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Abstract

Each square complex matrix is unitarily similar to an upper tri-
angular matrix with diagonal entries in any prescribed order. Let
A = [aij ] and B = [bij ] be upper triangular n× n matrices that

• are not similar to direct sums of matrices of smaller sizes, or

• are in general position and have the same main diagonal.

We prove that A and B are unitarily similar if and only if

‖h(Ak)‖ = ‖h(Bk)‖ for all h ∈ C[x] and k = 1, . . . , n,

where Ak := [aij]
k
i,j=1 and Bk := [bij ]

k
i,j=1 are the principal k × k

submatrices of A and B and ‖ · ‖ is the Frobenius norm.
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1 Introduction

A classical problem in linear algebra is the following one: if A and B are
square complex matrices, then how can one determine whether A and B are
unitarily similar (i.e., U−1AU = B for a unitary U)? More precisely, which
invariants completely determine a matrix up to unitary similarity?

Let us recall the most known solutions to this problem:

Specht’s theorem. Matrices A and B are unitarily similar if and only if

trace ω(A,A∗) = trace ω(B,B∗)

for all words ω in two noncommuting variables, see [7].

Littlewood’s canonical matrices. Littlewood [5] constructed an algo-
rithm that reduces each square complex matrix A by transformations
of unitary similarity to some matrix Acan in such a way that A and B
are unitarily similar if and only if they are reduced to the same matrix
Acan = Bcan. Thus, the matrices that are not changed by Littlewood’s
algorithm are canonical with respect to unitary similarity. We use Lit-
tlewood’s canonical matrices in this paper (see Remark 7). Systems
of linear mappings on unitary and Euclidean spaces (i.e., unitary and
Euclidean representations of quivers) were studied in [6] using Little-
wood’s algorithm.

Arveson’s criterion. Let A and B be n × n complex matrices such that
each of them is not unitarily similar to a direct sum of square matrices
of smaller sizes. Arveson [1, Theorems 2 and 3] proved that A and B
are unitarily similar if and only if

‖H0 ⊗ In +H1 ⊗A‖op = ‖H0 ⊗ In +H1 ⊗B‖op (1)

for all H0, H1 ∈ Cn×n, where ‖M‖op := max|v|=1 |Mv| is the operator

norm and | · | stands for the Euclidean norm of vectors.

For each matrix polynomial

H(x) = H0 +H1x+ · · ·+Htx
t ∈ C

k×k[x],

whose coefficients Hi are k×k matrices, we define its value at an n×n
matrix M as follows:

H(M) := H0 ⊗ In +H1 ⊗M + · · ·+Ht ⊗M t ∈ C
kn×kn.
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The condition (1) means that

‖H(A)‖op = ‖H(B)‖op (2)

for all matrix polynomials H ∈ Cn×n[x] of degree at most 1. For
some class of operators on a Hilbert space, Arveson [2, Theorem 2.3.2]
proved that two operators A and B are unitarily similar if and only if
the condition (2) holds for all (possibly, nonlinear) H ∈ Ck×k[x].

The purpose of this paper is to give a criterion of unitary similarity of
matrices that is analogous to Arveson’s criterion (2), but in which polyno-
mials over C are used instead of linear polynomials over Cn×n. All matrices
that we consider are complex matrices.

We study only the finite dimensional case, and so we can and will use the
Frobenius norm

‖A‖ :=
√

∑

|aij|2, where A = [aij ] ∈ C
n×n,

instead of the operator norm. The Frobenius norm of a linear operator on a
unitary space is the Frobenius norm of its matrix in any orthonormal basis.
This definition is correct since the Frobenius norm of a matrix does not
change under multiplication by unitary matrices. Hence, if A and B are
unitarily similar matrices, then ‖A‖ = ‖B‖; moreover,

‖h(A)‖ = ‖h(B)‖ for all h ∈ C[x]. (3)

The converse statement is not true; the condition (3) does not ensure the
unitary similarity of matrices:

A =





0 1 0
0 0 2
0 0 0



 , B =





0 2 0
0 0 1
0 0 0



 (4)

are not unitarily similar and satisfy (3); see Lemma 9. But their 2 × 2
principal submatrices

A2 =

[

0 1
0 0

]

, B2 =

[

0 2
0 0

]

do not satisfy (3). (By the k × k principal submatrix Mk of a matrix M ,
we mean the submatrix at the intersection of the first k rows and the first k
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columns.) For this reason, we give a criterion of unitary similarity, in which
the condition (3) is imposed not only on n × n matrices A and B, but also
on their principal submatrices:

‖h(Ak)‖ = ‖h(Bk)‖ for all h ∈ C[x] and k = 1, . . . , n. (5)

We prove that the condition (5) ensures the unitary similarity of upper
triangular n× n matrices A and B in two cases:

• if A and B are not similar to direct sums of square matrices of smaller
sizes (Theorem 1), and

• if A and B are in general position (Theorem 4).

We consider only upper triangular matrices because of the Schur unitary
triangularization theorem [4, Theorem 2.3.1]: every square matrix A is uni-

tarily similar to an upper triangular matrix B whose diagonal entries are

complex numbers in any prescribed order ; say, in the lexicographical order:

a+ bi 4 c+ di if either a < c, or a = c and b 6 d. (6)

A unitary matrix U that transforms A to B = U−1AU is easily constructed:
we reduce A by similarity transformations to an upper triangular matrix
S−1AS with diagonal entries in the prescribed order (this matrix can be ob-
tained from the Jordan form of A by simultaneous permutations of rows and
columns), then apply the Gram-Schmidt orthogonalization to the columns of
S and obtain a desired unitary matrix U = ST , where T is upper triangular.

2 Main results

2.1 Criterion for indecomposable matrices and unicel-

lular operators

We say that a matrix is indecomposable for similarity if it is not similar to a
direct sum of square matrices of smaller sizes. This means that the matrix
is similar to a Jordan block. Thus, a matrix is indecomposable with respect
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to similarity if and only if it is unitarily similar to a matrix of the form

A =













λ a12 . . . a1n

λ
. . .

...
. . . an−1,n

0 λ













, all ai,i+1 6= 0. (7)

In Section 3 we prove the following theorem, which is the first main result
of the paper.

Theorem 1. Let A and B be n× n upper triangular matrices that are inde-

composable with respect to similarity. Then A and B are unitarily similar if

and only if

‖h(Ak)‖ = ‖h(Bk)‖ for all h ∈ C[x] and k = 1, . . . , n, (8)

where Ak and Bk are the principal k × k submatrices of A and B.

Now we give the operator form of this criterion. Two operators A and B
on a unitary space are unitarily similar if there exists a unitary operator U
such that U−1AU = B. A linear operator A : U → U on an n-dimensional
unitary space U is said to be unicellular if it satisfies one of the following 3
equivalent conditions:

• its matrix is indecomposable with respect to similarity;

• there exist no invariant subspaces U ′ and U ′′ of A such that

dimU ′ + dimU ′′ = n, U ′ ∩ U ′′ = 0;

• all invariant subspaces of A form the chain

0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Un = U, dimUi = i for all i.

Corollary 2. (a) Let A and B be unicellular linear operators on an n-
dimensional unitary space U with the chains of invariant subspaces

0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ Un = U, 0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = U,

and let

Ai := A|Uk, Bk := B|Vk
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be the restrictions of A and B to their invariant subspaces. Then A and B
are unitarily similar if and only if

‖h(Ak)‖ = ‖h(Bk)‖ for all h ∈ C[x] and k = 1, . . . , n. (9)

(b) In particular, two nilpotent linear operators A and B of rank n−1 on

an n-dimensional unitary space are unitarily similar if and only if (9) holds
for the restrictions Ak and Bk of the operators to the images of Ak and Bk.

Let (9) hold. Then A and B have the same eigenvalue: if λ is the eigen-
value of A and h(x) := (x− λ)n, then ‖h(B)‖ = ‖h(A)‖ = 0 and so λ is the
eigenvalue of B. Hence, the canonical isomorphism of one-generated algebras

C[Ak] ≃ C[Bk], Ak 7→ Bk (10)

is defined correctly: the algebras are isomorphic to C[x]/(x− λ)kC[x].

Corollary 3. Two unicellular linear operators A and B on an n-dimensional

unitary space are unitarily similar if and only if they have the same eigenvalue

and the canonical isomorphism (10) is isometric (i.e., it preserves the norm)
for each k = 1, . . . , n.

2.2 Criterion for matrices in general position

Theorem 1 is not extended to matrices with several eigenvalues: we prove in
Lemma 10 that each two matrices of the form

A :=









0 1 −1 a
0 1 1 1
0 0 2 1
0 0 0 3









, B :=









0 1 −1 b
0 1 1 1
0 0 2 1
0 0 0 3









,
a 6= b,

|a| = |b| = 1,
(11)

are not unitarily similar but satisfy (8). Nevertheless, in this section we
extend Theorem 1 to “almost all” upper triangular matrices as follows.

Let

Xn :=







x11 . . . x1n

. . .
...

0 xnn






(12)

be a matrix whose upper triangular entries are variables; denote by C[xij |i 6
j 6 n] the set of polynomials in these variables. For simplicity of notation,
we write f{Xn} instead of f(x11, x12, x22, . . . ).
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For each f ∈ C[xij |i 6 j 6 n], write

Mn(f) := {A ∈ C
n×n |A is upper triangular and f{A} 6= 0}. (13)

For example, if

ϕn{Xn} := x12x23 · · ·xn−1,n

∏

i<j

(xii − xjj), (14)

then Mn(ϕn) consists of matrices of the form













λ1 a12 . . . a1n

λ2
. . .

...
. . . an−1,n

0 λn













,
λi 6= λj if i 6= j,
all ai,i+1 6= 0.

(15)

We say that n × n upper triangular matrices in general position possess
some property if there exists a nonzero polynomial fn ∈ C[xij |i 6 j 6 n]
such that all matrices in Mn(fn) possess this property. Thus, this property
holds for all matrices in Cn×n except for matrices from an algebraic variety
of smaller dimension.1

The second main result of the paper is the following theorem.

Theorem 4. Two n×n upper triangular matrices A and B in general posi-

tion with lexicographically ordered eigenvalues on the main diagonal (see (6))
are unitarily similar if and only if

‖h(Ak)‖ = ‖h(Bk)‖ for all h ∈ C[x] and k = 1, . . . , n, (16)

where Ak and Bk are the principal k × k submatrices of A and B.

Theorem 4 is an existence theorem: “A and B in general position” means
“A,B ∈ Mn(fn) for some fn”. In Theorem 5, we give fn in an explicit form.

1In algebraic geometry, when a family of objects {Xp}p∈Σ is parametrized by the points
of an irreducible algebraic variety Σ, the statement that “the general object X has a
property P” is taken to mean that “the subset of points p ∈ Σ such that the corresponding
object Xp has the property P contains a Zariski open dense subset of Σ”, see [3, p. 54].
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For each n > 2 and r = 1, 2, . . . , n, define the n× n matrix

G(n,r){Xn} = [g
(n,r)
ij {Xn}]

:=

{

(Xn − x22In)(Xn − x33In) · · · (Xn − xnnIn) if r = 1,

(Xn − x11In)(Xn − x22In) · · · (Xn − xr−1,r−1In) if r > 1.
(17)

Its entries g
(n,r)
ij {Xn} are polynomials in entries of (12). Write

fn :=

{

ϕn if n = 1, 2, 3,

ϕn · g
(4,1)
14 g

(5,1)
15 · · · g

(n,1)
1n · g

(3,3)
13 g

(4,4)
14 · · · g

(n−1,n−1)
1,n−1 if n > 4.

(18)

in which ϕn is defined in (14). Theorem 4 results from the following theorem,
which is proved in Section 5.

Theorem 5. Matrices A,B ∈ Mn(fn) are unitarily similar and have the

same main diagonal if and only if (16) holds.

By this theorem and the top equality in (18), two matrices A and B of

the form (15) of size at most 3 × 3 are unitarily similar if and only if (16)
holds.

3 Proof of Theorem 1

Lemma 6. (a) For each

A =













λ1 a12 . . . a1n

λ2

. . .
...

. . . an−1,n

0 λn













, all ai,i+1 6= 0, (19)

there exists a diagonal unitary matrix U such that all the entries of the first

superdiagonal of U−1AU are positive real numbers.

(b) Let

A =













λ1 a12 . . . a1n

λ2
. . .

...
. . . an−1,n

0 λn













, all ai,i+1 are positive real, (20)
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and

B =













λ1 b12 . . . b1n

λ2
. . .

...
. . . bn−1,n

0 λn













, all bi,i+1 are positive real.

If A and B are unitarily similar, then A = B. Moreover, if U−1AU = B and

U is a unitary matrix, then U = uIn for some u ∈ C with |u| = 1.

Proof. (a) Write ai,i+1 in the form riui, in which ri is a positive real number
and |ui| = 1. Then

U−1 := diag(1, u1, u1u2, u1u2u3, . . . )

is the desired matrix.
(b) Let U−1AU = B, in which U is a unitary matrix. Equating the entries

of AU = UB along diagonals starting at the lower left diagonal (i.e., from
the entry (n, 1)) and finishing at the main diagonal, we find that U is upper
triangular. Since U is unitary, it is a diagonal matrix: U = diag(u1, . . . , un).
Equating the entries of AU = UB along the first superdiagonal, we find that
u1 = · · · = un. Hence, U = uIn and A = B.

Remark 7. By Lemma 6(b), any two matrices of the form (20) in which
the diagonal entries are lexicographically ordered (i.e., λ1 4 · · · 4 λn, see
(6)) are either equal or unitarily dissimilar. These matrices are Littlewood’s
canonical forms of matrices (19); see the beginning of Section 1.

Lemma 8. Each matrix of the form

A =













λ a12 . . . a1n

λ
. . .

...
. . . an−1,n

0 λ













, all ai,i+1 are positive real, (21)

is fully determined by the indexed family of real numbers

{‖h(Ak)‖}(h,k), in which h ∈ C[x] and k = 1, . . . , n. (22)
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Proof. Let h be a nonzero polynomial of minimal degree such that ‖h(A)‖ =
0. Then h(A) = 0 and so h(A) = (x− λ)n. Thus, λ is determined by (22).

Write B := A− λIn. Then (22) determines the family

{‖h(Bk)‖}(h,k), in which h ∈ C[x] and k = 1, . . . , n. (23)

The positive real number a12 is determined by (23) since ‖B2‖ = a12. This
proves the lemma for n = 1 and 2.

Reasoning by induction on n, we assume that n > 3 and Bn−1 is deter-
mined by (23). Since all entries of Bn−1 are zero except for the (1, n) entry,
which is the positive real number

c := a12a23 · · · an−1,n,

we have ‖Bn−1‖ = c. Thus, an−1,n is determined by (23).
Reasoning by induction, we assume that an−1,n, an−2,n, . . . , ar+1,n are de-

termined by (23) and find arn. Let α be a complex number for which
‖Br − αBn−1‖ is minimal. Then the (1, n) entry of Br − αBn−1 is

a12a23 · · · ar−1,rarn + · · ·+ αc = 0.

Since the unspecified summands do not contain arn and only arn is unknown
in this equality, it determines arn.

Proof of Theorem 1. Let M be an n × n upper triangular matrix that is
indecomposable with respect to similarity. By Lemma 6(a), M is unitarily
similar to a matrix A of the form (21) via a diagonal unitary matrix. Then
‖h(Mk)‖ = ‖h(Ak)‖ for all h ∈ C[x] and k = 1, . . . , n. Thus, it suffices to
prove Theorem 1 for matrices of the form (21).

“⇒” Let A and B of the form (21) be unitarily similar. By Lemma 6(b),
A = B, and so (8) holds.

“⇐” Let A and B of the form (21) satisfy (8). By Lemma 8, A = B since
their indexed families {‖h(Ak)‖}(h,k) and {‖h(Bk)‖}(h,k) coincide.

4 Counterexamples

4.1 Condition (3) does not ensure the unitary similar-

ity

In this section, we give examples of matrices of the form (20) (and even of
the form (21)), for which the condition (3) does not ensure their unitary
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similarity.
For each square matrix A, denote by AS its transpose with respect to the

secondary diagonal:

AS = ZATZ, Z :=







0 1

. .
.

1 0






.

For instance, B = AS in (4).

Lemma 9. Let A be a matrix of the form (20) such that A 6= AS and the main

diagonals of A and AS coincide (i.e., the main diagonal of A is symmetric).
Then A and B := AS satisfy (3), but they are not unitarily similar.

Proof. The condition (3) holds for A and B = AS, because ‖h(AS)‖ =
‖h(ZATZ)‖ = ‖Zh(AT )Z‖ = ‖h(AT )‖ = ‖h(A)T‖ = ‖h(A)‖.

Since A 6= AS, A and AS are not unitarily similar by Lemma 6(b).

4.2 Theorem 1 is not extended to matrices with several

eigenvalues

Theorem 1 was proved for matrices of the form (7); let us show that it is not
extended to matrices of the form (15).

Lemma 10. Matrices A and B of the form (11) are not unitarily similar

but satisfy (8).

Proof. By Lemma 6(b), A and B are not unitarily similar since a 6= b.
Let us prove, that A and B satisfy (8). Write

Mc :=









0 1 −1 c
0 1 1 1
0 0 2 1
0 0 0 3









, in which c ∈ C and |c| = 1,

and take any h ∈ C[x].
It suffices to prove that ‖h(Mc)‖ does not depend on c. Let r(x) =

α + βx + γx2 + δx3 be the residue of division of h(x) by the characteristic
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polynomial of Mc. Then

h(Mc) = r(Mc) = αI4 + βMc + γ









0 1 −1 3c
0 1 3 5
0 0 4 5
0 0 0 9









+ δ









0 1 −1 9c
0 1 7 19
0 0 8 19
0 0 0 27









,

and so

‖h(Mc)‖
2 = ‖r(Mc)‖

2 =‖r(M0)‖
2 + |βc+ γ3c+ δ9c|2

=‖r(M0)‖
2 + |β + 3γ + 9δ|2|c|2

=‖r(M0)‖
2 + |β + 3γ + 9δ|2

does not depend on c.

Note that Mc /∈ M4(f4) (in which M4(f4) from Theorem 5) since

g
(3,3)
13 {Mc} = 0.

5 Proof of Theorem 5

In this section, Mn(f) is the set (13) and fn is the polynomial (18).

Lemma 11. Let G(n,r) be the matrix defined in (17).
(a) Only the first row of G(n,1) is nonzero.

(b) The matrix G(n,r) with 2 6 r 6 n has the form

[

0r−1 ∗
0 T

]

, (24)

in which 0r−1 is the (r − 1)× (r − 1) zero matrix and T is upper triangular.

(c) The matrix G(r,r) with 2 6 r < n is the r × r principal submatrix of

G(n,r).

Proof. For every i = 1, . . . , n, let Pi be any n × n upper triangular matrix,
in which the (i, i) entry is zero. Then

P1 · · ·Pn =











0 ∗
∗

. . .

0 ∗





















∗ ∗
0

∗

0
. . .











· · ·











∗ ∗
. . .

∗
0 0











= 0. (25)
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This equality is proved by induction on n: if it holds for n − 1, then the
product of the (n−1)× (n−1) principal submatrices of P1, . . . , Pn−1 is zero,
and so

(P1 · · ·Pn−1)Pn =











0 . . . 0 ∗
. . .

...
...

0 ∗
0 ∗





















∗ ∗
. . .

∗
0 0











= 0.

(a) In the product of matrices (17) that defines G(n,1), we remove the
first row and the first column in each of its factors. Then apply (25) to the
obtained product.

(b) In the product of matrices (17) that defines G(n,r) with r > 2, we
replace each factor by its (r − 1)× (r − 1) principal submatrix. Then apply
(25) to the obtained product.

(c) This statement follows from (17).

Lemma 12. If A ∈ Mn(fn) and S is a nonsingular diagonal matrix, then

S−1AS ∈ Mn(fn).

Proof. Let A ∈ Mn(fn) and let S be a nonsingular diagonal matrix. For
each i, the (i, i) entries of A and S−1AS coincide and S−1AS − aiiIn =
S−1(A − aiiIn)S. Thus, G(n,r){S−1AS} = S−1G(n,r){A}S for each r, and
so the corresponding entries of G(n,r){A} and G(n,r){S−1AS} are simultane-
ously zero or nonzero. Taking into account the definition (18) of fn, we get
S−1AS ∈ Mn(fn).

The following lemma is analogous to Lemma 8.

Lemma 13. Each matrix A ∈ Mn(fn), in which all entries of the first super-

diagonal are positive real numbers, is fully determined by the indexed family

of real numbers

{‖h(Ak)‖}(h,k), in which h ∈ C[x] and k = 1, . . . , n. (26)

Proof. The matrix A has the form












λ1 a12 . . . a1n

λ2
. . .

...
. . . an−1,n

0 λn













,
λi 6= λj if i 6= j,

all ai,i+1 are positive real.
(27)
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For each k, the minimal polynomial µk(x) of Ak is determined by the
family (26). Since λi 6= λj if i 6= j, µk(x) is the characteristic polynomial
of Ak, and so µk(x)/µk−1(x) = x − λk. Thus, the main diagonal of A is
determined by (26).

The entry a12 of A is also determined by (26) since a12 is a positive real
number, ‖A2‖ is determined by (26), and

‖A2‖
2 = |λ1|

2 + |λ2|
2 + a212.

This proves Lemma 13 for n = 2.
Let n > 3. Since fn−1 divides fn, we can use induction on n, and so we

assume that (26) determines An−1.
Let us find an−1,n. For each r = 2, 3, . . . , n− 1, define the n× n matrix

B(r) = [b
(r)
ij ] := G(n,r){A}(A−λnIn) = (A−λ1In) · · · (A−λr−1In)(A−λnIn).

Since G(n,n−1){A} has the form (24) and the (n, n) entry of A− λnIn is zero,
the last column of B(n−1) is van−1,n, in which

v := [g
(n,n−1)
1,n−1 {A}, . . . , g

(n,n−1)
n−1,n−1{A}, 0]

T (28)

is the (n − 1)th column of G(n,n−1){A}. The column v is known since it is
determined by An−1. The first coordinate of v is nonzero since by Lemma
11(c)

g
(n,r)
1r {A} = g

(r,r)
1r {A} 6= 0, r = 2, . . . , n− 1; (29)

these are nonzero since each g
(r,r)
1r divides fn (note that g

(2,2)
12 = x12).

Thus, ‖v‖ 6= 0. The positive real number an−1,n is fully determined by
the equality

‖B(n−1)‖2 = ‖B
(n−1)
n−1 ‖2 + ‖v‖2a2n−1,n,

in which B
(n−1)
n−1 is the (n− 1)-by-(n− 1) principal submatrix of B(n−1).

We have determined the matrix B(n−1) too since its last column is van−1,n.
Let us consider the space Cn×n of n-by-n matrices as the unitary space

with scalar product

(X, Y ) :=
∑

i,j

xij ȳij , X = [xij ], Y = [yij] ∈ C
n×n.
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This scalar product is expressed via the Frobenius norm due to the polariza-
tion identity

(X, Y ) =
1

4
(‖X + Y ‖2 − ‖X − Y ‖2) +

i

4
(‖X + iY ‖2 − ‖X − iY ‖2).

By Lemma 11(a),

C := G(n,1){A} = (A− λ2In) · · · (A− λnIn) =











c1 c2 . . . cn
0 . . . 0

. . .
...

0 0











,

in which c1, . . . , cn−1 are known. Since the main diagonal of A is determined
by (26), ‖C‖ is determined by (26) too. Using the polarization identity, we
find (B(n−1), C). Then we find cn from the equality

(B(n−1), C) = b
(n−1)
11 c̄1 + · · ·+ b

(n−1)
1,n−1c̄n−1 + b

(n−1)
1n c̄n,

in which b
(n−1)
1n = g

(n,n−1)
1,n−1 {A}an−1,n 6= 0 (see (28) and (29)).

Reasoning by induction, we assume that an−1,n, an−2,n, . . . , ar+1,n are
known and find arn for each r 6 n− 2.

Suppose first that r > 2. Then n > 4, and cn 6= 0 because g
(n,1)
1n divides fn.

Since ‖B(r)‖ is determined by (26) and C is known, we determine (B(r), C)

using the polarization identity. We determine b
(r)
1n from

(B(r), C) = b
(r)
11 c̄1 + · · ·+ b

(r)
1,n−1c̄n−1 + b

(r)
1n c̄n.

By (24), the first r − 1 columns of G(n,r) are zero, and so

b
(r)
1n = g

(n,r)
1r {A}arn + g

(n,r)
1,r+1{A}ar+1,n + · · ·+ g

(n,r)
1,n−1{A}an−1,n.

This equality determines arn because only arn is unknown and g
(n,r)
1r {A} 6= 0

by (29).
Suppose now that r = 1. Write C in the form D(A− λnIn), in which

D = [dij] := (A− λ2In)(A− λ3In) · · · (A− λn−1In).

Then
cn = d11a1n + d12a2n + · · ·+ d1,n−1an−1,n.
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This equality determines a1n since only a1n is unknown and

d11 = (λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn−1) 6= 0.

Therefore, we have determined all entries of A.

Proof of Theorem 5. By Lemmas 6(a) and 12, each matrix A ∈ Mn(fn) is
unitarily similar to a matrix A′ ∈ Mn(fn) of the form (27) via a diagonal
unitary matrix. Then ‖h(Ak)‖ = ‖h(A′

k)‖ for all h ∈ C[x] and k = 1, . . . , n.
Thus, it suffices to prove Theorem 5 for matrices A,B ∈ Mn(fn) of the form
(27).

“⇒” Let A,B ∈ Mn(fn) of the form (27) be unitarily similar and have
the same main diagonal. By Lemma 6(b), A = B and so (16) holds.

“⇐” Let A,B ∈ Mn(fn) of the form (27) satisfy (16). By Lemma 13, A =
B since their indexed families {‖h(Ak)‖}(h,k) and {‖h(Bk)‖}(h,k) coincide.
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