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RIEMANN HYPOTHESIS AND SOME NEW ASYMPTOTICALLY

MULTIPLICATIVE INTEGRALS WHICH CONTAIN THE

REMAINDER OF THE PRIME-COUNTING FUNCTION π(x)

JAN MOSER

Abstract. A new parametric integral is obtained as a consequence of the
Riemann hypothesis. An asymptotic multiplicability is the main property of
this integral.

1. The result

1.1. Let us remind that

(1.1) π(x) =

∫ x

0

dt

ln t
+ P (x) = li(x) + P (x).

The following theorem holds true.

Theorem. On the Riemann hypothesis

(1.2)

∫

∞

2

ln(xe−2)

x3/2+δ
P (x)dx = −1

δ
+O(1), δ ∈ (0,∆)

where ∆ is a sufficiently small fixed value and the O(1)-function is bounded on
[0,∆].

1.2. Let

(1.3) Ω(δ) =

∫

∞

2

ln(xe−2)

x3/2+δ
{−P (x)}dx.

Then we obtain from (1.2)

Corollary 1.

(1.4) Ω

(

n
∏

k=1

δk

)

∼
n
∏

k=1

Ω(δk), δk → 0, k = 1, . . . , n,

especially,

Ω(δ) ∼ n

»

Ω(δn),

i.e., the function Ω(δ) possesses the property of the asymptotic multiplicability.

Let

n = pα1

1 pα2

2 . . . pαk

k , p1, . . . , pk → ∞
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be the factorization of a natural number n. Then we have (see (1.4)

1

n
=

k
∏

l=1

Å

1

pl

ãαl

⇒ Ω

Å

1

n

ã

∼
k
∏

l=1

ß

Ω

Å

1

pl

ã™αl

,

for example.

2. The main formula

2.1. Let us remind that

π(x) =

∫ x

2

dt

ln t
+ P̄ (x) = Li(x) + P̄ (x),

P̄ (x) = P (x) + V.p.

∫ 2

0

dt

ln t
= P (x) +K; K ≈ 1.04,

(2.1)

(see (1.1), (2.1) and [1], p. 3). The following lemma holds true.

Lemma 1.

(2.2)

∫

∞

2

∂

∂x
{ln(1 − x−s)}P̄ (x)dx = ln ζ(s) +

∫

∞

2

ln(1− xs)

lnx
dx,

for σ > 1, s = σ + it.

Proof. We apply the formula ([2], p. 2)

(2.3) ln ζ(s) = s

∫ x

2

π(x)

x(xs − 1)
dx, σ > 1.

Since

(2.4)
s

x(xs − 1)
=

∂

∂x
{ln(1− x−s)},

then we obtain from (2.3)

(2.5) ln ζ(s) =

∫

∞

2

∂

∂x
{ln(1− x−s)}π(x)dx, σ > 1.

Next

dLi(x)

dx
=

1

lnx
, Li(2) = 0,

(see (2.1)) and

∫

∞

2

∂

∂x
{ln(1− x−s)}Li(x)dx = Li(x) ln(1− x−s)

∣

∣

x=∞

x=2
−

−
∫

∞

2

ln(1− x−s)

lnx
dx = −

∫

∞

2

ln(1− x−s)

lnx
dx,

(2.6)

then from (2.5) by (2.1), (2.6) the formula (2.2) follows. �
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3. The differentiation of the formula (2.2)

Let
∏

1 denote the open rectangle generated by the points 1+ δ± i, 3
2 ± i (0 < δ

is the sufficiently small fixed value). The following lemma holds true.

Lemma 2.

(3.1) −
∫

∞

2

F (x; s)P̄ (x)dx =
ζ′(s)

ζ(s)
+G(s), s ∈ Π1,

where

F (x; s) =
∞
∑

n=0

{s(n+ 1) lnx− 1}x−(n+1)s−1,

G(s) =

∞
∑

n=0

1

(n+ 1)s− 1

1

2(n+1)s−1
.

(3.2)

Proof. We use the formula (see (2.2), (2.4))

(3.3)

∫

∞

2

s

xs − 1

P̄ (x)

x
dx =

∞
∑

n=1

∫ pn+1

pn

s

xs − 1

P̄ (x)

x
dx =

∞
∑

n=1

wn(s).

Since P̄ (x) = O(x), and P̄ (x), x ∈ (pn, pn+1) is continuous (pn is a prime number,
p1 = 2) then wn(s), s ∈ Π1 is an analytic function. Next, the uniform convergence
of the series in the set Π1 follows from the uniform convergence of the integral (see
(3.1) in the set Π1. Thus, by the theorem of Weierstrass, the integral in (3.3) is an
analytic function in Π1. Since

d

ds

s

xs − 1
=

1

xs − 1
− sxs lnx

(xs − 1)2
=

x−s

1− x−s
− sx−s lnx

(1− x−s)2
=

−
∞
∑

n=0

{s(n+ 1) lnx− 1}x−(n+1)s,

(3.4)

then we have (see (3.3), (3.4))

d

ds

∫

∞

2

s

xs − 1

P̄ (x)

x
dx = −

∫

∞

2

F (x; s)P̄ (x)dx, x ∈ Π1,

F (x; s) =
∞
∑

n=0

{s(n+ 1) lnx− 1}x−(n+1)s−1.

(3.5)

Similarly, we obtain

d

ds

∫

∞

2

ln(1− x−s)

lnx
dx =

∫

∞

2

x−s

1− x−s
dx =

∫

∞

2

{

∞
∑

n=0

x−(n+1)s

}

dx =

=
∞
∑

n=0

1

(n+ 1)s− 1

1

2(n+1)s−1
, s ∈ Π1.

(3.6)

Finally, we obtain the formula (3.1) by the differentiation of (2.2), (see (3.5), (3.6)).
�
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4. Cancelation of the singular parts corresponding to the pole at
s = 1. The pole at s = 1

2

Let Π2 denote the open rectangle generated by the points 1
2 ± i, 3

2 ± i. The
following lemma holds true.

Lemma 3.

(4.1)

∫

∞

2

F (x; s)P̄ (x)dx = − 1

2s− 1
+ g(s), s ∈ Π1

where g(s), s ∈ Π2 is the analytic and bounded function.

Proof. Let (see (3.1))

(4.2) H(s) =
ζ′(s)

ζ(s)
+G(s), s ∈ Π1.

First of all (see (3.2))

G(s) =
1

s− 1

1

2s−1
+

1

2s− 1

1

22s−1
+ g1(s),

g1(s) =
∞
∑

n=2

1

(n+ 1)s− 1

1

2(n+1)s−1
, s ∈ Π1.

(4.3)

Since
1

s− 1

1

2s−1
=

1

s− 1
e−(s−1) ln 2 =

1

s− 1

{

1− (s− 1) ln 2 +O(|s− 1|2)
}

=

=
1

s− 1
− ln 2 +O(|s− 1|) = 1

s− 1
+ g2(s),

and similarly

1

2s− 1

1

2s−1
=

1

2s− 1
− ln 2 +O(|2s− 1|) = 1

2s− 1
+ g3(s)

then (see (4.2), (4.3))

H(s) =
ζ′(s)

ζ(s)
+

1

s− 1
+

1

2s− 1
+ g4(s), s ∈ Π1

g4(s) = g1(s) + g2(s) + g3(s),

(4.4)

where g4(s), s ∈ Π2 is the analytic and bounded function. Next, by the known
formula

(4.5)
ζ′(s)

ζ(s)
+

1

s− 1
= b− 1

2

Γ′

Γ

(s

2
+ 1
)

+
∞
∑

n=1

Å

1

s− ρn
+

1

ρn

ã

= g5(s)

where ζ(ρn) = 0, and g5(s), s ∈ Π2 is the analytic and bounded function. Finally,
from (3.1) by (4.2)-(4.5) the asertion of the Lemma 3 follows. �

5. The analytic continuation of the formula (3.1)

5.1. The following lemma holds true.

Lemma 4. On the Riemann hypothesis

(5.1)

∫

∞

2

F (x;σ)P̄ (x)dx = − 1

2σ − 1
+ g(σ), σ ∈

Å

1

2
,
3

2

ã

where g(σ), σ ∈ [ 12 ,
3
2 ] is the bounded function.
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Proof. Let Π2(δ) denote the open rectangle generated by the points 1
2 + δ± i; 32 ± i.

We obtain from (3.2)

(5.2) |F (x; s)| = O
Å

lnx

xσ+1

ã

.

Next, on the Riemann hypothesis, the following estimate of von Koch

(5.3) P (x), P̄ (x) = O(
√
x lnx)

holds true (comp. (2.1)). Then we have (see (5.2), (5.3))
∫

∞

2

|F (x; s)P̄ (x)|dx = O
Å∫

∞

2

x−1− δ

2 dx

ã

= O
Å

1

δ

ã

,

i.e. the integral
∫

∞

2

F (x; s)P̄ (x)dx, s ∈ Π2(δ)

is the analytic function. Finally, from the formula (4.1), s ∈ Π1, (g(s), s ∈ Π2 is the
analytic function) by the method of analytic continuation we obtain the formula

∫

∞

2

F (x; s)P̄ (x)dx = − 1

2s− 1
+ g(s), s ∈ Π2(δ),

from which the formula (5.1) follows. �

5.2. Since (see (5.2))
∫

∞

2

F (x;σ)dx = O
Å∫

∞

2

x−
3
2
+δdx

ã

= O(1), σ ∈
ï

1

2
,
3

2

ò

,

we obtain, putting P̄ (x) = P (x) +K (see (2.1)) in (5.1), the following lemma

Lemma 5. On the Riemann hypothesis

(5.4)

∫

∞

2

F (x;σ)P (x)dx = − 1

2σ − 1
+ g̃(σ), σ ∈

Å

1

2
,
3

2

ã

where g̃(σ), σ ∈ [ 12 ,
3
2 ] is the bounded function.

6. Proof of the Theorem

Since (see (3.2), comp. (5.2), (5.3))

F (x;σ) =
σ lnx− 1

xσ+1
+O
Å

lnx

x2σ+1

ã

,

∫

∞

2

lnx

x2σ+1
|P (x)|dx = O

Å∫

∞

2

x−
3
2
+δdx

ã

= O(1), σ ∈
ï

1

2
,
3

2

ò

,

∫

∞

2

F (x;σ)P (x)dx =

∫

∞

2

σ lnx− 1

xσ+1
P (x)dx +O(1), σ ∈

Å

1

2
,
3

2

ã

then (see (5.4))
∫

∞

2

σ lnx− 1

xσ+1
P (x)dx = − 1

2σ − 1
+O(1), σ ∈

Å

1

2
,
3

2

ã

.

Putting here σ = 1
2 + δ, δ ∈ (0,∆), ∆ < 1, we obtain the formula

(6.1)

∫

∞

2

(

1
2 + δ

)

lnx− 1

x
3
2
+δ

P (x)dx = −1

δ
+O(1).
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However, (see (5.3))
∫

∞

2

(

1
2 + δ

)

lnx− 1

x
3
2
+δ

P (x)dx −
∫

∞

2

1
2 lnx− 1

x
3
2
+δ

P (x)dx =

= δ

∫

∞

2

lnx

x
3
2
+δ

P (x)dx = O
Ç

δ

∫

∞

2

ln2 x

x1+δ
dx

å

=

O
Å

δ

∫

∞

2

x−1− δ

2dx

ã

= O
Å

δ
1

δ

ã

= O(1), δ ∈ (0,∆).

(6.2)

The formula (1.2) follows from (6.1) by (6.2).
I would like to thank Michal Demetrian for helping me with the electronic version

of this work.
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