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We study the time evolution of the reduced density matrix of a system of spin-1/2 particles

interacting with an environment of spin-1/2 particles. The initial state of the composite

system is taken to be a product state of a pure state of the system and a pure state of the

environment. The latter pure state is prepared such that it represents the environment at a

given finite temperature in the canonical ensemble. The state of the composite system evolves

according to the time-dependent Schrödinger equation, the interaction creating entanglement

between the system and the environment. It is shown that independent of the strength of

the interaction and the initial temperature of the environment, all the eigenvalues of the

reduced density matrix converge to their stationary values, implying that also the entropy

of the system relaxes to a stationary value. We demonstrate that the difference between the

canonical density matrix and the reduced density matrix in the stationary state increases

as the initial temperature of the environment decreases. As our numerical simulations are

necessarily restricted to a modest number of spin-1/2 particles (< 36), but do not rely on

time-averaging of observables nor on the assumption that the coupling between system and

environment is weak, they suggest that the stationary state of the system directly follows

from the time evolution of a pure state of the composite system, even if the size of the latter

cannot be regarded as being close to the thermodynamic limit.
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1. Introduction

Statistical mechanics is one of the cornerstones of modern physics1, 2) but its foundations

are still subject of much research.3–23) Some fundamental questions, such as how the canonical

distribution emerges from the interaction between a system S and its environment E, have only

been partially resolved. Answers to this question are important since the canonical ensemble

is widely used to calculate the thermodynamic quantities of a system at a given temperature.

As well for classical as quantum systems it is well-known that if the interaction between

a system S and its much larger environment E having a large number of degrees of freedom

and a dense distribution of energy levels, is weak, the system S is described by a canonical

ensemble when the composite system S+E is described by the microcanonical ensemble with

a given total energy. Usually, the derivation of the canonical distribution is discussed under

the hypothesis that each state in the microcanonical ensemble has equal probability.1, 2) In the

case of quantum systems, it has recently been shown that the microcanonical mixed state for

the composite system S +E is not a required starting point for the system S to be described

by a canonical ensemble, but that S +E being initially in a randomly picked pure state with

small energy fluctuations is sufficient.7, 10, 11, 14) The characteristic that even if the state of the

composite quantum system S + E corresponds to a single wave function only, the reduced

density matrix of S is canonical for the overwhelming majority of wave functions in the

subspace corresponding to the energy interval encompassed by the microcanonical ensemble,

is referred to as canonical typicality after Ref.10) Not explicitly mentioning canonical typicality,

this characteristic had already been used to calculate the density of states (DOS) of quantum

many-body systems.24, 25) More recently it has been shown that canonical typicality has a

classical counterpart: For typical probability distributions defined on an energy shell of the

classical composite system S+E, i.e. not necessarily microcanonical distributions, the marginal

probability distribution corresponding to the system S exhibits the canonical form.26)

In this paper we focus on the equilibration obtained from the dynamics of relatively small

closed quantum systems (containing less than 36 spin-1/2 particles) that we compose from a

small system S and a much larger but still relatively small (containing less than 32 spin-1/2

particles) environment E. We use general quantum spin-1/2 Hamiltonians to describe S and

E and we do not put any restriction on their energy spectra. We study the conditions under

which the stationary state of the system S is represented by a canonical ensemble density

matrix, although the standard conditions, such as the environment E being very large and

the coupling between S and E being weak, are not (necessarily) fulfilled. The approach we

use is to first solve the time-dependent Schrödinger equation (TDSE) of the composite system

S +E of spin-1/2 particles numerically and then analyze the behavior of the reduced density

matrix of the system S, obtained by tracing out the environment E, which was initially

prepared in a randomly picked “typical” pure state with a given temperature.
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Earlier work adopting this approach showed that a nanoscale environment prepared in

a uniform random superposition of all states (corresponding to an environment at infinite

temperature) can drive the system to the state with a canonical distribution27) and elucidated

the effect of frustration and connectivity on decoherence and relaxation processes.28–30) In this

paper, we extend the approach to study the decoherence and relaxation properties of nanoscale

magnets embedded in a nanoscale magnetic environment at finite temperature.

Our simulation results show that, independent of the strength of the interaction between S

and E and the initial temperature of E, S evolves to a stationary state of which the properties

strongly depend on the initial temperature of E. This equilibration is remarkable given the

relative small size of E, since usually in equilibration studies the hypothesis of having a

large environment is essential.14, 20) We show that for sufficiently large initial temperatures of

E, the stationary state of S is represented by a canonical ensemble density matrix at some

finite effective temperature. For decreasing temperatures, the reduced density matrix of S

deviates from the canonical density matrix. The deviation increases for decreasing values of

the interaction strength between S and E.

The paper is organized as follows. In Section 2, we discuss the model, define the quantities

of interest and summarize the essentials of the simulation method used. The simulation results

are presented in Section 3. A discussion and conclusion is given in Section 4.

2. Generalities

In general, the state of a closed quantum system is described by a density matrix.31, 32)

The canonical ensemble is characterized by a density matrix that is diagonal with respect

to the eigenstates of the Hamiltonian H, the diagonal elements taking the form exp(−βEi)

where β = 1/kBT is proportional to the inverse temperature (kB is Boltzmann’s constant and

is taken to be one in this paper) and the Ei’s denote the eigenenergies of H.1, 2)

The time evolution of a closed quantum system is governed by the TDSE.31, 32) If the

initial density matrix of an isolated quantum system is non-diagonal then, according to the

time evolution dictated by the TDSE, it remains non-diagonal and the quantum system never

approaches the thermal equilibrium state with the canonical distribution. Therefore, in order

to equilibrate the system S, it is necessary to have the system S interact with an environment

E, also called a heat bath. Thus, the Hamiltonian of the composite system S + E takes the

form H = HS +HE +HSE, where HS and HE are the system and environment Hamiltonian,

respectively and HSE describes the interaction between the system and environment.
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2.1 Model

To study the evolution to the canonical ensemble state in detail, we consider a general

quantum spin-1/2 model defined by the Hamiltonian H = HS +HE +HSE where

HS = −
nS−1∑

i=1

nS∑

j=i+1

∑

α=x.y,z

Jα
i,jS

α
i S

α
j , (1)

HE = −
nE−1∑

i=1

nE∑

j=i+1

∑

α=x,y,z

Ωα
i,jI

α
i I

α
j , (2)

HSE = −
nS∑

i=1

nE∑

j=1

∑

α=x,y,z

∆α
i,jS

α
i I

α
j . (3)

Here S and I denote the spin-1/2 operators of the system and environment, respectively

(we use units such that ~ and kB are one). The total number of spins in the system and

environment are denoted by nS and nE , respectively.

The spins of the system are arranged in a ring and interact via a isotropic Heisenberg

interaction Jα
i,j = J . The spins of the environment are all connected with each other and with

all the spins of the system. Previous work27–30) has shown that it is expedient, though not

essential to take for the spin-spin interactions ∆α
i,j, and Ωα

i,j uniform random numbers in the

range [− |∆| , |∆|], and [− |Ω| , |Ω|], respectively. Relative to other choices of these interactions,

the randomness of the interaction parameters ∆ and Ω and the high connectivity of the spins

generally reduce the decoherence and relaxation time to reach the stationary state of the

reduced density matrix. Note that we do not put any restriction on the energy spectra of the

Hamiltonians describing S and E.

2.2 Initial state

We prepare the state of the system S and of the environment E separately at t < 0 and

then bring them in contact with each other at t = 0. Specifically, we construct the initial pure

state of the composite system S + E, ρ(0) = |Ψ(0)〉〈Ψ(0)| where

|Ψ(0)〉 = |S〉 ⊗ e−βHE/2|ΦE〉
〈ΦE |e−βHE |ΦE〉1/2

, (4)

with |ΦE〉 =
∑

i ci|φi〉 denoting the state of the environment with the coefficients ci generated

randomly according to the prescription given in Ref.25) and {|φi〉} being an orthonormal set

of basis states which, in our simulation software, are the usual direct products of the spin up

and down states. Numerically, the imaginary-time propagation by e−βHE/2 is performed by

means of a Chebyshev polynomial algorithm.33–36) To prepare the environment in its ground

state (β = ∞), we use the standard Lanczos method.37)

It follows directly from Ref.25) that for any observable XE(t = 0) of the environment

〈Ψ(0)|XE(t = 0)|Ψ(0)〉 ≈ TrρEXE(t = 0), (5)
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the approximation improving as the inverse square root of the dimension of the Hilbert space

of the environment (see Appendix). Therefore, we may consider the state |Ψ(0)〉 as “typical”
in the sense that if we measure observables of the environment, their expectation values

agree with those obtained from the canonical distribution of the environment at the inverse

temperature β. Note that in practice, it is often sufficient to consider only one random state

|ΦE〉 (see Appendix).

The assumption of random phases in the initial state has been instrumental in the deriva-

tion of the quantum master equation,38, 39) a key equation in the theory of non-equilibrium

statistical mechanics. Within the quantum master equation approach, the approach to equi-

lbrium of a quantum system is well understood.1, 39) Although there may be an apparent

similarity with the use of the random initial states that we use in the present work, there

is no relation between the random initial states and the random phase assumption in the

derivation of the master equation. In the present work, random initial states are a convenient

computational device only: As we show in the Appendix, their use effectively eliminates the

need to compute traces of operators and allows us to work with pure states only. Below, we

also demonstrate explicitly that the use of random initial states is not essential for the main

conclusions of this paper by starting the simulation from the initial state with all spins up.

2.3 Time evolution

A pure state of the composite system S+E evolves in time according to (in units of ~ = 1)

|Ψ(t)〉 = e−itH |Ψ(0)〉 =
Ds∑

i=1

DE∑

p=1

c(i, p, t)|i, p〉, (6)

where the states {|i, p〉} are just another notation of the complete set of orthonormal states

in the spin-up – spin-down basis and DS = 2ns and DE = 2nE denote the dimension of the

Hilbert space of the system and environment, respectively.

Numerically, the real-time propagation by e−itH is carried out by means of the Chebyshev

polynomial algorithm,33–36) thereby solving the TDSE for the composite system starting from

the initial state |Ψ(0)〉. This algorithm yields results that are very accurate (close to machine

precision), independent of the time step used.40)

2.4 Reduced density matrix

The state of the quantum system S is described by the reduced density matrix

ρ̃(t) ≡ TrEρ (t) , (7)

where ρ (t) is the density matrix of the composite system at time t and TrE denotes the trace

over the degrees of freedom of the environment. The system S is in the canonical state if the
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reduced density matrix takes the form

ρ̂(β) ≡ e−βHS

/
TrSe

−βHS , (8)

where TrS denotes the trace over the degrees of freedom of the system S. In terms of the

expansion coefficients c(i, p, t), the matrix element (i, j) of the reduced density matrix reads

ρ̃i,j(t) = TrE

DE∑

p=1

DE∑

q=1

c∗(i, q, t)c(j, p, t)|j, p〉〈i, q|

=

DE∑

p=1

c∗(i, p, t)c(j, p, t). (9)

2.5 Data analysis

We analyze the time-dependent data of the reduced density matrix in various ways. First,

at each time step (in units of τ = π/10), we diagonalize the (non-negative definite) reduced

density matrix itself and study the time-dependence of its eigenvalues. We define the variance

of the set of eigenvalues at t and tf by

var(t) ≡

√√√√
DS∑

i=1

(λi(t)− λi(tf ))2, (10)

where λi(t) is the ith eigenvalue of ρ̃(t). Usually, tf is taken to be the final time of the

simulation. From the eigenvalues, we also compute the entropy of the system

S(t) ≡ −Trρ̃(t) ln ρ̃(t) = −
DS∑

i=1

λi(t) ln λi(t). (11)

We characterize the degree of decoherence of the system by

σ(t) =

√√√√
DS−1∑

i=1

DS∑

j=i+1

|ρ̃ij(t)|2, (12)

where ρ̃ij(t) is the matrix element (i, j) of the reduced density matrix ρ̃ in the representation

that diagonalizes HS. Clearly, σ(t) is a global measure for the size of the off-diagonal terms of

the reduced density matrix in the representation that diagonalizes HS. If σ(t) = 0 the system

is in a state of full decoherence (relative to the representation that diagonalizes HS).

Assuming that the system S, evolving in time according to the TDSE, relaxes to the

canonical state we expect that ρ̃ (t) ≈ ρ̂(b) for t > t0 where t0 is some finite time and b

denotes the effective inverse temperature of S. The difference between the state ρ̃ (t) and the

canonical distribution ρ̂(b(t)) is conveniently characterized by

δ(t) =

√√√√
DS∑

i=1

(
ρ̃ii(t)− e−b(t)Ei

/ DS∑

i=1

e−b(t)Ei

)2

, (13)
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Fig. 1. Simulation results for var(t/τ) and S(t/τ) (see Eqs. (10) and (11)) and σ(t/τ) and δ(t/τ) (see

Eqs. (12) and (13)) for different values of the initial temperature of the environment, as obtained

by solving the TDSE for a system consisting of a ring of four spins coupled to an environment of

eighteen spins. The spins of the environment are all connected with each other and with the four

spins of the system. The initial state of the system S is given by | ↑↓↑↓〉 and the initial state of the

environment E is given by a random pure state. Model parameters: J = −0.5, ∆ = 0.2, Ω = 0.5,

tf/τ = 190; Sample interval τ = π/10. Solid line: β = 1; Dotted line: β = 3; Dashed line: β = 6;

Dash-dotted line: β = ∞.

with

b(t) =

∑
i<j,Ei 6=Ej

[ln ρ̃ii(t)− ln ρ̃jj(t)]/(Ej − Ei)∑
i<j,Ei 6=Ej

1
. (14)

If the system relaxes to its canonical distribution both δ(t) and σ(t) are expected to vanish,

b(t) converging to the effective inverse temperature b.

For any function f(.) of the system Hamiltonian HS, we define the averages

〈f(HS)〉ρ̃(t) ≡ Trρ̃(t)f(HS), (15)

and

〈f(HS)〉b ≡ Tre−bHSf(HS)
/
Tre−bHS . (16)

Then, application of the Schwarz inequality yields

∣∣〈f(HS)〉ρ̃(t) − 〈f(HS)〉b
∣∣2 ≤ δ2(t)Trf2(HS), (17)
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Table I. Data for σ, δ, Sρ̃ and Eρ̃, taken at the last time step of the simulation run. Sb and Eb are

calculated according to Eq. (16).

β b σ δ Sb Sρ̃ Eb Eρ̃

J = −0.5, ∆ = 0.2, Ω = 0.5

1 0.807 0.003 0.003 2.704 2.706 -0.165 -0.162

3 1.851 0.011 0.015 2.392 2.412 -0.400 -0.388

6 2.526 0.019 0.027 2.080 2.114 -0.543 -0.526

∞ 3.044 0.031 0.030 1.816 1.852 -0.638 -0.621

showing that the deviations of the energy and entropy of the system from their values in the

canonical ensemble vanish linearly or faster with δ(t).

3. Results

Most of our simulations have been carried out for systems consisting of four spins coupled

to an environment of eighteen spins. We have verified that our conclusions do not depend on

details such as the connectivity of the spins in the environment or the size of the composite

system by simulating triangular lattices, regular square lattices and so on with up to 35 spins

(data not shown).

In Fig. 1, we present the simulation results for var(t/τ), S(t/τ) (see Eqs. (10) and (11)),

σ(t/τ) and δ(t/τ) (see Eqs. (12) and (13)) for the case that there is a fairly strong coupling

between the system S and the environment E (|∆/J | = 0.4) and for different values of

the initial temperature of the environment. From Fig. 1, it is clear that, independent of the

initial temperature of the environment, all the eigenvalues λi(t) of the reduced density matrix

converge to a stationary value. This implies that also the entropy of the system S approaches a

stationary value, suggesting that the system S relaxes to an equilibrium state. We emphasize

that the data presented in this paper are obtained without any averaging procedure other

than the one intrinsic to quantum theory.

From Fig. 1, it follows from the data for σ(t) that if β = 1, the reduced density matrix

of the system S converges to a diagonal matrix in the representation that diagonalizes HS, in

other words, the system S has lost virtually all coherence (σ → 0) and as δ → 0 with time,

the system S relaxes to the canonical system. The same holds for β = 0, see Ref.27) With

increasing β, the difference between the reduced density matrix and the canonical distribution

(for the system defined by HS) increases slightly, as indicated by the fact that the values of

σ and δ increase with β.

It is instructive to analyze more quantitatively, the data taken at the end of these par-

ticular simulation runs. In Table I we collect the results for the various quantities of interest.

As β increases, σ increases too, indicating that the deviation from a diagonal matrix (with
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Fig. 2. Simulation results for var(t/τ), S(t/τ), σ(t/τ), and δ(t/τ) for different values of the energy

scale of the couplings between the spins in the environment. The data are obtained by solving

the TDSE for a system consisting of a ring of four spins coupled to an environment of eighteen

spins. The spins of the environment are all connected with each other and with the four spins

of the system. The initial state of the system S is given by | ↑↓↑↓〉 and the initial state of the

environment E is given by a random pure state. Model parameters: J = −0.5, ∆ = 0.2, β = 6,

tf/τ = 190; Sample interval τ = π/10. Solid line: Ω = 0.125; Dotted line: Ω = 0.25; Long-dashed

line: Ω = 0.5; Dash-dotted line: Ω = 0.75. Short-dashed line: Ω = 1.

respect to the basis that diagonalizes HS) increases, merely reflecting the fact that the de-

coherence processes become less effective as the temperature decreases. Nevertheless, even at

zero temperature, the difference between the reduced density matrix and the canonical density

matrix is quite small, of the order af a few percent, and so are the differences for the entropy

and energy. Thus, it seems that even for fairly strong coupling between the system and the

environment (|∆/J | = 0.4), the nanoscale environment drives the even smaller system to a

state that, within a few percent, is described by the canonical state of the system, albeit with

an effective temperature that does not agree with that of the environment (compare β and b

in Table I).

3.1 Energy scale of the environment

To investigate the effect of the parameter Ω, the energy scale of the states of the environ-

ment, we performed simulations for Ω = 0.125, 0.25, 0.5, 0.75, 1. In Fig. 2 we present data for
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Fig. 3. Same as Fig. 1 except that the system-environment interaction strength ∆ = 0.02. Model

parameters: J = −0.5, ∆ = 0.02, Ω = 0.5, tf/τ = 11000; Sample interval τ = π/10. Solid line:

β = 1; Dashed line: β = 6.

β = 6. From earlier work28–30) for β = 0 and β = ∞ we know that the more the range and

the width of the energy spectrum of the environment and the system match each other, the

better the system decoheres. Taking this into account we can easily understand the behavior

of σ: When the value of Ω decreases, the value of σ decreases.

Except for Ω < |J | (recall J = −0.5 in this paper), both σ(t) and δ(t) relax to fairy small

values, the difference between the reduced density matrix at t/τ = 200 with the canonical

states being of the order of a few percent (data not shown). For Ω > |J |, the qualitative

behavior is different: Although S(t), σ(t) and δ(t) to relax to their stationary values, the dif-

ference between the reduced density matrix and the canonical state is significant, as indicated

by δ(t/τ = 200) ≈ 0.1. Qualitatively, this can be understood as follows. Keeping the number

of spins of the environment and the range of S−E interactions ∆ fixed, increasing Ω increases

the spectral range of the environment, that is the spacing between the energy levels of the

environment increases. This effectively reduces the mixing of the eigenstates of the system and

the environment by the S −E interactions, which in turn leads to a reduction of the effect of

decoherence by the environment and the probabilities for the system to exchange energy with

the environment.

10/21



J. Phys. Soc. Jpn. Full Paper

Table II. Same as Table I except that the coupling ∆ = 0.02 instead of ∆ = 0.2.

β b σ δ Sb Sρ̃ Eb Eρ̃

J = −0.5, ∆ = 0.02, Ω = 0.5

1 0.874 0.003 0.005 2.692 2.696 -0.180 -0.175

6 3.349 0.047 0.207 1.659 2.125 -0.687 -0.495

3.2 Weak interaction between system and environment

For the simulation data presented earlier, the system-environment interaction strength ∆

was chosen such that |∆/J | = |∆/Ω| = O(1) which is far away from the weak coupling regime.

If we reduce ∆, we may expect that the time scale of decoherence and relaxation processes

increases with ∆. To keep the amount of computer time required to reach the stationary state

within reasonable limits, we have chosen to reduce ∆ by a factor ten, that is we take ∆ = 0.02

and consider this to be the “weak coupling” case. The simulation results for this parameter

choice are presented in Fig. 3. Note that compared to Fig. 1 and Fig. 2, the time scale to

reach the stationary state has increased by a factor of about one hundred. For β = 1, there is

no qualitative change compared to the case of ∆ = 0.2: The state of the system converges to

the canonical state.

However, for β = 6 the relatively large values of σ(t) and δ(t) signal that the decoher-

ence process is not very effective and that the deviation from the canonical distribution is

significant, as is shown quantitatively in Table II. Nevertheless, the eigenvalues of the reduced

density matrix relax to their stationary values and so does the system entropy. Qualitatively,

this can be understood by the same argument as the one used at the end of Section 3.1.

Keeping the number of spins of the environment and the spectral range of the environment

Ω fixed, decreasing the range of S − E interactions ∆ effectively reduces the mixing of the

eigenstates of the system and the environment, which in turn leads to a reduction of the effect

of decoherence by the environment and the probabilities for the system to exchange energy

with the environment.

3.3 Properties of the stationary state

The observation that the eigenvalues of the reduced density matrix, and therefore also

the entropy of the system, approach stationary values for sufficiently long times seems to be

generic, independent of the values of the parameters ∆/|J | ≤ 1, Ω/|J | ≤ 1, β and the initial

state of the system S or the environment E, as illustrated in Fig. 4. As a matter of fact, in

our large collection of simulation results (most results not shown) there is no evidence of the

contrary. However, the stationary state itself depends on all the above mentioned parameters.

The time scale on which the equilibration occurs strongly depends on the system-environment
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Fig. 4. The entropy of the system as a function of t/τ for the same system as in Fig. 1 except

that the initial state of the system and environment is the state with all spins up (solid line) or

|Ψ(0)〉 = e−βHE/2|Φ〉/〈Φ|e−βHE |Φ〉1/2 (dashed line) where |Φ〉 is a uniform random superposition

of all states of the whole system and β = 6.
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Fig. 5. Left:The difference dis(t/τ,∆t/τ) = Tr|ρ̃(t) − ρ̃(t+∆t)|/2 between the reduced density ma-

trices ρ̃(t) and ρ̃(t + ∆)t as a function of t/τ for a fixed value ∆t/τ = 1000, extracted from the

simulations that yield the data presented in Fig. 3. Solid line: β = 1; Dashed line: β = 6. Right:

The energy of the system as a function of t/τ for a time interval chosen in which there is exchange

of energy between the system and the environment, showing that the dynamical evolution of the

system is non-Markovian.

interaction strength ∆. As expected, reducing ∆ increases the time scale of decoherence and

relaxation processes. Although our simulation results are obtained for a very small quantum

system connected to a relatively small environment, they are in good agreement with findings

for interacting large quantum systems that seem to evolve in such a way that any small

subsystem equilibrates, under the condition that the Hamiltonian has no degenerate energy

gaps and that the state of the composite system contains sufficiently many eigenstates.20)

However, our simulation results also show that the eigenstates of the reduced density

matrix generally do not evolve to a stationary state. In Fig. 5(left) we show representative
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results of a measure for the distance, the trace distance dis(t/τ,∆t/τ) = Tr|ρ̃(t)− ρ̃(t+∆t|/2,
between the two reduced density matrices ρ̃(t) and ρ̃(t+∆t) as a function of t for a fixed value

of ∆t, as obtained from the simulations that yield the data presented in Fig. 3. For β = 1,

the case in which the difference between the reduced density matrix and the canonical state

is small, dis(t/τ,∆t/τ) becomes very small for t/τ > 8000, suggesting that the eigenvectors of

the reduced density matrix also converge to their stationary values (in concert with the fact

that in this case, the reduced density matrix is very close to the canonical state). In contrast,

for β = 6 and t/τ large, dis(t/τ,∆t/τ) levels off at a value which is not small. In other words,

although the eigenvalues of the reduced density matrix relax to their stationary values, the

eigenvectors of the reduced density matrix exhibit nontrivial quantum dynamics, even though

the entropy of the system has reached a stationary, nonzero, value.

In the case of a single spin and two-spins interacting with an environment, the dynamics

of eigenvectors of the reduced density matrix in the stationary-state was observed earlier

through quantum oscillations of spin expectation values.41, 42) In Fig. 5(right), we present

results for the energy of the subsystem, as obtained from the simulation that produced the

data of Fig. 3(right). It is clear that the system energy mostly decreases, with energy going

from the system to the environment. However, for some time intervals (one being shown),

the system energy increase, indicating that the environment transfers energy to the system,

a characteristic feature of non-Markovian processes.43, 44)

4. Conclusion

We have presented a simulation study of a small magnetic system coupled to a nanoscale

magnetic environment. The quantum dynamical evolution of the composite system was ob-

tained from the direct numerical solution of the TDSE. Our analysis, albeit numerical, does

not involve any approximation, does not rely on time-averaging of observables nor does it

assume that the coupling between system and environment is weak.

The most striking result of our analysis is that all the eigenvalues of the reduced density

matrix relax to stationary values, implying that the entropy of the system relaxes to a station-

ary value. In this sense, the nanoscale environment drives the system to a thermodynamically

stationary state, a feature which is usually attributed to macroscopic environments only.

Furthermore, we have shown that under suitable but fairly general conditions, the reduced

density matrix in the stationary state is close to the canonical state of the system, albeit not

with the same temperature as the one of the environment. The difference between these two

states generally increases as the temperature of the environment decreases.

For β ≈ 0, the initial state of the environment has all the features of a “canonical typical-

ity” state and qualitatively, our results are in concert with the theory of canonical typicality:

The reduced density matrix relaxes to the canonical state.10, 11) As β increases the concept

of “canonical typicality” no longer applies in the strict sense, as explained in the Appendix.
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Yet, qualitatively, we may interpret our findings in terms of the effective dimension deffE of

the environment:11) If β ≈ 0, deffE = O(DE), which is a large number for the systems that we

have used in our simulations. As β increases, the number of states of the environment effec-

tively available for decoherence and relaxation decreases (see also the results of the density of

states in Fig. A·1). As this implies that deffE decreases, it is to be expected that the difference

between the reduced density matrix and the canonical state increases.11)
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Appendix

The use of random initial states has played a central role in developing “fast” (i.e. O(D))

algorithms to compute the density of states and other similar quantities. An early application

of such an algorithm to electron motion in disordered alloy models was given by Alben et

al.45) It was shown that the eigenvalue spectrum of a particle moving in continuum space can

be computed in the same manner.46) Fast algorithms of this kind proved useful to study vari-

ous aspects of localization of waves,47–49) other one-particle problems35, 50, 51) and many-body

problems.24, 25) The rigorous proof that this approach has remarkable statistical properties,

namely that for large D the statistical error vanishes as 1/
√
D, was given in Ref.25)

Following Ref.,25) we consider real random variables x1, y1, . . ., xD, yD, taking values in

the interval [−∞,+∞] and distributed according to the probability density

f(x1, y1, . . . , xD, yD) =
Γ(D)

2πD
δ(x21 + . . .+ y2D − 1), (A·1)

where Γ(D) is the Gamma function. Writing cn = xn+ iyn for n = 1, . . . ,D, we construct the

random state

|Φ〉 =
D∑

n=1

cn|ϕn〉, (A·2)

where {|ϕn〉} is a complete set of orthonormal basis states of the D-dimensional Hilbert space,

which for the derivation that follows need not be specified further.

From Eq. (A·1), it directly follows that

〈ck〉 =
∫ +∞

−∞
ckf(x1, . . . , yD)dx1 . . . dyD = 0, (A·3)

〈c∗kck′〉 =
∫ +∞

−∞
c∗kck′f(x1, . . . , yD)dx1 . . . dyD = δk,k′D

−1, (A·4)

and that 〈ckck′〉 = 0. It also follows from Eq. (A·1) that |Φ〉 is a unit random vector with a
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uniform probability density on the hypersphere of dimension D − 1.

Next we consider the projected state

|Φ(β/2)〉 ≡ e−βH/2|Φ〉 =
D∑

j=1

dje
−βEj/2|Ej〉, (A·5)

where Ej (|Ej〉) denotes the j-th eigenvalue (eigenstate) of the Hamiltonian H and

dj =

D∑

j=1

Rjncn, (A·6)

where Rjn = 〈Ej |ϕn〉 is the unitary transformation matrix. The probability density of the

random variables dj reads

f(d1, . . . , dD) =
Γ(D)

2πD
δ(|d1|2 + · · ·+ |dD|2 − 1). (A·7)

Hence the dj are distributed uniformly over the D-dimensional hypersphere. Furthermore, we

have 〈dj〉 = 0 and
〈
d∗jdj′

〉
= D−1δjj′.

Normalizing the state Eq. (A·5) yields

|Φ(β/2)〉 =
D∑

j=1

dje
−βEj/2

√∑D
j=1 |dj |2e−βEj

|Ej〉 ≡
D∑

j=1

aj|Ej〉, (A·8)

where

aj =
djp

1/2
j√∑D

j=1 |dj |2pj
, (A·9)

and

pj =
e−βEj

∑D
j=1 e

−βEj

, (A·10)

is the Boltzmann weight for the state j. In general, the probability density of the coefficients

aj is not uniform.

Next we want to show that for sufficiently large D, we may replace
∑D

j=1 |dj |2pj by its

average over the distribution Eq. (A·7), that is by D−1. To prove this, we compute the average

of

X2 =


D−1 −

D∑

j=1

|dj |2pj




2

, (A·11)

with respect to the distribution Eq. (A·7). We have

〈
X2
〉

= D−2 − 2D−1
D∑

j=1

pj
〈
|dj |2

〉
+

D∑

j=1

D∑

j′=1

pjpj′
〈
|dj |2|dj′ |2

〉

=

D∑

j=1

D∑

j′=1

pjpj′
〈
|dj |2|dj′ |2

〉
−D−2. (A·12)
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Using Eq. (2), (A12) and (A23) in Ref.,25) we find

〈
|dj |2|dj′ |2

〉
=

2δjj′

D(D + 1)
+

1− δjj′

D(D + 1)
=

1 + δjj′

D(D + 1)
, (A·13)

yielding

〈
X2
〉

=
1

D(D + 1)

D∑

j=1

p2j −
1

D2(D + 1)

≤ D − 1

D2(D + 1)
<

1

D2
. (A·14)

Invoking Markov’s inequality,52) it follows that

P(X2 ≥ D−1) < D−1. (A·15)

In words, the probability that the error X2 is larger than D−1 is smaller than D−1. For the

case at hand D increases exponentially with the number of spins. For instance for a system

of 18 spins and a random state with probability density Eq. (A·1)

P(X2 ≥ 0.38 × 10−5) < 0.38 × 10−5, (A·16)

suggesting that for all practical purposes, it is safe to assume that X ≈ 0 and that with

probability very close to one, the projected state Eq. (A·8) can be written as

|Φ(β/2)〉 = D1/2
D∑

j=1

djp
1/2
j |Ej〉. (A·17)

Putting bj = djp
1/2
j , the probability density of random variables bj is

f(b1, . . . , bD) = δ(
|b1|2
p1

+ · · · + |bD|2
pD

− 1)
Γ(D)

2πD




D∏

j=1

pj




−1/2

. (A·18)

From these calculations, the following conclusions can be drawn about the projected state

Eq. (A·17):

(1) From Eq. (A·17) and the properties of random variables {dj}, it follows directly that on

average

〈Φ(β/2)|Y |Φ(β/2)〉 = Tre−βH Y

Tre−βH
, (A·19)

assuming that D is sufficiently large.25) Note that if 〈Φ|E1〉 6= 0 (|E1〉 denoting the non-

degenerate eigenstate) we have limβ→∞〈Φ(β/2)|Y |Φ(β/2)〉 = 〈E1|Y |E1〉, independent of
D.

(2) According to Eq. (A·18), in general the projected state Eq. (A·17) is randomly distributed

on a hyper-ellipsoid, not on a hyper-sphere, in the Hilbert space. This suggests that it may

be of interest to extend the concept of canonical typicality from states on an hyper-sphere

to states on an hyper-ellipsoid by introducing a non-zero inverse temperature beta.

For completeness, we briefly discuss simulation results for the case that we prepare the

16/21



J. Phys. Soc. Jpn. Full Paper

Table A·1. Same as Table I except that the composite system S + E is prepared in a random state

that is typical for the composite system being in the canonical state at inverse temperature β.

β b σ δ Sb Sβ Sρ̃ Eb Eβ Eρ̃

J = −0.5, ∆ = 0.2, Ω = 0.5

1 0.976 0.004 0.002 2.671 2.666 2.671 -0.202 -0.208 -0.202

3 2.602 0.025 0.016 2.042 1.838 2.003 -0.557 -0.630 -0.569

6 3.744 0.045 0.077 1.462 0.633 1.210 -0.742 -0.920 -0.799

∞ 4.575 0.029 0.132 1.092 0.000 0.673 -0.832 -1.000 -0.908

Table A·2. Same as Table A·1 except that the coupling ∆ = 0.02 instead of ∆ = 0.2.

β b σ δ Sb Sβ Sρ̃ Eb Eβ Eρ̃

J = −0.5, ∆ = 0.02, Ω = 0.5

1 0.998 0.003 0.001 2.666 2.666 2.666 -0.207 -0.208 -0.207

6 5.981 0.032 0.020 0.637 0.633 0.573 -0.920 -0.920 -0.928
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Fig. A·1. Simulation results for the density of states (DOS) of the environment, conditional on the

initial state of the environment, for the model parameters of Fig. 3 corresponding to the weak-

coupling case. Solid line: β = 1; Dotted line: β = 3; Dashed line: β = 6.

composite system S + E, not just the environment E, in a pure state that is typical for the

canonical state at a given β, namely

|Ψ(0)〉 = e−βH/2|Φ〉
〈Φ|e−βH |Φ〉1/2 , (A·20)

where H is the Hamiltonian of the composite system, |Φ〉 = ∑j cj |φj〉 is a pure state of the

composite system, cj is generated randomly according to the prescription given in Ref.,25) and

{|φj〉} is an orthonormal set of basis states. According to the theoretical analysis presented
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earlier in this Appendix, averages taken with this pure state will yield the values that are

equal to those taken with respect to the canonical state with temperature T = 1/β.

Solving the TDSE with the initial state Eq. (A·20) yields results for σ(t), δ(t), var(t)

and S(t) that, up to small fluctuations, are constant in time, apparently consistent with the

statement in Ref.,10) that “ρΨ(t) ≈ ρβ even at t = 0 for typical wave functions”. This may be

taken as an indication that the state Eq. (A·20) is also “typical” in the sense of “canonical

typicality”. However, for the same reasons as those given earlier, this conclusion would be

incorrect unless β → 0.

Obviously, the nanoscale models that we study are not “thermodynamic” in the usual

sense, but the number of states is quite large (Fig. A·1 shows the DOS of ≈ 4 × 106 states)

and it is possible, in principle, to find many (but not macroscopically many) states with

energies in a narrow interval such that the DOS in this interval is almost constant. However,

this is not sufficient to apply conventional statistical mechanics arguments: What is required

is that also the number of particles (22-35 in our work) is large. Otherwise the fluctuations of

the energy (which are proportional to the inverse square root of the number of particles) are

not small and the equivalence between microcanonical and canonical ensemble is no longer

guaranteed.1, 2)

Our simulations show that the dependence of σ(t), δ(t), var(t) and S(t) on β is qualitatively

the same as in the case that we use the product state Eq. (4) as the initial state: In all cases

considered, the eigenvalues of the reduced density matrix converge to stationary values. For

comparison with Table I, in Tables A·1 and A·2 we give the data extracted from the simulations

using Eq. (A·20) as the initial state. It is clear that both Tables show the same qualitative

features as a function of β. For β = 1 and ∆ = 0.02 our results are in concert with Tasaki’s

analytical results7) for weak coupling (βλ ≪ 1 in the notation of Ref.7)).

When we prepare the composite system in a pure state that is typical for the canonical

state at a given β, the simulation data of σ(t), δ(t), var(t) and S(t) show very little time-

dependence (as discussed above). However, as suggested by the data in Tables A·1 and A·2,
the reduced density matrix is not equal to e−βHS/TrSe

−βHS but is “renormalized” by the

interaction HSE as can be seen by the perturbative treatment that follows.

Up to the second order in the interaction Hamiltonian HSE we have53)

e−β(HS+HE+HSE) = e−β(HS+HE) −
∫ β

0
dx e−(β−x)(HS+HE)HSEe

−x(HS+HE)

+

∫ β

0
dx

∫ x

0
dy e−(β−x)(HS+HE)HSEe

−(x−y)(HS+HE)HSEe
−y(HS+HE)

+O(H3
SE), (A·21)
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yielding Z = ZSZE(1− z1 + z2) where ZS = TrSe
−βHS , ZE = TrEe

−βHE ,

z1 =
1

ZSZE
Tr

∫ β

0
dxe−(β−x)(HS+HE)HSEe

−x(HS+HE)

=
β

ZSZE
Tre−β(HS+HE)HSE, (A·22)

and

z2 =
1

ZSZE
Tr

∫ β

0
dx

∫ x

0
dye−(β−x)(HS+HE)HSEe

−(x−y)(HS+HE)HSEe
−y(HS+HE), (A·23)

are the first and second-order correction, respectively. Up to second order in the interaction

Hamiltonian HSE, the reduced density matrix therefore reads

ρ̂(β) =
TrEe

−β(HS+HE+HSE)

TrSTrEe−β(HS+HE+HSE)
=

TrEe
−β(HS+HE+HSE)

ZSZE(1− z1 + z2)

= ρ̂

(
1 + z1 − z2 −

1

2
z21 −

1 + z1
ZE

∫ β

0
dx TrEe

−βHEexHSHSEe
−xHS

+

∫ β

0
dx

∫ x

0
dy TrEe

xHSe−(β−x+y)HEHSEe
−(x−y)(HS+HE)HSEe

−yHS

)

+O(H3
SE), (A·24)

showing that in the thermal equilibrium state, due to the interaction, we should expect a

deviation from the canonical distribution of the system.

A direct numerical calculation of the various contributions is beyond our current capabili-

ties and we therefore leave this calculation for future research. However, comparing the energy

and entropy of the system in the canonical state with the corresponding values obtained from

the simulation of the composite system provides some idea of how much the reduced density

matrix changes as a result of the interaction HSE. From Table A·1, we conclude that for

∆ = 0.2 the differences |Sβ − Sρ̃| and |Eβ − Eρ̃| are of the order of 10% or more, except

for β = 1. Hence ∆ = 0.2 definitely does not correspond to the case of weak interaction.

From Table A·2, it is clear that ∆ = 0.02 and β = 1 correspond to weak interaction between

environment and system because Sβ ≈ Sρ̃ and Eβ ≈ Eρ̃ but for β = 6, |Sβ−Sρ̃| is of the order
of 10%, hence not small. Thus, we conclude that for both ∆ = 0.02 and ∆ = 0.2, the effect

of the interaction on the reduced density matrix is significant if β = 6, even if we prepare the

composite system in a typical canonical state.
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