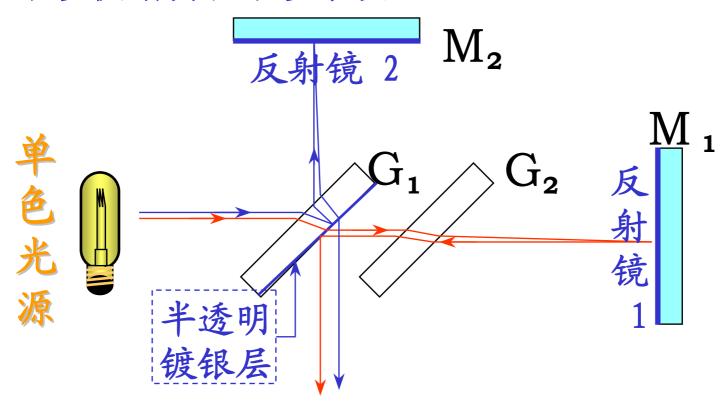
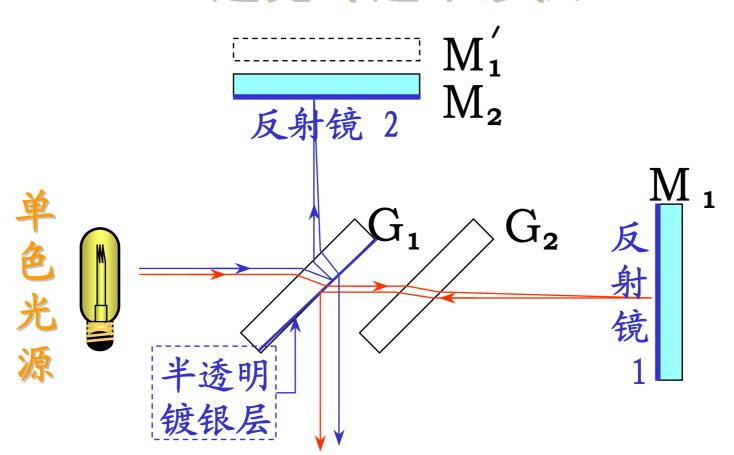

第五节 迈克尔逊干涉仪

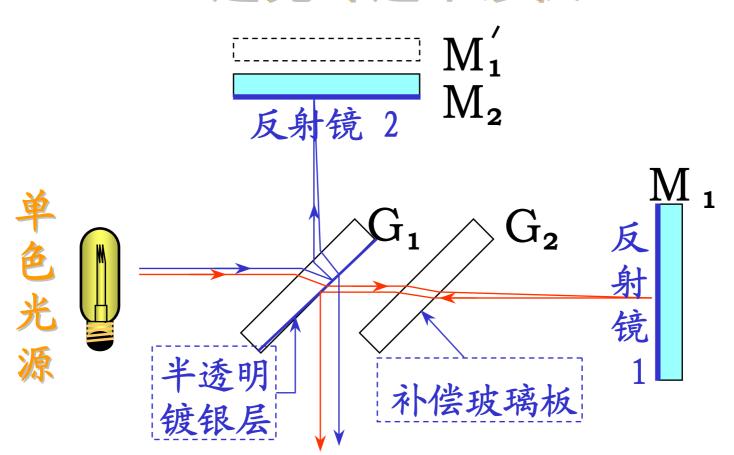
迈克耳逊在工作


迈克耳逊 (A.A.Michelson)

美籍德国人

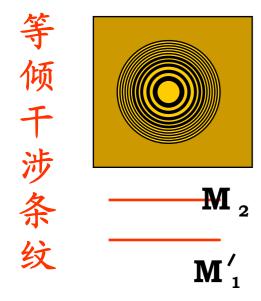

因创造精密光 学仪器,用以 进行光谱学和 度量学的研究, 并精确测出光 速, 获1907年 诺贝尔物理奖。

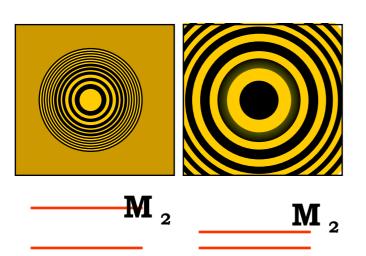
迈克耳逊干涉仪


一. 干涉仪结构和干涉条纹

迈克耳逊干涉仪

迈克耳逊干涉仪



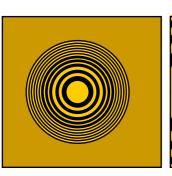

二.条纹特点

- 1. 若*M′*₁、*M*₂平行 等倾条纹
- $3. 若 M_1$ 平移 Δd 时,干涉条纹移过 N 条,则有

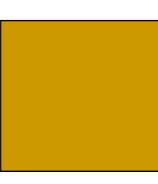
$$\Delta d = N \cdot \frac{\lambda}{2}$$

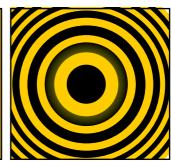
 \mathbf{M}_{1}^{\prime}

 \mathbf{M}_{1}^{\prime}

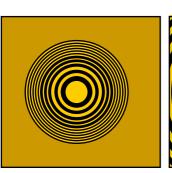

迺克耳逊干涉仪的干涉条纹

等倾干涉条纹

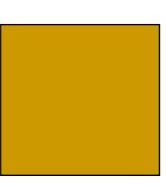


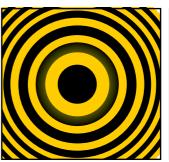

迺克耳逊干涉仪的干涉条纹

等倾干涉条纹

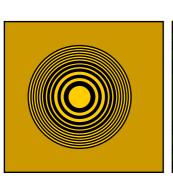


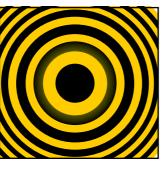


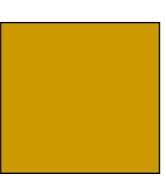




$$\frac{\mathbf{M}'_1}{\mathbf{M}_2}$$

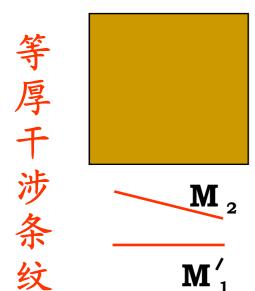


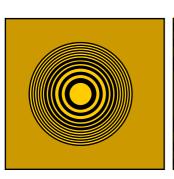


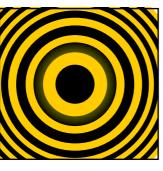


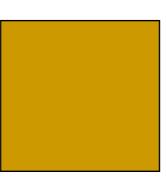
 $\mathbf{M}_{_{1}}^{\prime}$


M₂

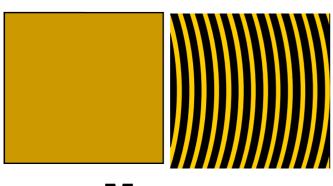


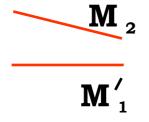

 \mathbf{M}_{1}^{\prime}

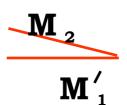

$$\mathbf{M}_{_{\mathbf{1}}}^{\prime}$$

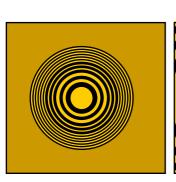

$$\frac{\mathbf{M}'_1}{\mathbf{M}_2}$$

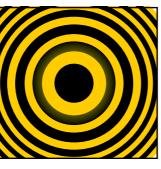
$$\frac{\mathbf{M'_1}}{\mathbf{M_2}}$$

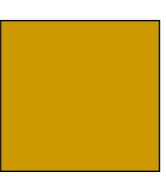







 \mathbf{M}_{1}^{\prime}

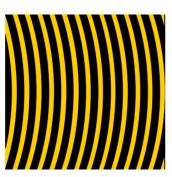

等厚干涉条纹

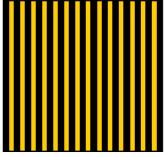




 \mathbf{M}_{2}

 \mathbf{M}_{1}^{\prime}


 \mathbf{M}_{2} \mathbf{M}_{1}^{\prime}

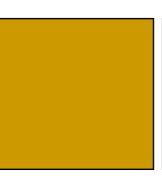

 $\mathbf{M}'_{1} \sqsubseteq \mathbf{M}_{2}$ 重合

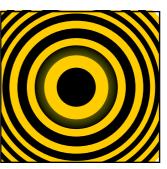
 $\mathbf{M}_{_{1}}^{\prime}$ \mathbf{M}_{2}

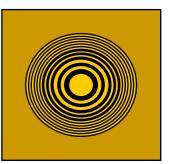
 $\mathbf{M}_{_{\mathbf{1}}}^{\prime}$ M₂

等厚干涉条纹

 \mathbf{M}_{2}

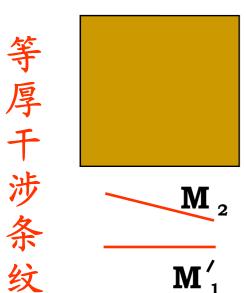

 \mathbf{M}_{1}'

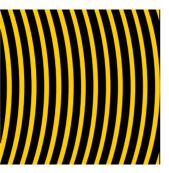

 \mathbf{M}_{2} \mathbf{M}_{1}^{\prime}

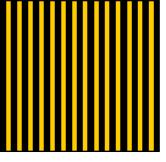

 \mathbf{M}_{2}

等倾干涉条纹 **M** ₂

 \mathbf{M}_{1}^{\prime}


 \mathbf{M}_{2}


 \mathbf{M}_{1}^{\prime}


 $\mathbf{M}'_{1} \sqsubseteq \mathbf{M}_{2}$ 重合

 \mathbf{M}_{1}^{\prime} \mathbf{M}_{2}

 $\mathbf{M}_{_{\mathbf{1}}}^{\prime}$ M₂



 \mathbf{M}_{2} \mathbf{M}_{1}'

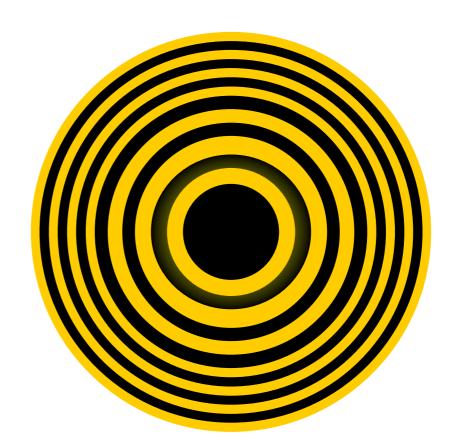
 \mathbf{M}_{2}

 \mathbf{M}_{1}^{\prime} \mathbf{M}_{2}

迺克耳逊干涉仪的干涉条纹

等倾干涉条纹 \mathbf{M}_{2} \mathbf{M}_{2} $\mathbf{M}'_{1} = \mathbf{M}_{2}$ \mathbf{M}_{1}' $\mathbf{M}_{_{\mathbf{1}}}^{\prime}$ \mathbf{M}_{1}^{\prime} \mathbf{M}_{1}^{\prime} 重合 \mathbf{M}_{2} **M**-2 等厚干涉条 \mathbf{M}_{2} M_2 \mathbf{M}_{2} \mathbf{M}_{1}^{\prime} \mathbf{M}_{1}^{\prime} 纹 \mathbf{M}_{1}' \mathbf{M}_{2} \mathbf{M}_{2}

当M₂与M₁之 之间离变大 时,圆形干涉, 所等约变形, 不涉条纹变密。



当M₂与M₁之 之间离变大 时,圆形干涉, 所等约变形, 不涉条纹变密。

 M_2

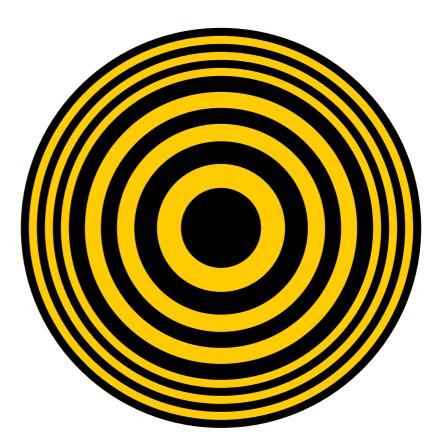
当M₂与M₁之 之间离变大 时间形形形 所见形形形, 条纹变统。

 M_2

当M₂与M₁之 之间离变大 时,圆形干涉 外方等等。

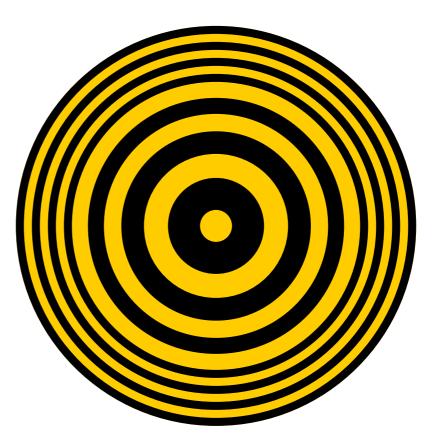
 M_2

当M₂与M₁之 之间离变大 之间离变大 时,圆形干涉 条约变济。



 M_2

当M₂与M₁之 之间离变大 之间离变大 时,圆形干涉 条约变济。



 M_2

当M₂与M₁之 之间离变大 之间离变大 时,圆形干涉 条纹变密。

 M_2

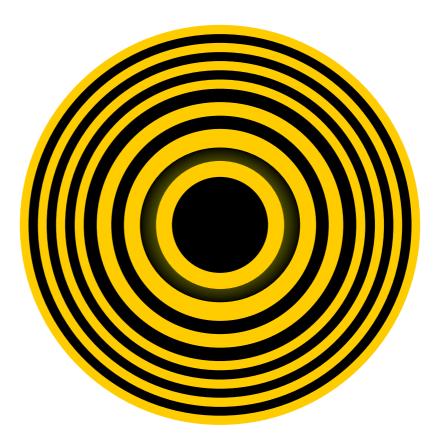
的移动

 M_2

 M_1

当M2与M1之 之间距离变大 时,圆形干涉 条纹向外扩张, 干涉条纹变密。

当M₂与M₁之 之间距离变大 时,圆形干涉 条纹变密。



当M₂与M₁之 之间路变大 时,圆形干涉 条纹变密。

当M₂与M₁之 之间离变大 之间离变大 时,圆形干涉 条纹变形, M_2

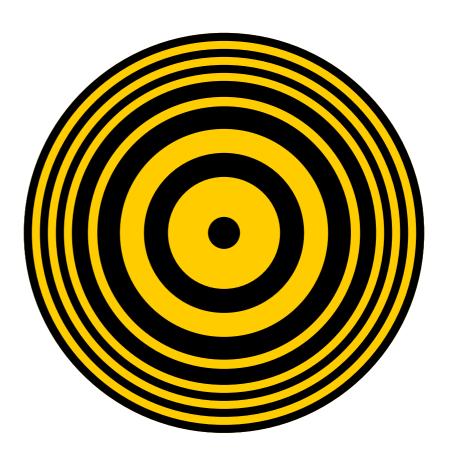
M_2

干涉条纹 的移动

当M₂与M₁之 之间路变大 时间下涉 时,圆形干涉 条纹变密。

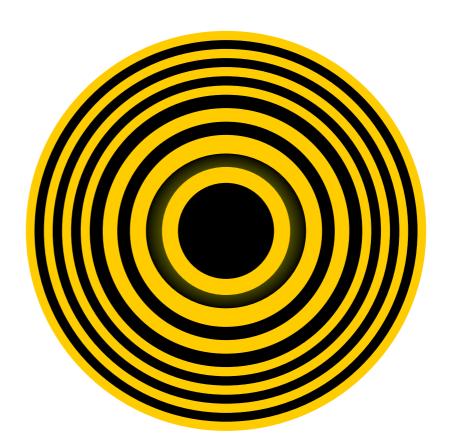
M_2

干涉条纹 的移动


 M_1

当M₂与M₁之 之间路变大 时,圆形干涉, 一个形式, 一个形式, 一个形式, 一个形式, 一个形式, 一个形式, 一个形式, 一个形式, 一个形式,

当M₂与M₁之 之间路变大 时,圆形干涉 条约变密。


当M₂与M₁之 之间路变大 时,圆形干涉 条纹变密。

当M₂与M₁之 之间路变大 时,圆形干涉 条纹变密。

当M₂与M₁之 之间离变大 时间形干涉, 员形干张, 条纹变密。

当M₂与M₁之 之间离变大 之间离变大 时,圆形干涉 条纹变密。



干涉条纹 的移动

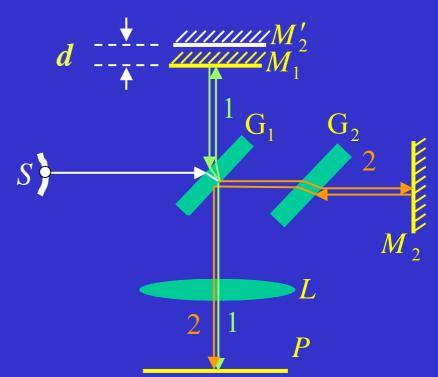
当M₂与M₁之 之间离变大 时,圆形干涉, 所等约变形, 不涉条纹变密。

干涉条纹 的移动

当M₂与M₁之 之间离变大 之间离变大 时,圆形干涉 条约变济。

三. 工作原理

光東1和2发生干涉


光程差

$$\delta = 2d$$
 (无半波损)

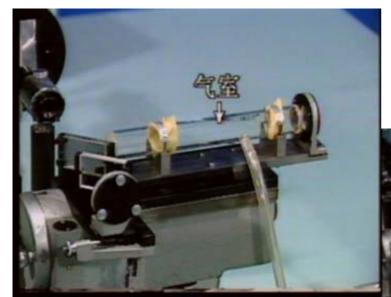
$$\delta = 2d + \frac{\lambda}{2} \qquad (有半波损)$$

$$2d = 2k \cdot \frac{\lambda}{2}$$
 $k = 1, 2, \cdots$ 加强

$$2d = (2k+1) \cdot \frac{\lambda}{2}$$
 $k = 0,1,2,\cdots$ 减弱

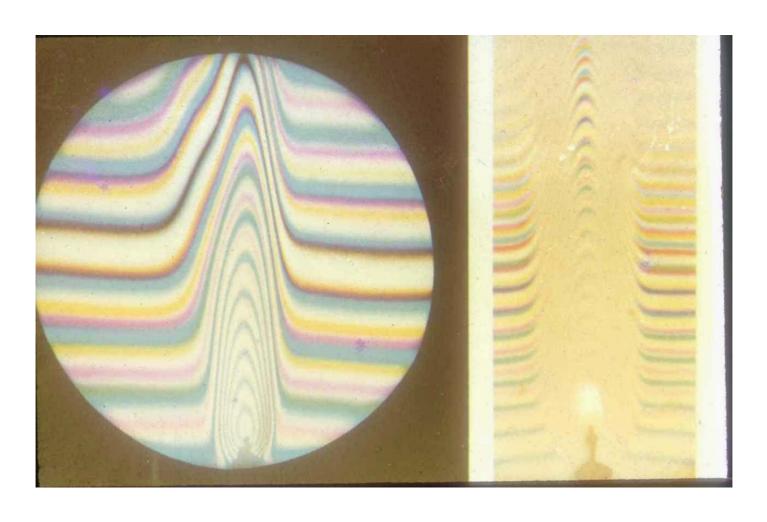
四. 时间相干性

两光束产生干涉效应的最大光程差称为相干长度,与相干长度对应的光传播时间称为相干时间 🔼


相干长度 L 和谱线宽度 $\Delta\lambda$ 之间的关系为 $L = \frac{\lambda^2}{\Delta\lambda}$

五.应用

$$\Delta d = N \cdot \frac{\lambda}{2}$$


$$\lambda = \frac{2\Delta d}{N}$$

3. 测折射率

利用干涉仪测气体折射率

用迈克耳逊干涉仪测气流

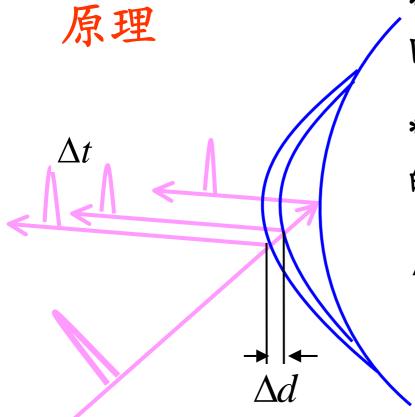
六、"古老"原理的现代应用之例

光学相干CT — 断层扫描成像新技术

(Optical Coherence Tomography简称OCT)

CT-Computed Tomography

计算机断层成象


第一代: X射线CT

γ射线CT - 工业CT

第二代: NMR CT - 核磁共振成象

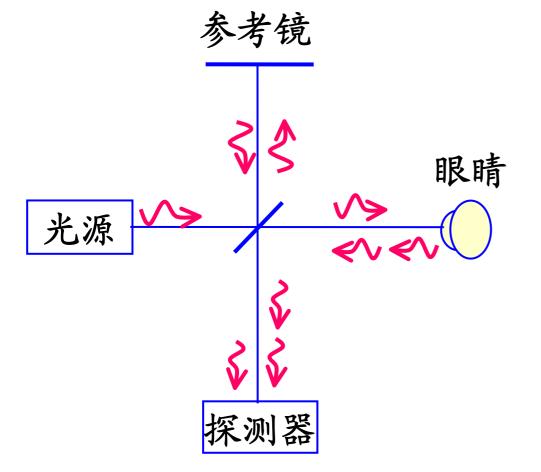
第三代: 光学相干CT-OCT

微米量级的空间分辨率

* 样品中不同位置处反射回的光脉冲延迟时间不同

* 不同的材料或结构反射的强度不同

$$\Delta t \approx \frac{2n\Delta d}{c} = \frac{2n\Delta d}{3 \times 10^8 m/s}$$

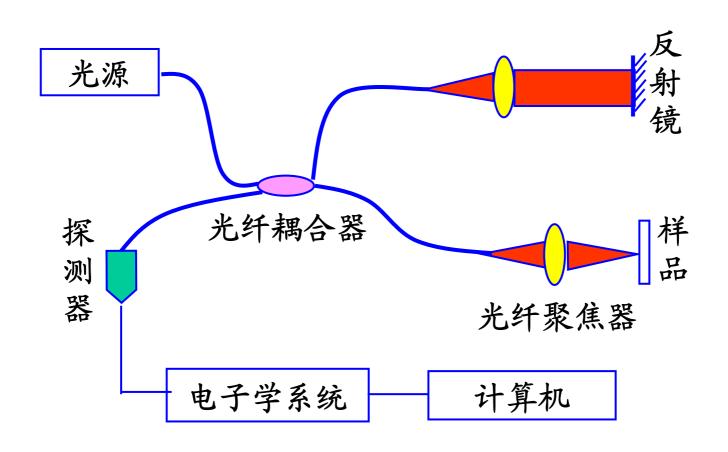

$$\approx 10^{-8} \Delta d \text{ s/m}$$

$$= 10^{-14} \Delta d \text{ s/}\mu/$$

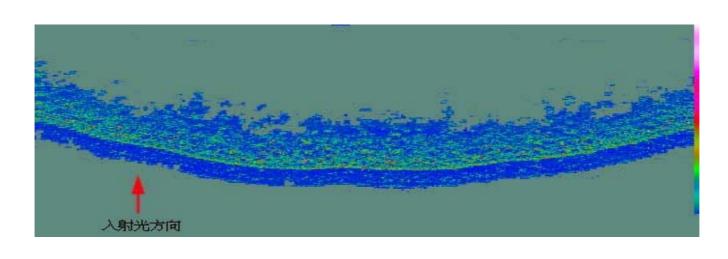
要实现微米量级的空间分辨率,即 $\Delta d \sim \mu m$ 就要求能测量 $\Delta t \leq 10^{-14}$ 秒的时间延迟激光器的脉冲宽度要很小 $\sim 10^{-15}$ 秒 - 飞秒

时间延时短至10⁻¹⁴~10⁻¹⁵s 电子设备难以直接测量

可利用光学迈克耳逊干涉仪原理

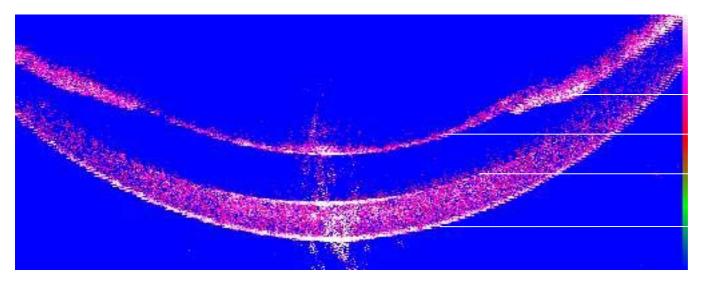

因为10-15秒 的光脉冲大约只有一个波长

要测量从眼内不同结构回来的光延迟 只须移动参考镜 使参考光分别与不同的信号光产生干涉 分别记录下相应的参考镜的空间位置 这些位置便反映了眼球内不同结构的相对空间位置


参考臂扫描可得到样品深度方 向的一维测量数据 光束在平行于样品表面的方向 进行扫描测量 可得到横向的 数据

实验装置-光纤化的迈克耳逊干涉仪

应用


生物 医学 材料科学 •

大葱表皮的 OCT 图像

实际样品大小为10mm×4mm, 图中横向分辨率约为20μm 纵向分辨率约为25μm

我国第一台OCT的第一张图 清华原子分子国家重点实验室

睫状体 晶状体上皮 角膜后表面 角膜前表面

兔子眼球前部的OCT图像