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Abstract

We study the photon counting noise in optical interferometers used for gravitational wave de-

tection. In order to reduce quantum noise a squeezed vacuum state is injected into the usually

unused input port. Here, we specifically investigate the so called ‘dark port case’, when the beam

splitter is oriented close to 90◦ to the incoming laser beam, such that nearly all photons go to

one output port of the interferometer, and only a small fraction of photons is seen in the other

port (‘dark port’). For this case it had been suggested that signal amplification is possible without

concurrent noise amplification [R. Barak and Y. Ben-Aryeh, J. Opt. Soc. Am. B25(361)2008]. We

show that by injection of a squeezed vacuum state into the second input port, counting noise is

reduced for large values of the squeezing factor, however the signal is not amplified. Signal strength

only depends on the intensity of the laser beam.
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I. INTRODUCTION

For gravitational wave detection with optical interferometers various sources of noise

must be carefully controlled and, if possible, minimized. In an effort to reduce quantum-

mechanical noise, Caves [1] proposed the squeezed state technique: into the normally unused

port of the interferometer a squeezed vacuum state is injected. Details of this technique are

analyzed e.g. in Refs. [2, 3] and references therein.

The photon state in the interferometer after passing a beam splitter is not a product

state, but the states of the output ports are entangled. In recent papers by Barak and

Ben-Aryeh [4] and Voronov and Weyrauch [5], the consequences of this entanglement for the

photon statistics of an optical interferometer were studied.

In Ref. [4] it was suggested that under certain conditions, the gravitational wave signal

may by amplified without a corresponding increase in counting noise. In Ref. [5] we dis-

puted this surprising prediction, and showed that is was the result of an inaccuracy in the

calculations. Furthermore, we calculated photon distributions in the output state for various

settings of a beam splitter with respect to weak and strong incoming laser fields. We showed

that a squeezed vacuum injected into the other port cannot amplify the signal however my

reduce counting noise for large squeezing factors.

In a recent paper [6], Ben-Aryeh specifically reanalyzes the ‘dark port case’, i.e. a config-

uration where the beam splitter is oriented close to 90◦ to the incoming laser beam with a

squeezed vacuum entering the other port. He confirms our findings in Ref. [5] and sharpens

the physical interpretation of the results obtained.

It is the purpose of the present paper to investigate the photon statistics in the dark

output port of the interferometer in more detail, and present the calculations and results

more succinctly than in our previous paper [5].

In section II we develop formulas for the calculation of the photon number distributions

in the dark output port of the interferometer, as well as their mean values and variances.

Numerical results and their physical interpretation will be discussed in section 3. A brief

summary concludes the paper.
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II. PHOTON STATISTICS IN DARK OUTPUT PORT OF A BEAM SPLITTER

The photon field operators âi and â
†
i of the input ports and the photon field operators

b̂i and b̂†j of the output ports of a beam splitter are related through the beam splitter

transformation [7]




â1

â2



 =





cos γ sin γ

− sin γ cos γ









b̂1

b̂2



 . (1)

Both sets of operators fulfill boson commutation relations [âi, â
†
j ] = δi,j and [b̂i, b̂

†
j] = δi,j,

respectively. The parameter γ parameterizes the splitting ratio of the beam splitter with

respect to the incoming laser beam.

The incoming laser beam in port 1 is a coherent state, and a squeezed vacuum state is

injected in port 2:

|ψin(α, ζ)〉 = Ŝ2(ζ)D̂1(α)|0, 0〉 (2)

with

D̂1(α) = exp
(

αâ†1 − α∗â1

)

, Ŝ2(ζ) = exp

(

ζ∗

2
â2
2
− ζ

2
â†22

)

. (3)

The coherence parameter α and the squeezing parameter ζ are complex numbers.

The beam splitter transformation allows to write the â operators in terms of the b̂ oper-

ators, and one may write the photon state after passing the beam splitter as

|ψout(α, ζ, γ)〉 = exp(|ζ |Â)D̂1(α cos γ)D̂2(α sin γ)|0, 0〉 (4)

with

Â = ŝ1 sin
2 γ + ŝ2 cos

2 γ + ŝ12 sin γ cos γ (5)

and

ŝi =
1

2|ζ |(ζ
∗b̂2i − ζb̂†2i ) ŝ12 =

1

|ζ |(ζb̂
†
1b̂

†
2 − ζ∗b̂1b̂2). (6)

From the expression for Â we see that both output states are entangled by the operator

ŝ12. This fact significantly complicates evaluation of the photon statistics of the output state.

However, it is possible to use Lie algebraic disentangling techniques in order to rewrite the

output state in a way which enables the determination of photon distributions (for details

we refer the reader to Ref. [5]).

After disentangling it is possible to write Eq. (4) as follows [8, 9]

|ψout〉 = exp(σT t̂12) exp(σS ŝ12) exp(σ1ŝ1) exp(σ2ŝ2)D̂1(α cos γ)D̂2(α sin γ)|0, 0〉 (7)
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with t̂12 = b̂1b̂
†
2
− b̂†

1
b̂2. The output state is now expressed in terms of two squeezed coherent

states entangled via the operators exp(σT t̂12) and exp(σS ŝ12). The coefficients σT , σS, σ1, σ2

are real functions of the input parameters r = |ζ | and γ. A simple method for the numerical

determination of these parameters is described in Appendix A of Ref. [5].

The dark port case corresponds γ = π/2 − δ, where δ is a small phase shift (we assume

it is real), for which one finds to first order in δ (see Appendix A in Ref. [5])

σ1 = r, σ2 = 0, σS = −δ sinh r, and σT = δ(1− cosh r). (8)

We furthermore assume a very strong coherent state incoming in port 1, such that the b̂2

and b̂†2 operators can be replaced in the entanglement factors in Eq. (7) by their expectation

values α and α∗, respectively. The output state can then be written as

|ψout〉 = D̂1(−αδ(1− cosh r))D̂1(−δα∗eiθ sinh r)Ŝ1(ζ)D̂1(−αδ)D̂2(α)|0, 0〉 (9)

with ζ = reiθ. The operators with index 1 may be combined using the relations

D̂(α2)D̂(α1) = D̂(α1 + α2) exp

[

1

2
(α2α

∗
1
− α∗

2
α1)

]

,

D̂(α)Ŝ(ζ) = Ŝ(ζ)D̂(α cosh r + α∗eiθ sinh r). (10)

We finally obtain

|ψout〉 = ei|α|
2δ2∆Ŝ1(ζ)D̂1(α̃)D̂2(α)|0, 0〉 (11)

with α = |α|eiφ and

α̃ = −αδ cosh r − α∗δeiθ sinh r,

∆ =
1

2
sin(θ − 2φ) sinh(2r).

(12)

As one can see from Eq. (11), a strong coherent state with coherence parameter α exits

through port 2 of the interferometer and a weak squeezed coherent state with coherence

parameter α̃ and squeezing parameter ζ exits through port 1. Note that in Ref. [5] there

are two missprints: ∆ must be defined without the term e2iφ and with opposite sign. Also

note, that the coherence parameter α̃ depends on the squeezing parameter ζ , the coherence

parameter α = |α|eiφ and the phase shift δ. The phase factor ei|α|
2δ2∆ is irrelevant for the

determination of the photon statistics.
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In order to determine the photon statistics of the output state we need to determine its

number (Fock) representation. In terms of the number representation of a squeezed coherent

state [10]

Ŝ(ζ)D̂(α̃)|0〉 =
∞
∑

n=0

1√
n!
fn(ζ, α̃)|n〉 (13)

with

fn(ζ, α̃) =
(eiθ tanh r)n/2

2n/2(cosh r)1/2
exp

(

−1

2
(|α̃|2 − e−iθα̃2 tanh r)

)

Hn

(

α̃e−iθ/2

√
2 cosh r sinh r

)

, (14)

and Hn the Hermite polynomials, one immediately obtains the distribution function

Pn1
=

1

n1!
|fn1

(ζ, α̃)|2 . (15)

The mean and the variance of this distribution may be obtained analytically [10]

〈n1〉 = |α|2δ2 + sinh2 r,

(∆n1)
2 = |α|2δ2(cosh(2r)− cos(θ − 2φ) sinh(2r)) + 2 sinh2 r cosh2 r.

(16)

Note, that the mean does not depend on the phases θ and φ, but the variance does. The

results Eq. (16) on first sight appear different from those obtained in Ref. [5], however, it is

possible to show that they are equivalent. The form presented here is, however, much more

transparent.

Finally, we would like to remark, that the mean and variance Eq. (16) may alternatively

be calculated by a method used by Caves [1]. He expresses the output observables, which

are described by b̂ operators, in terms of the input operators â using the beam splitter

transformation. In this way one obtains the same results Eq. (16) very efficiently, however,

the full distribution function is not easily obtained.

III. NUMERICAL RESULTS AND PHYSICAL INTERPRETATION

We consider squeezing factors up to r = 1.5 in our numerical work, since at the present

time the largest squeezing factor experimentally realized is about r = 1.3 corresponding to

a maximum squeezing of about -11.5 dB [11].

From the formulas (15) and (16) we see that the mean of the photon distribution does

not depend on the phases θ and φ, but the variance depends on the phase relation θ − 2φ.

Obviously, choosing θ − 2φ = 0 is optimal in the sense of minimizing the counting noise.
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FIG. 1. (Color online) Photon number probability distribution for |δα|2 = 500, θ = 2φ, and

different values of the squeezing parameter r = 0, 0.3, 0.6, 0.9, 1.2, 1.5 in the dark port. On the

right hand side of the plot we show the mean and the variance squared of these distributions.

Substituting θ − 2φ = 0 From Eqs. (16) one finds

〈n1〉 = δ2|α|2 + sinh2 r,

(∆n1)
2 = δ2|α|2e−2r + 2 sinh2 r cosh2 r.

(17)

For strong coherent input state (large |α|) and within the squeezing factor ranges experimen-

tally accessible (r up to about 1.3) the second terms in both expressions can be neglected.

Consequently, amplification of the signal in output port 1 by squeezing the input vacuum

state is not possible. However, the width of the distribution σ =
√

(∆n1)2 decreases ∼ e−r

with increasing squeezing parameter r. Particularly, for a reasonably large squeezing r ∼ 1

noise may be reduced by more than 50%.

In Fig. 1 we show for the case θ−2φ = 0 and |δα|2 = 500 the photon number distribution

of the output state calculated from Eq. (15). Additionally we determine the mean and the

variance of these distributions from Eq. (17). Notice, that for large squeezing parameters

the distributions show characteristic oscillations [10].
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IV. SUMMARY AND CONCLUSIONS

In this paper we studied the entanglement effects on the photon distributions in the

output of the interferometer for the ‘dark port’ case, when the beam splitter is oriented

close to 90◦ to an incoming coherent state and a squeezed vacuum state is injected into the

usually unused second input port.

Our results for the ‘dark port’ case show that squeezing does not influence the mean of the

distribution tangibly, thus there is no amplification of the signal. This result contrasts with

the findings of Ref. [4]. Signal amplification can only be achieved by increasing the intensity

of the input coherent state, that is by increasing of |α|. Squeezing allows to decrease the

noise: for a squeezing factor r ∼ 1 the reduction of noise is more then 50%.

Furthermore, our analysis shows that the mean of the distribution does not depend on the

phases θ (squeezing parameter phase) or φ (coherence parameter phase), but the variance

of the distribution depends on the phase relation θ − 2φ. The most appropriate choice in

order to achieve minimum possible counting noise is θ − 2φ = 0.
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