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A COMPLETE UNITARY SIMILARITY INVARIANT FOR

UNICELLULAR MATRICES

DOUGLAS FARENICK, TATIANA G. GERASIMOVA, AND NADYA SHVAI

Abstract. Necessary and sufficient conditions for two n×n unicellular com-
plex matrices to be unitarily equivalent are established.

1. Introduction

A fundamental problem in operator theory and matrix analysis — see for example
[2, 9] — is the unitary similarity problem: under what necessary and sufficient
conditions are two Hilbert space operators unitarily similar?

At this level of generality, the problem is not at all tractable in infinite di-
mensions. But for finite-dimensional Hilbert space, there is a classical and purely
algebraic solution to this problem due to W. Specht [10]: matrices A and B are
unitarily similar if and only if

(1.1) Traceω(A,A∗) = Traceω(B,B∗) ,

for every word ω in two noncommuting variables x and y. (A modern approach
to Specht’s theorem is given in [8].) But in many applications, the data one has
about a particular matrix is not based on the trace of the matrix, but rather on
some other analytical information: the spectrum or pseudospectrum, the numerical
range or polynomial numerical hull, the singular values, a unitarily invariant norm,
and so forth. None of these analytic invariants are known to determine a matrix
up to unitary similarity, except perhaps in the most exceptional of circumstances.

Nevertheless, our concern in the present paper is with an invariant based on the
norm of a matrix, considered as an operator on n-dimensional complex space Cn.

Let Mn be the space of all n × n complex matrices and by Un we denote the
unitary group. Two elements A,B ∈ Mn are unitarily similar, which we denote by
A ∼ B, if there is a U ∈ Un such that B = U∗AU . It is well known that there
are no canonical choices for the representative of A ∈ Mn in the space Mn/ ∼ of
equivalences classes under unitary similarity ∼. In this regard, unitary similarity
departs substantially from similarity, where one has the Jordan canonical form.

Let 〈ξ, η〉 denote the canonical inner product of ξ, η ∈ Cn, the vector space of
complex n-tuples. The inner product induces norms ‖ξ‖ = 〈ξ, ξ〉1/2 on Cn and

‖A‖ = max06=ξ∈Cn
‖Aξ‖
‖ξ‖ on Mn such that ‖U∗AU‖ = ‖A‖, for U ∈ Un.
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Let C [t] denote the ring of polynomials with complex coefficients. If A ∼ B, then
necessarily ‖f(A)‖ = ‖f(B)‖ for all f ∈ C [t]. Conversely, if A,B ∈ Mn are such
that ‖f(A)‖ = ‖f(B)‖ for all f ∈ C [t], then A and B yield to the same “matrix
analysis.” In particular:

(i) A and B have the same spectrum;
(ii) A + z1 and B + z1 have the same condition numbers, for all nonspectral z

in the complex plane;
(iii) A and B have the same polynomial numerical hulls and, in particular, the

same numerical range;
(iv) A and B have the same spectral sets;
(v) A and B have the same pseudospectrum.
Our first objective is determine cases in which the condition ‖f(A)‖ = ‖f(B)‖

for all f ∈ C [t] is also sufficient for A ∼ B. In general it will not be so, for if one
takes any two nonzero projections (selfadjoint idempotents) P and Q, then one has
‖f(P )‖ = ‖f(Q)‖ for all f ∈ C [t], independent of the ranks of P and Q. Therefore,
the hypotheses ‖f(A)‖ = ‖f(B)‖ for all f ∈ C [t] is relevant only for the analysis
of nonnormal matrices.

We will show here for many upper triangular Toeplitz matrices R, the condition
‖f(A)‖ = ‖f(R)‖ for all f ∈ C [t] is indeed sufficient for A ∼ R: see Corollary
2.5. Yet, we believe that this is still a rather rare circumstance. And for many
highly nonnormal matrices A and B, it is possible for ‖f(A)‖ = ‖f(B)‖ to hold
for all f ∈ C [t], yet A 6∼ B (see, for example, Proposition 3.1). One reason that
these polynomial/norm conditions are insufficient for unitarily similarity is because
the condition ‖f(A)‖ = ‖f(B)‖, for all f ∈ C [t], fails to capture analytically the
action of a matrix A on its invariant subspaces, much in the way the norm of f(P ),
for a projection P , does not tell us anything about the dimension of the nonzero
eigenspace. (A fuller discussion is in Sections 3 and 4.2.)

The matrices with the simplest lattices of invariant subspaces are the unicellular
matrices [7, §2.5]. Unicellular matrices A are at the opposite end of the scale from
selfadjoint matrices: such A posses only one eigenvalue and the only matrices that
commute with A and its adjoint A∗ are those that are scalar multiples of the identity
(in other words, A is irreducible). A necessary and sufficient condition for A to be
unicellular is that the Jordan canonical form of A consist of exactly one Jordan
block; thus, unicellular matrices are nonderogatory.

Our main result in this paper is Theorem 3.2, namely a necessary and sufficient
condition for the unitary similarity of unicellular matrices.

2. Upper Triangular Toeplitz Matrices

In this section, let Q, J(λ) ∈ Mn, where λ ∈ C, denote the matrices

Q =



















0 1 1 · · · 1

0 1
. . .

...
. . .

. . .
...

. . . 1
0



















and J(λ) =



















λ 1 0 · · · 0
... λ 1

. . .
...

. . .
. . . 0

...
. . . 1

0 · · · · · · λ



















.

The main theorem of this section is:
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Theorem 2.1. If A ∈ Mn is any matrix for which ‖f(A)‖ = ‖f(Q)‖, for all

f ∈ C [t], then A ∼ Q.

The proof of Theorem 2.1 requires the following lemmas.

Lemma 2.2.

∞
∑

k=1

(−1)k+1Qk = S, where S = J(0).

Proof. Clearly Q =

∞
∑

k=1

Sk. Thus, 1 + Q =

∞
∑

j=0

Sj = (1 − S)−1, whence

1 = (1− S)(1 +Q). That is, S = 1− (1 +Q)−1 =

∞
∑

k=1

(−1)k+1Qk. �

Lemma 2.3. If

A =



















0 1 a13 · · · a1n

0 1
. . .

...

. . .
. . . an−2,n

. . . 1
0



















has the property that

∥

∥

∥

∥

∥

∞
∑

k=1

(−1)k+1Ak

∥

∥

∥

∥

∥

≤ 1, then A = Q.

Proof. We proceed by induction on n. The base case is n = 3. In this case,

∞
∑

k=1

(−1)k+1Ak =





0 1 a13 − 1
0 0 1
0 0 0



 .

If a13 − 1 were nonzero, then the third column of the matrix above would have
norm exceeding 1, which means that the matrix above would map a unit vector —
namely, e3 — to a vector of norm exceeding 1. But such a scenario is impossible,
as the norm of the matrix above is at most 1. Hence, it must be that a13 = 1,
implying that A = Q.

Assume now the statement holds in n-dimensional space and consider A, Q, and
S (the nilpotent Jordan block) as acting on Cn+1. Let Ã, Q̃, and S̃ denote the
versions of A, Q, and S that act on Cn, and let e1, . . . , en denote the canonical
orthonormal basis vectors in Cn. Hence, as a partitioned matrix, A has the form

A =









Ã η

0 · · · 0 0









, where η = en +

n−1
∑

i=1

ai,n+1ei ∈ C
n .
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Because 1 ≥
∥

∥

∥

∥

∥

∞
∑

k=1

(−1)k+1Ak

∥

∥

∥

∥

∥

≥
∥

∥

∥

∥

∥

∞
∑

k=1

(−1)k+1Ãk

∥

∥

∥

∥

∥

, the induction hypothesis yields

Ã = Q̃. Hence, using Lemma 2.2, we obtain

∞
∑

k=1

(−1)k+1Ak =















S̃

∞
∑

k=1

(−1)k+1Ãk−1η

0 · · · 0 0















.

Similar to the case n = 3, the norm condition 1 ≥
∥

∥

∥

∥

∥

∞
∑

k=1

(−1)k+1Ak

∥

∥

∥

∥

∥

for the matrix

above holds only if

0 =

(

∞
∑

k=1

(−1)k+1Ãk−1η

)

ei = ((1̃ + Ã)−1η)ei , 1 ≤ i ≤ n− 1 .

Therefore, using Ã = Q̃, we have (1̃ − S̃)η = λen for some complex number λ.
Hence,

η = λ(1̃− S̃)−1en = λ(1̃ + S̃ + S̃2 + · · ·+ S̃n−2)en = λ(en + en−1 + . . .+ e1) .

But on the other hand,

η = en +

n−1
∑

i=1

ai,n+1ei ,

which implies that λ = 1 and ai,n = 1 for all 1 ≤ i ≤ n− 1. Therefore, A = Q. �

We are now set to prove Theorem 2.1:

Proof. Recall that A ∈ Mn satisfies ‖f(A)‖ = ‖f(Q)‖, for all f ∈ C [t]. Because of

the Spectral Radius Formula, namely sprR = lim
k→∞

‖Rk‖1/k for every R ∈ Mn, this

condition on the norms of f(A) implies that A is nilpotent.
Without loss of generality, A may be assumed to be in upper triangular form.

Furthermore, using a diagonal unitary similarity transformation, the entries ai,i+1

may assumed to be nonnegative, for all 1 ≤ i ≤ n− 1. Indeed, since 1 = ‖Qn−1‖ =
‖An−1‖ = |a12a23 · · · an−1,n|, each ai,i+1 is nonzero; thus, we may ai,i+1 > 0 for all
i.

The numerical range, or field of values, W (R) of any R ∈ Mn is given analytically
by

W (R) =
⋂

α,β∈C

{z ∈ C | |αz + β| ≤ ‖αR+ β1‖} .

Hence, W (A) = W (Q). Let ℜ(R) = 1
2 (R+R∗), for any R ∈ Mn, and observe that

1
2 + ℜ(Q) = 1

2 ξ ⊗ ξ, where ξ =
∑n

i=1 ei ∈ Cn and ξ ⊗ ξ denotes the outer product
ξξ∗ ∈ Mn of ξ (a column vector) with its conjugate transpose ξ∗. Thus, for every
unit vector γ ∈ Cn, we have that the real part of 〈Qγ, γ〉 satisfies the inequality

ℜ (〈Qγ, γ〉) ≥ − 1

2
.
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Because A and Q have the same numerical range, it is also true that ℜ(A) has the
same property. Now, if Pi is the projection of Cn onto Span {ei, ei+1}, for each
1 ≤ i ≤ n− 1, then PiAPi as a linear transformation on the range of Pi is given by

[

0 ai,i+1

0 0

]

.

Therefore, the numerical range of PiAPi is a disc of radius 1
2ai,i+1 centered at the

origin. Because W (PiAPi) ⊆ W (A) ⊂ {z ∈ C | ℜ(z) ≥ −1/2}, we conclude that
each ai,i+1 ≤ 1. However, under these conditions the equation 1 = ‖An−1‖ =
a12a23 · · · an−1,n holds only if ai,i+1 = 1 for all 1 ≤ i ≤ n − 1. Hence, A has the
structure given in the hypothesis of Lemma 2.3. Moreover, by Lemma 2.2,

1 = ‖S‖ =

∥

∥

∥

∥

∥

∞
∑

k=1

(−1)k+1Qk

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∞
∑

k=1

(−1)k+1Ak

∥

∥

∥

∥

∥

.

Thus, A satisfies all of the hypotheses of Lemma 2.3, yielding Q = A. �

Theorem 2.1 allows us to identify some other Toeplitz operators that are com-
pletely determined by the polynomial norm condition.

To do this, let UpperToepln ⊂ Mn denote the algebra of n× n upper triangular
Toeplitz matrices, and let AlgA denote the unital abelian algebra generated by
A ∈ Mn, namely the set of all f(A), where f ∈ C [t].

Corollary 2.4. If ̺ : UpperToepln → Mn is any unital isometric homomorphism

of UpperToepln, then there exists U ∈ Un such that ̺(X) = U∗XU for all X ∈
UpperToepln.

Proof. By Lemma 2.2, S ∈ AlgQ. Because Alg S = UpperToepln and because Q
itself is an upper triangular Toeplitz operator, Q generates UpperToepln. Thus, if
A = ̺(Q), then, for every f ∈ C [t],

‖f(A)‖ = ‖f(̺(Q))‖ = ‖̺(f(Q))‖ = ‖f(Q)‖ .
Therefore, by Theorem 2.1, there is a U ∈ Un such that A = U∗QU . Because
the matrix A generates the range of ̺, we conclude that ̺(X) = U∗XU for all
X ∈ UpperToepln. �

Corollary 2.5. If R ∈ Mn is a generator of the algebra of upper triangular Toeplitz

matrices, then R ∼ B for any B ∈ Mn that satisfies ‖f(B)‖ = ‖f(R)‖ for every

f ∈ C [t]. This is true, in particular, of any Jordan block J(λ) ∈ Mn.

3. Necessary and Sufficient Conditions for Unitary Similarity

If A ∈ Mn is unicellular — say with spectrum {λ} — and if B ∈ Mn is any
matrix for which ‖f(A)‖ = ‖f(B)‖ for all f ∈ C [t], then A and B are similar, as
the condition implies that σ(B) = σ(A) and that (B−λ1)n−1 6= 0. But, unlike the
case for generators of the upper triangular Toeplitz matrices, A and B need not be
unitarily equivalent (Proposition 3.1 below). Therefore, one can have an invertible
matrix Z ∈ Mn with

‖f(A)‖ = ‖Zf(A)Z−1‖ , for all f ∈ C [t] ,

and yet Z can fail to be unitary.
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Proposition 3.1. If 0 < α < β, then the unicellular matrices

Q =





0 α 0
0 0 β
0 0 0



 and Q′ =





0 β 0
0 0 α
0 0 0





satisfy ‖f(Q′)‖ = |f(Q)‖ for all f ∈ C [t], but Q′ 6∼ Q.

Proof. Note that Q′ = W ∗QtW , where X 7→ Xt denotes the transpose map and

W =





0 0 1
0 1 0
1 0 0



 .

Because the norm is transpose invariant, ‖f(Q′)‖ = ‖f(Qt)‖ = ‖f(Q)t‖ = ‖f(Q)‖,
for all f ∈ C [t]. On the other hand, because 0 < α < β, one verifies directly that
the equation UQ′ = QU is impossible to satisfy with U ∈ U3. �

One way to explain the failure of Q and Q′ above to be unitarily similar is by
way of the observation that the restrictions of Q and Q′ to their common invariant
subspace Span {e1, e2} have unequal norms (α and β, respectively). This particular
observation about restrictions to invariant subspaces motivates our approach in this
section to the problem of unitary similarity for unicellular matrices.

For any matrix R ∈ Mn and unitary U ∈ Un for which U∗RU is an upper
triangular matrix, the subspaces

Span {e1, . . . , eℓ} , 1 ≤ ℓ ≤ n ,

are invariant under the action of U∗RU . If R is unicellular, then subspaces are the
only subspaces, besides {0} and Cn, that are invariant under U∗RU [7, §2.5].

Let Pℓ ∈ Un denote the projection onto Span {e1, . . . , eℓ}; that is, Pℓ = 1ℓ⊕0n−ℓ.
The following theorem is the main result of this paper.

Theorem 3.2. Assume that Q,Q′ ∈ Mn are upper triangular unicellular matrices

such that the entries of the superdiagonal above the main diagonal are positive.

Then the following statements are equivalent:

(1) ‖Pif(Q)Pi‖ = ‖Pif(Q
′)Pi‖ for every 1 ≤ i ≤ n and all f ∈ C [t];

(2) Q = Q′.

Remark. As A ∼ B implies ‖f(A)‖ = ‖f(B)‖ for every polynomial f , there is no
loss in generality in assuming that Q and Q′ are in upper triangular form. The
entries of the superdiagonal above the main diagonal of an upper triangular unicel-
lular matrix must be nonzero — for otherwise the matrix would fail to be unicellular
— and so by a diagonal unitary similarity transformation these superdiagonal el-
ements can be assumed to be positive. Thus, the statement of Theorem 3.2 does
not impose any special conditions on Q and Q′ other than unicellularity.

Proof. We need only prove that (1) implies (2), as the converse is trivial. Because
Q and Q′ have one point λ of spectrum, by scalar translation we may assume this
to be λ = 0.
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The matrix Q has the form

(3.1) Q =















0 a12 a13 . . . a1n
0 0 a23 . . . a2n

. . .
. . .

...
0 an−1n

0 0















,

where aℓ,ℓ+1 > 0, for every 1 ≤ ℓ ≤ n− 1.
We show below that the entries of Q in (3.1) are completely determined from

the values of ‖Pif(Q)Pi‖ for all 1 ≤ i ≤ n and all f ∈ C [t].
We shall proceed by induction on n ≥ 3.
Let n = 3. Thus,

(3.2) Q =





0 a12 a13
0 0 a23
0 0 0



 .

The value of a12 is determined via the fact that ‖P2QP2‖ = a12, and so the value
of a23 is determined from the equation a12a23 = ‖Q2‖. Using f(t) = t, we have

‖Q‖2 =
1

2

(

a212 + a223 + |a13|2 +
√

(a212 + a223 + |a13|2)2 − 4a212a
2
23

)

,

which determines the value of |a13|. Two similar calculations using the polynomials
f(t) = t − 1

a12a23

t2 and g(t) = t − i
a12a23

t2 determine the values of |a13 − 1| and
|a13 − i|. These last two quantities together with the value of |a13| determine the
complex number a13, thereby establishing the base case for the induction.

Assume now that the statement holds for all spaces up to including dimension
n− 1; we will show the statement also holds for spaces of dimension n.

For convenience, we denote the entries of Qk, where Q = {aij}i>j , by a
(k)
ij . By

the inductive hypothesis, all elements of leading principal (n−1)×(n−1) submatrix
of Q are uniquely determined by the norms ‖Pjf(Q)Pj‖, for various f ∈ C [t] and
1 ≤ j ≤ (n− 1). The only elements left to consider are those in the final column of
Q: ain, 1 ≤ i ≤ (n− 1). We shall obtain these entries in an argument that requires
n− 1 steps, where each step uses the conclusion of the previous step.

Step 1. Recall Qn = 0 and Qn−1 6= 0. All of the elements of Qn−1 are zero
except in the (1, n) position, where we have

‖Qn−1‖ = |a(n−1)
1n | = a12a23 . . . an−2,n−1an−1,n .

Hence, an−1n is uniquely determined by the norms ‖Pjf(Q)Pj‖ for various f ∈ C [t]
and 1 ≤ j ≤ n. This means, in addition, all of the entries of Qn−1 are now
determined.

Step i. Assume 3 ≤ i ≤ (n − 1) and that we have completed Steps 1 to i − 1,
giving us the values of aj,n, for j = n − i − 1, . . . , n − 1 and the entries of each
Qn−j, for j = 1, . . . , i− 1. We aim to show that the value of an−i,n is determined
from the norms of various Pjf(Q)Pj .
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For each complex number z ∈ C, let gz ∈ C [t] be given by gz(t) = tn−i+ z
a12q

tn−1,

where q = a
(n−2)
2,n (as in Step 2). Thus,

gz(Q) =



























0 . . . 0 a
(n−i)
1,n−i+1 a

(n−i)
1,n−i+2 . . . a

(n−i)
1n + z

0 a
(n−i)
2,n−i+2 . . . a

(n−i)
2n

. . .
. . .

...

0 a
(n−i)
in

0
...

0 0



























.

Observe that gz(Q) is a rank-1 perturbation of Qn−i: namely, gz(Q) = Qn−i +

zE1,n. Suppose that there is a complex number ã
(n−i)
1,n such that ‖Q̃n−i+ zE1,n‖ =

‖Qn−i+zE1,n‖ for all z ∈ C, where Q̃n−i is the matrix obtained from Qn−i+zE1,n

by replacing a
(n−i)
1,n by ã

(n−i)
1,n . We shall prove that ã

(n−i)
1,n = a

(n−i)
1,n . Define a

function h : C → R+ by h(z) = ‖Qn−i + zE1n‖ and let γ = ã
(n−i)
1,n − a

(n−i)
1,n . Thus,

h(z) = h(z + γ), for all z ∈ C. In particular, h(0) = h(kγ), for all positive integers
k. However, as it is clear that |h(z)| → ∞ as |z| → ∞, the equations h(0) = h(kγ),
for all positive integers k, can hold only if γ = 0.

Thus, we have shown that the (1, n)-entry of Qn−i, namely a
(n−i)
1,n , is determined

uniquely by the norms of various Pjf(Q)Pj .
Because the first n− i−1 entries in the first row of Qn−i−1 are zero and because

the first n− i − 1 entries of the last column of Q are a1,n . . . , a1,n−i−1, we obtain
from Qn−i = Qn−i−1Q that the (1, n)-entry of Qn−i is given by

(3.3) a
(n−i)
1,n = a

(n−i−1)
1,n−i a1,n−i +

i−1
∑

k=1

a
(n−i−1)
1,n−i+ka1,n−i+k

Because the entries a
(n−i)
1,n , a

(n−i−1)
1,n−i , a

(n−i−1)
1,n−i+k, and a1,n−i+k, for 1 ≤ k ≤ i−1, have

already been determined from the norms of various Pjf(Q)Pj using the induction
hypothesis and Steps 1 to i− 1, (3.3) implies that the value of a1,n−i is determined
uniquely from the norms of various Pjf(Q)Pj .

This completes the induction and, hence, the proof of the theorem. �

4. Remarks

4.1. The Volterra Integral Operator. In the theory of integral equations, the
classical Volterra operator V of integration has some remarkably special properties
[6]. The operator V is defined as follows: for each f ∈ L2([0, 1]), let V f ∈ L2([0, 1])
be given by

V f (t) = 2i

∫ 1

t

f(s) ds , f ∈ L2([0, 1]), t ∈ [0, 1] .

In the context of our work in this paper, the operator V is unicellular, which in
infinite dimensions is to say that its closed invariant subspaces are totally ordered
by inclusion.

A question raised many years ago by W. Arveson [1, page 218] asks whether
the norms ‖f(V )‖, for f ∈ C [t], determine the unitary similarity class of V in the
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set of irreducible compact operators on L2([0, 1]). Although this question remains
open, we point out below that given any ε > 0 there is a unicellular piece Q of the
Volterra operator whose norms ‖f(Q)‖ determine its unitarily similarity class and
such that Q is within ε of V uniformly on L2([0, 1]).

Proposition 4.1. For every ε > 0 there is a finite-dimensional subspace L ⊂
L2([0, 1]) such that, if P denotes the projection onto L, then

(1) PV P|L is a unicellular operator whose unitary similarity orbit, as an opera-

tor on L, is completely determined by the norms ‖f(PV P|L)‖, for f ∈ C [t],
and

(2) ‖PV P − V ‖ < ε.

Proof. We shall use an approximation scheme of E.B. Davies and B. Simon [4]
which they employed to compute the norm of V . For each positive integer m,
let Hm be the Hilbert space spanned by the m orthonormal functions

√
mχEj

,

0 ≤ j ≤ n− 1, where Ej = [ j
m , j+1

m ). If Pm is the projection with range Hm, then
PmV Pm considered as an operator on Hm has a matrix representation with respect
to this orthonormal basis of Hm that is given by

PmV Pm|Hm
=

i

m
(1 + 2Q) ,

where Q is the unicelluar Toeplitz operator acting on Cm described in Theorem 2.1.
As 1+2Q is a generator of the upper triangular Toeplitz matrices, the unitary simi-
larity orbit of PmV Pm|Hm

is completely determined by the norms ‖f(PmV Pm|Hm
)‖,

for f ∈ C [t].
The sequence {Pm}m of finite-rank projections Pm converges strongly to the

identity operator. Hence, because V is a compact operator, there is an m such that
‖PmV Pm − V ‖ < ε. �

4.2. Scalar versus higher-dimensional phenomena. Theorem 3.2 is linked to
higher dimensional phenomena encoded by the matricial spectrum of A ∈ Mn [5].

Because for every A ∈ Mn the unital algebra AlgA is abelian, there exist unital
homomorphisms AlgA → Mk, for all 1 ≤ k ≤ n−1. For a given k, let Hom (A,Mk)
denote the set of all unital homomorphisms AlgA → Mk. If ρ ∈ Hom(A,Mk), then
there is a k-dimensional subspace L ⊆ Cn such that ρ(A) ∼ PAP|L, where P ∈ Mn

is the unique (selfadjoint) projection with range L. This subspace L is necessarily
semi-invariant under A; conversely, every k-dimensional semi-invariant subspace of
A determines an element ρ ∈ Hom(A,Mk) [7, Theorem 3.3.1].

It is natural to consider the values of ρ ∈ Hom(A,Mk) as higher order spectra.
Specifically, consider the k-th matricial spectrum of A:

σk(A) = {Λ ∈ Mk |Λ = ρ(A) for some ρ ∈ Hom(A,Mk)} .
This set is closed under unitary similarity, and is itself a unitary similarity invariant
of A. Theorem 3.2 is formulated in the context of invariant subspaces; if one
strengthens that to semi-invariant subspaces on the one hand, then a slightly weaker
hypothesis on B is afforded on the other hand.

Proposition 4.2. Assume A,B ∈ Mn and that A is unicellular. If for each 1 ≤
k ≤ n and each ρ ∈ Hom(A,Mk) there is a ̺ ∈ Hom(B,Mk) such that

‖̺(f(B))‖ = ‖ρ(f(A))‖ , ∀ f ∈ C [t] ,

then B ∼ A.
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Proof. As in the proof of Theorem 3.2, one can assume A and B are nilpotent and
in upper triangular form with nonnegative entries along the superdiagonal above
the main diagonal. With A, the entries ai,i+1 are positive. The proof of Theorem
3.2 uses the unicellularity of B for only one purpose: to deduce bi,i+1 > 0, for
1 ≤ i < n. But this can be achieved, for a given i, by considering Λ = PAP|L

and Ω = PBP|L, where L = Span {ei, ei+1}. In this case, ρ(X) = PXP|L, for
X ∈ AlgA ∪ AlgB, defines an element of Hom (A,M2) and Hom (B,M2) such that

Λ ∼
[

0 ai,i+1

0 0

]

and Ω ∼
[

0 bi,i+1

0 0

]

.

Thus, 0 6= ‖Λ‖ = ‖Ω‖ = bi,i+1. �

The power of working in higher dimensions is amply illustrated by an important
theorem of Arveson [2]: If A,B ∈ Mn are irreducible, then A ∼ B if and only if
‖A⊗ C + 1 ⊗D‖ = ‖B ⊗ C + 1 ⊗D‖, for all C,D ∈ Mn. This is to say that the
norms of polynomials (of degree at most 1) in A, over the ring Mn, determine A up
to unitary similarity. In comparison, Theorem 3.2 and Proposition 4.2 represent a
hybrid of the matricial and scalar environments.
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