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We compare three different characterizations of the globalness of bipartite unitary

operations based on different tasks, namely, delocalization power, entanglement cost for

LOCC implementation, and entangling power. We present extended analysis on the

globalness in terms of delocalization in two ways. First, we show that the delocalization

power differs whether the global operation is applied on one piece of quantum

information or two pieces. Second, by introducing the concept of dislocation, we prove

that the local unitary equivalents of controlled-unitary operations assisted by LOCC

cannot dislocate one piece of quantum information when applied on two pieces of

quantum information. This confirms that the local unitary equivalents of

controlled-unitary operations, which are LOCC one-piece relocalizeable, belong to a class

of global operations with relatively weak globalness in terms of dislocation of quantum

information.

1. Introduction

Understanding the source of quantum advantage in quantum computation is a long-

standing issue in quantum information science. Previous researches have shown that cer-

tain quantum computation is ‘classical’, for the reason that it is efficiently simulateable by

classical computers. One example is any computation performed just by local operations

and classical communication (LOCC) without using any entangled resources. All models

of quantum computation outperforming classical counterparts use entanglement resources

(such as measurement-based quantum computation (Raussendorf and Briegel 2001)) or

some kind of non-LOCC operation.
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Non-LOCC operations are called ‘global’ operations. The source of quantum speedup

must be due to the properties of the global operations. In this paper we refer to the

properties exclusive to global opeartions as globalness of quantum operations.

It is also known that not all global operations result in quantum speedup for quan-

tum computation. There must be a specific globalness that differentiates the quantum

operations leading to quantum speedup from those do not. The difference may be due to

more than one kind of globalness, but even this is not clear at this point. For this reason,

having a good understanding of the globalness of quantum operations is important. The

main purpose of this paper is to deepen our understanding on the globalness of quantum

operations, specifically by comparing different ways to characterize the globalness.

In the rest of the paper, we will focus on three characterizations of the globalness of

quantum operations – entangling power, entanglement cost for LOCC implementation,

and delocalization power of quantum information. The rest of the paper is organized as

following. In Section 2, we present an overview on the three characterizations.We summa-

rize the comparison of different aspects of the globalness of bipartite unitary operations

presented in the previous works in Section 3. We extend the analysis of globalness in

terms of the delocalization power in Sections 4 and 5. In Section 4, we discuss how the

globalness of certain bipartite unitary operations reduces when a part of the input state

is known. In Section 5, we introduce the concept of dislocation of quantum informa-

tion. Finally, in Section 6, we conclude by comparing the globalness of bipartite unitary

operations identified by the three different characterizations.

2. Three characterizations of the globalness of quantum operations

One way to quantify the globalness of a quantum operation is to analyze how much it

‘outperforms’ LOCC in a given task. One typical example is entanglement generation.

Entanglement is defined as a property of a quantum state which cannot increase on

average under LOCC (Horodecki et al. 2009; Plenio and Virmani 2007). Thus, under this

definition, the maximum amount of entanglement that LOCC can generate is zero. On

the other hand, global operations can generate nonzero entanglement when they are

performed on appropriately chosen input states. Clearly, global operations outperform

LOCC in entanglement generation. The maximum amount of entanglement that a single-

shot use of a given global operation can generate is unique. Hence, we may use this

amount to characterize the globalness of quantum operations, which is referred to as

the entangling power of quantum operations (Kraus and Cirac 2001; Wolf et al. 2003;

Linden et al. 2009).

If entanglement is supplied as an extra resource to LOCC, then the set of operations

that can be implemented becomes larger. The minimal amount of entanglement that must

be supplied to deterministically implement a given global operation is unique, based on

the fact that the entanglement cannot be generated by LOCC. Therefore, the (minimal)

entanglement cost of deterministic LOCC implementation can be used to characterize

the globalness of the given global operation.

Different tasks reveal different aspects of the globalness. The entangling power men-

tioned above is based on the entanglement generation task which is based on protocol in-
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volving application of quantum operations on known input states. One of the key features

of quantum mechanics is that the states cannot be distinguished perfectly if they are un-

known. In classical information processing, information is represented by physical states

which can be perfectly distinguished. In contrast, quantum information processing allows

the information to be represented by non-perfectly distinguishable states. In the most

extreme case, the input state of the task is completely unknown, as in quantum telepor-

tation (Bennett et al. 1993) and quantum error correction (Knill and Laflamme 1997).

Quantum computation involves a subtlety in the sense that the many famous quantum

computation algorithms start from a fixed input state, e.g. Shor’s and Grover’s algo-

rithm. In this case, the quantum state remains in a known state throughout the whole

process. Nevertheless, the number of classical bits required for the exact description of

the quantum state during the computation is strongly believed to scale exponentially.

Thus, even for such quantum computation algorithms, it makes sense to assume that

the operations during the computation is applied on (at least computationally) unknown

states.

If we want to understand how the globalness of quantum operations contributes to

advantages in quantum information processing, it is important to analyze the globalness

that is relevant to the operational power on quantum information. In this aspect, the

entangling power has one shortcoming, since entaglement generation is based on fixed

known input states. A characterization based on protocols involving unknown quantum

states will be more appropriate in this aspect.

Based on these considerations, the authors have proposed a classification of global

operations based on the ‘delocalization’ power of global operations on quantum infor-

mation, where this quantum information is defined as a completely unknown quantum

state (Soeda and Murao 2010). The task they considered is as follows. Imagine that there

are two d-level quantum systems (or, in the quantum information science terminology,

qudits), each possessed by two different parties, namely Alice and Bob. Alice and Bob

do not know their initial state but are promissed that it is a product state |ψA〉 ⊗ |ψB〉,
where |ψA〉 and |ψB〉 are d-dimensional state vectors corresponding to Alice’s and Bob’s

quantum system, respectively. The authors called this situation that each system con-

tains one piece of quantum information. Then, a global operation known to both Alice

and Bob is applied on these two quantum systems.

Before applying the global operation, we may interpret the situation as the case where

two pieces of quantum information are localized in their respective minimal Hilbert space.

After the global operation, the (reduced) state of each quantum system no longer equals

that of the initial one. In a sense, the quantum information has been delocalized out of

their original Hilbert space. To relocalize both of the delocalized two pieces of quantum

information requires the reverse operation of the applied global operation, where the

relocalization of quantum information is defined as the task of restoring the state of each

quantum system back to its original product state. Note that the quantum information

under this definition is an unknown quantum state, therefore relocalization cannot be

achieved by re-preparing the state of the system back to its original one.

Relocalization of the both pieces of quantum information at the same time cannot be

performed by LOCC because the reverse operation of a global operaiton is also global.
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However, we can consider a slightly more relaxed task of relocalizing just one of the two

pieces of quantum information by sacrificing the other piece of quantum information. This

LOCC one-piece relocalization has been used to classify the bipartite unitary operations.

3. Comparison of globalness by different characterizations

In the previous section, we introduced three different characterizations for the globalness

of quantum operations: entangling power, entanglement cost for LOCC implementation,

and delocalization power on quantum information. We investigate whether the globalness

characterized by each method is same to or different from that of by the others. For

simplicity, we restrict ourselves to the case where global operations are chosen to be

bipartite unitary operations.

The formulation of entangling power depends on the set of allowed input states and

the measure of entanglement. Entangling power is usually difficult to calculate because

it involves two optimizations. One is the maximization over all possible input states

(usually taken to be separable or product states). The other is the calculation of the

amount of generated entanglement according to the chosen entanglment measure. Even

when the quantum operation is restricted to bipartite unitary operations, the exact value

is obtained for only limited cases (Kraus and Cirac 2001; Chefles 2005).

Nevertheless, we can make a relatively generic statement about entangling power if the

entanglement measure is continuous. The statement is as follows. The identity operation

clearly generates no entanglement at all, hence its entangling power should be zero.

Invoking a continuity argument, there should be a set of operations in the neighborhood

of the identity operation such that their entangling power is arbitrarily small.

The second characterization of globalness, entanglement cost for LOCC implementa-

tion, can be calculated as follows. First, choose the global operation that we want to

deterministically implement by entanglement assisted LOCC. Then, we choose an entan-

gled state for the resource. For this particular combination of the entangled state and the

global operation, we check if there exists a LOCC protocol that accomplishes the imple-

mentation. The existence of such a protocol is determined by the entanglement resource.

We then search for the smallest amount of entanglement among those entangled states

that enabled the implementation. The amount of entanglement of this state will give us

the entanglement cost for the LOCC implementation of the particular global operation.

Again, we see that this requires a very difficult optimization, which is one of the

main reasons why entanglement cost has been obtained for limited number of cases. The

authors and coworker obatined the entanglement cost for all two-qubit controlled-unitary

operations (Soeda et al. 2010) given by the form |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ u, where |0〉 , |1〉
are an orthonormal basis of a qubit Hilbert space and u is a two-by-two uniatry matrix.

According to their result, any such unitary operation requires 1 ebit of entanglement, no

matter how small their entangling power is. When u is almost equal to the identity matrix,

the entire controlled-unitary operation becomes very close to the identity operation,

therefore, the entangling power is also very close to zero; but the entanglement cost for

LOCC implementation is 1 ebit.

Finally, the last characterization of globalness based on the delocalization power re-
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veals that there are two classes of globalness for bipartite unitary operations. We refer

the reader to Soeda and Murao 2010 for the proof and simply state the result in this

paper. Bipartite unitary operations can be classified into two classes according to LOCC

one-piece relocalizability. It is proven that one piece of quantum information can be re-

localized by LOCC if and only if the delocalizing unitary operation is local unitarily

equivalent to a controlled-unitary operation. The result holds for any unitary operation

on a bipartite d-level system. A general form of a controlled-unitary opeartion Uu on

this system can be expressed as
∑

k |k〉 〈k| ⊗ uk, where |k〉 forms an orthonormal basis

for one of the subsystems and uk are unitary operations on the other subsystem. The

continuity argument proves that the classification is irrelevant of the entangling power

of each unitary operation. For details, see Soeda and Murao 2010.

This analysis shows that there are several aspects of globalness in quantum operations.

Interestingly, as for two-qubit unitary operations, all LOCC one-piece relocalizable uni-

tary operations require 1 ebit of entanglement for LOCC implementation.

4. Delocalization power for one piece of quantum information

In the classification by delocalization, it is crucial that the both quantum systems are

set in unknown state. If more information is available about the input state, then Alice

and Bob can exploit it to perform a LOCC one-piece relocalization for a class of global

operations wider than local unitary equivalents of controlled-unitary operations.

To see this property, we present an example of a two-qubit unitary operation, where

LOCC one-piece relocalization is impossible if both qubits are in unknown states, but

it becomes possible if one of the qubits is promised to be in a particular pure state.

Let us denote the Hilbert space of each qubit by HA and HB, where {|0〉A , |1〉A} and

{|0〉B , |1〉B} will be an orthonormal basis for HA and HB, respectively. The orthonormal

basis of the composite Hilbert space HA ⊗HB will be chosen as |i〉A ⊗ |j〉B, called the

computational basis. The matrix elements of the example unitary operation Uex are given

by

Uex =









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1









. (1)

According to Anders et al. 2010, Uex is local unitarily equivalent to

eiπ/4(σx,A⊗σx,B+σy,A⊗σy,B), (2)

where σx,A and σy,A are the Pauli X and Pauli Y matrix on HA, respectively, and σx,B
and σy,B are that of HB .

Any unitary matrix has an operator Schmidt decomposition (Nielsen et al. 2003). The

operator Schmidt decomposition of a two-qubit unitary operation is given by

3
∑

k=0

λkAk ⊗Bk, (3)
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where {λk} is a set of four positive numbers satisfying
∑3

k=0 λ
2
k = 1, and Ak and Bk are

operators on HA and HB , respectively, satisfying the orthonormal relation

1

2
Tr[A†

kAj ] = δk,j (4)

and
1

2
Tr[B†

kBj ] = δk,j . (5)

The operator Schmidt number is the number of the non-zero coefficents λk. Two-qubit

unitary operations can have the operator Schmidt number of 1,2, or 4, but not 3. Any

two-qubit unitary operator has the following Cartan decomposition,

uA ⊗ uB · ei(αxσx,A⊗σx,B+αyσy,A⊗σy,B+αzσz,A⊗σz,B) · vA ⊗ vB, (6)

where, uA, vA are unitary operators on HA; uB, vB are on HB; and σz,A and σz,B are

the Pauli Z matrices on HA and HB, respectively (Kraus and Cirac 2001). In this pa-

per, we call αx, αy, and αz the Cartan coefficients. A two-qubit unitary operator has

the operator Schmidt number of 2 if and only if it has one non-zero Cartan coeffi-

cient (Nielsen et al. 2003).

Any two-qubit controlled unitary operation given by

Uu = |0〉 〈0| ⊗ I+ |1〉 〈1| ⊗ u (7)

has the operator Schmidt number of 2, which can be seen as follows. The two-by-two

unitary matrix u can be decomposed as follows

u = eiθ |ϕ〉 〈ϕ|+ eiθ
′ ∣

∣ϕ⊥〉 〈ϕ⊥∣
∣ , (8)

where |ϕ〉 and
∣

∣ϕ⊥〉 are normalized, orthogonal 2-dimensional vectors. Defining a unitary

matrix v by

v = |0〉 〈ϕ|+ |1〉
〈

ϕ⊥∣
∣ , (9)

the spectral decomposition of Uu can be expressed as follows,

Uu = (I⊗ v) · diag(1, 1, eiθ, eiθ′

) · (I⊗ v†). (10)

We set four numbers a, b, c, and d by

a =
1

4
(2 + θ + θ′) (11)

b =
1

4
(2− θ − θ′) (12)

c =
1

4
(θ − θ′) (13)

d =
1

4
(−θ + θ′). (14)

Direct substitution will reveal that

Uu = eia · (I⊗ v) · (eibσz,A ⊗ eicσz,B ) · eidσz,A⊗σz,B · (I⊗ v†). (15)

Noting that

eidσz,A⊗σz,B = cos d I⊗ I+ i sind σz,A ⊗ σz,B, (16)
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the operator Schmidt decomposition of Uu is given by

Uu = cos d(eiaeibσz,A)⊗ (veicσz,Bv†) + sind(ieiaeibσz,Aσz,A)⊗ (veicσz,Bσz,Bv
†), (17)

which shows that the operator Schmidt number of any two-qubit controlled-unitary op-

eration is 2. Note that we assumed sin d and cos d are both positive; if not, we can have

the sign be absorbed into the local operators.

Because only controlled-unitary operations and their local unitary equivalents are

LOCC one-piece relocalizable, two-qubit unitary operations are LOCC one-piece relo-

calizable if and only if their operator Schmidt number is 2. Uex has two non-zero Cartan

coefficients (Anders et al. 2010), therefore its operator Schmidt number is four. Thus,

Uex is not LOCC one-piece relocalizable.

When the input state of one of the parties (say Alice’s) is fixed to

|+〉 = 1√
2
(|0〉+ |1〉), (18)

the action of Uex becomes equal to that of a certain local unitary equivalent of a

controlled-unitary operation. Let H denote the Hadamard gate, which is defined by
(

1√
2

1√
2

1√
2

− 1√
2

)

. (19)

It can be checked by direct calculation that for arbitrary |ψ〉 ∈ HB,

Uex |+〉 ⊗ |ψ〉 = (H ⊗ I)(|0〉 〈0| ⊗ I+ |1〉 〈1| ⊗ σx,B) |+〉 ⊗ |ψ〉 (20)

holds. The same calculation can be done using the stabilizer formalism (Gottesman 1997)

by exploiting the fact that Uex is a Clifford operation. In any case, the action of Uex is

same as that of a local unitary equivalent of a controlled-not when one of the parties’

input is fixed to a particular state, implying that certain unitary operations that are not

LOCC one-piece relocalizable become LOCC one-piece relocalizable when there is only

one piece of quantum information.

Note that some unitary operations remain LOCC one-piece unrelocalizable even when

one of the input state is fixed to any particular state. Such an example is the swap

operation USWAP, whose action is given by

USWAP |ψ1〉 ⊗ |ψ2〉 = |ψ2〉 ⊗ |ψ1〉 . (21)

In this case, even if one of the parties’ input is fixed to a particular state, the other party’s

piece of quantum information completely moves to the other side. This phenomena is an

example of what we call a perfect dislocation of quantum information. The relocalization

of the perfectly dislocated piece of quantum information is essentially quantum tele-

portation. In order to relocalize a perfectly dislocated piece of quantum information,

there must be at least as much operational resources to perform quantum teleporation.

Because quantum teleporation is impossible by LOCC alone, LOCC one-piece relocal-

ization is impossible for the swap operation even if there is just one piece of quantum

information.
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5. Dislocation of quantum information by controlled-unitary operations

5.1. One-piece and two-piece dislocation

In the previous section, we briefly introduced the concept of perfect dislocation of quan-

tum information. By applying a global operation on pieces of localized quantum in-

formation, we can displace the quantum information out of its original Hilbert space.

Dislocation is in a sense the maximum delocalization of quantum information. The swap

operation is the extreme case where the reduced state of each local subsystem becomes

completely irrelevant to the original quantum information stored in that subsystem.

Without any other resource, the swap operation is the only unitary operation that can

dislocate two-pieces of quantum information simultaneously. This two-piece dislocate-

ability is an exclusive property of the swap operation. On the other hand, a wider class

of unitary operations, namely the local unitary equivalents of the swap operation, also

becomes two-piece dislocateable if local operations are allowed as an extra operational

resource. It seems reasonable to allow LOCC as a free extra resource for dislocation,

because we are only interested in the global effect of global operations on quantum in-

formation.

With this modification, it will be more appropriate to call the new task, LOCC as-

sisted dislocation. We may also be interested in the case where one of the two pieces of

quantum information can be sacrificed in order to dislocate the other piece of quantum

informaton. In view of this, the terms ‘LOCC assisted two-piece dislocation’ and ‘LOCC

assisted one-piece dislocation’ will be used in this paper to distigunish between the simul-

taneous dislocation of two pieces of quantum information from one-piece of dislocation

with possible sacrifice of the other. From here on, we will use the simplified version of

these two terminologies, namely, ‘two-piece dislocation’ and ‘one-piece dislocation’.

We may use this LOCC assisted dislocation as a new task to create a new characteri-

zation of the globalness of quantum operations. Because two-piece dislocateable unitary

operations are necessarily one-piece dislocateable, the former task is more difficult than

the latter, indicating that those unitary operations that achieve two-piece dislocation has

more globalness than those do not.

As we have seen in the previous sections, controlled-unitary operations did not exhibit

the highest class of globalness in terms of delocalization power. While there are unitary

operations like the swap operation and their local unitary equivalents that allow two-

piece dislocation, we will show that all bipartite controlled-unitary operations cannot

achieve even one-piece dislocation.

Let us focus on two-qubit controlled-unitary operations for simplicity. The following

argument can be extended to arbitrary two-qudit controlled-unitary operations. Mathe-

matically, performing LOCC one-piece dislocation for a given global unitray operation U

is finding a CPTP map implementable only by LOCC ΓU
LOCC such that for any |ϕ〉 ∈ HA

and any |ϕ′〉 ∈ HB,

TrAΓ
U
LOCC(U · |ϕ〉 〈ϕ| ⊗ |ϕ′〉 〈ϕ′| · U †) = |ϕ〉 〈ϕ| . (22)

Here, we assumed that we want to dislocate Alice’s piece of quantum information to

Bob’s Hilbert space, which is why there is the partial trace over Alice’s Hilbert space
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TrA. The dislocation of Bob’s quantum information to Alice’s side can be defined similarly

by replacing the partial trace over Alice’s Hilbert space with that of over Bob’s Hilbert

space. Although we are only interested in controlled-unitary operations, this formulation

applies for any bipartite unitary operation.

5.2. Formulation of LOCC using accumulated operators

We adopt the standard formulation of LOCC (Donald et al. 2002). In the two-party sce-

nario (as in our case), Alice and Bob perform one local measurement operation in turns

while exchanging the outcome of each measurement operation by classical communica-

tion. The measurement operation at a particular turn is chosen according to all the

outcomes by the both parties up to that turn, where the decision is made following a

protocol agreed beforehand by the parties. Strictly speaking, we may consider LOCC

protocols which cannot be expressed in this form. These protocols, however, can always

be substituted by the protocols in this standard form.

Each local quantum operation can be described as a generalized measurement, which

is represented by a set of operators {M (r)} satisfying the completeness relation
∑

r

M (r)†M (r) = I. (23)

There exists one operator for each outcome in the measurement, which is denoted by the

superscript r.

We add a subscript to the outcome index, for example rk, to specify to which measure-

ment operation the index belongs. In this notation, rk belongs to the k-th measurement

operation in the sequence. We use ~Rk = (r1, r2, . . . , rk) to denote the set of measure-

ment outcomes of the first k measurement operations in the sequence. The (k + 1)-th

measurement operation is then a function of ~Rk. The set of operators describing this

measurement operation is denoted by,

{M (rk+1|~Rk)}rk+1
. (24)

Let us denote Alice’s measurement operations byM
(rn|~Rn−1)
A and Bob’s byM

(rn|~Rn−1)
B .

We set

M
(r1|~R0)
A =M

(r1)
A (25)

and

M
(r1|~R0)
B =M

(r1)
B . (26)

Note that M
(rn|~Rn−1)
A is an operator on HA and M

(rn|~Rn−1)
B is on HB. When n-th turn is

Alice’s turn then (n+1)-th turn is Bob’s turn, which implies that Alice does not perform

any operation during this (n + 1)-th turn. In this case, we set Alice’s measurement

operation to the identity operation, i.e.

{M (rn+1|~Rn)
A } = {I}. (27)

If this (n + 1)-th turn happened to be Bob’s, then his measurement operation is set to

the identity operation.



A. Soeda and M. Murao 10

The effect of the measurement operations accumulates as a LOCC protocol proceeds.

The accumulated effect up to a particular turn is expressed by the product product of all

the measurement operators corresponding to all the measurement outcomes obtained up

to that point. Given a particular sequence of measurement outcomes ~Rn, we represent

the accumulated effect corresponding to this sequence by an accumulated operator A
~Rn

defined by

A
~Rn =

n
∏

k=1

M
(rk|~Rk−1)
A . (28)

Bob’s accumulated operator will be denoted by B
~Rn .

5.3. Impossibility of dislocation

We prove by contradiction that LOCC one-piece dislocation is impossible for any controlled-

unitary operation. Now, consider the following scenario where Alice has an extra aniclla

qubit, whose Hilbert space is denoted by Ha. Let |Φ〉Aa denote a maximally entangled

state between Alice’s input qubit and the ancilla qubit; more specifically, it is defined by

|Φ〉Aa =
1√
2
(|0〉A ⊗ |0〉a + |1〉A ⊗ |1〉a) ∈ HA ⊗Ha. (29)

Suppose there is a LOCC one-piece dislocation protocol for the given controlled-unitary

operation Uu described by Eq. (7). Let Alice set her input qubit and the ancilla in the

state of |Φ〉Aa while Bob’s input remains arbitrary. Alice and Bob perform Uu and the

LOCC protocol to complete the dislocation. Because the one-piece dislocation is defined

for arbitrary product input states, Alice’s ancilla qubit and Bob’s input qubit should be

now in the state of

|Φ〉aB =
1√
2
(|0〉a ⊗ |0〉B + |1〉a ⊗ |1〉B) ∈ Ha ⊗HB, (30)

which implies that

TrA[Γ
Uu

LOCC(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †
u)] = |Φ〉aB 〈Φ| (31)

holds for arbitrary |ϕ′〉 ∈ HB. Using the accumulated operator representation of ΓLOCC,

we have

TrA[
∑

~Rn

(A
~Rn ⊗B

~Rn)(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †
u)(A

~Rn ⊗B
~Rn)†] = |Φ〉aB 〈Φ| . (32)

We modify the LOCC protocol ΓUu

LOCC by adding an extra measurement operation by

Alice, namely

{|0〉A 〈0| , |0〉A 〈1|}. (33)
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We denote this modified protocol by Γ′Uu

LOCC. Direct substitution reveals that

TrA[Γ
′Uu

LOCC(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †
u)]

= TrA[
∑

~Rn

(|0〉A 〈0|A~Rn ⊗B
~Rn)(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †

u)(|0〉A 〈0|A~Rn ⊗B
~Rn)†]

+ TrA[
∑

~Rn

(|0〉A 〈1|A~Rn ⊗B
~Rn)(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †

u)(|0〉A 〈1|A~Rn ⊗B
~Rn)†].

(34)

By definition, the partial trace TrA on any density matrix ρ can be re-expressed as

TrA[ρ] = A 〈0| ρ |0〉A + A 〈1| ρ |1〉A , (35)

which implies that the right hand side of Eq. (34) equals to

TrA[|0〉A 〈0| ⊗ TrA[Γ
Uu

LOCC(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †
u)]]. (36)

When combined with Eq. (32), we see that

TrA[Γ
′Uu

LOCC(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †
u)] = |Φ〉aB 〈Φ| . (37)

Because the right hand side is a pure state, it must be true that

TrA[(|0〉A 〈k|A~Rn ⊗B
~Rn)(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †

u)(|0〉A 〈k|A~Rn ⊗B
~Rn)†]

= p
~Rn,k,ϕ

′ |Φ〉aB 〈Φ| (38)

for all ~Rn and k = 0, 1, where p
~Rn,k,ϕ

′

is a positive coefficient normalized by
∑

~Rn,k

p
~Rn,k,ϕ

′

= 1. (39)

Since Eq. (38) holds for any |ϕ′〉 ∈ HB, we have

TrA[(|0〉A 〈k|A~Rn ⊗B
~Rn)(Uu · |Φ〉Aa 〈Φ| ⊗

1

2
I · U †

u)(|0〉A 〈k|A~Rn ⊗B
~Rn)†]

=
1

2
TrA[(|0〉A 〈k|A~Rn ⊗B

~Rn)(Uu |Φ〉Aa 〈Φ| ⊗ |0〉 〈0|U †
u)(|0〉A 〈k|A~Rn ⊗B

~Rn)†]

+
1

2
TrA[(|0〉A 〈k|A~Rn ⊗B

~Rn)(Uu |Φ〉Aa 〈Φ| ⊗ |1〉 〈1|U †
u)(|0〉A 〈k|A~Rn ⊗B

~Rn)†]

= (p
~Rn,k,0 + p

~Rn,k,1) |Φ〉aB 〈Φ| . (40)

Note that |0〉A 〈k|A~Rn acts only on Alice’s input qubit. Taking the partial trace over

Alice’s aniclla qubit Tra, Eq. (40) gives

TrA[(|0〉A 〈k|A~Rn ⊗B ~Rn)(Uu ·
1

2
I⊗ 1

2
I ·U †

u)(|0〉A 〈k|A~Rn ⊗B ~Rn)†] =
(p

~Rn,k,0 + p
~Rn,k,1)

2
I,

(41)

where we have used the relation

Tra |Φ〉aA 〈Φ| = Tra |Φ〉aB 〈Φ| = 1

2
I. (42)
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Noting that the identity operator commutes with any unitary operators, after performing

the partial trace TrA, we have

A 〈k|A~RnA
~Rn† |k〉AB

~RnB
~Rn† =

(p
~Rn,k,0 + p

~Rn,k,1)

2
I. (43)

This equation guarantees that Bob’s accumulated operator B
~Rn for each sequence of

measurement outcomes ~Rn is proportional to a unitary operator, i.e.

B
~Rn = c

~Rnu
~Rn , (44)

where the coefficient c
~Rn is set to satisfy

(c
~Rn)2 =

(p
~Rn,k,0 + p

~Rn,k,1)

2A 〈k|A~RnA~Rn† |k〉A
. (45)

For any operator T on HA, it holds that

T ⊗ I |Φ〉Aa = I ⊗ tT |Φ〉Aa , (46)

where tT denotes the transpose of T in the computational basis. Let {S(i)
x } denote the

set of operators forming a basis for the operators on Hx (where x = a,A, or B), that is

for any operator T on Hx there exists a set of complex numbers c(i) such that

T =
∑

i

c(i)S(i)
x . (47)

An example of such a basis is the set of Pauli operators and the identity operator, if the

Hilbert space in question has the dimension of 2. With this basis, Uu on HA ⊗HB can

be expressed as a linear combination of S
(i)
A ⊗ S

(j)
B , namely,

Uu =
∑

i,j

uijS
(i)
A ⊗ S

(j)
B , (48)

where uij denotes the coefficient of S
(i)
A ⊗ S

(j)
B . Let us choose S

(i)
a to satisfy

S(i)
a = tS

(i)
A (49)

in the computational basis and define Ũu on Ha ⊗HB by

Ũu =
∑

i,j

uijS
(i)
a ⊗ S

(j)
B . (50)

Under these conventions, we have

(|0〉A 〈k|A~Rn ⊗B
~Rn)(Uu |Φ〉Aa 〈Φ| ⊗ |ϕ′〉 〈ϕ′|U †

u)(|0〉A 〈k|A~Rn ⊗B
~Rn)†

= |0〉A 〈0| ⊗ Ũu
tA

~Rn |k〉a 〈k|aA
~Rn∗ ⊗B

~Rn |ϕ′〉 〈ϕ′|B ~Rn†Ũ †
u. (51)

Comparing this equation to Eq. (38), it must be that

Ũu
tA

~Rn |k〉a 〈k|aA
~Rn∗ ⊗B

~Rn |ϕ′〉 〈ϕ′|B ~Rn†Ũ †
u = p

~Rn,k,ϕ
′ |Φ〉aB 〈Φ| , (52)

which is equivalent to

Ũu
tA

~Rn |k〉a ⊗B
~Rn |ϕ′〉 =

√

p~Rn,k,ϕ′ |Φ〉aB . (53)
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Let an ancilla state (not necessarily normalized)
∣

∣

∣v
~Rn,k

〉

be defined by

∣

∣

∣
v
~Rn,k

〉

= tA
~Rn |k〉a . (54)

By substituting Eq. (44) into Eq. (52), we conclude that

Ũu · (I⊗ u
~Rn)
∣

∣

∣v
~Rn,k

〉

⊗ |ϕ′〉 =
√

p~Rn,k,ϕ′/c
~Rn |Φ〉aB (55)

holds for all |ϕ′〉. The right hand side is collinear to |Φ〉aB for all |ϕ′〉. On the other hand,

because Ũu ·(I⊗u~Rn) is invertible, the left hand side returns linearly independent vectors

when |ϕ′〉 are chosen linearly independently. This, however, is a contradiction proving

that the assumption that the given controlled-unitary operation Uu is dislocateable must

not hold.

This proof strongly depends on the fact that Bob’s input state is kept arbitrary. Indeed,

if we are allowed to choose Bob’s input state, one-piece dislocation is possible for certain

controlled-unitary operations. An example is the controlled-not operation on two qubits.

6. Conclusion and discussion

In this paper, we first reviewed three different characterizations of the globalness of

bipartite unitary operations, which were entangling power, entanglement cost for LOCC

implementation, and delocalization power. It was shown that the entangling power of a

certain bipartite unitary operation has little relation to the globalness revealed by the

other two characterizations.

Next, we extended our analysis on characterization in terms of delocalizing power. We

investigated global unitary operations which are not LOCC one-piece relocalizeable for

two pieces of delocalized quantum information, and shown that these unitary operaitons

belonging to the higher globalness class than the local unitary equivalents of controlled-

unitary operations can be further divided into two subclasses, by considering LOCC

one-piece relocalization of just one piece of delocalized quantum information.

We also introduced the concept of dislocation of quantum information, which was the

maximum delocalization on quantum information. In particular, we proved that LOCC

one-piece dislocation is impossible for any controlled-unitary operations. This confirms

that the local unitary equivalents of controlled-unitary operations, which are LOCC one-

piece relocalizeable, belong to a class of global operations with relatively weak globalness

also in terms of dislocation of quantum information.

The bipartie unitary operations that are LOCC one-piece unrelocalizable can be fur-

ther divided into different classes by analyzing whether LOCC one-piece/two-piece dislo-

cation is possible. It is intresting to see which bipartite unitary operations are both LOCC

one-piece unrelocalizable and LOCC one-piece/two-piece dislocateable at the same time.

These properties shall be investigated further in the future.
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