for which $\left|\mathcal{P}_{i}\right| \geq 3$. Next, observe that there can be at most two subscripts i for which $\left|\mathcal{P}_{i}\right| \geq 2$, since the set \mathcal{P}_{i} is contained in triangle $s_{i-1}^{1} s_{i}^{1} s_{i+1}^{1}$. If there are two subscripts i and j such that both $\left|\mathcal{P}_{i}\right|,\left|\mathcal{P}_{j}\right| \geq 2$, then none of the points s_{1}^{1} and s_{k-1}^{1} can be in \mathcal{P}. If there is one such subscript i, then only one of the points s_{1}^{1} or s_{k-1}^{1} can be in \mathcal{P}.

With these observations, we have the following two cases:
Case 1: $\left|\mathcal{P}_{i_{0}}\right| \geq 3$, for some i_{0}. We now have the following two cases:
Case 1.1: For all $i \neq i_{0},\left|\mathcal{P}_{i}\right| \leq 1$. In this case the largest size of a convex polygon in Z can be obtained by taking all the points in $\mathcal{P}_{i_{0}}$, where $i_{0}=(k-1) / 2$ or $i_{0}=k / 2$, depending on whether $k-1$ is even or odd, and one point from each \mathcal{P}_{i} on one side of $P_{i_{0}}$, depending upon the curvature of the concave chain at $\mathcal{P}_{i_{0}}$. Therefore, the largest size of a convex polygon possible is $|\mathcal{P}| \leq(k-1) / 2+\ell$ for $k-1$ even, and $|\mathcal{P}| \leq k / 2+\ell$ for $k-1$ odd. Now, since $\ell<k / 2$, by assumption, it follows that $|\mathcal{P}|<k$.
Case 1.2: There exists some $j_{0} \neq i_{0}$ such that $\left|\mathcal{P}_{j_{0}}\right|=2$. In this case the largest size of the convex polygon can be obtained by taking i_{0} as in Case 1.1, $j_{0}=2$ or $j_{0}=k-2$, and one point each from every \mathcal{P}_{i} between $\mathcal{P}_{i_{0}}$ and $\mathcal{P}_{j_{0}}$. Now, as none of the points s_{1}^{1} or s_{k-1}^{1} can be in \mathcal{P}, it follows that $|\mathcal{P}| \leq(k-1) / 2+\ell$ for $k-1$ even, and $|\mathcal{P}| \leq k / 2+\ell$ for $k-1$ odd.
Case 2: $\left|\mathcal{P}_{i_{0}}\right|=2$, for some i_{0}, and $\left|P_{j_{0}}\right| \leq 2$. If there exits some other $j_{0} \neq i_{0}$ such that
$\left|\mathcal{P}_{j_{0}}\right|=2$, then size of a convex polygon that can be found in Z is obtained by taking $i_{0}=2$ and $j_{0}=k-2$ (or vice versa) and one point from each \mathcal{P}_{i} between $\mathcal{P}_{i_{0}}$ and $\mathcal{P}_{j_{0}}$. Clearly, the size of the largest convex polygon that can be obtained in this way is $|\mathcal{P}| \leq k-1$. Otherwise, for all $i \neq i_{0},\left|P_{i_{0}}\right|=1$, and it is easy to see that $|\mathcal{P}| \leq k-1$.

Using this lemma, we now obtain the exact values of $F(k, 5)$ and $F(k, 6)$ in the following theorem:

Theorem 7. For any positive integer $k \geq 3$, we have
(i) $F(k, 5)=2 k-3$ for $k \geq 3$.
(ii) $F(k, 6)=3 k-6$ for $k \geq 3$.

Proof. Lemma 1 implies that any set which has a triangle with 2 interior points has a 5-pseudo-triangle. Moreover, a 1 -convex set cannot contain a 5 -pseudo-triangle. Therefore, part (i) follows from Lemma 5 by putting $\ell=1$.

Similarly, Lemma 2 implies that any set which has a triangle with 3 interior points has a 6 -pseudo-triangle. Moreover, a 2 -convex set cannot contain a 5 -pseudo-triangle. Therefore, part (ii) follows from Lemma 5 by putting $\ell=2$.

In the following theorem, using Lemma 5 and the results on 7 -pseudo-triangles, we obtain new bounds on $F(k, 7)$.

Theorem 8.

$$
F(k, 7)= \begin{cases}3 & \text { for } k=3 \\ 5 & \text { for } k=4, \\ 9 & \text { for } k=5, \\ {[16,17]} & \text { for } k=6, \\ {[21,23]} & \text { for } k=7, \\ {[4 k-9,5 k-12] \text { for } k \geq 8}\end{cases}
$$

Proof. Using the fact that $E S(4)=5$ and $E S(5)=9$, it is easy to obtain $F(4,7)=5$ and $F(5,7)=9$, respectively. For $k=6$ we slightly modify the construction in Lemma 5 to obtain a set of 15 points, shown in Figure 10(a) which contains no 6 -gon or 7 -pseudo-triangle. This example and the fact that $E S(6)=17$ [22], implies $16 \leq F(6,7) \leq 17$.

Theorem 2 implies that any triangle with 5 or more points in its interior contains a 7 -pseudo-triangle. Lemma 5 with $\ell=4$ implies that any 4 -convex set of $5 k-12$ points contains a k-hole, thus proving that $F(k, 7) \leq 5 k-12$. Moreover, any 3 -convex point set cannot contain a 7-pseudo-triangle. The lower bound on $F(k, 7)$ now follows from the tightness part of Lemma 5 , with $\ell=3$ and $k \geq 7$. Therefore, for $k \geq 7$ we have $4 k-9 \leq F(k, 7) \leq 5 k-12$.

For $k=7$, the above inequalities give $19 \leq F(7,7) \leq 23$. As mentioned earlier, the improved lower bound of 21 on $F(7,7)$ follows from a claim of Aichholzer et al. [1].

Remark 3: The set of 16 points shown in Figure 10(b) is clearly 4-convex. This implies that it cannot any ℓ-pseudo-triangle, for $\ell \geq 8$. Moreover, from arguments similar to those in Lemma 5 it is easy to see that it contains no convex 6 -gon. Moreover, since $E S(6)=17$, we have $F(6, \ell)=17$, for $\ell \geq 8$.

Remark 4: Since an ℓ-convex point set cannot not contain any $(\ell+4)$ pseudo-triangle, it follows from Lemma 5 that $F(k, \ell+4) \geq(k-3)(\ell+1)+3$, whenever $\ell<k / 2$.

The bounds obtained on the values $F(k, 5), F(5, \ell), F(k, 6), F(6, \ell)$, and $F(k, 7)$ for different values of k and ℓ are summarized in Table 2 .

7 Conclusions

In this paper we have introduced the quantity $E(k, \ell)$, which denotes the smallest integer such that any set of at least $E(k, \ell)$ points in the plane, no three on a line, contains either an empty convex polygon with k vertices or an empty pseudo-triangle with ℓ vertices. Though

Fig. 10. (a) A set of 15 points not containing a 6 -gon or a 7 -pseudo-triangle, (b) A set of 16 points not containing a 6 -gon or an ℓ-pseudo-triangle for $\ell \geq 8$.

Table 2. Summary of the results

the existence of $E(k, \ell)$ for positive integers $k, \ell \geq 3$, is the consequence of a result proved by Valtr [25], the general upper bound on $E(k, \ell)$ is double-exponential in $k+\ell$. In this paper following a series of new results regarding the existence of empty pseudo-triangles in point sets with triangular convex hulls, we determine the exact values of $E(k, 5)$ and $E(5, \ell)$, and prove new bounds on $E(k, 6)$ and $E(6, \ell)$, for $k, \ell \geq 3$. In particular, we show that $12 \leq E(6,6) \leq 18$ and conjecture the lower bound is, in fact, an equality. Proving this conjecture and tightening the bounds on $E(6, \ell)$, for $\ell \geq 7$ are interesting problems.

We have also introduced another related quantity $F(k, \ell)$, which is the smallest integer such that any set of at least $F(k, \ell)$ points in the plane, no three on a line, contains a convex polygon with k vertices or a pseudo-triangle with ℓ vertices. Extending a result of Bisztriczky and Tóth [6] we have proved that $F(k, 5)=2 k-3, F(k, 6)=3 k-6$, and obtained new bounds on $F(k, 7)$. Obtaining the exact values of $F(k, 7)$ for $k \geq 6$ is another interesting problem.

Acknowledgement: The authors wish to thank Bettina Speckmann for several insightful comments on the various properties of pseudo-triangles, which led to simplified proofs of some of the results.

References

1. O. Aichholzer, [Empty] [colored] k-gons - Recent results on some Erdős-Szekeres type problems, Proc. XIII Encuentros de Geometria Computacional, 43-52, Spain, 2009.
2. O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C. D. Tóth, Decompositions, partitions, and coverings with convex polygons and pseudo-triangles, Graphs and Combinatorics, Vol. 23, 481-507, 2007.
3. H.-K. Ahn, S. W. Bae, I. Reinbacher, Optimal empty pseudo-triangles in a point set, Proc. 21st Canadian Conference Computational Geometry (CCCG 2009), 5-8, 2009.
4. I. Bárány, G. Károlyi, Problems and results around the Erdős-Szekeres convex polygon theorem, $J C D C G$, LNCS 2098, 91-105, 2000.
5. B. B. Bhattacharya, S. Das, Disjoint empty convex pentagons in planar point sets, submitted, 2010.
6. T. Bisztriczky, G. Fejes Tóth, The Erdős-Szekeres problem for planar points in arbitrary position, in A. Bezdek, Ed., Discrete Geometry, In Honor of W. Kuperberg's 60th Birthday, Marcel Dekker, 49-58, 2003.
7. J. Cěrný, A simple proof for open cups and caps, European Journal of Combinatorics, Vol. 29(1), 218-226, 2008.
8. P. Erdős, Some more problems on elementary geometry, Australian Mathematical Society Gazette, Vol. 5, 52-54, 1978.
9. P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compositio Mathematica, Vol. 2, 463-470, 1935.
10. P. Erdős, G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. 3/4, 53-62, 1960-61.
11. T.Gerken, Empty convex hexagons in planar point sets, Discrete and Computational Geometry, Vol. 39, 239-272, 2008.
12. H. Harborth, Konvexe Funfecke in ebenen Punktmengen, Elemente der Mathematik, Vol. 33(5), 116-118, 1978.
13. J.D. Horton, Sets with no empty convex 7-gons, Canadian Mathematical Bulletin, Vol. 26, 482-484, 1983.
14. J. D. Kalbfleisch, J. G. Kalbfleisch, R. G. Stanton, A combinatorial problem on convex regions, Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La., Congr. Numer., Vol. 1, 180-188, 1970.
15. M. van Kreveld, B. Speckmann, On the number of empty pseudo-triangles in point sets, Proc. 19th Canadian Conference on Computational Geometry, 2007.
16. G. Károlyi, G. Lippner, P. Valtr, Empty convex polygons in almost convex sets, Periodica Math. Hungar., Vol, 55(2), 121-127, 2007.
17. G. Károlyi, J. Pach, G. Tóth, A modular version of the Erdős-Szekeres theorem, Studia Sci. Math. Hungar. Vol. 38, 245-259, 2001.
18. G. Kun, G. Lippner, Large convex empty polygons in k-convex sets, Period. Math. Hungar. Vol. 46, 81-88, 2003.
19. C. M. Nicolás, The empty hexagon theorem, Discrete and Computational Geometry, Vol. 38, 389-397, 2007.
20. M. Overmars, Finding sets of points without empty convex 6 -gons, Discrete and Computational Geometry, Vol.29, 153-158, 2003.
21. G. Rote, F. Santos, I. Streinu, Pseudo-triangulations - a survey, preprint, arXiv:math/0612672v2, 17 Oct 2007.
22. G. Szekeres, L. Peters, Computer solution to the 17-point Erdős-Szekeres problem, ANZIAM Journal, Vol. 48, 151-164, 2006.
23. G. Tóth, P. Valtr, The Erdős-Szekeres theorem: upper bounds and related results, in J. E. Goodman, J. Pach, and E. Welzl, Combinatorial and Computational Geometry, MSRI Publications 52, 557-568, 2005.
24. P. Valtr, A suffcient condition for the existence of large empty convex polygons, Discrete and Compututational Geometry, Vol. 28 671-682, 2002.
25. P. Valtr, Open caps and cups in planar point sets, Discrete and Computational Geometry, Vol. 37, 565-576, 2007.
26. P. Valtr, On empty hexagons, in J. E. Goodman, J. Pach, R. Pollack, Surveys on Discrete and Computational Geometry, Twenty Years Later, AMS, 433-441, 2008.
