Reduced Gröbner Bases of Certain Toric Varieties; A New Short Proof

Ibrahim Al-Ayyoub

September 7, 2010

Abstract

Let K be a field and let m_{0}, \ldots, m_{n} be an almost arithmetic sequence of positive integers. Let C be a toric variety in the affine $(n+1)$-space, defined parametrically by $x_{0}=t^{m_{0}}, \ldots, x_{n}=t^{m_{n}}$. In this paper we produce a minimal Gröbner basis for the toric ideal which is the defining ideal of C and give sufficient and necessary conditions for this basis to be the reduced Gröbner basis of C, correcting a previous work of Sen and giving a much simpler proof than that of Ayy.

Introduction

Let $n \geq 2, K$ a field and let x_{0}, \ldots, x_{n}, t be indeterminates. Let m_{0}, \ldots, m_{n} be an almost arithmetic sequence of positive integers, that is, some $n-1$ of these form an arithmetic sequence, and assume $\operatorname{gcd}\left(m_{0}, \ldots, m_{n}\right)=1$. Let P be the kernel of the K-algebra homomorphism $\eta: K\left[x_{0}, \ldots, x_{n}\right] \rightarrow K[t]$, defined by $\eta\left(x_{i}\right)=t^{m_{i}}$. Such an ideal is called a toric ideal and the variety $V(P)$, the zero set of P, is called an affiine toric variety. The definition of toric variety that we us is the same as the definition given in Stu1. This differs from the definition found in the algebraic geometry literature (as in Ful]) which requires the variety to be normal. Toric ideals are an interesting kind of ideals that have been studied by many authors, for example, see Stu2 and Chapter 4 of Stu1]. The theory of toric varieties plays an important role at the crossroads of geometry, algebra and combinatorics.

A set of generators for the ideal P was explicitly constructed in [PaSi]. We call these generators the Patil-Singh generators. Out of this generating set, Patil Pat constructed a minimal generating set Ω for the ideal P. We call the elements of Ω the Patil generators. Sengupta Sen proved that Ω forms a Gröbner basis for the
relation ideal P with respect to the grevlex monomial order, however, Al-Ayyoub Ayy showed that Sengupta's proof is not complete, as in fact Ω is not a Gröbner basis in all cases, see Remark 1.6 and Remark 1.7. The proof introduced by AlAyyoub Ayy is computational as it uses the Buchberger criterion and the division algorithm and it did not characterize whether the given Gröbner basis is reduced. The goal of this paper is to produce a minimal Gröbner basis for P, give sufficient and necessary conditions for this basis to be reduced, and to give a new proof that is based on a lemma of Aramova et al. AHH. The proof given in this paper is much shorter and simpler than the computational work given in Ayy or Sen. The author thanks the referee for suggesting to use a result of AHH that shortened the proof.

1 Generators for Toric Varieties

In this part we recall the construction, given in PaSi and Pat, of the generating set of the defining ideal P of certain monomial curves (toric varieties), and we also recall the result of Ayy proving that the set given in Pat is not a Gröbner basis for P. We shall use the notation and the terminology from [PaSi] and [Pat] with a slight difference in naming some variables and constants. Let $n \geq 2$ be an integer and let $p=n-1$. Let m_{0}, \ldots, m_{p} be an arithmetic sequence of positive integers with $0<m_{0}<\cdots<m_{p}$, let m_{n} be arbitrary, and $\operatorname{gcd}\left(m_{0}, \ldots, m_{n}\right)=1$. Let Γ denote the numerical semigroup that is generated by m_{0}, \ldots, m_{n} i.e. $\Gamma=\sum_{i=0}^{n} \mathbb{N}_{0} m_{i}$ with $\mathbb{N}_{0}=\{0\} \cup \mathbb{N}$. We assume throughout that Γ is minimally generated by m_{0}, \ldots, m_{n}. Put $\Gamma^{\prime}=\sum_{i=0}^{p} \mathbb{N}_{0} m_{i}$. Thus $\Gamma=\Gamma^{\prime}+\mathbb{N}_{\mathbf{0}} m_{n}$. Let $S=\left\{\gamma \in \Gamma \mid \gamma-m_{0} \notin \Gamma\right\}$.

Notation 1.1 For $a, b \in \mathbb{Z}$ let $[a, b]=\{t \in \mathbb{Z} \mid a \leq t \leq b\}$. For $t \geq 0$, let $q_{t} \in \mathbb{Z}$, $r_{t} \in[1, p]$ and $g_{t} \in \Gamma^{\prime}$ be defined by $t=q_{t} p+r_{t}$ and $g_{t}=q_{t} m_{p}+m_{r_{t}}$.

The following lemma provides us with the parameters and the equalities that are crucial for the new proof.

Lemma 1.2 (Lemmas 3.1 and 3.2, [PaSi]) Let $u=\min \left\{t \geq 0 \mid g_{t} \notin S\right\}$ and $v=\min \left\{b \geq 1 \mid b m_{n} \in \Gamma^{\prime}\right\}$.
(a) There exist unique integers $w \in[0, v-1], z \in[0, u-1], \lambda \geq 1, \mu \geq 0$, and $\nu \geq 2$ such that
(i) $g_{u}=\lambda m_{0}+w m_{n}$;
(ii) $v m_{n}=\mu m_{0}+g_{z}$;
(iii) $g_{u-z}+(v-w) m_{n}=\nu m_{0}$, where $\nu= \begin{cases}\lambda+\mu+1, & \text { if } r_{u-z}<r_{u} \text {; } \\ \lambda+\mu, & \text { if } r_{u-z} \geq r_{u} .\end{cases}$
(b) Let $V=[0, u-1] \times[0, v-1]$ and $W=[u-z, u-1] \times[v-w, v-1]$. Then every element of Γ can be expressed uniquely in the form $a m_{0}+g_{s}+b m_{n}$ with $a \in \mathbb{N}_{0}$ and $(s, b) \in V-W$.

Notation 1.3 Let $q=q_{u}, r=r_{u}, q^{\prime}=q_{u-z}, r^{\prime}=r_{u-z}$. From now on, the symbols $q, q^{\prime}, r, r^{\prime}, u, v, w, z, \lambda, \mu, \nu, V$ and W will have the meaning assigned to them by this notation and the lemma above.

Remark 1.4 Note that for $1 \leq i \leq p$ we have $g_{i}-m_{0}=m_{i}-m_{0}$. Then by the minimality assumption on the generators of Γ it follows that $u>p$, hence $q>0$.

We recall the construction and the result given in PaSi : let $p=n-1$ and let

$$
\begin{aligned}
& \xi_{i, j}=\left\{\begin{array}{lll}
x_{i} x_{j}-x_{0} x_{i+j}, & \text { if } & i+j \leq p ; \\
x_{i} x_{j}-x_{i+j-p} x_{p}, & \text { if } & i+j>p,
\end{array}\right. \\
& \varphi_{i}=x_{r+i} x_{p}^{q}-x_{0}^{\lambda-1} x_{i} x_{n}^{w},
\end{aligned} \psi_{j}=x_{r^{\prime}+j} x_{p}^{q^{\prime}} x_{n}^{v-w}-x_{0}^{\nu-1} x_{j}, ~ \begin{array}{ll}
x_{n}^{v}-x_{0}^{\mu} x_{r-r^{\prime}} x_{p}^{q-q^{\prime}}, & \text { if } r^{\prime}<r ; \\
x_{n}^{v}-x_{0}^{\mu} x_{p+r-r^{\prime}} x_{p}^{q-q^{\prime}-1}, & \text { if } r^{\prime} \geq r .
\end{array}
$$

The following intervals are introduced by Pat in the process of producing minimal generating sets.

$$
\begin{aligned}
& I= \begin{cases}{[0, p-r],} & \text { if } \mu \neq 0 \text { or } W=\phi ; \\
{\left[\max \left(r_{z}-r+1,0\right), p-r\right],} & \text { if } \mu=0 \text { and } W \neq \phi,\end{cases} \\
& J= \begin{cases}\phi, & \text { if } W=\phi \\
{\left[0, \min \left(z-1, p-r^{\prime}\right)\right],} & \text { if } W \neq \phi\end{cases}
\end{aligned}
$$

Theorem 1.5 (Theorem 4.5, [PaSi]) The set

$$
\left\{\xi_{i, j} \mid 1 \leq i \leq j \leq p-1\right\} \cup\{\theta\} \cup\left\{\varphi_{i} \mid 0 \leq i \leq p-r\right\} \cup\left\{\psi_{j} \mid 0 \leq j \leq p-r^{\prime}\right\}
$$

forms a generating set for the ideal P. The elements in this set are called the Patil-Singh generators. Also, (Theorem 4.5, [Pat]) the set

$$
\Omega=\left\{\xi_{i, j} \mid 1 \leq i \leq j \leq p-1\right\} \cup\{\theta\} \cup\left\{\varphi_{i} \mid i \in I\right\} \cup\left\{\psi_{j} \mid j \in J\right\}
$$

forms a minimal generating set for the ideal P. The elements in this set are called the Patil generators.

Considering the indices we note that handling the Patil-Singh generators is simpler than the Patil generators.

Sengupta [Sen] tried to prove that the set Ω forms a Gröbner basis for P with respect to the grevlex monomial order using the grading $w t\left(x_{i}\right)=m_{i}$ with $x_{0}<$ $x_{1}<\cdots<x_{n}$. In this ordering $\prod_{i=0}^{n} x_{i}^{a_{i}}>_{\text {grevlex }} \prod_{i=0}^{n} x_{i}^{b_{i}}$ if in the ordered tuple $\left(a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right)$ the left-most nonzero entry is negative. Al-Ayyoub Ayy proved that Sengupta's proof works for arithmetic sequences, but it is incomplete for the almost arithmetic sequences. Below we recall the work of Ayy for the convenience of the reader;

Remark 1.6 Assume $r^{\prime} \geq r, \mu=0$, and $W \neq \phi$. Then Patil generators are not a Gröbner basis with respect to the grevlex monomial ordering with $x_{0}<x_{1}<\cdots<x_{n}$ and with the grading $w t\left(x_{i}\right)=m_{i}$.

Proof. As $u-z=\left(q-q_{z}\right) p+\left(r-r_{z}\right)$ then $r^{\prime} \geq r$ if and only if $r_{z} \geq r$. Assume $r^{\prime} \geq r$, then $r_{z}-r+1>0$ and also $\theta=x_{n}^{v}-x_{0}^{\mu} x_{p+r-r^{\prime}} x_{p}^{q-q^{\prime}-1}$. Assume also that $\mu=0$ and $W \neq \phi$, then $I=\left[\max \left(r_{z}-r+1,0\right), p-r\right]=\left[r_{z}-r+1, p-r\right]$. Under these assumptions the S-polynomial $S\left(\psi_{k}, \theta\right)$ can not be reduced to zero modulo Ω : for $0 \leq$ $k<r_{z}-r+1$ consider $S\left(\psi_{k}, \theta\right)=x_{0}^{\mu} S_{1}$ where $S_{1}=x_{0}^{\lambda-1} x_{k} x_{n}^{w}-x_{r^{\prime}+k} x_{p+r-r^{\prime}} x_{p}^{q-1}$, with the leading monomial underlined. We note that $L M\left(S_{1}\right)$, the leading monomial of S_{1}, is a multiple of $L M\left(\xi_{r^{\prime}+j, p+r-r^{\prime}}\right)$ only. Hence, the only possible way to reduce S_{1} with respect to Ω is by using $\xi_{r^{\prime}+j, p+r-r^{\prime}}$. However, none of the terms of the binomial $S_{1}+x_{p}^{q-1} \xi_{r^{\prime}+j, p+r-r^{\prime}}=x_{r+k} x_{p}^{q}-x_{0}^{\lambda-1} x_{k} x_{n}^{w}$ is a multiple of any of the leading terms of Patil generators. Therefore, it can not be reduced to 0 modulo Ω.

The following shows that the hypothesis of the remark above are satisfied by an infinite family of toric varieties:

Remark 1.7 Let $m_{0} \geq 5$ be an odd integer. Let P be the defining ideal of the toric variety that corresponds to the almost arithmetic sequence $m_{0}, m_{0}+1, m_{0}-1$. Then the Patil generators for the ideal P are not a Gröbner basis with respect to the grevlex monomial ordering with $x_{0}<x_{1}<x_{2}$ and with the grading $w t\left(x_{i}\right)=m_{i}$.

Proof. Observe: $p=1, n=2$, and $g_{i}=i\left(m_{0}+1\right)$ for all i.
Let v, μ, and z be as defined in Lemma 1.2. Then $v\left(m_{0}-1\right)=\mu m_{0}+z\left(m_{0}+1\right)$ for some integers $\mu, z \geq 0$. This implies $\mu+z<v$. Note that $v\left(m_{0}-1\right)=$ $\mu m_{0}+z\left(m_{0}+1\right)=(\mu+z)\left(m_{0}-1\right)+\mu+2 z$. Thus $\mu+2 z=s\left(m_{0}-1\right)$ for some
$s \geq 1$. Hence, $v>\mu+z \geq \frac{\mu}{2}+z=\frac{s}{2}\left(m_{0}-1\right) \geq \frac{m_{0}-1}{2}$. Thus,

$$
\begin{equation*}
v \geq \frac{m_{0}+1}{2} . \tag{1}
\end{equation*}
$$

On the other hand, note that

$$
\begin{equation*}
\frac{m_{0}+1}{2}\left(m_{0}-1\right)=\frac{m_{0}-1}{2}\left(m_{0}+1\right) \in \Gamma^{\prime} \tag{2}
\end{equation*}
$$

Therefore, by the minimality of v we must have

$$
\begin{equation*}
v \leq \frac{m_{0}+1}{2} \tag{3}
\end{equation*}
$$

By (11) and (3) it follows that $v=\frac{m_{0}+1}{2}$.
Let u, λ, w, and g_{u} be as defined in Lemma 1.2. Note

$$
\begin{equation*}
\frac{m_{0}+1}{2}\left(m_{0}+1\right)-m_{0}=\frac{m_{0}-1}{2}\left(m_{0}-1\right)+m_{0} \in \Gamma . \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
u \leq \frac{m_{0}+1}{2} \tag{5}
\end{equation*}
$$

Claim $w>0$: if $w=0$ then $g_{u}=\lambda m_{0}$, thus $u\left(m_{0}+1\right)=\lambda m_{0}$. But m_{0} and $m_{0}+1$ are relatively prime, therefore, we must have $u=b m_{0}$ for some $b \geq 1$, a contradiction to (5). Thus $w>0$.

Claim $\lambda<u$: by Lemma 1.2 we have $u\left(m_{0}+1\right)=\lambda m_{0}+w\left(m_{0}-1\right)$. If $\lambda \geq u$ then $w\left(m_{0}-1\right)=u\left(m_{0}+1\right)-\lambda m_{0}=u+(u-\lambda) m_{0}$, which implies $u \geq m_{0}-1$ as $w>0$, a contradiction to (5). Thus $\lambda<u$.

Now consider $w\left(m_{0}-1\right)=u\left(m_{0}+1\right)-\lambda m_{0}=(u-\lambda)\left(m_{0}-1\right)+2 u-\lambda$. As $w\left(m_{0}-1\right)>0$ and $u>\lambda$ we must have $2 u-\lambda=c\left(m_{0}-1\right)$ for some $c \geq 1$. But if $u \leq \frac{m_{0}-1}{2}$ then $2 u-\lambda \leq m_{0}-1-\lambda$, a contradiction as $\lambda \geq 1$. Therefore,

$$
\begin{equation*}
u>\frac{m_{0}-1}{2} \tag{6}
\end{equation*}
$$

By (5) and (6) it follows that $u=\frac{m_{0}+1}{2}$.
Now by the uniqueness in Lemma 1.2 and as of (2) and (4) it follows that $\mu=0$, $z=\frac{m_{0}-1}{2}, \lambda=2$ and $w=\frac{m_{0}-1}{2}$. Finally, note that $r=p=r^{\prime}=1$. Therefore, the parameters z, w, μ, p, r, and r^{\prime} all satisfy the assumptions of the previous remark, hence done.

2 Reduced Gröbner Bases

In the following we combine the results of PaSi and Pat to obtain the set of generators that we prove to be a minimal (the reduced) Gröbner Basis. In particular, we pick an appropriate set of indices (different from Sengupta Sen), as well as, we modify the form of the binomial θ as follows; let $u, z, q, r, q^{\prime}=q_{u-z}$, and $r^{\prime}=r_{u-z}$ be as in Lemma 1.2 and Notation 1.3 Let $z=q_{z} p+r_{z}$ with $q_{z} \in \mathbb{Z}$ and $r_{z} \in[1, p]$. By Notation 1.1 it is clear that $q_{z} \leq q$ since $0 \leq z \leq u-1$. As $u-z=\left(q-q_{z}\right) p+\left(r-r_{z}\right)$, it follows that $q^{\prime}=q-q_{z}-\varepsilon$ and $r^{\prime}=\varepsilon p+r-r_{z}$ where $\varepsilon=0$ or 1 according as $r>r_{z}$ or $r \leq r_{z}$. Therefore, $r^{\prime}<r$ if and only if $r_{z}<r$. Thus we rewrite $\theta=x_{n}^{v}-x_{0}^{\mu} x_{r_{z}} x_{p}^{q_{z}}$. Then the generators that we prove to be a minimal (the reduced) Gröbner basis are as follows (with the leading monomial underlined);

$$
\begin{array}{rlrl}
\varphi_{i} & =x_{r+i} x_{p}^{q}-x_{0}^{\lambda-1} x_{i} x_{n}^{w}, & \text { for } \quad 0 \leq i \leq p-r ; \\
\psi_{j} & =\overline{x_{r^{\prime}+j} x_{p}^{q^{\prime}} x_{n}^{v-w}-x_{0}^{\nu-1} x_{j},} & \text { for } \quad j \in J ; \\
\theta & =\overline{x_{n}^{v}-x_{0}^{\mu} x_{r_{z}} x_{p}^{q_{z}},} & \\
\xi_{i, j} & =\left\{\begin{array}{lll}
\frac{x_{i} x_{j}}{}-x_{0} x_{i+j}, & \text { if } \quad i+j \leq p ; \\
\underline{x_{i} x_{j}}-x_{i+j-p} x_{p}, & \text { if } \quad i+j>p, & \text { for } \quad 1 \leq i \leq j \leq p-1 .
\end{array}\right.
\end{array}
$$

Note that this set of generators contains the set of Patil generators and it is contained in the set of Patil-Singh generators.

Definition 2.1 Let I be a polynomial ideal and G a Gröbner basis for I such that:
(i) $L C(f)=1$ for all $f \in G$, where $L C(f)$ is the leading coefficient of f.
(ii) For all $f \in G, L M(f) \notin\langle L M\{G-\{f\}\}\rangle$.
(ii') For all $f \in G$, no monomial appearing in f lies in $\langle L M\{G-\{f\}\}\rangle$.
Then G is called minimal if it satisfies (i) and (ii), and it is called reduced if it satisfies (i) and (ii').

Condition 2.2 Let C1 and C2 refer to the conditions as follows
$\boldsymbol{C 1}: J \neq \phi, q^{\prime}=0, v-w \leq w, \lambda=1$, and $r^{\prime} \leq p-r$.
C2: $q=1$ and $r \leq p-2$.
The following is the main result of this paper.

Theorem 2.3 The set

$$
G=\left\{\varphi_{i} \mid 0 \leq i \leq p-r\right\} \cup\left\{\psi_{j} \mid j \in J\right\} \cup\{\theta\} \cup\left\{\xi_{i, j} \mid 1 \leq i \leq j \leq p-1\right\}
$$

is a minimal Gröbner basis for the ideal P with respect to the grevlex monomial order with $x_{0}<x_{1}<\cdots<x_{n}$ and with the grading $w t\left(x_{i}\right)=m_{i}$. Moreover, G is reduced if and only if none of the conditions C1 and C2 holds.

Proof. The proof that G is a Gröbner basis is after Lemma 2.5 below. Here we prove that G is minimal (or reduced).

It is clear that $L M(\theta) \notin\langle L M(G-\{\theta\})\rangle$. Since $w<v$ (by Lemma 1.2) and since $q>0$ (by Remark 1.4) it is clear that $L M\left(\varphi_{i}\right) \notin\left\langle L M\left(G-\left\{\varphi_{i}\right\}\right)\right\rangle$ and $L M\left(\xi_{i, j}\right) \notin\left\langle L M\left(G-\left\{\xi_{i, j}\right\}\right)\right\rangle$. To show $L M\left(\psi_{j}\right) \notin\left\langle L M\left(G-\left\{\psi_{j}\right\}\right)\right\rangle$ it is clear that it suffices to show that $L M\left(\psi_{j}\right)$ is not a multiple of any of $L M\left(\varphi_{i}\right)$. If $q_{z}>0$ or $\varepsilon>0$, then this is clear since $q^{\prime}<q$ (as $\left.q^{\prime}=q-q_{z}-\varepsilon\right)$ and since $v-w<v$ whenever $J \neq \phi$. If $q_{z}=0$ and $\varepsilon=0$, then $r^{\prime}=r-r_{z}$ and $z-1=r_{z}-1<p-r+r_{z}=p-r^{\prime}$. Thus there is no overlap between the indices of the leading monomials of φ_{i} and those of ψ_{j}. This shows G is minimal.

Define $S M(f)=f-L M(f)$ with f a binomial. Recalling that $\nu \geq 2$ and x_{0} divides no $L M(f)$ for any $f \in G$, it follows that $S M\left(\psi_{j}\right) \notin\left\langle L M\left(G-\left\{\psi_{j}\right\}\right)\right\rangle$. Also, recalling that $w<v$ and $z<u$, it follows that $S M(\theta) \notin\langle L M(G-\{\theta\})\rangle$ and $S M\left(\xi_{i, j}\right) \notin\left\langle L M\left(G-\left\{\xi_{i, j}\right\}\right)\right\rangle$. If any of the parts of condition $C 1$ does not hold, then it follows that $S M\left(\varphi_{i}\right) \notin\left\langle L M\left\{\psi_{i}\right\} ; j \in J\right\rangle$ which suffices to show $S M\left(\varphi_{i}\right) \notin$ $\left\langle L M\left(G-\left\{\varphi_{i}\right\}\right)\right\rangle$. To show $S M\left(\xi_{i, j}\right) \notin\left\langle L M\left(G-\left\{\xi_{i, j}\right\}\right)\right\rangle$, it is enough to show $S M\left(\xi_{i, j}\right) \notin\left\langle L M\left(\varphi_{k}\right) ; 0 \leq k \leq p-r\right\rangle$ whenever $i+j>p$ because $w<v$ and $r>0$. But this clear if any of the parts of condition C2 does not hold (recall $i+j-p \leq p-2$). This proves that if none of $C 1$ and $C 2$ holds, then G is reduced.

Conversely, assume $C 1$ holds. Then as $q^{\prime}=0$ and $\lambda=1$ then $L M\left(\psi_{0}\right)=$ $x_{r^{\prime}} x_{n}^{v-w}$. On the other hand, since $r^{\prime} \leq p-r$ then $S M\left(\varphi_{r^{\prime}}\right)=x_{r^{\prime}} x_{n}^{w}$. Thus $S M\left(\varphi_{r^{\prime}}\right)$ is a multiple of $L M\left(\psi_{0}\right)$ whenever $v-w \leq w$. Thus G is not reduced. Assume C2 holds. Choose $i=p-1$ and $j=r+1$ (note that $j \leq p-1$ since $r \leq p-2$ by assumption). Then $S M\left(\xi_{i, j}\right)=x_{r} x_{p}=L M\left(\varphi_{0}\right)$. Hence G is not reduced.

Note the toric varieties in Remark 1.7 do not satisfy any of the conditions $C 1$ or C2 as $r=p=r^{\prime}=1$. This provides a family of toric varieties with reduced Gröbner bases, while the following example provides a mimimal Gröbner basis which is not reduced.

Example 2.4 Let $m_{0}=5, m_{1}=6, m_{2}=7, m_{3}=8$, and $m_{4}=9$ so that $n=4$ and $p=3$. Note $g_{4}-m_{0}=m_{3}+m_{1}-m_{0}=9=m_{4} \in \Gamma$. Hence, $u=4$. Thus $q=1$ and $r=1$. Thus C2 holds. Also, $v=2$ as $2\left(m_{4}\right)=2 m_{0}+m_{3}$. Note $g_{4}=m_{0}+m_{4}$, hence $\lambda=1$ and $w=1$. Also, $v m_{4}=3 m_{0}+m_{3}$, thus $z=3$. Now, $q^{\prime}=q_{u-z}=0$ and $r^{\prime}=r_{u-z}=1$. Thus C1 holds.

To prove the main theorem we use the following lemma of Aramova et al.
Lemma 2.5 (Lemma 1.1, AHH]) Let $I \subset R=K\left[x_{0}, \ldots, x_{n}\right]$ be a graded ideal and G a finite subset of homogenous elements of I. Given a term order $<$, there exist a unique monomial K-basis B of $R /\left(i n_{<}(G)\right)$. If B is a K-basis of R / I, then G is a Gröbner basis of I with respect to $<$.

Remark 2.6 Let $P \subset R=K\left[x_{0}, \ldots, x_{n}\right]$ be the kernel of the K-algebra homomorphism $\eta: R \rightarrow K[t]$ defined by $\eta\left(x_{i}\right)=t^{m_{i}}$ with m_{0}, \ldots, m_{n} an almost arithmetic sequence of positive integers with $\operatorname{gcd}\left(m_{0}, \ldots, m_{n}\right)=1$. Then a set B is a K-basis of R / P if and only if $l_{1}-l_{2} \notin P$ for any two monomials $l_{1}, l_{2} \in B$ with $l_{1} \neq l_{2}$.

Proof. Assume there exist $l_{1}, \ldots, l_{s} \in B$ and $c_{1}, \ldots, c_{s} \in K$ not all zero such that $\sum c_{i} l_{i} \in P$. This implies that $\sum c_{i} \eta\left(l_{i}\right)=0$. Hence by the definition of η, there exist $i \neq j$ such that $\eta\left(l_{i}\right)=\eta\left(l_{j}\right)$. This implies that $l_{i}-l_{j} \in P$.

Proof. (of Theorem 2.3) Let G be as in the theorem (it consists of homogenous binomials according to the grading $w t\left(x_{i}\right)=m_{i}$). By Lemma 2.5let B be the unique monomial K-basis of $R /\left(i n_{<}(G)\right)$. Assume $0 \neq l_{1}-l_{2} \in P$ for some monomials $l_{1}, l_{2} \in B$. Then we show there is a contradiction to Lemma 1.2 and hence the proof is done by the above lemma and remark.

Throughout the proof let i, j, and δ_{k} be positive integers such that $1 \leq i, j \leq$ $p-1$ and $\delta_{k}=0$ or 1 . Also, we will use the sentence "without loss of generality" repeatedly. The usage of this sentence will be in instances as follows. If a monomial β divides l_{1} and l_{2}, then write $l_{1}-l_{2}=\beta\left(l_{1}^{\prime}-l_{2}^{\prime}\right)$ with β does not divide l_{1}^{\prime} or β does not divide l_{2}^{\prime}. Note $l_{1}-l_{2} \in P$ if and only if $\eta\left(l_{1}\right)-\eta\left(l_{2}\right)=0$ if and only if $\eta\left(l_{1}^{\prime}\right)-\eta\left(l_{2}^{\prime}\right)=0$ if and only if $l_{1}^{\prime}-l_{2}^{\prime} \in P$.

First, we work the proof under the assumption that x_{n} divides either l_{1} or l_{2}. Without loss of generality assume $x_{n}^{a_{1}}$ divides l_{1} for some $a_{1}<v$ but x_{n} does not divide l_{2}. Consider two cases:

Case x_{0} divides neither l_{1} nor l_{2} : then $x_{p}^{a_{2}}$ must divide l_{2} for some a_{2}, otherwise $l_{2}=x_{j}$ for some $1 \leq j \leq p-1$ (as $x_{i} x_{j} \notin B$ for $\left.1 \leq i \leq j \leq p-1\right)$. But this is a contradiction to the minimality of the generating set of Γ. We may assume that x_{p} does not divide l_{1}, therefore, we have $l_{1}=x_{j}^{\delta_{1}} x_{n}^{a_{1}}$ and $l_{2}=x_{i}^{\delta_{2}} x_{p}^{a_{2}}$ with $a_{2}<q+\sigma$ and $\sigma=1$ or 0 according as $i<r$ or $i \geq r$. Since $\eta\left(l_{1}\right)=\eta\left(l_{2}\right)$ we get the following equality

$$
\begin{equation*}
\delta_{1} m_{j}+a_{1} m_{n}=\delta_{2} m_{i}+a_{2} m_{p} \tag{1}
\end{equation*}
$$

If $\delta_{1}=0$, then $a_{1} m_{n} \in \Gamma^{\prime}$, but $a_{1}<v$, thus this gives a contradiction to the minimality of v in Lemma 1.2, hence done. Therefore, assume $\delta_{1}=1$. If $\delta_{2}=0$,
then the above equality becomes $m_{0}+a_{1} m_{n}=\left(a_{2}-1\right) m_{p}+m_{p-j}$. Note the right-hand side is $g_{\left(a_{2}-1\right)+(p-j)}$. Thus $g_{\left(a_{2}-1\right)+(p-j)}-m_{0}=a_{1} m_{n} \in \Gamma$. This gives a contradiction to the minimality of u in Lemma 1.2 as $a_{2}-1<q$ and hence $\left(a_{2}-1\right)+(p-j)<u$. If $\delta_{2}=1$ then (1) becomes $(1-\gamma) m_{0}+a_{1} m_{n}=$ $\left(a_{2}-\gamma\right) m_{p}+m_{\gamma p+i-j}$ with $\gamma=0$ or 1 according as $i>j$ or $i<j$. If $\gamma=1$, then this gives a contradiction to the minimality of v, on the other hand, if $\gamma=0$, then we get a contradiction to the minimality of u (noting $a_{2} \leq q$ if $i<r$ and $a_{2}<q$ if $i \geq r)$.

Case x_{0} divides either l_{1} or l_{2} :
Consider four subcases:
Subcase 1: x_{0}^{b} divides l_{1} for some $b \geq 1$ (and without loss of generality x_{0} does not divide l_{2}). Then $x_{p}^{a_{2}}$ must divide l_{2} for some a_{2} (we may assume that x_{p} does not divide l_{1}), otherwise $l_{2}=x_{j}$ for some $1 \leq j \leq p-1$ which is a contradiction to the minimality of the generating set of Γ. Therefore, we have $l_{1}=x_{0}^{b} x_{j}^{\delta_{1}} x_{n}^{a_{1}}$ and $l_{2}=x_{i}^{\delta_{2}} x_{p}^{a_{2}}$ with $a_{2}<q+\sigma$ and $\sigma=1$ or 0 according as $i<r$ or $i \geq r$. Since $\eta\left(l_{1}\right)=\eta\left(l_{2}\right)$ we get $b m_{0}+\delta_{1} m_{j}+a_{1} m_{n}=\delta_{2} m_{i}+a_{2} m_{p}$. This is a contradiction to the minimality of u as $a_{2} p+i<q p+r=u$ and $b \geq 1$.

Subcase 2: x_{0}^{b} divides l_{2} for some $b \geq 1$ (and without loss of generality x_{0} does not divide l_{1}). There are three subcases;

Subsubcase 2-1: x_{p} does not divide any of l_{1} or l_{2}. Then $l_{1}=x_{j}^{\delta_{1}} x_{n}^{a_{1}}$ and $l_{2}=x_{0}^{b} x_{i}^{\delta_{2}}$. Note that if $\delta_{1}=1, q^{\prime}=0$, and $a_{1} \geq v-w$, then we must have $j<r^{\prime}$, otherwise l_{1} is a multiple of $\operatorname{LM}\left(\psi_{j-r^{\prime}}\right)$ and hence is not in B. Since $\eta\left(l_{1}\right)=\eta\left(l_{2}\right)$ we get

$$
\begin{equation*}
\delta_{1} m_{j}+a_{1} m_{n}=b m_{0}+\delta_{2} m_{i} \tag{2}
\end{equation*}
$$

If $\delta_{1}=0$, then (2) becomes $a_{1} m_{n}=b m_{0}+\delta_{2} m_{i}$. This is a contradiction to the minimality of v. If $\delta_{1}=1$ and $\delta_{2}=0$, then (2) becomes $m_{j}+a_{1} m_{n}=b m_{0}$. By Part (iii) and the uniqueness of the parameters in Lemma 1.2, this equality suggests that $a_{1}=v-w, \nu=b+1$, and $q^{\prime}=0$. This implies $u-z=j$. But $j<r^{\prime}$ by the note above, hence $u-z<r^{\prime}$ which is impossible (see Notations 1.3 and 1.1). If $\delta_{1}=1$, $\delta_{2}=1$, and $j>i$, then (2) becomes $m_{j-i}+a_{1} m_{n}=(b+1) m_{0}$. By Part (iii) and the uniqueness of the parameters in Lemma 1.2 this equality suggests that $a_{1}=v-w$, $\nu=b+2$, and $q^{\prime}=0$. This implies $u-z=j-i<r^{\prime}$ which is impossible. If $\delta_{1}=1, \delta_{2}=1$, and $j<i$, then (2) becomes $a_{1} m_{n}=(b-1) m_{0}+m_{i-j}$. This is a contradiction to the minimality of v in Lemma 1.2,

Subsubcase 2-2: $x_{p}^{a_{2}}$ divides l_{2} for some a_{2}. Then we have $l_{1}=x_{j}^{\delta_{1}} x_{n}^{a_{1}}$ and $l_{2}=x_{0}^{b} x_{i}^{\delta_{2}} x_{p}^{a_{2}}$ with $a_{2}<q+\sigma$ and $\sigma=1$ or 0 according as $i<r$ or $i \geq r$. Since $\eta\left(l_{1}\right)=\eta\left(l_{2}\right)$ we get $\delta_{1} m_{j}+a_{1} m_{n}=b m_{0}+\delta_{2} m_{i}+a_{2} m_{p}$. Thus $a_{1} m_{n}=$ $\left(b-\delta_{1}\right) m_{0}+\delta_{2} m_{i}+\left(a_{2}-\delta_{1}\right) m_{p}+\delta_{1} m_{p-j} \in \Gamma^{\prime}$. This is a contradiction to the
minimality of v.
Subsubcase 2-3: $x_{p}^{a_{2}}$ divides l_{1} for some a_{2}. Then we have $l_{1}=x_{j}^{\delta_{1}} x_{p}^{a_{2}} x_{n}^{a_{1}}$ with $l_{2}=x_{0}^{b} x_{i}^{\delta_{2}}$ with $\delta_{k}=0$ or 1 and with appropriate values of a_{1}, a_{2}, i, and j so that $l_{1}, l_{2} \in B$. Assume $\delta_{1}=1$. Since $\eta\left(l_{1}\right)=\eta\left(l_{2}\right)$ we get $\delta_{1} m_{j}+a_{2} m_{p}+a_{1} m_{n}=$ $b m_{0}+\delta_{2} m_{i}$. Thus we have

$$
m_{\gamma p+j-i \delta_{2}}+\left(a_{2}-\gamma\right) m_{p}+a_{1} m_{n}=\left(b+\delta_{2}-\gamma\right) m_{0}
$$

where $\gamma=1$ or 0 according as $i>j$ or $i<j$. By part (iii) and the uniqueness in Lemma 1.2, this equality suggests that $u-z=\left(a_{2}-\gamma\right) p+\gamma p+j-i \delta_{2}, a_{1}=v-w$, and $\nu=b+\delta_{2}-\gamma$. This is a contradiction to the uniqueness of z and ν since δ_{2} and γ may vary non-simultaneously. Similarly, we get a contradiction for the case $\delta_{1}=0$.

Finally, we finish the proof by taking care of the remaining case where x_{n} divides neither l_{1} nor l_{2}. Consider two cases:

Case x_{0} divides neither l_{1} nor l_{2} : in such a case $l_{1}=x_{i_{1}}^{\delta_{1}} x_{p}^{a_{1}}$ and $l_{2}=x_{i_{2}}^{\delta_{2}} x_{p}^{a_{2}}$ with $1 \leq i_{j} \leq p-1$ and $a_{k}<q+\sigma$ and $\sigma=1$ or 0 according as $i_{k}<r$ or $i_{k} \geq r$. Following similar process as above one can easily show that there is a contradiction.

Case x_{0} divides either l_{1} or l_{2} : then, and without loss of generality, we have $l_{1}=x_{i_{1}}^{\delta_{1}} x_{p}^{a_{1}}$ and $l_{2}=x_{0}^{b} x_{i_{2}}^{\delta_{2}} x_{p}^{a_{2}}$. Following similar process as above one can easily show that there is a contradiction.

Patil and Singh [PaSi] constructed a generating set (but not minimal) for the defining ideal P. We call the elements of this set the Patil-Singh generators. The generators in this set are the same as before but with different indices as follows (with $q, r, q_{z}, r_{z}, q^{\prime}, r^{\prime}$, and ε as before);

$$
\left\{\xi_{i, j} \mid 1 \leq i \leq j \leq p-1\right\} \cup\{\theta\} \cup\left\{\varphi_{i} \mid 0 \leq i \leq p-r\right\} \cup\left\{\psi_{j} \mid 0 \leq j \leq p-r^{\prime}\right\}
$$

Note that the sets of indices of φ_{i} and of ψ_{i} in the Patil-Singh generators are $[0, p-r]$ and $\left[0, p-r^{\prime}\right]$, respectively. On the other hand, the set of indices of φ_{i} and of ψ_{i} in the Patil generators are I and J, respectively. It turned out that the Patil set in contained in G (where G as in Theorem(2.3) which in turn is contained in the Patil-Singh set. Also, note that the set of Patil-Singh generators has the advantage of a simpler set of indices than the set G. Therefore, whenever the minimality is not an issue, it is much easier to deal with the set of Patil-Singh generators than with G. The theorem below proves that the set of Patil-Singh generators is indeed a Gröbner basis . To prove the theorem below we need the following proposition which helps to visualize the interval J given by Patil Pat.

Proposition 2.7 Let $z>0$ and let $z=q_{z} p+r_{z}$ with $q_{z} \in \mathbb{Z}$ and $r_{z} \in[1, p]$. Then $\min \left\{z-1, p-r^{\prime}\right\}= \begin{cases}p-r^{\prime}, & \text { if } r \leq r_{z} ; \\ p-r^{\prime}, & \text { if } r>r_{z} \text { and } z>p ; \\ z-1, & \text { if } r>r_{z} \text { and } z \leq p .\end{cases}$
Moreover, $z \leq p$ if and only if $q_{z}=0$.
Proof. First note that $p-r^{\prime}=(1-\varepsilon) p+r_{z}-r$ where $\varepsilon=0$ or 1 according as $r>r_{z}$ or $r \leq r_{z}$. It is obvious that if $z>0$ then $q_{z} \geq 0$. Consider three cases:
Case $r \leq r_{z}$: since $r \in[1, p]$ then $z-1=q_{z} p+r_{z}-1 \geq r_{z}-1 \geq r_{z}-r=p-r^{\prime}$.
Case $r>r_{z}$ and $z>p$: this implies $q_{z} \geq 1$. Therefore, $z-1=q_{z} p+r_{z}-1 \geq$ $p+r_{z}-1 \geq p+r_{z}-r=p-r^{\prime}$.
Case $r>r_{z}$ and $z \leq p$: this implies $q_{z}=0$. Therefore, $z-1=r_{z}-1 \leq r_{z}-1+p-r<$ $p+r_{z}-r=p-r^{\prime}$.

Therefore, whenever $W \neq \phi$ we write J as follows

$$
J= \begin{cases}{\left[0, p-r^{\prime}\right],} & \text { if } q_{z}>0 \text { or } \varepsilon>0 \\ {\left[0, r_{z}-1\right],} & \text { if } q_{z}=0 \text { and } \varepsilon=0\end{cases}
$$

Theorem 2.8 The set $S=\left\{\varphi_{i} \mid 0 \leq i \leq p-r\right\} \cup\left\{\psi_{j} \mid 0 \leq j \leq p-r^{\prime}\right\} \cup\{\theta\} \cup$ $\left\{\xi_{i, j} \mid 1 \leq i \leq j \leq p-1\right\}$, that is, the set of Patil-Singh generators, is a Gröbner basis (not minimal) for the ideal P with respect to the grevlex monomial order with $x_{0}<x_{1}<\cdots<x_{n}$ and with the grading $w t\left(x_{i}\right)=m_{i}$.

Proof. Recall $q^{\prime}=q-q_{z}-\varepsilon$ and $r^{\prime}=\varepsilon p+r-r_{z}$ where $\varepsilon=0$ or 1 according as $r>r_{z}$ or $r \leq r_{z}$. If $q_{z}>0$ or $\varepsilon>0$, then $J=\left[0, p-r^{\prime}\right]$ and the set of Patil-Singh generators coincides with the set G of Theorem 2.3, hence done. If $q_{z}=0$ and $\varepsilon=0$, then $q^{\prime}=q, r^{\prime}=r-r_{z}$, and $J=\left[0, r_{z}-1\right]$. Also note $r_{z} \leq r_{z}+p-r=p-r^{\prime}$. Now consider $L M\left(\psi_{j}\right)$ where j runs over $\left[r_{z}, p-r^{\prime}\right]$ (this indicates the binomials that exist in Patil-Singh but not in G) we get $\left\{L M\left(\psi_{j}\right)=x_{j+r^{\prime}} x_{p}^{q^{\prime}} x_{n}^{v-w} \mid r_{z} \leq\right.$ $\left.j \leq p-r^{\prime}\right\}=\left\{x_{j} x_{p}^{q} x_{n}^{v-w} \mid r \leq j \leq p\right\}=x_{n}^{v-w}\left\{L M\left(\varphi_{i}\right)=x_{j+r} x_{p}^{q} \mid 0 \leq j \leq\right.$ $p-r\}$. Therefore, the monomial K-basis of $R /\left(i n_{<}(S)\right)$ is essentially the same as the monomial K-basis of $R /\left(i n_{<}(G)\right)$ where S is the set of the Patil-Singh generators. Hence done by Lemma 2.5

Finally, we finish this paper by noting that Patil-Singh generators do not form a Gröbner basis in all cases if we consider the grevlex monomial order with the same grading as before but with $x_{0}>x_{1}>\cdots>x_{n}$ (in this case $\prod_{i=0}^{n} x_{i}^{a_{i}}>_{\text {grevlex }} \prod_{i=0}^{n} x_{i}^{b_{i}}$ if in the ordered tuple $\left(a_{1}-b_{1}, \ldots, a_{n}-b_{n}\right)$ the right-most nonzero entry is negative). In the following we prove this and give an example.

Remark 2.9 Assume $r<r_{z}<p$ (hence $\varepsilon=0$), $\lambda>1$, and $w>0$. Then Patil-Singh generators are not a Gröbner basis with respect to the grevlex monomial ordering with $x_{0}>x_{1}>\cdots>x_{n}$ and with the grading $w t\left(x_{i}\right)=m_{i}$.

Proof. First note $L T\left(\varphi_{i}\right)=x_{i+r} x_{p}^{q}$ if $w>0$ and $L T\left(\varphi_{i}\right)=x_{0}^{\lambda-1} x_{i}$ if $w=0$. Also, $L T\left(\psi_{j}\right)=x_{0}^{\lambda+\mu-\varepsilon} x_{j}, L T(\theta)=x_{0}^{\mu} x_{r_{z}} x_{p}^{q_{z}}$, and $L T\left(\xi_{i, j}\right)=x_{i} x_{j}$. If $r<r_{z}<p$ (hence $\varepsilon=0$), $\lambda>1$, and $w>0$, then none of the terms of $S\left(\xi_{1, r_{z}}, \theta\right)=x_{1} x_{n}^{v}-$ $x_{0}^{\mu+1} x_{r_{z}+1} x_{p}^{q_{z}}$ is a multiple of any of the leading terms of the Patil-Singh generators.

Example 2.10 Let $m_{0}=20, m_{1}=21, m_{2}=22, m_{3}=23, m_{4}=24$, and $m_{5}=29$. Note $n=5$ and $p=4$. Let P be the kernel of the K-algebra homomorphism η : $K\left[x_{0}, \ldots, x_{5}\right] \rightarrow K[t]$ defined by $\eta\left(x_{i}\right)=t^{m_{i}}$. Recall the parameters in Lemma 1.2. It is easy to check that $v=3$, hence by the uniqueness condition we must have $\mu=2, q_{z}=1$, and $r_{z}=3$, thus $z=7$. For $1 \leq i \leq 3$ note that in order for $a m_{4}+m_{i}-m_{0}$ to be in Γ we must have $a \geq 2$. Note $g_{2 p+1}=2(24)+21=2(20)+29$. Therefore, we conclude that $u=2 p+1=9$, thus $q=2$ and $r=1$. Hence, $\lambda=2$, $w=1, r^{\prime}=2$, and $q^{\prime}=1$. Therefore, Patil-Singh generators are as follows: $G=\left\{\varphi_{i} \mid 0 \leq i \leq 3\right\} \cup\left\{\psi_{j} \mid 0 \leq j \leq 2\right\} \cup\{\theta\} \cup\left\{\xi_{i, j} \mid 1 \leq i \leq j \leq 3\right\}$ where $\varphi_{i}=\underline{x_{i+1} x_{4}^{2}}-x_{0} x_{i} x_{5}$, and $\psi_{j}=x_{j+2} x_{5}^{2}-\underline{x_{0}^{3} x_{j}}$, and $\theta=x_{5}^{3}-\underline{x_{0}^{2} x_{3} x_{4}}$ and $\xi_{i, j}=\underline{x_{i} x_{j}}-x_{0}^{(1-\gamma)} x_{i+j-\gamma p} x_{p}^{\gamma}$ with $\gamma=0$ or 1 according as $i+j \leq p$ or $i+j>p$. The set G is not Gröbner basis with respect to the grevlex monomial ordering with $x_{0}>x_{1}>\cdots>x_{5}$ and with the grading $w t\left(x_{i}\right)=m_{i}$: consider $S\left(\theta, \xi_{1,3}\right)=x_{1} x_{5}^{3}-x_{0}^{3} x_{4}^{2}$. Note that neither term of $S\left(\theta, \xi_{1,3}\right)$ is a multiple of any of the leading terms above.

Acknowledgement

The author thanks Professor Irena Swanson for the useful discussions and comments during the course of this work. Also, the author thanks the referee for the very useful suggestion that simplified the proof much easier than the original form.

References

[Ayy] I. Al-Ayyoub. The Ratliff-Rush closure and a minimal Groebner basis for the defining ideals of certain affine monomial curves. Ph.D. thesis, New Mexico State University. Las Cruces, NM (2004).
[AHH] A. Aramova, J. Herzog and T. Hibi, Finite lattices and lexicographic Gröbner bases, Europ. J. Combin. 21 (2000), 431 - 439.
[Ful] W. Fulton. Introduction to Toric Varieties, Princeton University Press, Princeton, NJ (1993).
[Pat] D. P. Patil, Minimal sets of generators for the relation ideals of certain monomial curves, Manuscripta Math. 80 (1993), 239 - 248.
[PaSi] D. P. Patil and B. Singh, Generators for the derivation modules and the relation ideals of certain curves, Manuscripta Math. 68 (1990), 327 - 335.
[Sen] I. Sengupta, A Gröbner basis for certain affine monomial curves, Comm. Algebra. 31 (3) (2003), 1113 - 1129.
[Stu1] B. Sturmfels, Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, RI (1995).
[Stu2] B. Sturmfels, Gröbner bases of toric varieties, Tohoku Mathematical Journal 43 (1991), 249-261.

Ibrahim Al-Ayyoub, assistant professor
Department of Mathematics and Statistics
Jordan University of Science and Technology
P O Box 3030, Irbid 22110, Jordan.
Email address: iayyoub@just.edu.jo

