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WARMTH AND MOBILITY OF RANDOM GRAPHS

SUKHADA FADNAVIS AND MATTHEW KAHLE

Abstract. Brightwell and Winkler introduced the graph parameters warmth
and mobility in the context of combinatorial statistical physics. They related
both parameters to lower bounds on chromatic number. Here we study these
parameters for random graphs.

Although warmth is not a monotone graph property we show it is nev-
ertheless “statistically monotone,”, and that for Erdős-Rényi random graphs
G(n, p) with p = O(n−α), α > 0, the warmth is concentrated on at most two
values, and that for most p it is concentrated on one value. We also study the
uniform case p = 1/2, and as a corollary obtain that a conjecture of Lovász
holds for almost all graphs.

1. Introduction

Graph coloring is well studied from the points of view of combinatorics [25] and
theoretical computer science [12], and finding the chromatic number is thought to
be quite difficult in general. It is known, for example, that deciding whether a
graph is 3-colorable is NP-complete. Finding general bounds on chromatic number
is of considerable interest for both theoretical and practical reasons [16, 21].

Lower bounds on chromatic number are of particular interest, since it is generally
hard to rule out all possible k-colorings of a graph. In recent years, lower bounds
coming from algebraic topology [5, 4, 22], and statistical physics [9, 8, 24] have been
developed. These methods have in common that they obtain restrictions on maps
from a graph H (such as colorings of H) by probing with maps into H by “test
graphs” T .

In the topological setting, T is usually a finite graph such as an edge or an odd
cycle, equipped with a group action. For an introduction to topological obstructions
to graph colorings, see [4]. In the statistical physics setting, T is usually an infinite
graph with a high degree of symmetry, such as a tree or lattice, or else an infinite
family of graphs such as all finite graphs of maximum degree ≤ d. In each case,
the more freedom there is in mapping T into H , the larger the chromatic number
of H .

It is natural to ask how good these bounds are for typical graphs, or for which
graphs they will tend to be close to the truth. In [17] it is shown that certain
topological bounds on chromatic number are far from the truth for Erdős-Rényi
random graphs.

In this article we show that the statistical physics bounds warmth and mobility,
introduced by Brightwell and Winkler [9], are also far from the truth for almost
all graphs. This includes sparse and dense Erdős-Rényi random graphs, as well
as random regular graphs. Our efforts focus on computing facts about warmth of

The second author was supported in part by Stanford math department’s NSF-RTG.

1

http://arxiv.org/abs/1009.0792v2


2 SUKHADA FADNAVIS AND MATTHEW KAHLE

Figure 1. This graph shows that warmth is not a monotone graph
parameter. One can compute that the warmth is 3, but deletion
of any of the five edges on the right results in warmth of 5.

random graphs, and then we compare our results with well known facts about the
chromatic number of random graphs ([6], [1], [23], [2], [10]). As a corollary of our
results we establish a conjecture of Lovász for almost all graphs.

Although most graph parameters studied in random graph theory are monotone
in the sense that they only decrease (or increase) with the deletion of edges [7, 11],
it turns out that warmth is not such a property. For an example of the non-
monotonicity of warmth see Figure 1.

2. Background

We first reproduce a few definitions and results of Brightwell and Winkler [9].

2.1. Definitions.

All the graphs we consider here are simple graphs, meaning undirected and
without multiple edges or loops.

Definition 2.1. For graphs G and H , a function φ : V (G) → V (H) is a graph
homomorphism if it induces a map between edges E(G) → E(G). The set of all
homomorphisms of a graph G to a graph H is denoted Hom(H,G). It is naturally
endowed with a graph structure as follows: the elements of Hom(G,H) are the
vertices of a graph, with an edge between two homomorphisms whenever they
differ in exactly one vertex.

(There is a natural higher-dimensional structure on Hom(G,H) as well, impor-
tant for topological applications. See [5] for a nice introduction.)

Graph homomorphisms generalize graph coloring, since an n-coloring of H is
equivalent to a homomorphism H → Kn. (For an overview of graph homomor-
phisms, see the book [15].)

Let T d denote the d-branching rooted tree, as illustrated in Figure 2.

Definition 2.2. A map ϕ in Hom(T d, G) is said to be cold if there is a node a of
G such that for any k no ψ ∈ Hom(T d, G) agrees with ψ on the sites at distance k
from the root r and has ψ(r) = a. Graph G is said to be d-warm if Hom(T d−2, G)
does not contain any cold maps. Further, the warmth w(G) of G is defined to be
the largest d for which G is d-warm.
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Figure 2. The first few levels of the 3-branching rooted tree T 3.
Note that T d is not quite a Cayley tree, since it is regular of degree
d except at the root.

Definition 2.3. Let Hd denote the set of all finite simple graphs of maximum
degree d. Graph G is said to be d-mobile if Hom(H,G) is connected for all H ∈
Hd−2. (Note: the right interpretation of Brightwell and Winkler’s definition of
d-mobile is probably to say that either Hom(H,G) is connected or it is empty, for
all H ∈ Hd−2. See comments in the last section.) Further, the largest d for which
G is d-mobile is called the mobility m(G) of G.

Definition 2.4. For a graph G and a vertex u ∈ G let N(u) denote the set of
vertices in G adjacent to u. N(u) is called the neighborhood of u.

For a set of vertices A, define the neighborhood N(A) = ∪a∈AN(a). A family
of subsets {Ai}w1 of G is called a d-stable family if for all 1 ≤ i ≤ w there exist
Ai1 · · ·Aid such that

id
⋂

i1

N(Aij ) = Ai.

2.2. Known results and a conjecture.

We state two theorems of Brightwell and Winkler. First, an equivalent charac-
terization of warmth.

Theorem 2.5 (Brightwell and Winkler [9]). Given a constraint graph H and d ≥ 1,
the following are equivalent:

• H is not (d+ 2)-warm;
• There exists a d-stable family of subsets of H.

We also have the following inequalities relating warmth, mobility, and chromatic
number.

Theorem 2.6 (Brightwell and Winkler [9]). For every finite graph H,
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• w(H) ≤ χ(H) for unlooped H,
• m(H) ≤ 2w(H)− 2, and
• m(H) ≤ 2χ(H)− 2.

A conjecture attributed to Lovász is that the last inequality can be improved to
the following.

Conjecture 2.7. For all finite loopless graphs H,

m(H) ≤ χ(H).

Brightwell and Winkler have shown this for χ(H) ≤ 3, and Lovász has an un-
published proof for χ(H) ≤ 4 as noted in [9], but in general this conjecture is open.
One of the main contributions of this article is to establish the conjecture for many
graphs with large chromatic number.

3. Statement of Results

In the following sections we study the warmth of various types of random graphs
(Erdős-Rényi as well as random regular) and show that in all these cases warmth is
much smaller than the chromatic number. By the Brightwell-Winkler inequalities,
the mobility is also relatively small, and comparing with known results about chro-
matic numbers of random graphs gives Conjecture 2.7 for “almost all” graphs. This
conjecture seems to only be known for relatively sparse graphs so far; in particular
it is apparently known to be true for all graphs H with χ(H) ≤ 4 in unpublished
notes of Lovász [9]. Since our results hold for dense random graphs as well as sparse,
this verifies the conjecture for many graphs for which it was previously unknown.

The following is a summary of results. We use Bachmann–Landau and related
notations: O, o,Ω, ω,Θ. In every case, the asymptotic notation is to be understood
as the number of vertices n → ∞. The statement of the theorems and proofs are
similar for the sparse and dense cases – however it eases notation and simplifies the
proofs to treat the sparse and dense cases separately.

In the following α, δ > 0 are constant.

Theorem 3.1. (Upper bound – sparse regime) If p = O(n−α), then a.a.s.

w(G(n, p)) ≤ ⌊1/α+ 2⌋.
Theorem 3.2. (Upper bound – dense / uniform case) If p = 1/2, then a.a.s.

w(G(n, p)) ≤ (1 + δ) log2 n+ 1.

Theorem 3.3. (Lower bound – sparse regime) If p = Ω(n−α), then a.a.s.

w(G(n, p)) ≥ ⌈1/α+ 1⌉.
Theorem 3.4. (Lower bound – dense / uniform case) If p = 1/2, then a.a.s.

w(G(n, p)) ≥ (1 − δ) log2 n.

As a corollary we have that in the sparse regime p = O(n−α) the warmth is
concentrated on at most two values and that for “most” sequences p = p(n) is
concentrated on one value. For example if p = θ(n−α) with −1/k < α < −1/k + 1
then a.a.s. we have w = k + 2. See Figure 3.
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Figure 3. A summary of our results for G(n, p) in the sparse regime.

We also consider the dense case of p = 1/2 (i.e. the uniform distribution on all
labeled graphs on n vertices).

By establishing upper bounds on warmth, we also obtain upper bounds on mo-
bility of random graphs, by Theorem 2.6. In particular for p in the sparse regime,
both warmth and mobility are O(1) as n→ ∞. In contrast, as long as p = ω(1/n),
it is known that χ(G(n, p)) tends to infinity as n → ∞ (e.g. see Theorem 11.29 in
[7]).

Our results should also establish the Loász conjecture for smaller p: if p =
O(1/n) then we have w(G(n, p)) ≤ 3 a.a.s. by Theorem 3.1. So by Theorem 2.6,
m(G(n, p)) ≤ 4, and this is covered by the case of small chromatic number already
established by Lovász.

We also use results on chromatic number of random regular graphs and others
to check that the conjecture of Lovász holds for almost all random regular graphs
Gn,d for a wide range of degree d = d(n) in Section 6.

4. Upper bounds

In this section we prove Theorems 3.1 and 3.2.
For upper bounds in the sparse case it is convenient to assume that

p ≥ logn+ ω(log logn)

n
,

which insures that G(n, p) is a.a.s. connected and that for any fixed k, d(G(n, p)) ≥
k [7]. (Here d(H) denotes the minimum degree of H .) One can consider smaller p
as a separate case. For example, an adaptation of the argument below to handle
small degree vertices and possibly disconnected graphs shows that if p = O(n−0.99)
then a.a.s. w(G(n, p) ≤ 3.

Similarly for the dense case, it is useful to observe that if p = 1/2 then

P (d(G(n, p)) ≤ (1− δ) log2 n→ 0

as n→ ∞.
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Proof of Theorems 3.1 and 3.2. Let c be a constant in the sparse case and c =
O(log n) a function in the dense case; (in both cases c will be specified more precisely
later.) Since P (d(G(n, p)) ≤ c) → 0 we shall assume that d(G) > c.

In the sparse case we assume that p ≤ µn−α for some constants α, µ > 0; in this
case set s = ⌊1/α+ 1⌋. In the dense case we assume that p = 1/2 and δ > 0, and
set s = ⌊(1 + δ) log2 n⌋. In both cases we show that

w(G(n, p)) ≤ s+ 1.

Consider the family F = {v | v ∈ V } of singleton vertices of G. We show that
a.a.s. F is an s-stable family, i.e. for every vertex v there exist {u1, · · · , us} ⊆ N(v)
such that

s
⋂

i=1

N(ui) = v.

This is sufficient to bound warmth by Brightwell and Winkler’s results. We call
such a set {u1, . . . , us} an s-representative of v in F .

For u1, · · · , us neighbors of v, the probability that they are also adjacent to
vertex w is ps by edge independence. Let A(w)(w1, · · · , ws) denote the event that
w1, · · · , ws are in the neighborhood N(w) of w. Then,

P (A(u)(u1, · · · , us) for some u ∈ V ) ≤
∑

u∈V

P (A(u)(u1, · · · , us)) ≤ nps,

where, P (A(u)(u1, · · · , us) for some u ∈ V ) is the probability that v shares u1, · · · , us
as neighbors with some other vertex in V . Let γ = ⌊c/s⌋. We consider N1, · · · , Nγ

some disjoint subsets of the neighbors of v, such that |Ni| = s. We can do so by
the assumption that |N(v)| ≥ c. Let

N(v, s) = {U ⊂ N(v), |U | = s}.
For M ∈ N(v, s) let A(M) denote the event that M ⊆ N(u) for some u ∈ V . We
have

(1) P





⋂

M∈N(v,s)

A(M)



 ≤ P

(

γ
⋂

i=1

A(Ni)

)

.

That is, the probability that v shares every s-subset of N(v) with some other vertex
of V is less than the probability that v shares each of the Ni as neighbors with some
other vertex in V .

Since the Ni are disjoint, we have,

P

(

γ
⋂

i=1

A(Ni)

)

= O((nps)γ).

Thus, the probability that some vertex does not have a s-representative in F is

O

(

∑

v∈V

(nps)γ

)

= O(n(nps)γ) ≤ O(n(nps)γ) = O(n1+γ(1−sα)),

where α = 1
log

2
n in the dense case.

Note that in the sparse case,

(2) sα = α⌊1/α+ 1⌋ > 1 and sα is constant.
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Figure 4. The labeling of vertices for the three branching tree.

And in the dense case,

(3) sα =
⌊(1 + δ) log2 n⌋

log2 n
≥ 1 + δ/2.

Now since sα−1 is greater than zero in both cases we can choose c(n) = 2s(n)
sα−1 =

O(log n), so that γ(1 − sα) ≤ −2. Thus, the probability that G does not have a
s-stable family is

≤ n× nγ(1−sα) ≤ n−1 → 0, by our choice of c.

This and the lemma above prove that a.a.s. G(n, p) has a s-stable family of
subsets and hence by Theorem 2.5, a.a.s. w(G(n, p)) ≤ s + 1, as desired. This
completes the proof.

�

5. Lower bounds

In this section we prove Theorems 3.3 and 3.4. We will discuss maps from the
s-branching tree T s and it is convenient to label its vertices with the root labeled
0 and its children labeled 1, 2, 3 . . . , as shown in Figure 4.

Proving that w(H) ≥ s+ 2 means showing that Hom(T s, H) has no cold maps.
So in the sparse case let s = ⌈1/α− 1⌉ and in the dense case set s = (1− δ) log2 n.

Let T s
v denote the truncated s-branching tree T s with v vertices, labeled 0 to

v − 1. Note that when v ≡ 1 (mod s), the set L of leaves of the tree ‘generates’
the remaining nodes in the sense that every other node in T s has an ancestor in L.
Hence we restrict to this case.

Let D = D(T s
v ) denote the set of leaves of T s

v , together with the root; i.e.

D = {0} ∪ L.
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Figure 5. An extendable function f : D → V (H) and accompa-
nying graph map φ : T 3

28 → H . Here D = {0, 9, 10, . . . , 27}, and
a0, b1, . . . , b8, w9, . . . , w27 ∈ V (H), and f is illustrated with larger
vertices and φ with smaller ones.

Let H be any graph, and f : D → V (H) any function. We say that f is H-
extendable if there exists a graph homomorphism φ : T s

v → H such that φ|D = f ,
and that H has property Ps

v if every function f : D(T s
v ) → V (H) is H-extendable.

Property Ps
v precludes any cold maps T s → H , so by definition such graphs have

warmth at least s+ 2. A useful observation is that property Ps
v is monotone, even

though warmth is not. Thus if property Ps
v holds for G(n, p) a.a.s. then it also

holds for G(n, p′) a.a.s. whenever p ≤ p′.
For the sparse case we assume that p = Ω(n−α) and prove that a.a.s.w(G(n, p)) ≥

⌈1/α + 1⌉. In this case we set ǫ = 1 − α⌈1/α − 1⌉. (The main point is that ǫ is
bounded away from 0 as n→ ∞.)

In the dense case we assume that p = 1/2 and prove that w(G(n, p)) ≥ (1 −
δ) log2 n. In this case set

ǫ = 1− ⌈(1− δ) log2 n⌉ − 2

log2 n
.

Here ǫ is still bounded away from 0 as n→ ∞, since δ is constant.
Thus µ1n

−(1−ǫ)/s ≤ p ≤ µ2n
−(1−ǫ)/s for some constants µ1, µ2 > 0 in the sparse

case and for µ = 1 in the dense case. Also infn ǫ > 0.
Now we will make precise the choice of v. We choose v such that,

(4) s2
(

1 +
1

ǫ

)

+ 1 < v < s2
(

1 +
1

ǫ

)

+ 3s+ 1.

Note that since infn ǫ > 0, we have v = O(s2) and hence, O(log2 n).
Now we show that maps into G(n, p) are all extendable for this choice of v.

Lemma 5.1. Let a, wm+1, . . . , wv−1 be some fixed vertices in G(n, p). The proba-
bility P that a function f : D → V (G(n, p)), defined by f(0) = a and f(i) = wi, is
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not extendable is bounded above by

(5) P ≤ e−Cnǫ/ log2 n

for some absolute constant C > 0, and ǫ depending on p as defined above.

Proof. We apply the extended Janson’s inequality to prove this claim. Let m =
v − |L| − 1 and W = {wm+1, . . . , wv−1}. Note, m = (v − 1)/s. Also let,

A = {A ⊂ G, labeled subgraphs : |V (A)| = m,V (A) ∩ ({a} ∪W ) = φ}.
Note that |A| ≥

(

n−|L|−1
m

)

since there are at least n− |L| − 1 vertices to choose

the labeled vertices of A from. For Ai ∈ A let {bi1, . . . bim} denote the set of vertices
of Ai ordered according to it’s labeling. Let Bi denote the event that βAi

: T s → G
given by,

(6) βAi
(j) =







a if i = 0
bij if 1 ≤ jm
wj if m+ 1 ≤ j ≤ (v − 1),

is a homomorphism. Note that since a, wj are fixed and bi are all distinct and
{b1, . . . , bm} ∩ ({a} ∪W ) = φ, the number of distinct edges in the image of T s

v i.e.
|βAi

(E(T s
v ))|, depends only on a and W and not on Ai. We denote this number by

e. Note that, m ≤ e ≤ sm+ s. Also, Pr[Bi] = pe. We say x ∼ y if the edges of Ax

and Ay have a non-trivial intersection. Then, assuming

(7) ∆ ≥ µ

the extended Janson’s inequality [3] gives us,

(8) Pr[∧jBj ] ≤ exp

(

− µ2

2∆

)

where,

µ =
∑

j

Pr[Bj ]

and ∆ =
∑

x∼y

Pr[Bx ∧By].
(9)

Note that,

(10) µ =
∑

j

Pr[Bj ] = Θ(nm × pe).

Now we bound the sum ∆. Let A′ = A \ ({a} ∪W ). We split the sum in ∆
according to the size of the set A′

x ∩ A′
y. Let

(11) fz = max
x,y

{|E(A′
x ∩ A′

y)| : |V (A′
x ∩A′

y)| = z}

denote the maximum over all pairs x, y of the number of edges that Ax and Ay

intersect in for A′
x and A′

y intersecting in exactly z vertices. The edge sets of Ax

and Ay have a non-trivial intersection. Hence z ≥ 1. Then, Pr[Ax ∧Ay ] ≤ p2e−fz .
Note that fz ≤ sz and hence Pr[Ax∧Ay ] ≤ p2e−sz . There are O(n2m−z) such pairs
Ax and Ay since 2m− z vertices determine these subgraphs up to order. Thus,
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∆ = Θ

(

v−l−1
∑

z=1

n2m−z × p2e−sz

)

≥ Ω(n2m−1 × p2e−s)

(12)

Also,

∆ = Θ

(

v−l−1
∑

z=1

n2m−z × p2e−sz

)

= O((v − l − 1)n2m−1p2e−s) = O(log2 n× n2m−1p2e−s)

(13)

It follows that ∆ ≥ µ from the choice of v in equation 4 and the observation that
e > m = (v − 1)/s.

Also,

(14)
µ2

2∆
≥ R

(

n× p−s

log2 n

)

≥ C

(

nǫ

log2 n

)

for some constants R,C.

Hence we have

(15) Pr[∧jBj ] ≤ exp

(

−µ
2

∆

)

≤ e−Cnǫ

.

Also, as noted above, infn ǫ > 0. This proves the claim. �

Now we can complete the proof as follows. There are at most n|L|+1 choices for
a, wi. Thus the probability that an appropriate β does not exist for at least one
such choice of vertices is at most

n|L|+1e−Cnǫ/ log2 n → 0 as n→ ∞.

This completes the proof.

6. Random regular graphs

Consider the uniform distribution on the set of d-regular graphs on n vertices [7].
We denote a randomly chosen graph from this distribution by Gn,d. The following
lemma of Krivelevich, Sudakov, Vu, and Wormald gives that for a wide range of
d → ∞, with high probability every pair of vertices has the expected number of
common neighbors.

Lemma 6.1. (Lemma 4.1((i) from [19].) Suppose that
√
n logn ≤ d ≤ n−n/ logn.

Then a.a.s.
|N(u) ∩N(v)| = (1 + o(1))d2/n

for every pair of vertices {u, v} in Gn,d.

The following theorem bounds the chromatic number from below for a certain
range of d.

Theorem 6.2. (Theorem 2.7 from [20].) Let 0 < α < 1/2 be a positive constant;
then for any

nα < d < n1−α,

a.a.s. we have,
χ(Gn,d) = Ω(d/ log d).



WARMTH AND MOBILITY OF RANDOM GRAPHS 11

We combine the above theorems and Theorem 2.5 to show that Conjecture 2.7
holds a.a.s. for Gn,d.

Lemma 6.3. Let G be a r-regular graph. If |N(u) ∩ N(v)| < k ≤ r for every
pair u 6= v in G, then G is not (k + 2)-warm, i.e. w(G) ≤ (k + 1) and hence
m(G) ≤ 2k + 1.

Proof. We show that G has a k-stable family of subsets and hence the lemma will
follow from Theorem 2.5. Consider the family F of all singleton vertices of G. This
is a k-stable family of subsets of G. For v ∈ G we can choose any k of its neighbors
v1 · · · vk. Then N(v1)∩ · · · ∩N(vk) is the set of all vertices of G that have v1 · · · vk
as neighbors. But |N(u) ∩N(v)| < k for every pair u 6= v in G implies that

N(v1) ∩ · · · ∩N(vk) = {v}.
Thus we have our k-stable family F which completes the proof. �

Theorem 6.4. Let 0 < α < 1/4 be a positive constant; then for any

n1/2+α < d < n1−α,

w(G) ≤ χ(G) a.s.

Proof. It follows from Lemmas 6.1 and 6.3 that m(Gn,d) < 4d2/n a.a.s. Also
4d2/n = o(d/ log d) since d < n1−α. Thus, using Theorem 6.2 we have w(G) ≤ χ(G)
a.a.s. This completes the proof. �

7. Open problems

We have shown that warmth is much smaller than chromatic number for certain
types of random graphs, but we could also ask: for what types of graphs is warmth
close to the chromatic number? In particular, can one describe large families of
graphs, either constructively or probabilistically, for which warmth and chromatic
number are equal? Brightwell and Winkler give several examples of such graphs in
[9], including bipartite graphs, complete graphs, and “collapsible” graphs.

It would be especially interesting to know how the statistical physics and topo-
logical lower bounds on chromatic number compare. On this note, the second
author explored topological bounds on chromatic number for Erdős-Rényi graphs
in [17]. The connectivity (in the sense of homotopy theory [14]) of the neighborhood
complex of a graph H , denoted by conn[N (H)], is related to chromatic number by

conn[N (H)] + 3 ≤ χ(H),

and this theorem was Lovász’s main tool in proving the Kneser conjecture [22].
In [17] it was shown that for G(n, 1/2), the connectivity of the neighborhood

complex is a.a.s. between approximately log2(n) and (4/3) log2(n). This is interest-
ing to compare with what we have shown in this article, that warmth of G(n, 1/2)
is a.a.s. approximately log2(n). Are there any inequalities relating the statistical
physics and topological lower bounds on chromatic number? We can limit the scope
of any possible inequalities by considering a few examples.

Kneser graphs play an important role in the study of graph homomorphisms
[13, 22].

Definition 7.1. For n > 2k the Kneser graph K(n, k) has
(

n
k

)

vertices, one for
each k-subset of an n-set, with edges corresponding to disjoint subsets.
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The connectivity of the neighborhood complex of Kneser graphs K(3n− 1, n) is
n− 2, as a special case of Lovász’s result [22]. However the warmth is bounded at
3 since the set of vertices form a 2-stable family. So in general connectivity of the
neighborhood complex can be larger than warmth of the graph, and the strongest
inequality relating warmth and connectivity that we might hope for is that

w(H) ≤ conn[N (H)] + 3.

We do not at the moment know any counterexamples to this inequality. A much
stronger inequality, that we also do not know any counterexamples to, would be

m(H) ≤ conn[N (H)] + 3.

If true, this stronger inequality would prove the Lovász conjecture, since

conn[N (H)] + 3 ≤ χ(H).

Another direction for future research is into the threshold behavior for non-
monotone graph properties, which have also been found to correspond to topological
properties of random simplicial complexes [17, 18]. For example, a celebrated result
in random graph theory is Friedgut and Kalai’s result that every monotone graph
property has a sharp threshold [11]. One wonders if this theorem could be extended
to a larger family of graph properties, and in any case we would not be surprised if
the threshold from w(G) = k to w(G) = k+1 is sharper than what is proved here.
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[15] Pavol Hell and Jaroslav Nešeťril. Graphs and homomorphisms, volume 28 of Oxford Lecture

Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.
[16] Tommy R. Jensen and Bjarne Toft. Graph coloring problems. Wiley-Interscience Series in

Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1995. A Wiley-
Interscience Publication.

[17] Matthew Kahle. The neighborhood complex of a random graph. J. Combin. Theory Ser. A,
114(2):380–387, 2007.

[18] Matthew Kahle. Topology of random clique complexes. Discrete Math., 309(6):1658–1671,
2009.

[19] Jeong Han Kim, Benny Sudakov, and Van H. Vu. On the asymmetry of random regular
graphs and random graphs. Random Structures Algorithms, 21(3-4):216–224, 2002. Random
structures and algorithms (Poznan, 2001).

[20] Michael Krivelevich, Benny Sudakov, Van H. Vu, and Nicholas C. Wormald. Random regular

graphs of high degree. Random Structures Algorithms, 18(4):346–363, 2001.
[21] Marek Kubale, editor. Graph colorings, volume 352 of Contemporary Mathematics. American

Mathematical Society, Providence, RI, 2004.
[22] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser.

A, 25(3):319–324, 1978.
[23] Tomas Luczak. The chromatic number of random graphs. Combinatorica, 11(1):45–54, 1991.
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