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Information propagation for interacting particle systems
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We show that excitations of interacting quantum particles in lattice models always propagate
with a finite speed of sound. Our argument is simple yet general and shows that by focusing
on the physically relevant observables one can generally expect a bounded speed of information
propagation. The argument applies equally to quantum spins, bosons such as in the Bose-Hubbard
model, fermions, anyons, and general mixtures thereof, on arbitrary lattices of any dimension. It
also pertains to dissipative dynamics on the lattice, and generalizes to the continuum for quantum
fields. Our result can be seen as a meaningful analogue of the Lieb-Robinson bound for strongly
correlated models.

How fast can information propagate through a system
of interacting particles? The obvious answer seems: No
faster than the speed of light. While certainly correct,
this is not the answer one is usually looking for. For
instance, in a classical solid, liquid, or gas, perturba-
tions rather propagate at the speed of sound, which is
determined by the way the particles in the system lo-
cally interact with each other, without any reference to
relativistic effects. We would like to understand whether
a similar “speed of sound” exists for interacting quantum
systems, limiting the propagation speed of localized ex-
citations, i.e., (quasi-)particles. For interacting quantum
spin systems, such a maximal velocity, known as the Lieb-
Robinson bound [1–4], has indeed been shown. While
it seems appealing that there should always be such a
bound, systems of interacting bosons can show counter-
intuitive effects, in particular since the interpretation of
excitations in terms of particles is no longer fully justified;
in fact, an example of a non-relativistic system where
bosons condense into a dynamical state which steadily
accelerates has recently been constructed [5]. This ex-
ample suggests the disturbing possibility that our intu-
ition is wrong, and only relativistic quantum theory can
provide a proper speed limit.

There are many important reasons, both theoretical
and experimental, to investigate information propagation
bounds in interacting particle systems. It turns out that
such bounds lead directly to important, general results
concerning the clustering of correlations in equilibrium
states [2]. Lieb-Robinson bounds facilitate the simulata-
bility of strongly interacting quantum systems—the mere
existence of a Lieb-Robinson bound for a quantum sys-
tem can be used to develop general, efficient, numerical
procedures to simulate the dynamics of lattice models [6].
From a more practical perspective, new experiments al-
low one to explore the non-equilibrium dynamics of ul-
tracold strongly correlated quantum particles—bosonic,
fermionic, or mixtures thereof—in optical lattices with
unprecedented control [7, 8]. In such experiments, it is

important to understand how the particles move: For
example, when studying instances of anomalous expan-
sion, it is far from clear a priori whether it is possible to
identify a meaningful speed of sound at all.
The original Lieb-Robinson bound already applies in

a very general setting, namely, to any low-dimensional
quantum spin system, and to any fermionic system con-
fined to a lattice. It is therefore tempting to extend the
original argument to other settings, in particular, to sys-
tems of interacting bosons; unfortunately, all attempts
to do so have run into insuperable difficulties for systems
with nonlinear interactions, including the Bose-Hubbard
model. The reason for the failure of the original Lieb-
Robinson argument is fundamentally connected to the
unboundedness of the creation operator for bosons: The
Lieb-Robinson velocity depends on the norm of the in-
teraction, which is unbounded for, e.g., bosons hopping
on a lattice, and examples without a speed limit can be
constructed [5].
In this Letter, we show how these difficulties can be

overcome by considering the right question concerning
the propagation of information. Our approach allows us
to determine Lieb-Robinson type bounds for the maxi-
mal speed at which information can propagate through
systems of interacting particles in a very general scenario:
In particular, it applies to systems of interacting bosons,
as well as to fermions, spins, anyons, or mixtures thereof,
both on lattices and in the continuum. Moreover, it can
also be applied beyond Hamiltonian evolution, such as to
systems evolving under some local dissipative dynamics.
The type of system we have in mind is exemplified

by the Bose-Hubbard model, a model of bosons hopping
on an arbitrary lattice G of any finite dimension and
interacting via an on-site repulsion,

ĤBH = −τ
∑

〈j,k〉

(b̂†j b̂k+h.c.)+
U

2

∑

j

n̂j(n̂j −1)−µ
∑

j

n̂j ,

where the first summation is over neighboring sites on
the lattice, b̂j is the boson annihilation operator for site
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j, and n̂j = b̂†j b̂j is the number operator. The natu-
ral distance in the lattice will be denoted by d(·, ·), e.g.,
d(j, k) = |j − k| for a one-dimensional chain. While we
will, for clarity, focus our discussion on the Bose-Hubbard
model, our arguments directly generalize to models of the
form

Ĥ = −τ
S
∑

s=1

∑

〈j,k〉

(b̂†s,j b̂s,k +h.c.) + f({n̂1,j, . . . , n̂S,j}j∈G) ,

(1)

where the b̂s,j are annihilation operators for bosons,
fermions, or even anyons of species s = 1, . . . , S at site
j, and n̂s,j = b̂†s,j b̂s,j; the species could for instance re-
fer to an internal spin degree of freedom. The interac-
tion between the particles is characterized by f which
can be an arbitrary function of the local densities, and
may involve higher moments of the particle number, or
even non-local interactions. Moreover, our argument also
applies to time-dependent Hamiltonians of this form, as
long as the tunneling amplitude is bounded.

The scenario we consider is described by the Bose-
Hubbard model on a lattice G, where in the initial state
all sites are empty (i.e., 〈n̂j〉 = 0) except for the sites in
a region R which can be in an arbitrary initial state with
finite average particle number. Note that the region R
may very well encompass the major part of the lattice.
What we are interested in is how fast these bosons will
travel into the empty part G\R of the lattice, as a func-
tion of the distance d(·, ·) on the underlying graph. In
particular, we would like to find a “speed of sound” for
the bosons, that is, a velocity v such that for any region S
in G\R with d(S,R) ≥ l [i.e.: d(s, r) ≥ l ∀s ∈ S, r ∈ R],
and for all times t for which vt < l, the expectation value
of any observable ÔS on S is equal to the expectation
value of the vacuum, up to a correction which decays
exponentially away from the light cone, eγ(vt−l).

To start, we consider the Bose-Hubbard model ĤBH

and focus on measurements of the local particle number
operators n̂j . This corresponds to looking for bosons at
the initially empty sites, and thus captures the most nat-
ural notion of particles propagating into a region. Let us
denote the initial state by ρ(0), which evolves according
to

ρ̇(t) = −i[ĤBH, ρ(t)]

for t ≥ 0. As we are interested in the speed at which
particles in the Bose-Hubbard model propagate, let us
try to understand how the local particle densities

αj(t) = tr(n̂jρ(t)), j ∈ G ,

evolve under ĤBH. To this end, we derive a bound on
the rate at which αj(·) changes, which in turn leads to a
bound on the velocity at which particles can propagate

through the system. It holds that

α̇j(t) = −i tr
(

n̂j [ĤBH, ρ(t)]
)

= −i tr
(

[n̂j , ĤBH] ρ(t)
)

(2)

= 2τ
∑

〈j,k〉

Im
[

tr
(

b̂†k b̂jρ(t)
)

]

,

where the summation runs over all sites k neighboring
j, d(j, k) = 1. Since we are only interested in an upper
bound on this rate of change, we now consider |α̇j(t)| and
apply the triangle inequality to obtain

|α̇j(t)| ≤ 2τ
∑

〈j,k〉

∣

∣tr(b̂†k b̂jρ(t))
∣

∣ . (3)

To bound this term we use the operator Cauchy-Schwarz
inequality, viewing

tr(b̂†k b̂jρ(t)) = 〈b̂kρ1/2(t), b̂jρ1/2(t)〉

as a Hilbert-Schmidt scalar product of b̂jρ
1/2(t) and

b̂kρ
1/2(t), where ρ1/2(t) is the matrix square root of ρ(t).

This gives rise to

∣

∣tr(b̂†k b̂jρ(t))
∣

∣ ≤
(

tr(b̂†k b̂kρ(t))tr(b̂
†
j b̂jρ(t))

)1/2

.

Combining this with (3), we obtain a set of coupled dif-
ferential inequalities

|α̇j(t)| ≤ 2τ
∑

〈j,k〉

(αj(t)αk(t))
1/2

, (4)

which, using
√
xy ≤ (x + y)/2, yields the linearized sys-

tem

|α̇j(t)| ≤ τ

(

D αj(t) +
∑

〈j,k〉

αk(t)

)

,

where D is the maximal vertex degree of the interaction
graph.
We are interested in the worst-case growth of αj(t) as

t progresses. This will occur when we have equality in
the above expression (i.e., the derivative is as large as
possible), and thus a bound γk(t) ≥ αk(t) is given by the
solution of the linear system of differential equations

γ̇j(t) = τ

(

D γj(t) +
∑

〈j,k〉

γk(t)

)

which fulfills γj(0) = αj(0). This solution has the form

~γ(t) = eDτteτMt ~γ(0),

where M is the adjacency matrix of the lattice, i.e.,
Mj,k = 1 if d(j, k) = 1 and 0 otherwise, and ~γ := (γk)k∈L.
This yields an upper bound

~α(t) ≤ eDτteτMt ~α(0)
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for the expected particle number at time t for any site,
with ~α := (αk)k∈L.
In order to understand how quickly particles propagate

from the initially occupied region R into a region S with
d(R,S) ≥ l, we need to consider the off-diagonal block
of eDτteτMt corresponding to those two regions. Thus,
in order to obtain a light cone with an exponential decay
exp(vt− l) outside it, we need to understand how rapidly
the off-diagonal elements of the banded matrix M grow
under exponentiation eτMt. This can be done by apply-
ing Theorem 6 from Ref. [9], which yields for the (i, j)-th
element of exp(τMt) the bound

[exp(τMt)]i,j ≤ Cev0t−d(i,j)

with velocity v0 = χ∆τ , where χ ≈ 3.59 is the solution
of χ lnχ = χ + 1, ∆ = 1

2‖M‖op depends on the lattice
dimension, and C = 2χ2/(χ−1) ≈ 10. Together with the
prefactor exp(Dτt), this gives a Lieb-Robinson velocity
v = v0 + Dτ [10]. For the scenario of an empty lattice
with particles initially placed in a region R, this implies
that for any j with d(j, R) ≥ l,

αj(t) ≤ Cevt−l
∑

k∈R

αk(0) = CN0 e
vt−l , (5)

i.e., up to an exponentially small tail, the particles prop-
agate with a speed no faster than v, independent of their
initial state. Here, N0 =

∑

k∈R αk(0) = 〈N̂〉 is the total
number of particles in the system (i.e., the expectation
value of the total particle number operator N̂ =

∑

j n̂j).
Note that while this (unsurprisingly) means that the
strength of the signal observed may depend on the num-
ber of bosons initially put into the system, the maximum
propagation speed v does not depend on N0.
Having understood how to obtain a bound on the prop-

agation speed of particles, we now turn to more general
observables. First, let us show how we can bound the
higher moments of the particle number operator. For
p ≥ 1,

α
(p)
j (t) = tr

(

n̂p
jρ(t)

)

=
∑

N

tr
(

n̂j n̂
p−1
j PNρ(t)PN

)

≤
∑

N

tr
(

n̂jN
p−1PNρ(t)PN

)

(6)

(5)
≤

∑

N

Np−1
(

CNevt−l
)

tr(ρ(t))

= C 〈N̂p〉 evt−l ,

where PN projects onto the subspace with a total of N
particles, and we have used that Eq. (5) applies to each
subspace with fixed particle number independently as the
Hamiltonian commutes with PN . Here, 〈N̂p〉 denotes the
(time-independent) expectation value of the p-th moment

of the total particle number operator. This proves a Lieb-
Robinson bound for the higher moments of the particle
number operator.
Let us now turn our attention towards arbitrary local

observables Âj . Any such observable can be written as

Âj =
∑

p,q cp,q(b̂
†
j)

pb̂qj , and we have thus that

∣

∣tr(Âjρ(t))
∣

∣ ≤
∑

p,q

|cp,q|
∣

∣tr[(b̂†j)
pb̂qjρ(t)]

∣

∣

≤
∑

p,q

|cp,q|
(

tr
[

(b̂†j)
pb̂pjρ(t)

]

tr
[

(b̂†j)
q b̂qjρ(t)

]

)1/2

.

In turn, for p > 0

tr
[

(b̂†j)
pb̂pjρ(t)

]

= tr
[

n̂j(n̂j − 1) · · · (n̂j − p+ 1)ρ(t)
]

=

p
∑

r=1

dr,pα
(r)
j (t)

≤ C̃pe
vt−l

by virtue of Eq. (5), for some constant C̃p. If p = 0, we
trivially have tr[ρ(t)] = 1. Together, this yields a bound

∣

∣tr(Âjρ(t))
∣

∣ ≤ C′evt−l

if c0,q = cp,0 = 0 for all p and q, and

∣

∣tr(Âjρ(t))
∣

∣ ≤ C′e(vt−l)/2

otherwise, where we have assumed that
∑ |cp,q| is finite,

and used that w.l.o.g. c0,0 = 0. In both cases, this means

that outside the lightcone given by vt = l, tr(Âjρ(t))
decays exponentially; however, the decay is on double
the length scale in the latter case.
Finally, observables acting on more than one site can

be bounded analogously to the local case: Any two-site
operator acting on sites j, k can be written as the sum
of terms ÂjÂk, and

∣

∣tr(ÂjÂkρ(t))
∣

∣ ≤
√

tr(Â†
jÂjρ(t))tr(ÂkÂ

†
kρ(t)) .

The terms on the r.h.s. are local observables which can
be bounded as before by exp(vt−l), yielding the same ex-
ponential bound for two-site—and recursively for many-
site—observables. (Note that there exist cases where
terms which are bounded by exp[(vt− l)/2] only appear,
and in addition one of the Â’s above could be the identity.
Thus, bounds of the form exp((vt−l)/κ) can occur, where
κ can grow exponentially in the block size. This, how-
ever, still implies that the signal is exponentially small
outside the light cone.)
While we have illustrated our arguments for the Bose-

Hubbard model, they generalize straightforwardly to the
more general class of models described by (1). First, it is
clear that we can replace the on-site replusion and chem-
ical potential in the Bose-Hubbard model by any type of
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interaction (even a non-local one) which only depends on
the particle numbers, since any such term vanishes in the
commutator [n̂j , Ĥ] in Eq. (2). Second, for systems that
contain several types of bosons the same arguments ap-
ply: Such systems can be modelled using multiple copies
of the original graph, each of which supports the hopping
of one individual boson species, and one obtains inde-
pendent differential inequalities for the particle densities
αj,s(t) = tr[n̂j,sρ(t)] for each species.
Beyond general bosonic models, our arguments also ap-

ply to fermions and mixtures of bosons and fermions [11],
and in fact even to anyonic systems. Again, in a first
step one can decouple the individual species of parti-
cles (which mutually commute) to hop on independent
graphs. Then, it is easy to check that our arguments
work independently of the statistics of the particles, since
[n̂j , Ĥ ] in Eq. (2) evaluates to the same expression in
terms of the fermionic (anyonic) creation and annihila-
tion operators. Even better, fermionic and anyonic sys-
tems yield stronger bounds for the higher moments, and
thus for the scenario of general local observables: In
Eq. (6), n̂p−1

j can be bounded by 1 instead of N̂p−1,

which yields a bound α
(p)
j (t) ≤ CN0 e

vt−l on the higher
moments. Corresponding results also follow for spin sys-
tems, as these can be described as hardcore bosons.
Our arguments work not only for unitary theories, but

also for certain types of dissipative (Markovian) models,
extending [12] to bosonic systems. For instance, in the
practically relevant case of a bosonic system with particle
losses, we have that

ρ̇(t) = −i [ĤBH, ρ]− λ
∑

j

(

{b̂†j b̂j , ρ(t)} − 2b̂jρ(t)b̂
†
j

)

.

Therefore,

α̇j(t) = −i tr([n̂j , ĤBH]ρ(t)) − λ tr
(

n̂jρ(t)
)

,

which shows that the contribution from the dissipative
term to α̇j is negative; thus, tighter differential inequali-
ties and thus a lower speed of sound than in the Hamil-
tonian case can be obtained.
To conclude, we have proven that there is a speed limit

for the propagation of information in a system of in-
teracting particles. This result is particularly relevant
for the case of bosons on a lattice, as bosonic systems
cannot be assessed using the established techniques of
Lieb-Robinson bounds due to the unboundedness of the
bosonic hopping operator. Our argument applies equally
to bosonic, fermionic, anyonic, and spin systems, as well
as mixtures thereof, with arbitrary interaction terms be-
tween the particles, and can be generalized to also ad-
dress systems with dissipation.
The key point that allowed us to make statements

about the propagation of information in bosonic systems
beyond Lieb-Robinson bounds was first to focus on a sub-
set of observables relevant to detecting the propagation of

particles, namely the number of particles present at each
site, and second to devise a closed system of inequalities
bounding the evolution of their expectation values. This
allowed us to reduce the problem of characterizing the full
dynamics of the system, which takes place in a superex-
ponentially large Fock space, to simply keeping track of
the dynamics of a relatively small number of parameters.
This considerably reduced the complexity of the problem
and gave rise to an exactly solvable worst-case bound.
The idea of studying information propagation by re-

stricting to a specific set of observables and investigating
the resulting worst-case differential equation can also be
applied to the study of continous systems. This can be
done either by taking an appropriate continuum limit of
a lattice model, or by directly considering a correspond-
ing differential equation for the particle density which is
continuous in space.
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