
ar
X

iv
:1

01
1.

12
43

v1
  [

qu
an

t-
ph

] 
 4

 N
ov

 2
01

0

Operational Entanglement Families of Symmetric Mixed N-Qubit States

T. Bastin,1 P. Mathonet,2 and E. Solano3, 4

1Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège, B-4000 Liège, Belgium
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We introduce an operational entanglement classification of symmetric mixed states for an arbitrary
number of qubits under stochastic local operations and classical communication (SLOCC). We
define families of entanglement classes successively embedded into each other, prove that they are
of non-zero measure, and construct witness operators to distinguish them. Moreover, we discuss
how arbitrary symmetric mixed states can be realized in the lab via a one-to-one correspondence
between well-defined sets of controllable parameters and the corresponding entanglement families.

Entanglement is at the heart of quantum information
theory [1] and its classification is expected to charac-
terize potential important applications [2, 3]. Bipartite
entanglement is well understood and the case of pure
three-qubit states was successfully studied via the con-
cept of SLOCC invariance [4]. For more than three qubits
there is an infinite number of SLOCC classes and the
introduction of families of entanglement classes [5] has
been instrumental to shed light into the increasing level
of complexity [6]. Recently, an effort has been done
to approach entanglement classification to operational
schemes, where one is able to associate univocally physi-
cal knobs in given setups with the classes and families de-
termined by specific mathematical criteria [7]. The case
of mixed states is more elaborate and, for three qubits,
the notions of compactness and convexity proved to be
useful [8]. Here, we introduce a classification of mixed
symmetric N -qubit states into different families of en-
tanglement classes, generalizing the pure state case [7].
Our proposal is based on embedded compact convex sets,
allowing for the construction of witness operators for each
entanglement family and introducing a natural hierarchy
between them. In this sense, it offers a full generaliza-
tion of the three-qubit mixed state classification of Aćın
et al. [8] to the N -qubit symmetric case.
We first review recent results on symmetric N -qubit

pure states, where they can be written in the so-called
Majorana representation form [7, 9]

|ψS〉 = N
∑

16i1 6=...6=iN6N

|ǫi1 , . . . , ǫiN 〉. (1)

Here, the sum is over all N ! possible tuples i1, . . . , iN , N
is a normalization prefactor and the |ǫi〉’s are single qubit
states αi|0〉+βi|1〉 with |αi|2+ |βi|2 = 1. The expression
(1) offers the advantage of allowing for an easy opera-
tional classification of all symmetric pure states based on
families of SLOCC entanglement classes. The latter are
identified by the degeneracy configuration and the diver-

sity degree of the set of states {|ǫ1〉, . . . , |ǫN 〉} [7]. The
degeneracy configuration D is the decreasing order list
of the number of |ǫi〉 states identical to each other, this

number being 1 for each state occurring once. The di-
versity degree d is the dimension of this list, that is the
number of distinct |ǫi〉 states in Eq. (1). The degeneracy
configuration is nothing else than a partition of N and
the number of different degeneracy configurations for an
N -qubit system is given by the partition function p(N).
Two states with different degeneracy configurations be-
long necessarily to different SLOCC classes, the con-
verse being only true when the diversity degree is equal
or smaller than 3 [7]. The Greenberger-Horne-Zeilinger
(GHZ) SLOCC class for symmetric states is always con-
tained in the D1,...,1 family (d = N), the Dicke state

|D(k)
N 〉 SLOCC classes (k = 1, . . . , [N/2]) [10] are iden-

tified with the DN−k,k families (d = 2), while the sym-
metric separable states define the DN family (d = 1) [7].
Consequently, we denote also these families by GHZ, Wk

and S, respectively. In a sense, the D1,...,1 family gathers
the most complex states characterized with all distinct
ǫi’s, while DN the simplest states with all ǫi’s identical.

Mixed state entanglement classification can be ob-
tained generalizing the case of pure states. This was
achieved in the three-qubit case [8] by defining succes-
sive compact and convex classes of states embedded into
each other, allowing for the construction of witness oper-
ators that are able to distinguish them. In this sense, a
prior identification of a hierarchy between all pure three-
qubit classes was required. This yielded a scheme of suc-
cessive closed sets of mixed states embedded into each
other, namely S ⊂ B ⊂ W ⊂ GHZ, B denoting the set
of biseparable states. We fully generalize here this ap-
proach to the N -qubit case and focus on the symmetric
subspace. To this aim, we identify the unique hierarchy
between all aforementioned D families of symmetric pure
states that can lead to a comprehensive classification of
mixed states. This family hierarchy arises naturally from
their topology of sets of states lying successively at the
boundary of each other, where the D1,...,1 family deter-
mines the primary set at the boundary of which all oth-
ers reside and DN is located in the other extreme at the
boundary of all other families. This hierarchy yields a

http://arxiv.org/abs/1011.1243v1


2

direct ordering relation between all entanglement fami-
lies. Topologically, D1,...,1 is the only family to form an
open set and DN a closed one. Let us exemplify this
for N = 4. In this case, the symmetric states (1) are
fully determined by the knowledge of four ǫi’s, yielding
the five entanglement families D1,1,1,1, D2,1,1, D2,2, D3,1,
and D4 [7]. The first family gathers states characterized
with four distinct ǫi’s and is spanned by considering all
quadruplets (ǫ1, ǫ2, ǫ3, ǫ4) fulfilling the condition of dis-
tinctness that makes the set open. Any state having two
or more identical ǫi’s lies at the topological boundary of
the D1,1,1,1 open set while belonging to any of the four
remaining families. Along the same lines, one observes
how the other successive families fit into each other: D2,2,
D3,1, and D4 lie at the boundary of the D2,1,1 family, and
D4 is at the boundary of D2,2 and D3,1. Note that neither
D2,2 is at the boundary of D3,1 nor the converse. This
highlights the natural hierarchy and the topology of the
entanglement families when they are ordered according
to their boundary imbrication, a family D′ being said to
descend from D (D → D′) if D′ lies at the boundary of
D [11]. This topology implies in particular that any con-

tinuous entanglement measure that would vanish for all
states of a given family would also vanish for all states in
all descending families.

The family hierarchy can be advantageously illustrated
using entanglement family graphs (Hasse diagrams), as
shown in Fig. 1 for N = 4. In these graphs, any down-
ward arrow or path of downward arrows materializes a
descending relation between two families. In the general
N case, D1,...,1 is always the highest level family with
respect to the defined hierarchy and DN the lowest level
one with no descendants. Lower level families have nec-
essarily lower diversity degrees. Any family with a given
diversity degree d never descends from another one with
same d, while it always descends from at least a family
with diversity degree d+1 (for d < N). Consequently, the
diversity degree is a good hierarchy marker and it makes
sense to display the entanglement family graphs by layers
of families of up-to-bottom diversity degree. The number
of layers is exactly N and the layers d = N , d = N − 1,
and d = 1 never contain more than one entanglement
family, namely D1,...,1, D2,1,...,1, and DN , respectively.

Symmetric N -qubit mixed states are states that can
be written as convex sums of projectors onto symmetric
pure states. It follows that they can be classified general-
izing the D family classification of the latter and taking
into account the hierarchy of these families. To this aim,
we define the D families for mixed states as being the sets
of symmetric mixed states that can be written as convex
sums of projectors onto symmetric pure states of the D
families in question and any of their descendants. This
ensures the creation of closed sets of mixed states since all
descendants of a family, as from top to bottom in Fig. 1,
form its complete boundary. In this manner, the formed
sets are compact and convex, allowing for the construc-
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FIG. 1. Entanglement family graph for N = 4.

tion of witness operators [3] detecting states outside the
sets according to the Hahn-Banach separation theorem.
We have furthermore

D′ ⊂ D (2)

for all D′ families descending from D. This results in an
onion-like layer structure of the different families with a
complexity growing with that of the entanglement family
graph. The physical interpretation of the classification is
as follows: a mixed state ρ that belongs to a D family and
to none of lower levels is a mixed state whose simplest de-
compositions into projectors onto symmetric pure states
require at least a pure symmetric state of the D family.
For any N , DN is the only family that has no descen-
dants and it gathers consequently mixed states that can
be written as convex sums of only DN pure states, that
is of only separable states. This family is nothing else
than the usual set of separable mixed states restricted to
the symmetric subspace. It is also not excluded that a
state belongs to several families not descending from each
other, as is the case for nonsymmetric three-qubit states
where mixed states can be found biseparable with respect
to any bipartition without being fully separable [3, 8].
Let us make explicit our mixed state classification for

N = 2, 3 and 4, while the case of higher N ’s extrapolates
straightforwardly. For up to three qubits, it fits with well-
known results of mixed state entanglement classification,
namely with the non-substructure of two-qubit entangle-
ment and with the Aćın et al. [8] classification for mixed
three-qubit states. Beyond these cases, it yields a general
entanglement classification of higher number of qubits
when focusing on mixed symmetric states. For N = 2,
there are only two pure state families, D1,1 (d = 2) and
D2 (d = 1) [7], gathering symmetric entangled and sep-
arable states, respectively, with hierarchy D1,1 → D2.
Accordingly, for mixed states, the D2 family contains all
separable symmetric mixed states, while D1,1 contains all
mixed states that can be expressed as a convex sum of
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projectors onto D2 and D1,1 states, that is onto any sym-
metric state. D1,1 \ D2 corresponds merely to the set of
entangled symmetric mixed states. We have D2 ⊂ D1,1

and this set structure reflects merely the usual simple
structure of 2-qubit mixed state entanglement according
to which the separable state set is surrounded by the en-
tangled state set, the latter one showing no substructure.
For N = 3, we have the three pure-state entanglement

families, D1,1,1 (d = 3), D2,1 (d = 2), and D3 (d = 1),
identifying the GHZ, W, and separable SLOCC classes
for symmetric states, respectively [7]. The hierarchy of
the 3 families forms the chain D1,1,1 → D2,1 → D3. Ac-
cordingly, the D3 mixed state family contains all states
that can be expressed as a convex sum of projectors onto
D3 states only; the D2,1 mixed state family contains all
states that can be expressed as a convex sum of projec-
tors onto D3 and D2,1 states; and the D1,1,1 mixed state
family contains all states that can be expressed as a con-
vex sum of projectors onto D3, D2,1 and D1,1,1 states,
that is onto any symmetric state. The D1,1,1, D2,1, and
D3 families for mixed states are nothing else than the
GHZ, W, and separable S classes of mixed states identi-
fied in Ref. [8], respectively, disregarding the biseparable
sets nonexistent in the symmetric subspace. The result-
ing structure D3 ⊂ D2,1 ⊂ D1,1,1 is just the translation
of the relation S ⊂ W ⊂ GHZ [8] for symmetric states.

For N = 4, we have the five entanglement pure state
D families as shown in Fig. 1, along with their hierar-
chy which starts to be more involved than the simple
direct structure of the cases N = 2 and 3. Consequently,
for mixed states, the D4 family contains all states that
can be expressed as a convex sum of projectors onto D4

states; the D3,1 family contains all states that can be ex-
pressed as a convex sum of projectors onto D4 and D3,1

states; D2,2 contains all states that can be expressed as a
convex sum of projectors onto D4 and D2,2 states; D2,1,1

contains all states that can be expressed as a convex sum
of projectors onto D4, D3,1, D2,2, and D2,1,1 states; and,
finally, the D1,1,1,1 mixed state family contains all states
that can be expressed as a convex sum of projectors onto
any symmetric state. It follows the family set structure
as shown in Fig. 2. The convex hull of D3,1 and D2,2

collects mixed states that can be written as convex sums
of D4, D3,1, and D2,2 states, that is on S and W-kind
states. This is why it is denoted by W in Fig. 2.
For pure states, all D entanglement families form zero-

measure sets with the exception of D1,...,1 at the bound-
ary of which all families reside. For mixed states, the
situation is totally different and all D families are of non-
zero measure. This can be proven as follows. The sym-
metric N -qubit mixed state density operators belong to
the (N + 1)2-dimensional real Hilbert space of symmet-
ric hermitian operators. A natural basis in this space is
given by the set of operators

{σ̂λ ≡ σ̂N,k, σ̂
(r)
N,k,j , σ̂

(i)
N,k,j , j, k = 0, . . . , N, j > k}, (3)
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FIG. 2. (Color online) Symmetric mixed state family struc-
ture for N = 4 (see text).

with σ̂N,k = |D(k)
N 〉〈D(k)

N |, σ̂
(r)
N,k,j = |D(k)

N 〉〈D(j)
N | +

|D(j)
N 〉〈D(k)

N |, and σ̂(i)
N,k,j = i(|D(k)

N 〉〈D(j)
N | − |D(j)

N 〉〈D(k)
N |).

In this basis, any pure symmetric separable state
|ǫ〉⊗N 〈ǫ| with |ǫ〉 = cos(θ/2)|0〉 + sin(θ/2)eiφ|1〉
reads |ǫ〉⊗N 〈ǫ| =

∑

λ fλ(θ, φ)σ̂λ with f
(r)
N,k,j(θ, φ)

and f
(i)
N,k,j(θ, φ) the real and imaginary part of

(Ck
NC

j
N )1/2 cos(θ/2)2N−(k+j) sin(θ/2)k+jei(k−j)φ, re-

spectively, and fN,k(θ, φ) = f
(r)
N,k,k(θ, φ). Expressing,

similarly, (N +1)2 such separable states |ǫi〉⊗N 〈ǫi| yields
the system

(|ǫi〉⊗N 〈ǫi|) = F (σ̂λ), (4)

where F is the matrix with elements Fi,λ = fλ(θi, φi).
Since the fλ functions are linearly independent in θ and
φ, it is always possible to find (N + 1)2 distinct (θi, φi)
for which the F matrix is nonsingular and the system (4)
is invertible. In this case the corresponding (N+1)2 sep-
arable state density operators form a (non-orthonormal)
basis in the symmetric hermitian operator space and their
affine hull (set of all their linear combinations with coef-
ficients adding up to 1) yields the subset of all trace one
operators containing in particular all symmetric mixed
states. Since the convex hull of a set is of non-zero mea-
sure inside its affine hull, the convex hull of the (N +1)2

separable basis states is a non-zero measure set of sym-
metric separable states inside the whole symmetric mixed
state space. The conclusion follows that the DN family
is of non-zero measure. All other families being convex
and compact, embedded into each others and containing
DN , each successive family adds a non-zero measure set
of states with respect to all their descendants, as a direct
consequence of the Hahn-Banach separation theorem.
Having established the structure of the set of symmet-

ric mixed N -qubit states, we now show how witness op-
erators can be used to distinguish these different fami-
lies of multipartite entanglement. Witness operators are
useful tools that allow one to detect states lying outside
compact convex sets [3]. Thanks to this property of the
defined D families, witnesses can always be built to de-
tect mixed states lying out of them and thus belonging to
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their complements, that is to any higher or similar level
family. For a given D family, such witnesses are observ-
ables whose expectation values are positive for any state
belonging to D and strictly negative for at least a state
outside D, that is inside the complement set D. We call
these observables D-witnesses and denote them by WD.
Any symmetric state ρ fulfilling Tr(WDρ) < 0 is said to
be detected by the witness and is guaranteed to belong to
D and therefore not to be a D state. As witnesses cannot
detect states lying inside compact convex sets, D-witness
operators do not exist. Since DN -witnesses detect non-
separable states they are just entanglement witnesses in
the symmetric subspace [12].

Projector-based operators provide a convenient way for
building D-witnesses. Any observable of the form

W = αD1− |ψ〉〈ψ|, (5)

with |ψ〉 a D state and

αD = max|φ〉∈D|〈φ|ψ〉|2 (6)

is a D-witness. Let us exemplify different family wit-
nesses for N = 4. First we consider witness operators
built using projectors onto the GHZ state. In this state,
we do have αD4

= 1/2 [13], αD3,1
= 1/2, αD2,2

= 3/4
and αD2,1,1

≃ 0.875. Since αD3,1
= αD4

, the GHZ

state does not provide distinct D3,1- and D4-witnesses.
A better option with that concern is to consider wit-
nesses based on projectors onto the “tetrahedron state”

|T4〉 = 1/
√
3|D(0)

4 〉 +
√

2/3|D(3)
4 〉, so called because the

Bloch sphere representation of its four |ǫi〉 states [see
Eq. (1)] do form a regular tetrahedron [14]. For |T4〉,
the maximal overlaps with the different family states
read αD4

= 1/3 [14], αD3,1
= 2/3, αD2,2

= 1/2 and
αD2,1,1

≃ 0.749, allowing ones to witness distinctly all
four-qubit family complement sets.

The proposed classification of mixed entangled states
in the symmetric subspace can be implemented in the
lab with a one-to-one correspondance between given ex-
perimental parameters and the entanglement families. In
the experimental setups proposed in Refs. [15], N -qubit
symmetric pure states are produced in atomic and pho-
tonic systems by initial preparation or projective mea-
surements of N individual photon polarization states us-
ing adequate elliptical polarizers. There, a final atomic
or photonic state of the form (1) is produced, where each
qubit state |ǫi〉 = αi|0〉+ βi|1〉 is directly determined by
the polarization orientation ǫi = αiσ− + βiσ+ of the
ith polarization filter. A one-to-one correspondance be-
tween the degeneracy configuration of the polarizer ori-
entations (list of numbers of identical polarizers) and the

D family of the pure state produced in the atomic or pho-
tonic N -qubit system is obtained. This correspondance
is generalized to the symmetric mixed states by consider-
ing the polarizer orientations to be unknown within the
perimeter imposed by a given degeneracy configuration.
For instance, in a four-qubit set-up, three identical polar-
izer orientations distinct from a last one while ignoring
their exact orientations produces a D3,1 symmetric mixed
state, whose decomposition onto projectors of symmet-
ric pure states is known from the probability distribution
of the allowed polarizer orientations, each orientation set
determining a well-defined pure state [15]. It is notewor-
thy to mention that with this approach all symmetric
mixed multiqubit states can be produced.
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