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Abstract

Modal quantum theory (MQT) is a simplified cousin of ordinary
Hilbert space quantum theory. We show that two important theo-
rems of actual quantum theory, the Kochen-Specker theorem exclud-
ing non-contextual hidden variables and the Conway-Kochen “free will
theorem” about entangled systems, have direct analogues in MQT.
The proofs of these analogue theorems are similar to, but much sim-
pler than, the originals. We also show that the structure of possible
measurement results for an entangled system in MQT cannot be repre-
sented by probability assignments satisfying the no-signaling principle,
such as those given by ordinary quantum theory.

1 Modal quantum theory

Modal quantum theory, or MQT, is a simplified mathematical model hav-
ing many affinities with the Hilbert space structure actual quantum theory
(AQT). In [1] it was shown that, though the state space in MQT may be
discrete and lacks an inner product, it is nevertheless possible to give a us-
able interpretation of the model based on the “modal” distinction between
possible and impossible measurement outcomes. MQT systems have super-
position and interference effects, and entangled systems have properties that
are inconsistent with local hidden variable theories.
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In this paper, we show that MQT also supports analogues of two impor-
tant results from actual quantum theory, namely the Kochen-Specker argu-
ment about contextuality and hidden variable theories [2], and the Conway-
Kochen “free will theorem” about the properties of entangled systems [3].
In each case, the proof of the MQT version of the theorem is substantially
simpler. We are not giving new proofs of these important results in AQT,
but rather deriving analogue results in MQT, a very different theory. To
emphasize this, we show that the predictions of MQT cannot always be em-
compassed by a probabilistic theory such as AQT.

The basic rules of MQT are easy to summarize.

States. The state of a system is a non-zero vector |¢)) in a vector space V
over a field F of scalars. F may be any field; many interesting examples
arise when F is chosen to be finite.

Effets and measurements. An effect is an element (e| in the dual space
V*. The effect (e| is possible for the state |¢) if (e ]1)) # 0 and impos-
sible if (e|ip) = 0. A measurement is a basis for V* whose elements
correspond to the potential results of the measurement process.

Composite systems. If two systems have state spaces V' and V®, then
the composite system has a state space V2 = V" @ Y@,

Time evolution. The time evolution of the state of an isolated system in
MQT is described by an invertible linear operator 71"

W) — ) =T ). (1)
For finite F, this evolution cannot be continuous in time.

(The time evolution rule is included here for completeness; we will require
only the first three for our discussion.)

Let us illustrate these rules by considering a system with dim )V = dim V* =
2, a “modal bit” or mobit. The dual space contains at least three distinct
non-zero vectors, which we can designate (al, (b|, and (c| = (a| + (b|. (For
the simplest case, when F = Z,, these are in fact the only three non-zero
vectors in V*.)

Any pair of these forms a basis for V*, and thus represents a possible
measurement on the system. We shall call the three measurement bases X,



Figure 1: Three measurement bases for a mobit system..

Y and Z, and designate the two potential results for each measurement by
+ or —. Thus,

X: (4. = (q Y (4] = (c Z: (+
(=] = (0 (—] = (al (=G @

These are shown in Figure [Il

2 Non-contextuality

Kochen and Specker [2] considered a single spin-1 system in AQT together
with measurements of the squares of spin components along various axes.
These measurements have three important properties:

e The possible results of any measurement are 0 and 1 (in units of h?).

e The squared spin components along any three orthogonal directions are
compatible observables and thus may be measured simultaneously.

e [f the squared spin components along three orthogonal directions are
measured, then exactly two of these directions will yield the result 1
and one direction will yield 0.

We can view the collection of squared spin components along an orthogonal
triad of directions as a single observable, whose result is the particular direc-
tion along which the measurement yields 0. Each possible result corresponds



to a projection effect operator on the spin 1 Hilbert space. The orthogo-
nal triad of directions (in real space) gives rise to a set of projections onto
orthogonal one-dimensional subspaces (in Hilbert space).

Kochen and Specker asked whether the behavior of the spin-1 system
could be explained by a hidden-variable model. In such a model, the result
of any measurement would be predetermined by the values of one or more
hidden variables, whose underlying statistical distribution would give rise to
the the observed probabilistic properties of the quantum system. Kochen
and Specker further required that the hidden-variable predictions be non-
contertual. That is, for a particular effect—i.e., whether or not the squared
spin component is 0 for a given direction—the hidden-variable “yes/no” pre-
diction cannot depend on which other two directions are included in the or-
thogonal triad that is being measured. Could such a model of non-contextual
hidden variables account for the properties of spin-1 systems listed above?

The question can be translated into a question of graph-coloring. Given
some set of directions in real three-dimensional space, can we color those
directions red (for 1) and green (for 0) such that any orthogonal triad of di-
rections contains exactly two red and one green? Kochen and Specker showed
that this was not in general possible. They found a set of 117 directions in
space that could not be colored in this way, since each direction was part
of more than one orthogonal triad. (Later proofs of the theorem, such as
the one given in [5], reduce the number of directions required, but all such
constructions remain fairly complicated.)

We can construct an analogue of the Kochen-Specker argument in MQT,
showing that the predictions of this theory are also incompatible with non-
contextual hidden variables. Consider the three mobit measurements listed
in Equation 2] and diagrammed in Figure [Il In a hidden-variable model for
this system, the results of all measurements are predetermined by the hidden
variables, but because the values of these variables are unknown, more than
one result may be deemed possible in a given situation. The requirement of
non-contextuality is that the hidden variables determine whether or not a
given effect will occur, independent of what other effects are included in the
measurement. That is, the hidden-variable “yes/no” prediction is a function
only of the effect and not of the measurement basis to which that effect
belongs.

Therefore, our question is once again translated into a graph-coloring
problem. Consider the triangle in Figure [l Each vertex is an effect, and
each side corresponds to a measurement basis. We wish to color the vertices
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Figure 2: Spacetime diagram of two near-simultaneous measurement pro-
cesses.

red and green so that each side contains exactly one green vertex. This is
obviously impossible. Therefore, the properties of a mobit system in MQT
cannot be explained by an model of non-contextual hidden variables.

The essential idea is the same, both in the Kochen-Specker proof in AQT
and in its MQT analogue. However, the construction in MQT is almost
trivial, in sharp contrast to that of Kochen and Specker.

3 The free will theorem

Conway and Kochen have used the Kochen-Specker construction to prove
the remarkable “free will theorem” about entangled quantum systems [3],
[4]. This theorem links the freedom of observers to choose their measure-
ments to the “free will” (indeterminacy) displayed by quantum systems in
producing the outcomes of those measurements. Conway and Kochen intro-
duce three basic axioms for the physical world, which they designate SPIN,
TWIN and FIN. The SPIN axiom states that spin-1 quantum systems be-
have as we have described in the last section. The TWIN axiom describes
the correlations between two spin-1 systems in a “singlet” (total spin zero)
state. In this entangled quantum state, measurements of the squared spin
components along two parallel directions must always yield identical results.

The FIN axiom states that the speed of information transfer has a finite
limit (which might be, but is not necessarily, the speed of light). Consider
two measurement processes on spatially separated subsystems, as shown in
a spacetime diagram in Figure 2l The two measurements are nearly simul-
taneous, and so by the FIN axiom it is not possible for information to travel



from one measurement to the other. This means that the result of the mea-
surement on system (1) can only depend on physical conditions within the
causal past of the measurement, shown as the shaded region in Figure[2l The
“free will” of observers means that we can arrange the choice of system (2)
measurement to lie entirely outside the causal past of the system (1) mea-
surement, so the system (1) result cannot depend on this choice. The reverse
is also true.

These facts are the only consequences of the FIN axiom that are used
in the proof of the free will theorem. Because of this, in a later version
of the theorem Conway and Kochen replace the FIN axiom with a weaker
axiom (called MIN) that asserts the independence of measurement results
from distant measurement choices [4].

The MQT version of the free will theorem is based on the properties of
an entangled state of two mobits. If |0) and |1) are a pair of basis states, this
state can be writte

15) =10,1) = [1,0). (3)
This state has the property that, if measurements are made on the two mobit

systems, the same effect can never occur for both systems. This is because,
for any effect (e,

(e,e]S) = (e|0) (e[1) = (e[1) (e|0) = 0. (4)

Let (A" = a : B® = b) denote the situation in which a measurement of A on
system (1) yields result a and a measurement of B on system (2) yields result
b. Then for the state |.S), any joint result of the form (A" =a: A® =a) is
impossible. The impossible results include:

(X0 =41 XO = 4) (X0 = —: X® = _)
(YO =4:Y® = 4) (YO =—:y® =_) (5)
(ZW =4 2@ = 4) (ZW = — 1 720 = )

Recalling the three measurement bases in Equation 2| we see that the fol-
lowing joint results are also impossible for |.S):

(XD = 4:Y® =) (YO = —: XO = 4)
(YO = 4120 = ) (Z0 = — . Y® = 4) (6)
<Z(1) — + : X(Z) f— _> <X(1) = — Z(2) = +>

!The negative sign in the definition of |S) means that the second term is multiplied by
the additive inverse of the scalar 1. If F = Zo, then —1 = 1, and we have |S) = |0,1)+|1,0).
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We are now ready to state the MQT version of the three Conway-Kochen
axioms. The FIN axiom (or its minimal replacement MIN) is retained with-
out change. The MQT version of SPIN (which we may denote SPIN*) asserts
the existence of the three overlapping measurement bases X, Y and Z shown
in Figure[[l The MQT TWIN* axiom states that a possible state of the sys-
tem has the properties of the MQT state |S)—that is, that the joint results
listed in Equations [ and [0] are impossible.

Now we are ready to prove our theorem. Assume that FIN (or MIN),
SPIN* and TWIN* hold for a composite system. Suppose also that observers
are freely able to choose X, Y and Z measurements on the separated sub-
systems. Now imagine that the actual results of all measurements are fully
determined by physical factors in the causal pasts of those measurements.

If the measurements Z® and Z® are made, then the results cannot agree.
The only two possible joint results are (Z" = +: Z® = =) or (/) = — : Z®
Without loss of generality (since the two situations are symmetric), suppose
the actual result is the first of these.

If the measurement on system (2) is X instead, then the result of the
Z™ measurement is unchanged, and we have (ZV = + : X® = z) for some .

According to Equation[@], the only possible joint result is (Z® = 4+ : X® = +).

We can therefore conclude that X® = + for any choice of measurement on
system (1).

Given that (7 = +:Z® = —) what if the measurement on system
(1) is actually Y®? The Z® result is unchanged, and Equation [0 tells us
that only one Y™ result is possible. We must have (Y = —: Z® = —),
From here, we can inquire how things change if we alter the system (2)
measurement to X ®. Again, the Y result cannot change, and Equation
restricts us to the single possible joint result (Y® = —: X® = —) We can
therefore conclude that X® = — for any choice of measurement on system
(1). This contradicts our previous conclusion about X .

Our hypothesis that the actual results of the measurements are prede-
termined is therefore faulty. Given the axioms FIN (or MIN), SPIN* and
TWIN*, the freedom of the observers to perform X, Y or Z measurements
on the mobits implies that the results of those measurements are not prede-
termined by the causal pasts of the systems. If observers in MQT have “free
will”, then so do the systems they observe.

The proof of the MQT version of the free will theorem has the same
structure as the corresponding proof by Conway and Kochen in AQT. As
in the Kochen-Specker theorem, the mathematical construction involved for
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Figure 3: Table of joint measurement results for a pair of mobits in the |.5)
state. In this table, impossible results are designated by 0 and possible ones

by #.

the MQT version is very much simpler.

4 Modal and actual quantum theories

We wish to emphasize that the proofs presented here are not alternate proofs
for the Kochen-Specker and Conway-Kochen theorems in actual quantum
theory. These are proofs of analogous results in modal quantum theory.
Though MQT has many affinities to AQT, the two are not the same.

It is conceivable, however, that systems in one theory might be able to
simulate the other. For example, it might be that the possibility relations
among various measurements in an MQT system could be realized as proba-
bilistic relations among measurements in an appropriately chosen AQT sys-
tem. Then the MQT proof would apply to the corresponding AQT situa-
tion. However, as we will now show, this cannot always be done. In fact,
the possibility relations for an MQT system need not be consistent with any
reasonable assignment of probabilities for the system, much less one derived
from AQT.

Consider a pair of mobits in the entangled MQT state |S) = |0,1)—|1,0).
We summarize the predictions of this state for various joint measurements
in the table shown in Figure [l This table contains three rows and three
columns corresponding to the X, Y and Z measurements on each mobit.
For each joint measurement, we obtain a 2 x 2 sub-table showing whether
each joint result is possible (designated by #) or impossible (designated by
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0). The 0’s in Figure B are exactly those impossible results enumerated in
Equations [B] and [6l

We now wish to create a table of probabilities with the same essen-
tial structure as Figure Bl The entries of the table will be of the form
P(a,b|A™, B®), the probability that a joint measurement of the observ-
able (A", B®) will yield the joint result (a,b). Such a table should meet the
following requirements

[. Each probability must be between 0 and 1. Furthermore, for any A®
and B®,

> P(a, AV, B®) = 1. (7)
a,b

II. The marginal probability distribution for the results of a subsystem
measurement is independent of the choice of measurement on the other
subsystem. For instance, given measurements A", A" and B®,

> P(a,b|AV, B®) =) " P(a,b|AV, B®) = P(b|B?).  (8)
This is called the no-signaling principle [6]. If it were not true, then a
choice of measurement on system (1) could cause an immediate change
in the statistical properties of system (2), allowing information to be
transmitted from one to the other instantaneously. The no-signaling
principle holds for measurements on composite systems in actual quan-
tum theory.

ITI. Each impossible joint outcome in Figure [ is assigned a probability
P(a,b|A™, B®) = 0.

IV. Each possible joint outcome in Figure [ is assigned a probability
P(a,b|AM B®) > 0.
Requirements I-1II almost completely specify the probability assignment for
Figure 3l The general result is shown in Figure [l Only three real parame-
ters, denoted by ¢, r and s in Figure [, determine all of the probabilities in
the table.
From the table, however, we note that
G+r = Pl YO, X®) = —P(=, +[X",Y®)
qg+s = P(+,—|XY,Z®) = —P(—,+|ZV, X?) 9)
r+s = P(+,—|ZV,Y®) = —P(—,+|Y", Y?).
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Figure 4: Probability table consistent with the possibility data given in Fig-
ure [3, consistent with the no-signaling principle. All of the entries are deter-
mined by just three real parameters ¢, » and s.

This can only be satisfied if these six probabilities, which correspond to
possbile results in Figure [3] are assigned probability zero, in violation of
requirement IV. Therefore, we cannot find a probability assignment with
the same structure as Figure [3 that satisfies all four requirements. The
predictions of MQT in this case cannot be simulated by AQT, or indeed by
any probabilistic theory satisfying the no-signaling principle.

What if we relax the troublesome requirement IV and permit an assign-
ment of probability zero to a result designated “possible” in MQT? Then the
probability table can be completed by letting ¢ = r = s = 0, yielding the
table shown in Figure [0l It is interesting to note that, with the selection of
two measurements for each system (X Y® for system (1) and X® G Z®
for system (2), for example), the probabilities from Figure [l describe a PR
boz, a type of nonlocal correlation known to be inconsistent with AQT [7],
[6]. This is also shown in Figure Bl

This illustrates in the most definitive way that modal quantum theory
is not reducible to actual quantum theory. On the other hand, there is a
sense in which AQT can be regarded a “special case” of MQT with F = C.
The inner product structure of AQT Hilbert space motivates us to consider
only normalized state vectors, orthonormal measurement bases, and unitary
time evolution operators. All of these are restrictions of the larger class
of states, measurements and evolution operators permitted in MQT. If we
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Figure 5: Unique probability table consistent with Figure Bl satisfying only
Requirements I-11I. Choosing only two rows and two columns, we arrive at
the probability table of a PR box.

consider only the distinction between possible (p # 0) and impossible (p = 0)
measurement results, then any situation in AQT can be viewed from a modal
point of view.

The highly simplified structure of MQT is thus a generalization of some
aspects of AQT. As we have seen, it is possible to use this generalized frame-
work to prove analogues to important AQT results about hidden variable
models. The MQT proofs are much easier to understand and can be used to
shed light on the essential structure of these theorems.
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C. Fuchs, R. Spekkens and A. Wilce. We also acknowledge the hospital-
ity of the Perimeter Institute for Theoretical Physics during September and
October of 2010.

References

[1] B. Schumacher and M. D. Westmoreland, “Modal quantum theory”,
e-print arXiv:1010:2937.

[2] S. Kochen and E. Specker, “The problem of hidden variables in quantum
mechanics”, J. Math. Mech. 17, 59-88 (1967).

11



[3] J. Conway and S. Kochen, “The Free Will Theorem”, Found. Phys. 36,
1441-1473 (2006).

[4] J. Conway and S. Kochen, “The Strong Free Will Theorem”, Notices of
the Amer. Math. Soc. 56, 226-232 (2009).

[5] A. Peres, Quantum Theory: Concepts and Methods, (Kluwer Academic
Publishers, Dordrecht, 1993).

[6] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu and D.
Roberts, “Nonlocal correlations as an information-theoretic resource”,
Phys. Rev. A 71, 022101 (2005). H. Barnum, J. Barrett, M. Leifer, and
A. Wilce, “Cloning and broadcasting in generic probabilistic models”,
arXiv:quant-ph:0611295, (2006). H. Barnum, J. Barrett, M. Leifer, and
A. Wilce, “Generalized no-broadcasting theorem”, Physical Review Let-
ters 99, 240501 (2007).

[7] S. Popescu and D. Rohrlich, “Nonlocality as an axiom”, Found. Phys.
24, 379385 (1994).

12



	1 Modal quantum theory
	2 Non-contextuality
	3 The free will theorem
	4 Modal and actual quantum theories

