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Abstract

Using the LRT statistic, a model  is proposed for the generalized linear mixed model forV#

assessing the association between the correlated outcomes and fixed effects.  The  comparesV#

the full model to a null model with all fixed effects deleted.
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1. Introduction

The value and familiarity of the  statistic in the linear univariate model with normal errorsV#

creates great interest in extending it to nonlinear models and/or models with nonnormal errors.

By using standard linear model theory, Edwards et al. (2008) defined an  statistic for fixedV#

effects in the linear mixed model based on an appropriate REML  statistic, denoted . As aJ V"
#

result of the approximate REML  statistic (Kenward and Roger 1997),  was defined usingJ V"
#

only a single model and the statistic also generalizes to define a partial  statistic for marginalV#

(fixed) effects of all sorts. The choice of the null model plays a central role in defining an V#

measure.  compares the full model to a null model with all fixed effects deleted (exceptV"
#

typically the intercept) while retaining exactly the same covariance structure. In the special case

of a multivariate model that is expressed as linear mixed model and a linear mixed model

hypothesis that coincides exactly with a multivariate linear hypothesis,  reduces exactly to aV"
#

multivariate measure of association using the Hotelling-Lawley-Trace statistic.  The results of the

research helped to provide valuable insight into  measures in linear mixed models for theV#

analysis of longitudinal data.

When considering models other than the standard linear regression model with iid errors,

including generalized linear models,  measures based on the likelihood ratio test (LRT) areV#

preferable (Allen and Le 2008).  In particular, use of the "log-likelihood ratio"  for theV#

multiple logistic regression model, denoted , dates back to the early 1970's (McFadden 1974).VP
#

This statistic is reported in commonly used software packages such as SAS, SPSS, and STATA.

However, very little work has been done to define an V# analog for the generalized linear

mixed model.  Generalized linear mixed models (GLMMs) are an extension of generalized linear

models and are often used for correlated (clustered), nonnormal data.  We extend the results of

previous authors (McFadden 1974, Magee 1990, Menard 2000, Menard 2002, Edwards et al.

2008) to propose a model  measure for fixed effects in the generalized linear mixed modelV#

where the focus is on longitudinal data.  The proposed  measure for the GLMM is definedV#
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using the LRT and compares the full model to a null model with all fixed effects deleted (except

typically the intercept) while retaining exactly the same covariance structure.  The proposed V#

for the GLMM measures multivariate association between the correlated outcomes and fixed

effects in the generalized linear mixed model.

2. The Generalized Linear Mixed Model

The generalized linear mixed model (GLMM) is perhaps the most commonly used random

effects model for discrete outcomes.  We summarize the basic features of the GLMM here with a

focus on longitudinal data.  For more details, see Breslow and Clayton (1993) and Tuerlinckx et

al. (2006).  ent sampling units (often  in practice onditionally onWith  independ ) and cR persons

the random effects  ( , assume that the responses ?3 7‚ " ] : ‚ ")  of  ( ) are independent with34 3 3]

density function that is a member of the exponential family, i.e.,

0 ] l œ ] � , Î+ � - ]( ) [{ ( )} ( ) ( , )] , (1)34 3 34 34 34 34? exp ) ) 9 9

for some functions , , and . The conditional mean is ( ) ( ) and conditional+ , - I ] l œ ,34 3 34
w? )

variance is var( ) ( ) ( ). The conditional mean satisfies a linear regression model] l œ , +34 3 34
ww? ) 9

1 I ] l œ � 1 ; ‚ "[ ( )] , where ( ) is referred to as a  function,  ( ) is a vector of34 3 3
w w
34 34? B D ?" "link

unknown fixed effect parameters,  ( ) and  ( ) are vectors of fixed and randomB D34 34; ‚ " 7 ‚ "

effect explanatory variables (the first element of  is a 1). The conditional variance can beB34

written as var( ) var[ ( )], where  is a known constant. ] l œ + I ] l +34 3 34 34 3 34? ?9  The conditional

mean also satisfies

I ] l œ 2 �( ) ( ) , (2)34 3 3
w w
34 34? B D ?"

with 2 œ 1�" 3. The random effects  are assumed to be sampled from a (multivariate) normal?

distribution with mean  ) and covariance matrix ) that depends on a! (  (7‚ " œ 7‚7D D( )α

vector ) of unknown variance componentsα ( . We have thus described a GLMM with a< ‚ "

(multivariate) normal mixing distribution for the random effects.  As noted by Tuerlinckx et al.

(2006), this is the model most often applied in practice.
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 Several methods have been proposed for inference and estimation in the GLMM. Tuerlinckx

et al. (2006) reviews inference techniques for the GLMM with normal mixing distribution,

discusses advantages and disadvantages of the methods, and mention software packages in which

they are implemented.  Tuerlinckx et al. (2006) noted three types of linear hypothesis tests of

fixed effects are usually considered: LRT, a Wald test, and a score test.  The Wald and score tests

are approximations to the LRT and hence the p-values of the LRT are more exact (Tuerlinckx et

al. 2006).  However, only a single model is needed for the Wald and score tests (  for the linearV"
#

mixed model also uses only a single model) whereas both the null and full models are needed for

the LRT.

3. A Model V# Measure for Fixed Effects in the Generalized Linear Mixed Model

The results of Edwards et al. (2008) provides the basis for many of the assumptions we use for

the proposed  measure for the GLMM.  Similar to the linear mixed model, the GLMMV#

explicitly specifies not only the mean structure, but also the covariance structure.  Hence three

types of model comparisons can occur.  I) Compare mean models with the same covariance

structure.  Nested mean models are the most common.  II) Compare covariance models with the

same mean structure.  Two GLMMs may be nested or nonnested in the covariance models.

III) Compare GLMMs with different mean and different covariance structures.  Consequently any

definition of an  measure for the GLMM must account for the distinction between theV#

proportion of variation in the response explained by the fixed effects (in the mean model) and the

proportion explained by the random effects (in the covariance model).  The same distinction

arises in measuring the degree of association between the correlated outcomes and the fixed

effects.  Here we describe an  measure only for item I, i.e., comparing nested mean modelsV#

with the same covariance structure.  For our  measure intended to evaluate fixed effects (meanV#

differences), we specify a null model with only the intercept in the fixed effects.  To compare

nested mean models, we require the  covariance structure for both the null model and thesame

model of interest. As a result of using the LRT in the GLMM to define a model , V# we compare
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the following two models

1. Model of Interest [ ( )]

2. Null Model [ ( )] .

1 I ] l œ �

1 I ] l œ �

34 3 3
w w
34 34

34 3 ! 3
w
34

? B D ?

? D ?

"

"

As stated in Section 1, the LRT statistic has been used to define an  measure for linearV#

models with non-normal data, such as the multiple logistic regression model. The  measureV#

based on the LRT statistic for such models is given by

V œ " � �
RP

# expŒ LRT
 (3)

where LRT is the likelihood ratio test statistic.  Here  is the number of independent samplingR

units.

We extend (3) to the GLMM with normal mixing distribution by substituting the LRT statistic

for testing the appropriate set of model coefficients.  The most common situation involves a

model including an intercept and a hypothesis excluding the intercept, giving  forL À œ! G !"

G G !! Mœ ; � " L À œc d� �;�" ‚" ;�" ! of rank .  For testing , the LRT statistic for the GLMM"

is given by

LRT œ � 6 62 ( ( ,  (4)’ “" D " Dë , , ël ls s] ]) )�

where the LRT statistic contrasts the log-likelihood (6 " D "ë ë,  obtained under theël] ) of the MLE 

restricted model (null model) with the log-likelihood ,  of the MLE  obtained under6(" D "s ssl] )

the unrestricted model (full model).  The LRT statistic is asymptotically chi-square with ; � "

degrees of freedom.  See Tuerlinckx et al. (2006) for further details on the LRT for the GLMM.

Hence, under the previous assumptions, an  measure for the GLMM can be given byV#

V œ " �
8P

# expŒ LRT
, (5)
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where , the total number of observations.  8 œ :	
3œ"

R

3 By definition, , with ! Ÿ V Ÿ " V œ !L L
# #

indicating no multivariate association between  and .  On the other hand, as nears 1, thenC \ VL
#

the multivariate association between  and  becomes perfect.C \

In the linear univariate and multivariate models, adding a fixed effect can either explain more

of the variance or add no additional explanation. Hence, for the linear univariate and multivariate

models, the true population increase n theV V# # and estimated  or remain the same.  However, i

linear mixed model, adding a predictor in the fixed effects (between-subject) can increase the

estimated variance of the random effects (within-subject effect) and hence increase the estimated

variance of the response (Edwards et al. 2008) which may result in a decrease in .  This mayV"
#

also be the case for In such cases, is interpreted asV VP P
# # which requires further research.   

indicating a decrease in measure of association possibly due to either misspecification of the

"full" model and/or of sampling variation resulting in changes to the variance components

estimates.  However, the true population  that estimates, under suitable conditions, shouldV# VL
#

not decrease when a predictor is added.

4. Example Computations and Interpretations

Edwards et al. (2008) provided a linear mixed model example for a repeated blood pressure

(BP) study (Fisher et al. 2008) that showed little association between repeated systolic and

diastolic BP outcomes and a set of fixed effects.  Using the same data, we construct a repeated

dichotomous outcome (controlled or uncontrolled BP), fit a GLMM with the same fixed effects

used for the linear mixed model, and compute   Using the JNC VII classification of BP, BP isVL
#.

considered controlled if systolic BP is less than 140 mmHg and diastolic BP is less than 90

mmHg. We created a binary outcome that indicates whether a person's BP was controlled or

uncontrolled at the time of measurement. Thus, for each subject, we have longitudinal binary

data indicating controlled or uncontrolled. We then fit a GLMM with logit link and with random

intercept and slope to this data to determine BP control over time.
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Data from a retrospective longitudinal cohort study of 459 adults with hypertension (Fisher et

al. 2008) illustrate the problem and the utility of our statistic.  Longitudinal blood pressure (BP)

level were taken on patients making at least four visits to the Family Practice Center at UNC

during a two year period, 1999-2001.  Predictor variables in the GLMM include indicators for

Continuity of Care, and Race, Gender, Insurance status, Provider type, Marital status, as well as

continuous linear Age at first measurement and linear Time.  The random effects include

intercept only with scalar . Many studies have confirmed that blacks, on average, have higherD

BP than whites, and by proxy, less BP control.  In this study, higher probability of uncontrolled

BP was associated with blacks versus whites with p-value 0.0085. For the linear mixed modelœ

analyses, higher BP was associated with blacks versus whites with for both systolic BP (p-

value 0.0042) and diastolic BP (p-value 0.0053).  The race effect remained the same acrossœ œ

time (there was no Race Time interaction).‚

For the fitted GLMM, the model 4768 andV œL
# 0.02 with 8 œ

� 6 6 œ � V œ2 ( ( 93.83 0.09 for’ “" D " Dë , , ël ls s] ]) ) .  For the linear mixed model analyses, � "
#

systolic BP and 0.27 for diastolic BP. For both the GLMM and the linear mixed model,V œ"
#

predictors were Continuity of Care, Gender, Insurance status (three levels and hence two dummy

variables), Provider type, Marital status, linear Age, linear Time, Race.  For the GLMM, the

value of VL
# is consistent with the notion that for this study there is a very weak association

between the repeated outcomes and the fixed effects.

5. Conclusions

In more general models there can be a large number of potential 's from which to choose.V#

This variety is due to the many interpretations that can be given to  in the standard model.V#

Each interpretation may motivate one or more possible measures (Magee 1990, Edwards et al.

2008). Given its underlying principles and due to the lack of available measures of association in

the GLMM, VP
#  should be used as a measure of association for fixed effects in the GLMM.

Further research is required to explore the properties of .VP
#
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One drawback to  is that both the log-likelihood must be computed for two model, both theVP
#

model of interest and the null model. For the linear mixed model, only a single model is needed

(Edwards et al. 2008).  Also, readers familiar with the V# statistic for the linear univariate and

multivariate models may at first be skeptical of a feature of VP
#  that allows the measure to

decrease when adding predictors. In the linear univariate and multivariate models, adding a fixed

effect results in an increase (or no change) in the amount of variance explained by the predictors

and hence the monotonic property of both the sample V V# # and true population . However,

similar to the linear mixed model, V"
#  for  may decrease by adding a predictor in the fixedVP

#

effects.  In such cases,  is interpreted as indicating a decrease in measure of associationVP
#

possibly due to either misspecification of the "full" model and/or of sampling variation resulting

in changes to the variance components estimates.  However, the true population  that V# VP
#

estimates, under suitable conditions, should not decrease when a predictor is added.
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