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Abstract. We state conjectures on the relationships between automorphic
representations and Galois representations, and give evidence for them.
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1. Introduction.

1.1. Given an algebraic Hecke character for a number field F , a classical construc-
tion of Weil produces a compatible system of 1-dimensional ℓ-adic representations
of Gal(F/F ). In the 1960s it was realised by Serre and others that this construc-
tion might well be the tip of a very large iceberg. Serre conjectured the existence
of 2-dimensional ℓ-adic representations of Gal(Q/Q) attached to classical modu-
lar eigenforms for the group GL2 over Q, and their existence was established by
Deligne not long afterwards. Moreover, Langlands observed that one way to at-
tack Artin’s conjecture on the analytic continuation of Artin L-functions might
be via first proving that any n-dimensional irreducible complex representation of
the absolute Galois group of a number field F came (in some precise sense) from
an automorphic representation for GLn /F , and then analytically continuing the
L-function of this automorphic representation instead.

One might ask whether one can associate “Galois representations” to automor-
phic representations for an arbitrary connected reductive group over a number field.
There are several approaches to formalising this problem. Firstly one could insist
on working with all automorphic representations and attempt to associate to them
complex representations of a “Langlands group”, a group whose existence is only
conjectural but which, if it exists, should be much bigger than the absolute Galois
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2 KEVIN BUZZARD AND TOBY GEE

group of the number field (and even much bigger than the Weil group of the number
field)—a nice reference for a rigorous formulation of a conjecture here is [Art02].
Alternatively one could restrict to automorphic representations that are “algebraic”
in some reasonable sense, and in this case one might attempt to associate certain
complex representations of the fundamental group of some Tannakian category of
motives, a group which might either be a pro-algebraic group scheme or a topo-
logical group. Finally, following the original examples of Weil and Deligne, one
might again restrict to algebraic automorphic representations, and then attempt to
associate compatible systems of ℓ-adic Galois representations to such objects (that
is, representations of the absolute Galois group of the number field over which the
group is defined). The advantage of the latter approach is that it is surely the most
concrete.

For the group GLn over a number field, Clozel gave a definition of what it meant
for an automorphic representation to be “algebraic”. The definition was, perhaps
surprisingly, a non-trivial twist of a notion which presumably had been in the air for
many years. Clozel made some conjectures predicting that algebraic automorphic
representations should give rise to n-dimensional ℓ-adic Galois representations (so
his conjecture encapsulates Weil’s result on Hecke characters and Deligne’s theorem
too). Clozel proved some cases of his conjecture, when he could switch to a unitary
group and use algebraic geometry to construct the representations.

The goal of this paper is to generalise (most of) Clozel’s conjecture to the case
where GLn is replaced by an arbitrary connected reductive group G. Let us explain
the first stumbling block in this programme. The naive conjecture would be of the
following form: if an automorphic representation π for G is algebraic (in some rea-
sonable sense) then there should be a Galois representation into the Qℓ-points of the
L-group of G, associated to π. But if one looks, for example, at Proposition 3.4.4
of [CHT08], one sees that they can associate ℓ-adic Galois representations to cer-
tain automorphic representations on certain compact unitary groups, but that the
Galois representations are taking values in a group Gn which one can check is not
the L-group of the unitary group in question (for dimension reasons, for example).
In fact there are even easier examples of this phenomenon: if π is the automorphic
representation for GL2 /Q attached to an elliptic curve over the rationals, then
(if one uses the standard normalisation for π) one sees that π has trivial central
character and hence descends to an automorphic representation for PGL2 /Q which
one would surely hope to be algebraic (because it is cohomological). However, the
L-group of PGL2 /Q is SL2 and there is no way of twisting the Galois representa-
tion afforded by the ℓ-adic Tate module of the curve so that it lands into SL2(Qℓ),
because the cyclotomic character has no square root (consider complex conjuga-
tion). On the other hand, there do exist automorphic representation for PGL2 /Q
which have associated Galois representations into SL2(Qℓ); for example one can
easily build them from automorphic representations on GL2 /Q constructed via the
Langlands-Tunnell theorem applied to a continuous even irreducible 2-dimensional
representation of Gal(Q/Q) into SL2(C) with solvable image. What is going on?

Our proposed solution is the following. For a general connected reductive group
G, we believe that there are two reasonable notions of “algebraic”. For GLn these
notions differ by a twist (and this explains why this twist appears in Clozel’s work).
For some groups the notions coincide. But for some others—for example PGL2—
the notions are disjoint. The two definitions “differ by half the sum of the positive
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roots”. We call the two notions C-algebraic and L-algebraic. It turns out that coho-
mological automorphic representations are C-algebraic (hence the C), and that one
might expect Galois representations into the L-group attached to L-algebraic au-
tomorphic representations (hence the L). Clozel twists C-algebraic representations
into L-algebraic ones in his paper, and hence conjectures that there should be Ga-
lois representations attached to C-algebraic representations for GLn, but this trick
is not possible in general. In this paper we explicitly conjecture the existence of
ℓ-adic Galois representations associated to L-algebraic automorphic representations
for a general connected reductive group over a number field.

On the other hand, one must not leave C-algebraic representations behind. For
example, for certain rank 2 unitary groups over the rationals, all automorphic rep-
resentations are C-algebraic and none are L-algebraic at all! It would be a shame
to have no conjecture at all in these cases. We show in section 5 that given a
C-algebraic automorphic representation for a group G, it can be lifted to an L-
algebraic representation for a certain covering group G̃ (a z-extension of G), and
hence one might conjecturally expect an associated Galois representation into the
L-group not of G but of G̃. For example, if π is the automorphic representation
for the group PGL2 /Q attached to an elliptic curve over Q, we can verify that

π is C-algebraic, and that G̃ = GL2 /Q in this case, and hence one would expect
a Galois representation into GL2(Qℓ) associated to π, which is of course given by
the Tate module of the curve. We also verify that in the Clozel-Harris-Taylor uni-
tary group case, the Galois representations that they associate to their C-algebraic
automorphic representations are indeed what our conjecture would predict.

In this paper, we explain the phenomenon above in more detail, and formulate
a conjecture associating ℓ-adic Galois representations to L-algebraic automorphic
representations for an arbitrary connected reductive group over a number field,
which appears to essentially include all known theorems and conjectures of this
form currently in the literature. We initially imagined that such a conjecture was
already “known to the experts”. However, our experience has been that this is not
the case; in fact, it seems that the issues that arise when comparing the definitions
of L-algebraic and C-algebraic representations were a known problem, with no clear
solution (earlier attempts to deal with this issue have been by means of redefining
the local Langlands correspondence and the Satake isomorphism via a twist, as
in [Gro99]; however this trick only works for certain groups). The one example

that we found in the literature of a covering group G̃—the group Gn of [CHT08]—
seemed to us to be a construction whose main motivation was that it was the group
that worked, rather than the group that came from a more conceptual argument.
Consequently we hope that this article will clarify once and for all a variety of
issues that occur when leaving the relative safety of GLn, giving a firm framework
for further research on Galois representations on groups other than GLn.

1.2. Acknowledgements. We would like to thank James Arthur, Frank Calegari,
Matthew Emerton, Wee Teck Gan, Dick Gross, Florian Herzig, Robert Langlands,
David Loeffler, Richard Taylor and David Vogan for helpful discussions relating to
this work.

The first author was supported by an EPSRC Advanced Research Fellowship,
and the second author would like to acknowledge the support of the National Sci-
ence Foundation (award number DMS-0841491). He would also like to thank the
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mathematics department of Northwestern University for its hospitality in the early
stages of this project.

2. L-groups and local definitions.

In this section we give an overview of various standard facts concerning L-groups,
the Satake isomorphism, the archimedean local Langlands correspondence, and ba-
sic Hodge-Tate theory, often with a specific emphasis on certain arithmetic aspects
that are not considered relevant in many of the standard references. In summary:
our L-groups will be over Q, we will keep track of the two different Q-structures
in the Satake isomorphism, and our local Langlands correspondence will concern
representations of G(R) or G(R), where R is an algebraic closure of the reals which
we do not canonically identify with C (note that on the other hand, all our rep-
resentations will be on C-vector spaces). This section is relatively elementary but
contains all of the crucial local definitions.

2.1. The L-group. We briefly review the notion of an L-group. We want to view
the L-group of a connected reductive group as a group over Q, rather than the more
traditional C, as we shall later on be considering representations into the Qℓ-points
of the L-group. We review the standard definitions from the point of view that we
shall be taking.

We take the approach to dual groups explained in section 1 of [Kot84], but
work over Q. Let k be a field and let G be a connected reductive algebraic group
over k. Fix once and for all a separable closure ksep of k, and let Γk denote
Gal(ksep/k). The group G splits over ksep, and for any maximal torus T contained in
a Borel subgroup B of Gksep , one can associate the based root datum Ψ0(G,B, T ) :=
(X∗(T ),∆∗(B), X∗(T ),∆∗(B)) consisting of the character and cocharacter groups
of T , and the roots and coroots which are positive with respect to the ordering
defined by B. If B′ and T ′ are another choice of Borel and maximal torus then there
is an inner automorphism of Gksep sending B′ to B and T ′ to T , and all such inner
automorphisms induce the same isomorphisms of based root data Ψ0(G,B, T ) →
Ψ0(Gksep , B′, T ′). Following Kottwitz, we define Ψ0(G) := (X∗,∆∗, X∗,∆∗) to be
the projective limit of the Ψ0(G,B, T ) via these isomorphisms. This means in
practice that given a maximal torus T of Gksep , the group X∗ is isomorphic to the
character group of T but not canonically; however given also a Borel B containing
the torus, there is now a canonical map X∗ = X∗(T ) (and different Borels give
different canonical isomorphisms). There is a natural group homomorphism µG :
Γk → Aut(Ψ0(G)) (defined for example in §1.3 of [Bor79]) and if K ⊆ ksep is a
Galois extension of k that splits G then µG factors through Gal(K/k).

We let Ĝ denote a connected reductive group over Q equipped with a given

isomorphism Ψ0(Ĝ) = Ψ0(G)∨, the dual root datum to Ψ0(G). There is a canonical
group isomorphism Aut(Ψ0(G)) = Aut(Ψ0(G)∨), sending an automorphism of X∗

to its inverse (one needs to insert this inverse to ensure the group structures coincide
in the bijection), and hence a canonical action of Γk on Ψ0(G)∨. If we choose a

Borel, a torus, and a splitting (also called a pinning) of Ĝ then, as on p10 of [Spr79],

this data induces a lifting Aut(Ψ0(G)∨) → Aut(Ĝ) and hence (via µG) a left action

of Γk on Ĝ. We define the L-group LG of G to be the resulting semidirect product,

regarded as a group scheme over Q with connected component Ĝ and component
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group Γk. For K a field containing Q we have LG(K) = Ĝ(K)⋊ Γk. Often in the
literature people use LG to be the group that we call LG(C).

Note that there is a fair amount of “ambiguity” in this definition. The group Ĝ is
“only defined up to inner automorphisms”, as is the lifting of µG. So, even if we fix
our choice of ksep, points in LG(K) are “only defined up to conjugation by Ĝ(K)”.

If K is an extension of Q and ρ is a group homomorphism Gal(k/k) → LG(K),

then we say that ρ is admissible if the map Gal(k/k) → Gal(k/k) induced by ρ and
the surjection LG(K) → Gal(k/k) is the identity.

We fix once and for all an embedding Q → C. Later on, when talking about
Galois representations, we shall fix a prime number p and an embedding Q → Qp.

This will enable us to talk about the groups LG(C) and LG(Qp).

2.2. Satake parameters. In this section, k is a non-archimedean local field and we
fix a separable closure k of k and set Γk = Gal(k/k). We normalise the reciprocity
map k× → Γab

k of local class field theory so that it takes a uniformiser to a geometric
Frobenius. We follow Tate’s definitions and conventions for Weil groups—in brief, a
Weil group Wk = Wk/k for k comes equipped with maps Wk → Γk and k× → W ab

k

such that the induced map k× → Γab
k is the reciprocity homomorphism of class

field theory, normalised as above.
Let G/k be connected reductive group which is furthermore unramified (that is,

quasi-split, and split over an unramified extension of k). Then G(k) has hyper-
special maximal compact subgroups; fix one, and call it K. Nothing we do will
depend on this choice, but we will occasionally need to justify this. Let B be a
Borel in G defined over k, let T be a maximal torus of B, and let Td be the maximal
split sub-torus of T . Let Wd be the subgroup of the Weyl group of G consisting
of elements which map Td to itself. Let oT denote the maximal compact sub-
group of T (k). It follows from an easy cohomological calculation (done for example
in §9.5 of [Bor79]) that the inclusion Td → T induces an isomorphism of groups
Td(k)/Td(O) → T (k)/oT . We normalise Haar measure on G(k) so that K has mea-
sure 1 (and remark that by 3.8.2 of [Tit79] this normalisation is independent of the
choice of hyperspecial maximal compact K). If R is a field of characteristic zero
then let HR(G(k),K) denote the Hecke algebra of bi-K-invariant R-valued func-
tions on G(k) with compact support, and with multiplication given by convolution.
Similarly HR(T (k),

oT ) is the analogous Hecke algebra for T (k).
The Satake isomorphism (see for example §4.2 of [Car79]) is a canonical iso-

morphism HC(G(k),K) = C[X∗(Td)]
Wd = HC(T (k),

oT )Wd , where X∗(Td) is the
cocharacter group of Td. We normalise the Satake isomorphism in the usual way,
so that it does not depend on the choice of the Borel subgroup containing T ; this is
the only canonical way to do things. This standard normalisation is however not in
general “defined over Q”—for example if k = Qp and G = GL2 and K = GL2(Zp)
then the Satake isomorphism sends the characteristic function of K

(
p 0
0 1

)
K to a

function on T (Qp) taking the value
√
p on the matrix

(
p 0
0 1

)
. This square root

of p appears because the definition of the Satake isomorphism involves a twist by
half the sum of the positive roots of G (see formula (19) of section 4.2 of [Car79])
and because of this twist, the isomorphism does not in general induce a canonical
isomorphism HQ(G(k),K) = Q[X∗(Td)]

Wd .
In [Gro99] and [Clo90] this issue of square roots is avoided by renormalising the

Satake isomorphism. Let us stress that we shall not do this here, and we shall think
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of HQ(G(k),K) and Q[X∗(Td)]
Wd as giving two possibly distinct Q-structures on

the complex algebraic variety Spec(HC(G(k),K)) which shall perform two different
functions—they will give us two (typically distinct) notions of being defined over
a subfield of C. We note however that if half the sum of the positive roots of G
is in the weight lattice X∗(T ) (this occurs for example if G is semi-simple and
simply connected, or a torus) then the map δ1/2 : T (k) → R>0 mentioned in
formula (19) of [Car79] is Q-valued (see formula (4) of [Car79] for the definition
of δ) and the proof of Theorem 4.1 of [Car79] makes it clear that in this case the
Satake isomorphism does induce an isomorphism HQ(G(k),K) = Q[X∗(Td)]

Wd .
Next we recall how the Satake isomorphism above leads us to an unramified

local Langlands correspondence. Say πv is an unramified complex representation of
G(k) (that is, it has non-zero fixed vectors for some hyperspecial maximal compact
subgroup of G(k)). Assume furthermore that πK

v 6= 0 for our given choice of K.
Then πK

v is a 1-dimensional representation of HC(G,K) and hence gives rise to a
C-valued character of HC(G,K). Now results of Gantmacher and Langlands in sec-
tion 6 of [Bor79] enable one to canonically associate to πv an unramified continuous
admissible representation rπv

: Wk → LG(C), where “admissible” in this context
means a group homomorphism such that if one composes it with the canonical map
LG(C) → Γk then one obtains the canonical map Wk → Γk (part of the definition

of the Weil group) and “unramified” means that the resulting 1-cocycle Wk → Ĝ(C)
is trivial on the inertia subgroup of Wk. In fact there are two ways of normalising
the construction: if we follow section 6 of [Bor79] then in the crucial Proposition 6.7
Borel has chosen the σ that appears there to be an arbitrary generator of the Ga-
lois group of a finite unramified extension of k which splits G, and we are free to
choose σ to be either an arithmetic or a geometric Frobenius. We shall let σ denote
a geometric Frobenius: now an easy check (unravelling the definitions in [Bor79]
and [Car79]) shows that if G = GL1 and π is an unramified representation of GL1(k)
then the corresponding Galois representation Wk → GL1(C) is the one induced by
our given isomorphism k× = W ab

k . See Remark 3.2.5 for some comments about
what would have happened had we chosen an arithmetic Frobenius here.

As we have already mentioned, we have a natural Q-structure on HC(G(k),K)
coming from the Q-valued functions HQ(G(k),K), and we have another one coming
from Q[X∗(Td)]

Wd via the Satake isomorphism. This means that, for a smooth
irreducible admissible representation π of G(k) with a K-fixed vector, there are
two (typically distinct) notions of what it means to be “defined over E”, for E a
subfield of C. Indeed, if π is a smooth admissible irreducible representation of G(k)
with a K-fixed vector, then πK is a 1-dimensional complex vector space on which
HC(G(k),K) acts, and this action induces maps

HQ(G(k),K) → C

and

Q[X∗(Td)]
Wd → C.

Definition 2.2.1. Let π be smooth, irreducible and admissible, with a K-fixed
vector. Let E be a subfield of C.

(i) We say that π is defined over E if the induced map HQ(G(k),K) → C has
image lying in E.

(ii) We say that the Satake parameter of π is defined over E if the induced map
Q[X∗(Td)]

Wd → C has image lying in E.
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If half the sum of the positive roots of G is in the lattice X∗(T ), then these
notions coincide. However there is no reason for them to coincide in general and
we shall shortly see examples for GL2(Qp) where they do not.

Note also that it is not immediately clear that these notions are independent of
the choice of K: perhaps there is some π with a K-fixed vector and a K ′-fixed vector
for two non-conjugate hyperspecial maximal compacts (for example, the trivial 1-
dimensional representation of SL2(Qp) has this property), and which is defined over
E (or has Satake parameter defined over E) for one choice but not for the other.
The reader should bear in mind that for the time being these notions depend on
the choice of K, although we will soon see (in Corollary 2.2.3 and Lemma 2.2.4)
that they are in fact independent of this choice.

We now discuss some other natural notions of being “defined over E” for E a
subfield of C, and relate them to the notions above. So let E be a subfield of C
and let π be a smooth irreducible admissible complex representation of G(k) with
a K-fixed vector, for our fixed choice of K. Let V be the underlying vector space
for π.

Lemma 2.2.2. The following are equivalent:
(i) The representation π is defined over E.
(ii) There is an E-subspace V0 of V which is G(k)-stable and such that V0⊗EC =

V .
(iii) For any (possibly discontinuous) field automorphism σ of C which fixes E

pointwise, we have π ∼= πσ = π ⊗C,σ C as C-representations.

Proof. That (ii) implies (iii) is clear—it’s an abstract representation-theoretic fact.
Conversely if (iii) holds, then (ii) follows from Lemma I.1 of [Wal85] (note: his E is
not our E), because V K is 1-dimensional. This latter lemma of Waldspurger also
shows that if (ii) holds then V K

0 is 1-dimensional over E, and hence (ii) implies (i).
To show that (i) implies (ii) we look at the explicit construction giving π from the
algebra homomorphism HQ(G(k),K) → C given in [Car79]. Given a homomor-
phism HQ(G(k),K) → C with image landing in E, the resulting spherical function
Γ : G(k) → C defined in equation (30) of [Car79] is also E-valued. Now if we de-
fine V0 to be the E-valued functions on G(k) of the form f(g) =

∑n
i=1 ciΓ(ggi) for

ci ∈ E and gi ∈ G(k), then G(k) acts on V0 by right translations, V0⊗E C is the VΓ

of §4.4 of [Car79], and the arguments in §4.4 of [Car79] show that π ∼= V0⊗EC. �

Corollary 2.2.3. If π is a smooth irreducible admissible unramified representation
of G(k), then the notion of being “defined over E” is independent of the choice of
hyperspecial maximal compact K for which πK is non-zero.

Proof. This is because condition (iii) of Lemma 2.2.2 is independent of this choice.
�

We now prove the analogous result for Satake parameters.

Lemma 2.2.4. If π is a smooth irreducible admissible unramified representation
of G(k), then the notion of π having Satake parameter being defined over E is
independent of the choice of hyperspecial maximal compact K for which πK 6= 0.

Proof. Say π is an unramified smooth irreducible admissible representation of G(k)
with a K-fixed vector. The Satake isomorphism associated to K gives us a char-
acter of the algebra HC(T (k),

oT )Wd and hence a Wd-orbit of complex characters
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of T (k). Now by p45 of [Bor79] and sections 3 and 4 of [Car79], π is a subquo-
tient of the principal series representation attached to any one of these characters,
and Theorem 2.9 of [BZ77] then implies that this Wd-orbit of complex characters
are the only characters for which π occurs as a subquotient of the corresponding
induced representations. Hence the Wd-orbit of characters, and hence the map
Q[X∗(Td)]

Wd → C attached to π, does not depend on the choice of K in the case
when π has fixed vectors for more than one conjugacy class of hyperspecial maximal
compact. In particular the image of Q[X∗(Td)]

Wd in C is well-defined independent
of the choice of K, and hence the notion of having Satake parameter defined over
E is also independent of the choice of K. �

To clarify the meaning of having a Satake parameter defined over E, we now
explain that in the case of G = GLn the notion becomes a more familiar one. If
π is an unramified representation of GLn(k) then the formalism above associates
to π an algebra homomorphism C[X∗(Td)]

Wd → C. But here T = Td as G is split,
and Wd is the usual Weyl group W of G. The ring C[X∗(Td)] = C[X∗(T )] is then

just the ring of functions on the dual torus T̂ , and hence an unramified π gives rise
to a Wd-orbit on T̂ , which can be interpreted as a semisimple conjugacy class Sπ

in GLn(C).

Lemma 2.2.5. Let G be the group GLn /k and let π be an unramified representation
of G(k). Let E be a subfield of C. Then the Satake parameter of π is defined over
E if and only if the conjugacy class Sπ contains an element of GLn(E).

Proof. The statement that the Satake parameter is defined over E is precisely the
statement that the induced map Q[X∗(T )]W → C takes values in E, which is the
statement that the characteristic polynomial of an element of Sπ has coefficients
in E. But this is the case if and only Sπ contains an element of GLn(E), because
given a monic polynomial with coefficients in E it is easy to construct a semisimple
matrix with this polynomial as characteristic polynomial. �

We leave to the reader the following elementary checks. Let G1 and G2 be
unramified connected reductive groups over k, and let π1, π2 be unramified repre-
sentations of G1(k), G2(k). Then π := π1 ⊗ π2 is an unramified representation of
(G1 × G2)(k). One can check that π is defined over E iff π1 and π2 are defined
over E, and that π has Satake parameter defined over E iff π1 and π2 do. Now
say k1/k is a finite unramified extension of non-archimedean local fields, and G/k1
is unramified connected reductive, and set H = Resk1/k(G). Then H is unram-
ified over k1, and if π is a representation of G(k1) = H(k) then π is unramified
as a representation of G(k1) if and only if it is unramified as a representation of
H(k). Furthermore, the two notions of being defined over E (one for G and one
for H) coincide. Moreover, the two notions of having Satake parameter defined
over E—one for G and one for H—also coincide; we give the argument for this as
it is a little trickier. Let Td denote a maximal split torus in G and let T denote its
centralizer. The Satake homomorphism for G is an injective ring homomorphism
from an unramified Hecke algebra for G into C[T (k1)/U ], with U a maximal com-
pact subgroup of T (k1). The Satake homomorphism for H is a map between the
same two rings, and it can be easily checked from the construction in Theorem 4.1
of [Car79] that it is in fact the same map. The map for G is an isomorphism onto
the subring C[T (k1)/U ]W (G) of C[T (k1)/U ], with W (G) the relative Weyl group
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for the pair (G, Td). The map for H is an isomorphism onto C[T (k1)/U ]W (H), and
hence C[T (k1)/U ]W (G) = C[T (k1)/U ]W (H). Now intersecting with Q[T (k1)/U ] we
deduce that Q[T (k1)/U ]W (G) = Q[T (k1)/U ]W (H) and hence the two Q-structures—
one coming from G and one from H—coincide.

We finish this section by noting that the notion of being defined over E does not
coincide with the notion of having Satake parameter defined over E, if k = Qp and
G = GL2. For example, if π is the trivial 1-dimensional representation of GL2(Qp)
then π is defined over Q but the Satake parameter attached to π has eigenvalues√
p and 1/

√
p, so the Satake parameter is not defined over Q (consider traces)

but only over Q(
√
p). Similarly if π is the character | det |1/2 of GL2(Qp) then πp

is not defined over Q but the Satake parameter of π has characteristic polynomial
(X−1)(X−p) and hence is defined over Q. This issue of the canonical normalisation
of the Satake isomorphism “introducing a square root of p” is essentially the reason
that one sees two normalisations of local Langlands for GLn in the literature—
one used for local questions and one used for local-global compatibility. We are
not attempting to unify these two notions—indeed, one of the motivations of this
paper is to draw the distinction between the two notions and explain what each is
good for.

2.3. Local Langlands at infinity. We recall the statements and basic properties
of the local Langlands correspondence for connected reductive groups over the real
or complex field. In practice, the groups that we will apply these statements to are
groups defined over completions of number fields at infinite places, so in fact we
work with groups defined over either R or a degree two extension of R which will be
isomorphic to C but may not be canonically isomorphic to C. Note however that
all our representations will be on C-vector spaces.

Let k be either the real numbers or an algebraic closure of the real numbers.
Let G be a connected reductive group over k. Fix an algebraic closure k of k and
let T ⊆ B be a maximal torus and a Borel subgroup of Gk. If π∞ is an irreducible
admissible complex representation of G(k) then Langlands associates to π∞, in a

completely canonical way, a Ĝ(C)-conjugacy class of admissible homomorphisms
r = rπ∞

from the Weil group Wk = Wk/k of k to LG(C). For simplicity let us

choose a maximal torus T̂ in ĜC; this is just for notational convenience. The group

Wk contains a finite index subgroup canonically isomorphic to k
×

; let us assume

that r(k
×
) ⊆ T̂ (C) (which can always be arranged, possibly after conjugating r by

an element of Ĝ(C)). If σ and τ denote the two R-isomorphisms k → C then one

checks easily that for z ∈ k
×

we have r(z) = σ(z)λσ τ(z)λτ for λσ, λτ ∈ X∗(T̂ )⊗ C

such that λσ − λτ ∈ X∗(T̂ ). Note that because we may not want to fix a preferred
choice of isomorphism k = C, we might sometimes “have no preference between λσ

and λτ ”; this makes our presentation diverge slightly from other standard references.

Because T̂ (C) is usually not its own normaliser in Ĝ(C), there is usually more

than one way of conjugating r(k
×
) into T̂ (C), with the consequence that the pair

(λσ, λτ ) ∈ (X∗(T̂ )⊗C)2 is not a well-defined invariant of rπ∞
; it is only well-defined

up to the (diagonal) action of the Weyl group W = W (G, T ) on (X∗(T̂ )⊗C)2. For
notational convenience however we will continue to refer to the elements λσ and λτ

of X∗(T̂ )⊗C and will check that none of our important later definitions depend on
the choice we have made. If k = R then recall from the construction of the L-group
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that there is an action of Γk on X∗(T ) ⊗ C, and the non-trivial element of this
group sends the W -orbit of λσ to the W -orbit of λτ . If k is isomorphic to C then
λσ and λτ are in general unrelated, subject to their difference being in X∗(T ).

The Weyl group orbit of (λσ, λτ ) in (X∗(T ) ⊗ C)2 is naturally an invariant
attached to the Weil group representation rπ∞

rather than to π∞ itself, but we can
access a large part of it (however, not quite all of it) more intrinsically from π∞
using the Harish-Chandra isomorphism. We explain the story when k = R; the
analogous questions in the case k ∼= C can be answered by restriction of scalars.

So, for this paragraph only, we assume k = R. If we regard G(k) as a real
Lie group with Lie algebra g, then our maximal torus T of Gk gives rise to a

Cartan subalgebra h of g ⊗R k. If we now break the symmetry and use σ to
identify k with C, we can interpret the Lie algebra of T ×k,σ C as a complex

Cartan subalgebra hCσ of the complex Lie algebra gC := g ⊗R C. We have a
canonical isomorphism hCσ = X∗(T ) ⊗Z C (this isomorphism implicitly also uses
σ, because X∗(T ) = Hom(GL1 /k, T ) was computed over k). Now via the Harish-
Chandra isomorphism (normalised in the usual way, so it is independent of the
choice of Borel) one can interpret the infinitesimal character of π∞ as a W -orbit in

HomC(h
C
σ ,C) = X∗(T ) ⊗Z C = X∗(T̂ ) ⊗Z C. Furthermore, this W -orbit contains

λσ (this seems to be well-known; see Proposition 7.4 of [Vog93] for a sketch proof).
On the other hand, we note that applying this to both σ and τ gives us a pair of
W -orbits in X∗(T )⊗ C, whereas our original construction of (λσ, λτ ) gives us the
W -orbit of a pair, which is a slightly finer piece of information (which should not
be surprising: there are reducible principal series representations of GL2(R) whose
irreducible subquotients (one discrete series, one finite-dimensional) have the same
infinitesimal character but rather different associated Weil representations).

We go back now to the general case k = R or k ∼= C. We have a W -orbit (λσ, λτ )
in (X∗(T ) ⊗Z C)2 attached to π∞. One obvious “algebraicity” criterion that one

could impose on π∞ is that λσ ∈ X∗(T̂ ) = X∗(T ). Note that λσ is only well-
defined up to an element of the Weyl group, but the Weyl group of course preserves
X∗(T̂ ) = X∗(T ), so the notion is well-defined. Also λσ depends on the isomorphism

σ : k → C, but if we use τ instead then the notion remains unchanged, because
λσ − λτ ∈ X∗(T̂ ) and hence λσ ∈ X∗(T̂ ) if and only if λτ ∈ X∗(T̂ ). This notion
of algebraicity is frequently used in the literature—one can give the connected
component of the Weil group of k the structure of the real points of an algebraic
group S over R and one is asking here that the Weil representation associated to
π∞ restricts to a map S(R) → LG(C) induced by a morphism of algebraic groups
SC → LGC via the inclusion S(R) ⊂ S(C).
Definition 2.3.1. We say that an admissible Weil group representation r : Wk →
LG(C) is L-algebraic if λσ ∈ X∗(T ). We say that an irreducible representation π∞
of G(k) is L-algebraic if the Weil group representation associated to it by Langlands
is L-algebraic.

Note that the notion of L-algebraicity for a Weil group representation r depends

only on the restriction of r to k
×

, and the notion of L-algebraicity for a represen-
tation of G(k) depends only on the infinitesimal character of this representation
when k = R.

Later on we will need the following easy lemma. Say k = R and (λσ, λτ ) is a

representative of the W -orbit on X∗(T̂ )2 associated to an L-algebraic π∞.
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Lemma 2.3.2. If i is a square root of −1 in k and j is the usual element of
order 4 in Wk then the element α∞ := λσ(i)λτ (i)rπ∞

(j) ∈ LG(C) lies in LG(Q),

has order dividing 2, and its Ĝ(C)-conjugacy class is well-defined independent of
(a) the choice of order of σ and τ , (b) the choice of representative (λσ , λτ ) of the
W -orbit and (c) the choice of square root of −1 in k.

Proof. Set r := rπ∞
. We have λσ(z)r(j) = r(j)λτ (z), and λσ(z) commutes with

λτ (z
′), and from this it is easy to check that (α∞)2 = 1 and that α∞ is unchanged

if we switch σ and τ . Changing representative of the W -orbit just amounts to
conjugating r by an element of Ĝ(C) and hence conjugating α∞ by this same
element. Finally one checks easily that conjugating α∞ by λσ(−1) gives us the
analogous element with i replaced by −i. �

The notion of L-algebraicity will be very important to us later, however it is
not hard to find automorphic representations that “appear algebraic in nature” but
whose infinite components are not L-algebraic. For example one can check that if
E is an elliptic curve over Q and π is the associated automorphic representation
of PGL2 /Q, then π∞, when considered as a representation of PGL2(R), is not L-

algebraic: the element λσ above is in X∗(T̂ ) ⊗Z
1
2Z but not in X∗(T̂ ). What has

happened is that the canonical normalisation of the Harish-Chandra homomorphism
involves (at some point in the definition) a twist by half the sum of the positive
roots, and it is this twist that has taken us out of the lattice in the elliptic curve
example.

This observation motivates a second notion of algebraicity—which it turns out
is the one used in Clozel’s paper for the group GLn. Let us go back to the case
of a general connected reductive G over k, either the reals or a field isomorphic
to the complexes. Recall that we have fixed T ⊆ B ⊆ Gk and hence we have
the notion of a positive root in X∗(T ). Let δ ∈ X∗(T ) ⊗ C denote half the sum
of the positive roots. We observed above that the assertion “λσ ∈ X∗(T )” was

independent of the choice of B and of the isomorphism k ∼= C. But the assertion
“λσ − δ ∈ X∗(T )” is also independent of such choices, for if λσ − δ ∈ X∗(T ) and
w is in the Weyl group, then w.λσ − δ = w(λσ − δ)− (δ − w.δ) ∈ X∗(T ), and also
λτ − δ = (λσ − δ) + (λτ − λσ) ∈ X∗(T ).

Definition 2.3.3. We say that the admissible Weil group representation r : Wk →
LG(C) is C-algebraic if λσ − δ ∈ X∗(T ). We say that the irreducible admissible
representation π∞ of G(k) is C-algebraic if the Weil group representation associated
to π∞ by Langlands is C-algebraic.

Again, C-algebraicity for r only depends on the restriction of r to k
×

, and C-
algebraicity for π∞ only depends on its infinitesimal character when k = R.

Here are some elementary remarks about these definitions. If δ ∈ X∗(T ) then
the notions of L-algebraic and C-algebraic coincide. If G1 and G2 are connected
reductive over k, if ri (i = 1, 2) are admissible representations ri : Wk → LGi(C),
then there is an obvious notion of a product r1 × r2 : Wk → L(G1 × G2)(C) and
r1 × r2 is L-algebraic (resp. C-algebraic) iff r1 and r2 are. One can furthermore
check that if k denotes an algebraic closure of the reals and G/k is connected
reductive, and if H = Resk/R(G), and if π is an irreducible admissible representation
of G(k) = H(R), then π is L-algebraic (resp. C-algebraic) when considered as
a representation of G(k) if and only if it is L-algebraic (resp. C-algebraic) when
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considered as a representation of H(R). This assertion comes from a careful reading
of sections 4 and 5 of [Bor79]. Indeed, if T is a maximal torus of G/k then Resk/R(T )
is a maximal torus of H/R, and if λσ, λτ ∈ X∗(T )⊗C are the parameters attached
to a representation of G(k), then λσ ⊕ λτ and λτ ⊕ λσ ∈ X∗(T ) ⊕X∗(T ) are the

parameters attached to the corresponding representation of H(R) (identifying Ĥ(C)

with Ĝ(C)2), and if δ is half the sum of the positive roots for G then δ⊕δ is half the
sum of the positive roots for H . As a consequence, we see that both L-algebraicity
and C-algebraicity of a representation π∞ of G(k) are conditions that only depend
on the infinitesimal character of the representation of the underlying real reductive
group.

Let us again attempt to illustrate the difference between the two notions of
algebraicity by considering the trivial 1-dimensional representation of GL2(R). The
Local Langlands correspondence associates to this the 2-dimensional representation
|.|1/2⊕|.|−1/2 of the Weil group of the reals. If we choose the diagonal torus in GL2

and identify its character group with Z2 in the obvious way, then we see that λσ =
λτ = δ = (12 ,− 1

2 ). In particular, λσ is not in X∗(T ), but λσ−δ is. Another example

would be the character | det |1/2 of GL2(R); this is associated to the representation
|.| ⊕ 1 of the Weil group, and so λσ = λτ = (1, 0) (or (0, 1), allowing for the Weyl
group action) and on this occasion λσ is in X∗(T ) but λσ − δ is not. Finally let us
consider the discrete series representation of GL2(R) with trivial central character
associated to a weight 2 modular form. The associated representation of the Weil

group sends an element z of R
×

to a matrix with eigenvalues
√
z.z/z and

√
z.z/z,

the square root being the positive square root. We see that the set {λσ, λτ} equals
the set {(12 ,− 1

2 ), (− 1
2 ,

1
2 )} (with ambiguities due to both the Weyl group action and

the two choices of identification of R with C) and neither λσ nor λτ are in X∗(T ),
but both of λσ − δ and λτ − δ are.

2.4. The Hodge-Tate cocharacter. In this subsection, let k be a finite exten-
sion of the p-adic numbers Qp. Let H be a (not necessarily connected) reduc-

tive algebraic group over our fixed algebraic closure Qp of Qp. Note that we do

not fix an embedding k → Qp. Let k denote an algebraic closure of k and let

ρ : Gal(k/k) → H(Qp) denote a continuous group homomorphism. We say that
ρ is crystalline/de Rham/Hodge-Tate if for some (and hence any) faithful repre-
sentation H → GLN over Qp, the resulting N -dimensional Galois representation

is crystalline/de Rham/Hodge-Tate. Let C denote the completion of k. Then for
any injection of fields i : Qp → C there is an associated Hodge-Tate cocharacter
µi : (GL1)C → HC (where the base extension from H to HC is via i). We know of
no precise reference for the construction of µi in this generality; if H were defined
over Qp and ρ took values in H(Qp) then µi is constructed in [Ser79]. The general
case can be reduced to this case in the following way: H descends to group H0

defined over a finite extension E of Qp, and a standard Baire category theorem
argument shows that ρ takes values in H0(E

′) for some finite extension E′ of E.
Now let H1 = ResE′/Qp

H0, so ρ takes values in H1(Qp), and Serre’s construction
of µ then yields µi as above which can be checked to be well-defined independent
of the choice of H0 and so on via an elementary calculation (do the case H = GLn

first).
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Note that there is a choice of sign that one has to make when defining µi; we
follow Serre so, for example, the cyclotomic character gives rise to the identity map
GL1 → GL1.

Now the conjugacy class of µi arises as the base extension (via i) of a cocharacter
νi : (GL1)Qp

→ H over Qp. Now any i : Qp → C is an injection whose image

contains k and hence induces an injection j =“i−1” : k → Qp. Another careful
calculation, which again we omit, shows that the conjugacy class of νi depends
only on j, so we may set νj := νi, a conjugacy class of maps GL1 → H over Qp.

In applications, H will be related to an L-group as follows. If G is connected
and reductive over k, and ρ : Gal(k/k) → LG(Qp) is an admissible representation,
then, because G splits over a finite Galois extension k′ of k, ρ will descend to
a representation ρ : Gal(k/k) → Ĝ(Qp) ⋊ Gal(k′/k). The target group can be

made into the Qp-points of an algebraic group H over Qp, and if the associated
representation is Hodge-Tate then the preceding arguments associate a conjugacy
class of maps νj : GL1 → H to each j : k → Qp. If T̂ is a torus in Ĝ as usual, then

νj gives rise to an element of X∗(T̂ )/W , with W the Weyl group of Gk.

3. Global definitions, and the first conjectures.

3.1. Algebraicity and arithmeticity. Let G be a connected reductive group
defined over a number field F . Fix an algebraic closure F of F and form the L-
group LG = Ĝ⋊Gal(F/F ) as in the previous section. For each place v of F , fix an
algebraic closure Fv of Fv, and an embedding F →֒ Fv. Nothing we do depends in
any degree of seriousness on these choices—changing them will just change things
“by an inner automorphism”.

Let π be an automorphic representation of G. Then we may write π = ⊗′
vπv,

a restricted tensor product, where v runs over all places (finite and infinite) of F .
Recall that in the previous section we defined notions of L-algebraic and C-algebraic
for certain representations of real and complex groups. We now globalise these
definitions.

Definition 3.1.1. We say that π is L-algebraic if πv is L-algebraic for all infinite
places v of F .

Definition 3.1.2. We say that π is C-algebraic if πv is C-algebraic for all infinite
places v of F .

Note that, for G = GLn, the notion of C-algebraic coincides (in the isobaric
case) with Clozel’s notion of algebraic used in [Clo90], although for GL2 this choice
of normalisation goes back to Hecke. Note also that restriction of scalars preserves
both notions: if K/F is a finite extension of number fields and π is an automorphic
representation of G/K then π is L-algebraic (resp. C-algebraic) when considered as
a representation of G(AK) if and only if π is L-algebraic (resp. C-algebraic) when
considered as a representation of ResK/F (G)(AF ). Indeed, this is a local statement
and we indicated the proof earlier.

As examples of these notions, we observe that for Hecke characters of number
fields, our notions of L-algebraic and C-algebraic both coincide with the classical
notion of being algebraic or of type A0. For GL2 the notions diverge: the trivial 1-
dimensional representation of GL2(AQ) is C-algebraic but not L-algebraic, whereas

the representation | det |1/2 of GL2(AQ) is L-algebraic but not C-algebraic. For
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GL3 /Q the notions of L-algebraic and C-algebraic coincide again; indeed they
coincide for GLn over a number field if n is odd, and differ by a non-trivial twist if
n is even.

Definition 3.1.3. We say that π is L-arithmetic if there is a finite subset S of the
places of F , containing all infinite places and all places where π is ramified, and
a number field E ⊂ C, such that for each v /∈ S, the Satake parameter of πv is
defined over E.

Definition 3.1.4. We say that π is C-arithmetic if there is a finite subset S of the
places of F , containing all infinite places and all places where π is ramified, and a
number field E ⊂ C, such that πv is defined over E for all v /∈ S.

Again we note that for K/F a finite extension and π an automorphic represen-
tation of G/K, π is L-arithmetic (resp. C-arithmetic) if and only if π considered
as an automorphic representation of ResK/F (G) is.

Let us consider some examples. An automorphic representation π of GLn /F
will be L-arithmetic if there is a number field such that all but finitely many of the
Satake parameters attached to π have characteristic polynomials with coefficients
in that number field. So, for example, the trivial 1-dimensional representation of
GL2(AQ) would not be L-arithmetic, because the trace of the Satake parameter at
a prime p is

√
p+1/

√
p = (p+1)/

√
p, and any subfield of C containing (p+1)/

√
p

for infinitely many primes p would also contain
√
p for infinitely many primes p and

hence cannot be a number field. However it would be C-arithmetic, because for all
primes p, πp is the base extension to C of a representation of GL2(AQ) on a vector

space over Q. Similarly, the representation | det |1/2 of GL2(AQ) is L-arithmetic,
because all Satake parameters are defined over Q. However this representation is
not C-arithmetic: each individual πp is defined over a number field but there is no
number field over which infinitely many of the πp are defined, again because such
a number field would have to contain the square root of infinitely many primes.

Now let π be an arbitrary automorphic representation for an arbitrary connected
reductive group G.

Conjecture 3.1.5. π is L-arithmetic if and only if it is L-algebraic.

Conjecture 3.1.6. π is C-arithmetic if and only if it is C-algebraic.

These conjectures are seemingly completely out of reach. For the group GL1

over a number field they are true; indeed in this case both conjectures say the same
thing, the “algebraic implies arithmetic” direction being relatively standard, and the
“arithmetic implies algebraic” direction being a non-trivial result in transcendence
theory due to Waldschmidt in [Wal81]. We prove the conjectures for a general
torus in section 4, for the most part by reducing to the case of GL1. On the
other hand, neither direction of either conjecture is known for the group GL2 /Q!
Although perhaps nowadays conjectures of this form are part of the folklore, it is
worth pointing out that as far as we know the first person to raise such conjectures
explicitly was Clozel in [Clo90].

If one makes conjectures 3.1.5 and 3.1.6 for all groups G simultaneously, then they
are in fact equivalent, by the results of section 5 below; for groups with a twisting
element (see section 5 for this terminology) this follows from Propositions 5.2.2
and 5.2.3, and the general case reduces to this one by passage to z-extensions—see
Proposition 5.2.9.
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3.2. Galois representations attached to automorphic representations. We
now fix a prime number p and turn to the notion of associating p-adic Galois rep-
resentations to automorphic representations. Because automorphic representations
are objects defined over C and p-adic Galois representations are defined over p-adic
fields, we need a method of passing from one field to the other. We have already
fixed an injection Q → C; now we fix once and for all a choice of algebraic closure
Qp of Qp and, reluctantly, an isomorphism ι : C → Qp of “coefficient fields”. Recall

that our L-groups are defined over our fixed algebraic closure Q of Q; our fixed
inclusion Q → C then induces, via ι, an embedding Q → Qp. Ideally we should

only be fixing an embedding Q → Qp, and all our constructions should only depend

on the restriction of ι to Q, but of course we cannot prove this. Our choice of ι
does affect matters, in the following way: if f =

∑
anq

n is one of the holomorphic
cuspidal newforms for GL2 /Q of level 1 and weight 24 then 13 splits into two prime
ideals in the coefficient field of f , and a13 is in one of these prime ideals but not the
other; hence f will be ordinary with respect to some choices of ι but not for others.
For notational simplicity we drop ι from our notation but our conjectural associa-
tion of p-adic Galois representations attached to automorphic representations will
depend very much on this choice.

We now state two conjectures on the existence of Galois representations attached
to L-algebraic automorphic representations, the second apparently stronger than
the first. The first version is the more useful one when formulating conjectures
about functoriality. Note that both conjectures depend implicitly on our choice of
isomorphism ι : C → Qp which we use to translate complex parameters to p-adic
ones.

Conjecture 3.2.1. If π is L-algebraic, then there is a finite subset S of the places
of F , containing all infinite places, all places dividing p, and all places where π is
ramified, and a continuous Galois representation ρπ = ρπ,ι : Gal(F/F ) → LG(Qp),
which satisfies

• The composite of ρπ and the natural projection LG(Qp) → Gal(F/F ) is the
identity map.

• If v /∈ S, then ρπ|WFv
is Ĝ(Qp)-conjugate to ι(rπv

).
• If v is a finite place dividing p then ρπ|Gal(Fv/Fv)

is de Rham, and the Hodge-

Tate cocharacter of this representation can be explicitly read off from π via
the recipe below.

• If v is a real place, let cv ∈ GF denote a complex conjugation at v. Then

ρπ,ι(cv) is Ĝ(Qp)-conjugate to the element ι(αv) = ι(λv(i)µv(i)rπv
(j)) of

Lemma 2.3.2.

Conjecture 3.2.2. Assume that π is L-algebraic. Let S be the set of the places
of F consisting of all infinite places, all places dividing p, and all places where π
is ramified. Then there is a continuous Galois representation ρπ,ι : Gal(F/F ) →
LG(Qp), which satisfies

• The composite of ρπ,ι and the natural projection LG(Qp) → Gal(F/F ) is
the identity map.

• If v /∈ S, then ρπ,ι|WFv
is Ĝ(Qp)-conjugate to ι(rπv

).
• If v is a finite place dividing p then ρπ,ι|Gal(Fv/Fv)

is de Rham, and the

Hodge-Tate cocharacter associated to this representation is given by the
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recipe in the remark below. Furthermore, if πv is unramified then ρπ,ι|Gal(Fv/Fv)

is crystalline.
• If v is a real place, let cv ∈ GF denote a complex conjugation at v. Then
ρπ,ι(cv) is Ĝ(Qp)-conjugate to ι(αv) = ι(λv(i)µv(i)rπv

(j))) of Lemma 2.3.2.

Remark 3.2.3. The recipe for the Hodge-Tate cocharacter in the conjectures above
is as follows. Say j : F → Q is an embedding of fields. We have fixed Q → C and
(via ι) Q → Qp, so j induces Fv → Qp for some place v|p and Fw → C for some
place w|∞. The inclusion Fw → C enables us to identify C as an algebraic closure
of Fw and now attached to πw and the identity σ : C → C we have constructed an
element λσ ∈ X∗(T )/W . Our conjecture is that this element λσ is the Hodge-Tate
cocharacter associated to the embedding Fv → Qp.

Remark 3.2.4. The representation ρπ,ι is not necessarily unique up to Ĝ(Qp)-
conjugation. One rather artificial reason for this is that if π is a non-isobaric
L-algebraic automorphic representation of GL2 /Q such that πℓ is 1-dimensional
for almost all v, then there are often many non-semisimple 2-dimensional Galois
representations that one can associate to π (as well as a semisimple one). But there
are other more subtle reasons too. For example if G is a torus over F then the ad-
missible Galois representations into the L-group of G are parametrised by H1(F, Ĝ)

(with the Galois group acting on Ĝ via the action used to form the L-group), and

there may be non-zero elements of this group which restrict to zero in H1(Fv, Ĝ) for
all places v of F . If this happens then there is more than one Galois representation
that can be associated to the trivial 1-dimensional automorphic representation of
G. We are grateful to Hendrik Lenstra and Bart de Smit for showing us an ex-
plicit example of a rank 3 torus over Q where this phenomenon occurs. If Γ is the
group (Z/2Z)2 and Q is the quaternion group of order 8 then Q gives a non-zero
element of H2(Γ,±1) whose image in H2(Γ,C×) is non-zero but whose restriction
to H2(D,C×) is zero for any cyclic subgroup D of Γ (consider the corresponding
extension of Γ by C× to see these facts). We now “dimension shift”. The rank four
torus Z[Γ] ⊗Z C× has no cohomology in degree greater than zero and has C× as a
subgroup, so the quotient group T is a complex torus with an action of Γ and with
the property that there’s an element of H1(Γ, T ) whose restriction to any cyclic

subgroup is zero. Finally, Γ is isomorphic to Gal(Q(
√
13,

√
17)/Q) (a non-cyclic

group all of whose decomposition groups are cyclic) and T with its Galois action
can be realised as the complex points of the dual group of a torus over Q, giving us
our example: there is more than one Galois representation associated to the trivial
1-dimensional representation of this torus.

Remark 3.2.5. We have normalised local class field theory so that geometric Frobe-
nius elements correspond to uniformisers, and defined our Weil groups accordingly.
Had we normalised things the other way (associating arithmetic Frobenius to uni-
formisers) then our unramified local Langlands dictionary at good finite places is
changed by a non-trivial involution. Had we made this choice initially, conjec-
tures 3.2.1 and 3.2.2 need to be modified: one needs to change the Hodge-Tate
cocharacter µ to −µ. However these new conjectures are equivalent to the conjec-
tures as stated, because the required Galois representation predicted by the new
conjecture may be obtained directly from ρπ by applying the Chevalley involution
of LG (the Chevalley involution of Ĝ extends to LG and induces the identity map on
the Galois group), or indirectly as ρπ̃ where π̃ is the contragredient of π. We omit
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the formal proof that these constructions do the job, and we confess that we were
not able to find a precise published reference for the statements at infinity that we
need. The point is that we need to know how the local Langlands correspondence
for real and complex reductive groups behaves under taking contragredients. The
involution on the π side induced by contragredient corresponds on the Galois side
to the involution on the local Weil representations induced by an involution of the

Weil group of the reals/complexes sending z ∈ k
× ∼= C× to z−1. It also corresponds

to the involution on the Weil representations induced by the Chevalley involution.
Both these facts seem to be well-known to the experts but the proof seems not to
be in the literature.

3.3. Example: the groups GL2 /Q and PGL2 /Q. The following example illus-
trates the differences between the C- and L- notions in two situations, one where
things can be “fixed by twisting” and one where they cannot. The proofs of the
assertions made here only involve standard unravelling of definitions and we shall
omit them.

Let A denote the adeles of Q. For N a positive integer, let K0(N) denote the

subgroup of GL2(Ẑ) consisting of matrices which are upper triangular modulo N . If
GL+

2 (R) denotes the matrices in GL2(R) with positive determinant then GL2(A) =
GL2(Q)K0(N)GL+

2 (R). Now let f be a modular form of weight k ≥ 2 which
is a normalised cuspidal eigenform for the subgroup Γ0(N) of SL2(Z), and let s
denote a complex number. We think of f as a function on the upper half plane.
Associated to f and s we define a function φs on GL2(A) by writing an element
of GL2(A) as γκu with γ ∈ GL2(Q), κ ∈ K0(N) and u =

(
a b
c d

)
∈ GL+

2 (R), and

defining φs(γκu) = (detu)k−1+s(ci + d)−kf((ai + b)/(ci + d)). This function is
well-defined and is a cuspidal automorphic form, which generates an automorphic
representation πs of GL2(A). The element s is just a twisting factor; if s is a generic
complex number then πs will not be algebraic or arithmetic for either of the “C”
or “L” possibilities above.

First we consider the arithmetic side of the story. For p a prime not dividing
N , let ap is the coefficient of qp in the q-expansion of f . It is well-known that
the subfield of C generated by the ap is a number field E. An elementary but long
explicit calculation shows the following. If πs,p denotes the local component of πs at
p, then πs,p has a non-zero invariant vector under the group GL2(Zp) and the action
of the Hecke operators Tp and Sp on this 1-dimensional space are via the complex
numbers p2−k−sap and p2−k−2s. The Satake parameter associated to πs,p is the
semisimple conjugacy class of GL2(C) consisting of the semisimple elements with
characteristic polynomial X2 − app

3/2−k−sX + p2−k−2s. Hence πs is L-arithmetic
if s ∈ 1

2 + Z. In fact one can go further. By the six exponentials theorem of
transcendental number theory one sees easily that a complex number c with the
property that pc is algebraic for at least three prime numbers p must be rational.
Hence if πs is L-arithmetic then s is rational and (because a number field is only
ramified at finitely many primes and hence cannot contain the tth root of infinitely
many prime numbers for any t > 1) one can furthermore deduce that 2s ∈ Z. Next
one observes that ap must be non-zero for infinitely many primes p ∤ N (because one
can apply the Cebotarev density theorem to the mod ℓ > 2 Galois representation
associated to f and to the identity matrix) and deduce (again because a number field
cannot contain the square root of infinitely many primes) that πs is L-arithmetic
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iff s ∈ 1
2 + Z. Now by Proposition 5.2.3 (whose proof uses nothing that we haven’t

already established) we see that πs is C-arithmetic iff s ∈ Z.
We now consider the algebraic side of things. If πs,∞ denotes the local component

of πs at infinity and we choose the Cartan subalgebra hC of gl2(C) spanned by
H :=

(
1 0
0 −1

)
and Z :=

(
1 0
0 1

)
then the infinitesimal character of πs,∞ (thought of

as a Weil group orbit in HomC(h
C,C)) sends H to ±(k − 1) and Z to 2s + k − 2.

The characters of the torus in GL2(R) give rise to the lattice X∗(T ) in Hom(hC,C)
consisting of linear maps that send H and Z to integers of the same parity. Hence πs

is C-algebraic iff s ∈ Z and L-algebraic iff s ∈ 1
2 +Z. In particular πs is L-algebraic

iff it is L-arithmetic, and πs is C-algebraic iff it is C-arithmetic.
We now play the same game for Maass forms. If f (a real analytic function on

the upper half plane) is a cuspidal Maass form of level Γ0(N) which is an eigenform
for the Hecke operators, and s ∈ C then one can define a function φs on GL2(A)
by writing an element of GL2(A) as γκu as above, writing u =

(
a b
c d

)
, and defining

φs(γκu) = det(u)sf((ai+ b)/(ci+ d)). If we now assume that f is the Maass form
associated by Langlands and Tunnell to a Galois representation ρ : Gal(Q/Q) →
SL2(C) with solvable image, and if p ∤ N is prime and ap = tr(ρ(Frobp)), then the
ap generate a number field E (an abelian extension of Q in this case) and a similar
explicit calculation, which again we omit, shows that πs is L-arithmetic iff πs is
L-algebraic iff s ∈ Z, and that πs is C-arithmetic iff πs is C-algebraic iff s ∈ 1

2 +Z.
Note in particular that the answer in the Maass form case is different to the holo-

morphic case in the sense that s ∈ Z corresponded to the C-side in the holomorphic
case and the L-side in the Maass form case.

An automorphic representation for PGL2 /Q is just an automorphic representa-
tion for GL2 /Q with trivial central character. One checks that the πs corresponding
to the holomorphic modular form has trivial central character iff s = 1 − k

2 (this
is because the form was assumed to have trivial Dirichlet character) and, again
because the form has trivial character, k must be even so in particular the πs

which descends to PGL2 /Q is C-algebraic and C-arithmetic. However, the πs cor-
responding to the Maass form with trivial character has trivial central character iff
s = 0, which is L-algebraic and L-arithmetic. Hence, when applied to the group
PGL2 /Q, our conjecture above says that there should be a Galois representation to
SL2(Qℓ) associated to the Maass form but it says nothing about the holomorphic
form. However, the holomorphic form is clearly algebraic in some sense and indeed
there is a Galois representation associated to the holomorphic form—namely the
Tate module of the elliptic curve. Note however that the determinant of the Tate
module of an elliptic curve is the cyclotomic character, which is not the square of
any 1-dimensional Galois representation (complex conjugation would have to map
to an element of order 4) and hence no twist of the Tate module of an elliptic
curve can take values in SL2(Qℓ). This explains why we restrict to L-algebraic
representations for our general conjecture.

3.4. Why C-algebraic? Our conjecture above only attempts to associate Galois
representations to L-algebraic automorphic representations. So why consider C-
algebraic representations at all? For GLn the issue is only one of twisting: π is
L-algebraic iff π.| det(.)|(n−1)/2 is C-algebraic. Furthermore, for groups such as SL2

in which half the sum of the positive roots is in X∗(T ), the notions of L-algebraic
and C-algebraic coincide. On the other hand, as the previous example of PGL2 /Q
attempted to illustrate, one does not always have this luxury of being able to pass
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easily between L-algebraic and C-algebraic representations for a given group G.
Furthermore a lot of naturally occurring representations are C-algebraic: for ex-
ample any cohomological automorphic representation will always be C-algebraic
(see Lemma 7.3.2 below) and, as the case of PGL2 /Q illustrated, there may be
natural candidates for Galois representations associated to these automorphic rep-
resentations, but they may not take values in the L-group of G! In fact, all known
examples of Galois representations attached to automorphic representations ulti-
mately come from the cohomology of Shimura varieties (although in some cases the
constructions also use congruence arguments), and this cohomology is naturally
decomposed in terms of cohomological automorphic representations. Much of the
rest of this paper is devoted to examining the relationship between C-algebraic and
L-algebraic in greater detail.

4. The case of tori.

4.1. In this section we prove conjectures 3.1.5–3.2.2 when G is a torus over a
number field F . That we can do this should not be considered surprising. Indeed,
if G = GL1 then the results have been known for almost 30 years, and the general
case can be reduced to the GL1 case via base change and a p-adic version of the
local and global Langlands conjectures for tori. Unfortunately we have not been
able to find a reference which does what we want so we include some of the details
here.

First note that if G is a torus then the Satake isomorphism preserves Q-structures
and hence the notions of C-arithmetic and L-arithmetic coincide and we can use
the phrase “arithmetic” to denote either of these notions. Furthermore, half the
sum of the positive roots is zero so the notions of C-algebraic and L-algebraic also
coincide, and we can use the phrase “algebraic” to mean either of these two notions
(and in the case G = GL1 /F this coincides with the classical definition, and with
Weil’s notion of being of type (A0)).

Recall that to give a torus G/F is to give its character group, which (after
choosing an F ) is a finite free Z-module equipped with a continuous action of
Gal(F/F ). Let K ⊂ F denote a finite Galois extension of F which splits G; then
this action of Gal(F/F ) factors through Gal(K/F ). An automorphic representation
of G/F is just a continuous group homomorphism G(F )\G(AF ) → C×.

Let BC denote the usual base change map from automorphic representations
of G/F to automorphic representations of G/K, induced by the norm map N :
G(AK) → G(AF ).

Lemma 4.1.1. If π is an automorphic representation of G/F then π is algebraic
if and only if BC(π) is.

Proof. This is a local statement, and if we translate it over to a statement about
representations of Weil groups then it says that if k is an algebraic closure of R
then r : WR → LG(C) is algebraic iff its restriction to Wk is, which is clear because
our definition of algebraicity of r only depended on the restriction of r to Wk. �

Now let T denote a torus over a local field k, and assume T splits over an un-
ramified extension of k. The topological group T (k) has a unique maximal compact
subgroup U . Let χ be a continuous group homomorphism T (k) → C× with U in
its kernel.
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Lemma 4.1.2. For E a subfield of C, the following are equivalent:
(i) χ is defined over E
(ii) The Satake parameter of χ is defined over E
(iii) The image of χ is contained in E×.

Proof. The Satake isomorphism is the identity isomorphismC[T (k)/U ] = C[T (k)/U ],
which induces the identity isomorphism Q[T (k)/U ] = Q[T (k)/U ], so (i) and (ii)
are equivalent. The equivalence of (i) and (iii) follows from the statement that
χ : T (k)/U → C× is E×-valued if and only if the induced ring homomorphism
Q[T (k)/U ] → C is E-valued. �

If k1/k is a finite extension of local fields and if T/k is a torus then we also use
the notation BC to denote the map Hom(T (k),C×) → Hom(T (k1),C

×) induced
by the norm map N : T (k1) → T (k). Now suppose again that T is an unramified
torus over k and χ : T (k) → C× is an unramified character.

Corollary 4.1.3. If χ is defined over E and if k1/k is a finite extension, then
BC(χ) is defined over E.

Proof. The image of BC(χ) is contained in the image of χ. �

We now go back to the global situation. Let π denote an automorphic repre-
sentation of G/F , with G a torus, and let BC(π) denote its base change to G/K,
where K is a finite Galois extension of F which splits G.

Corollary 4.1.4. If π is arithmetic then BC(π) is arithmetic.

Proof. Immediate from the previous corollary. �

Theorem 4.1.5. If G is a split torus over a number field, then the notions of
arithmetic and algebraic coincide.

Proof. That algebraic implies arithmetic is standard; the other implication is Théorème 5.1
of [Wal82] (which uses a non-trivial result in transcendence theory). �

Corollary 4.1.6. If G is a torus over a number field F and π is an automorphic
representation of G, and π is arithmetic, then π is algebraic.

Proof. If π is arithmetic then its base change to K (a splitting field for G) is
arithmetic (by Corollary 4.1.4), and hence algebraic by the previous theorem. Hence
π is algebraic by Lemma 4.1.1. �

To show that algebraic automorphic representations for G are arithmetic, we
give a re-interpretation of what it means for an automorphic representation of a
torus to be algebraic; we are grateful to Ambrus Pál for pointing out to us that
such a re-interpretation should exist. First some notation. Let F∞ := F ⊗Q R. Let

Σ denote the set of embeddings σ : F →֒ Q. Recall that because we have fixed
an embedding Q → C, each σ ∈ Σ can be regarded as an embedding F → C, and
hence induces maps F∞ → C and σ∞ : G(F∞) → Gσ(C), where Gσ is the group
over Q induced from G via base extension via σ.

Proposition 4.1.7. The representation π is algebraic if and only if for each σ ∈ Σ
there is an algebraic character λσ : Gσ → GL1 /Q such that π agrees with

∏
σ∈Σ λσ◦

σ∞ on G(F∞)0 (the identity component of the Lie group G(F∞)).
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Proof. This statement is local at infinity, and can be checked by “brute force”,
explicitly working out what the local Langlands correspondence for tori over the
reals and complexes is and noting that it is true in every case. �

Corollary 4.1.8. If π is an algebraic automorphic representation of G/F , and if
we write π = πf ×π∞, with π∞ : G(F∞) → C×, then π∞(G(F )) is contained within
a number field.

Proof. By the preceding proposition we know that π∞|G(F ) is the product of a

character of order at most 2 by a continuous group homomorphism G(F ) → C×

which is the product of maps φσ : G(F )
σ→ Gσ(C) → C∗ given by composing an

algebraic character with an embedding σ : F →֒ C. Hence it suffices to prove that
φ(G(F )) is contained within a number field for such a φ. However both T and Gm

are defined over F , so the character descends to some number field L, which we
may assume splits T and contains the images of all embeddings F →֒ C. But then
φ(F ) ⊂ φ(L) ⊂ L×, as required. �

Theorem 4.1.9. The notions of arithmetic and algebraic coincide for automorphic
representations of tori over number fields.

Proof. Let G/F be a torus over a number field, and let π be an automorphic
representation of G. By Corollary 4.1.6 we know that if π is arithmetic then π is
algebraic, so we only have to prove the converse. We will make repeated use of the
trivial observation (already used above) that if X is a finite index subgroup of an
abelian group Y , then the image of a character of Y is contained in a number field
if and only if the image of its restriction to X is contained in a (possibly smaller)
number field.

Let π = ⊗vπv be algebraic. If K is a finite Galois extension F splitting G then
BCK/F (π) is algebraic by Lemma 4.1.1 and hence arithmetic by Theorem 4.1.5.
Hence there is a number field E and some finite set SK of places of K, containing
all the infinite places, such that for w 6∈ SK , BC(π)w is defined over E, and hence
BC(π)w has image in E×. By increasing SK if necessary, we can assume that SK

is precisely the set of places of K lying above a finite set S of places of F .
Let N : G(AK) → G(AF ) denote the norm map. Standard results from global

class field theory (see for example p.244 of [Lan97] for the crucial argument) imply
that G(F )N(G(AK)) is a closed and open subgroup of finite index in G(AF ). Hence
if AS

F denotes the restricted product of the completions of F at places not in S,

and ASK

K denotes the analogous product for K, then G(F )N(G(ASK

K )) has finite
index in G(AS

F ). Let πS : G(AS
F ) → C× denote the restriction of π to G(AS

F ).
Then π = πS .

∏
v∈S,v∤∞ πv.π∞. We know that π is trivial on G(F ) (by definition)

and that π∞ sends G(F ) to a number field (by Corollary 4.1.8). We also know
that πv(G(Fv)) (and thus πv(G(F )) is contained within a number field for each
finite place v ∈ S (because BCK/F (π) is arithmetic, we know that πv(N(Kw))
is contained in a number field, where w|v is a place of K, and N(Kw) has finite
index in Fv). Hence πS(G(F )) is contained within a number field. Then since

G(F )N(G(ASK

K )) has finite index in G(AS
F ), we deduce that π(G(AS

F )) is contained
within a number field, and hence π is arithmetic, as required. �

We now need to prove Conjecture 3.2.2 (which of course implies Conjecture
3.2.1). This follows straightforwardly from Langlands’ proof of the Langlands cor-
respondence for tori, and the usual method for associating Galois representations to
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algebraic representations of Gm. Take π, G, F and K as above, and again let Σ de-
note the field embeddings F → Q, noting now that because of our fixed embedding
Q ⊂ Qp we can also interpret each element of Σ as a field embedding F → Qp.

The first step is to associate a “p-adic automorphic representation”—a continuous
group homomorphism πp : G(F )\G(AF ) → Qp—to π, which we do by mimicking
the standard construction in the split case. For σ ∈ Σ recall that σ∞ is the induced
map G(F∞) → Gσ(C). By Proposition 4.1.7 there are characters λσ ∈ X∗(Gσ)
(regarded here as maps Gσ(C) → C×) for each σ ∈ Σ with the property that

π|G(F∞)0 =
∏

σ∈Σ

λσ ◦ σ∞.

The right hand side of the above equation can be regarded as a character of G(F∞)
and hence as a character λ∞ of G(AF ), trivial at the finite places. Define πalg =
π/λ∞, a continuous group homomorphism G(AF ) → C× trivial on G(F∞)0 but
typically non-trivial on G(F ). However πalg(G(F )) is contained within a number
field by Corollary 4.1.8, and it is now easy to check that the image of πalg is
contained within Q. We now regard πalg as taking values in Qp via our fixed

embedding Q ⊂ Qp.

Now, let Fp = F ⊗Q Qp, and note that every σ : F → Qp in Σ induces a map

Fp → Qp and hence a map σp : G(Fp) → Gσ(Qp). Each λσ can be regarded as a

map Gσ(Qp) → Q
×
p , and hence the product

λp :=
∏

σ

λσ ◦ σp

is a continuous group homomorphism G(Fp) → Q
×
p and can also be regarded as

a continuous group homomorphism G(AF ) → Q
×
p , trivial at all places other than

those above p. The crucial point, which is easy to check, is that the product

πp := πalgλp is a continuous group homomorphism G(AF ) → Q
×
p which is trivial

on G(F ).
Now, in Theorem 2(b) of [Lan97], Langlands proves that there is a natural sur-

jection with finite kernel from the set of Ĝ(C)-conjugacy classes of continuous ho-
momorphisms from the Weil group WF to LG(C) to the set of continuous homomor-
phisms from G(F )\G(AF ) to C× (that is, the set of automorphic representations
of G/F ), compatible with the local Langlands correspondence at every place. His
proof starts by establishing a natural surjection from the analogous sets with the
continuity conditions removed, and then checking that continuity on one side is
equivalent to continuity on the other. However, Qp

∼= C as abstract fields, and
one can check that the calculations on pages 243ff make no use of any particular
features of the topology of C×, and hence apply equally well to continuous homo-

morphisms WF → LG(Qp) and continuous characters G(F )\G(AF ) → Q
×
p . Thus

πp gives a continuous homomorphism (or perhaps several, in which case we simply
choose one)

rπ : WF → LG(Qp),

and by construction we see that for each finite place v ∤ p at which πv = (πp)v is un-

ramified, rπ|WFv
is Ĝ(Qp)-conjugate to rπv

. Again, by construction the composite

of rπ and the natural projection LG(Qp) → Gal(F/F ) is just the natural surjection

WF → Gal(F/F ).
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Lemma 4.1.10. The representation rπ of WF factors through the natural surjection
WF → Gal(F/F ).

Proof. The kernel of the natural surjection WF → Gal(F/F ) is the connected
component of the identity in WF ; but rπ must vanish on this, because LG(Qp) is
totally disconnected. �

We let ρπ denote the representation of Gal(F/F ) determined by rπ.

Lemma 4.1.11. The representation ρπ satisfies all the properties required in the
statement of Conjecture 3.2.2.

Proof. We need to check the claimed properties at places dividing p and at real
places. For the former, we must firstly check that ρπ is de Rham with the correct
Hodge-Tate weights. However, it is sufficient to check this after restriction to any
finite extension of F , and in particular we may choose an extension which splits G.
The evident compatibility of the construction of ρπ with base change then easily
reduces us to the split case, which is standard. Similarly, the property of being
crystalline may be checked over any unramified extension, and if πv is unramified
then by definition G splits over an unramified extension of Fv, and we may again
reduce to the split case.

Suppose now that v is a real place of F . Recall that the natural surjection
WFv

→ Gal(Fv/Fv) sends j to complex conjugation, so we need to determine
rπ|WFv

(j). Let σv : F →֒ C denote the embedding corresponding to v (it is unique
because v is a real place) and let λv denote the character λσv

of Gσv
. Let χv denote

the map G(Fv) → C× induced by σv and λv. Then (πp)v = πv/χv. Applying local

Langlands we see that the cohomology class in H1(WFv
, Ĝ) associated to (πp)v

is the difference of those associated to πv and χv (because local Langlands is an
isomorphism of groups in this abelian setting). Furthermore, one can check (either
by the construction of the local Langlands correspondence for real tori in section 9.4
of [Bor79], or an explicit case-by-case check) that the cohomology class attached to

χv is represented by a cocycle which sends j ∈ WFv
to the element λv(−1) of Ĝ

(where we now view λv as a cocharacter C× → Ĝ). Our assertion about rπ|WFv
(j)

now follows immediately from an explicit calculation on cocycles. �

5. Twisting and Gross’ η.

5.1. Algebraicity and arithmeticity under z-extensions. We begin by recall-
ing the notion of a z-extension, explicitly formalised by Kottwitz but used earlier
by Langlands. The next definition and proposition make sense for a connected
reductive group over an arbitrary field F of characteristic zero, but we will quickly
specialise to the case of F a number field afterwards.

Definition 5.1.1. We say that a central extension

1 → X → G′ → G → 1

of algebraic groups over F is a z-extension if G′ is connected and reductive, the
derived subgroup of G′ is simply connected, and X is isomorphic to a product of
tori of the form ResMi/F Gm, Mi a finite extension of F .

Note that one can (after making compatible choices of maximal compact sub-
groups at infinity, and making use of Shapiro’s lemma and Hilbert 90 to see that
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various H1 groups with coefficients in X vanish) identify automorphic representa-
tions on G with automorphic representations on G′ which are trivial on X . Note
also the following standard result, due to Langlands:

Proposition 5.1.2. A connected reductive group over a field of characteristic zero
admits a z-extension.

Proof. This is Proposition V.3.1 of [DMOS82]. �

We abuse notation slightly and speak about the z-extension G′ → G interchange-
ably with the z-extension 1 → X → G′ → G → 1.

Lemma 5.1.3. If G′ → G is a z-extension, and G′′ → G′ is a z-extension, then
so is G′′ → G.

Proof. This is presumably standard, but for lack of a reference we sketch a proof.
Let Y be the kernel of G′′ → G, and let X,X ′ denote the kernels of G′ → G and
G′′ → G′, so we have an exact sequence 0 → X ′ → Y → X → 0 and hence Y
must be connected. Next we note that Y must be in the centre Z ′′ of G′′, for if
it were not then the image of Y in G′′/Z ′′ would be a homomorphic image of X
and a positive-dimensional component of the centre of a group which has finite
centre, a contradiction. In particular Y must be a central torus in G′′. It remains
to show that Y is a product of tori which are restrictions of scalars of Gm, which
we do following an argument which Ben Webster showed us at mathoverflow.net.
By taking character groups, it suffices to show that if Γ is a finite group and
Λ, Λ′ are two Γ-modules each of which are of the form ⊕i Ind

Γ
∆i

Z (here the ∆i

are subgroups of G), then any Z[Γ]-extension of Λ by Λ′ is also of this form. It
suffices then to show that the extension splits, which we can do thus: Λ and Λ′ are
both integral representations of G coming from the G-action on finite sets. Hence
P := HomZ(Λ,Λ

′) with its G-action is too (take the product of the sets). But
Ext1

Z[Γ](Λ,Λ
′) = H1(Γ, P ) which is zero by Shapiro’s Lemma. �

We now go back to the case of a connected reductive group G over a number

field F . If G̃ is a z-extension of G then the induced map G̃(AF ) → G(AF ) is a
surjection, and if π is an automorphic representation of G(AF ) then the induced

representation π̃ of G̃(AF ) is also an automorphic representation. Furthermore, we
have the following compatibilities between π and π̃.

Lemma 5.1.4. π is L-algebraic (resp. C-algebraic, resp. L-arithmetic, resp. C-
arithmetic) if and only if π′ is.

Proof. Let us start with the L- and C-algebraicity assertions. These assertions
follow from purely local assertions at infinity: one needs to check that if k is an
archimedean local field (a completion of F in the application), and if π is a repre-
sentation of G(k), with π′ the induced representation of G′(k), then π is L-algebraic
(resp. C-algebraic) if and only if π′ is. These statements can easily be checked using
infinitesimal characters. Indeed a straightforward calculation (using an explicit de-
scription of the Harish-Chandra isomorphism) shows that if T ′ is a maximal torus
in G′ over the complexes (where we base change G′ to the complexes via the map

k → C induced from σ : k → C), and if the image of T ′ in G is T (a maximal torus
of G), and if λσ and λ′

σ are the elements of X∗(T ) ⊗Z C and X∗(T ′) ⊗Z C corre-
sponding to π and π′ as in § 2.3, then the natural map X∗(T )⊗ZC → X∗(T ′)⊗ZC
sends λσ to λ′

σ and both results follow easily.
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It remains to prove the arithmeticity statements. Again these statements follow
from purely local assertions. Let k denote a non-archimedean local field (a non-
archimedean completion of F at which everything is unramified in the application)
and let π be an unramified representation of G(k), with π′ the corresponding repre-
sentation of G′(k). Assume π′ is also unramified. The C-arithmeticity assertion of
the Proposition follows from the assertion that π is defined over a subfield E of C iff
π′ is; this is however immediate from Lemma 2.2.2. The L-arithmeticity statement
follows from the assertion that the Satake parameter of π is defined over E iff the
Satake parameter of π′ is defined over E, which is then what remains to be proved.
So let T ′ be the centralizer of a maximal split torus in G′ over k, and let T be
its image in G. Then T ′(k) → T (k) is a surjection (because the kernel of T ′ → T
is the kernel of the z-extension G′ → G). As noted in the proof of Lemma 2.2.4,
Theorem 2.9 of [BZ77] shows that the Wd-orbit of complex characters of T (k) de-
termined by the Satake isomorphism applied to π are precisely the characters for
which π occurs as a subquotient of the corresponding induced representations, and
the analogous assertion also holds for π′. It follows that the orbit of characters
of T ′(k) corresponding to π′ is precisely the orbit induced from the characters of
T (k) via the surjection T ′(k) → T (k). This implies that the Satake parameter of π′

(thought of as a character of Q[X∗(T ′
d)]

Wd) is induced from the Satake parameter
of π via a map between the corresponding unramified Hecke algebras which is in
fact the obvious map, and our assertion now follows easily. �

5.2. Twisting elements. We now explain the relationship between L-algebraic
and C-algebraic automorphic representations for a connected reductive group G
over a number field F . In particular, we examine the general question of when L-
algebraic representations can be twisted to C-algebraic representations, following
an idea of Gross (see [Gro99]). We show that in general it is always possible to
replace G by a cover for which this twisting is possible, and in this way one can
formulate general conjectures about the association of Galois representations to
C-algebraic (and in particular cohomological by Lemma 7.3.2 below) automorphic
representations. As usual, let X∗ denote the character group in the based root
datum for G, with its Galois action. Let us stress that we always equip X∗ with
the Galois action coming from the construction used to define the L-group (which
might well not be the same as the “usual” Galois action on X∗(T ) induced by the
Galois action on T (F ), if T is a maximal torus in G which happens to be defined
over F ).

Definition 5.2.1. We say that an element θ ∈ X∗ is a twisting element if θ is
Gal(F/F )-stable and 〈θ, α∨〉 = 1 for all simple coroots α∨.

For some groups G there are no twisting elements; for example, if G = PGL2.
On the other hand, if G is semi-simple and simply-connected then half the sum of
the positive roots is a twisting element. Another case where twisting elements exist
(see Remark 5.2.5) are groups G that are split and have simply connected derived
subgroup, for example G = GLn, although in this case half the sum of the positive
roots might not be in X∗.

If Q is the quotient of G by its derived subgroup, then X∗(Q) ⊆ X∗ and the
arguments in section II.1.18 of [Jan03] show that X∗(Q) = (X∗)W , where W is
the Weyl group of GF . Furthermore, X∗(Q) is Gal(F/F )-stable, and the induced
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action of Gal(F/F ) on X∗(Q) is precisely the usual action, induced by the Galois
action on Q(F ).

Now let δ denote half the sum of the positive roots of G. If δ ∈ X∗ then δ is a
twisting element; but in general we only have δ ∈ 1

2X
∗. Let S′ denote the maximal

split torus quotient of G, so that

X∗(S′) = (X∗)W,Gal(F/F ).

Then if θ is a twisting element, we see that

θ − δ ∈ 1

2
X∗(S′).

Thus we have a character | · |θ−δ of G(F )\G(AF ), defined as the composite

G(AF ) // S′(AF )
2(θ−δ)

// A×
F

|·|
// R×

>0

x 7→√
x
// R×

>0

The main motivation behind the notion of twisting elements is the following two
propositions.

Proposition 5.2.2. If θ is a twisting element, then an automorphic representation
π is C-algebraic if and only if π ⊗ | · |θ−δ is L-algebraic.

Proof. This is a consequence of condition 10.3(2) of [Bor79], although formally one
has to “reverse-engineer” the construction of (using the notation of §10.2 of loc. cit.)
α 7→ πα. We sketch the argument using the notation there. The question is local at
each infinite place, so let k denote a completion of F at an infinite place. Choose (by

Proposition 5.1.2) a z-extension G̃ of G. The character | · |θ−δ induces a character of

G(k) and of G̃(k). If Q denotes the maximal torus quotient of G̃ then this character

can be extended to a character of Q(k). The associated element of H1(Wk, Q̂) is

the image of an element α ∈ H1(Wk, ZL), with ZL the centre of Ĝ, and one checks
easily that the character πα of G(k) in §10.2 of [Bor79] coincides with | · |θ−δ. If T0

is a maximal torus in G̃, and T is its image in G, then the restriction of α to k
×

is

a ZL-valued character which, when considered as a T̂0-valued character of k
×

, has

image in T̂ and which (via an easy diagram chase) coincides with the restriction

to k
×

of the cohomology class associated via local Langlands to the restriction of

| · |θ−δ to T (k). Hence a on k
×

is the composite of the norm map down to R>0, the

square root map, and the cocharacter of T̂ associated to 2(θ − δ). Twisting π by
| · |θ−δ corresponds to twisting rπ by a by 10.3(2) of [Bor79] and the result follows
easily. �

Proposition 5.2.3. If θ is a twisting element, then π is C-arithmetic if and only
if π ⊗ | · |θ−δ is L-arithmetic.

Proof. Again this is a local issue: by Definitions 3.1.3 and 3.1.4 it suffices to check
that if k (a completion of F ) is a non-archimedean local field, if χ denotes the
restriction of | · |θ−δ to G(k) and if π is an unramified representation of G(k), then
π is defined over a subfield E of C iff π ⊗ χ has Satake parameter defined over the
same subfield E. This is relatively easy to check: we sketch the details (using the
notation of section 2.2). Let T be a maximal torus of G/k, with maximal compact
subgroup oT . Then χ induces an automorphism i of HC(T (k),

oT ) sending [oT toT ]
to χ(t)[oT toT ], and i commutes with the action of the Weyl group Wd and hence
induces an automorphism i of the Wd-invariants of this complex Hecke algebra. If
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mπ is the complex character of H(T (k), oT )Wd associated to π and mπ⊗χ is the
character associated to π⊗χ then one checks easily that mπ⊗χ = mπ ◦ i. The other
observation we need is that if K is a hyperspecial maximal compact subgroup of
G(k) and if S denotes the Satake isomorphism S : HC(G(k),K) → HC(T (k),

oT )Wd

then i ◦ S maps HQ(G(k),K) into HQ(T (k),
oT ) (this follows immediately from

formula (19) of section 4.2 of [Car79]), and hence into HQ(T (k),
oT )Wd , and an

injection between Q-vector spaces which becomes an isomorphism after tensoring
with C must itself be an isomorphism. Hence i◦S : HQ(G(k),K) ∼= HQ(T (k),

oT )Wd

and now composing with mπ the result follows easily. �

Thus for groups with a twisting element, our L-notions and C-notions can be
twisted into each other. What can one do when G has no twisting element? We
know from Proposition 5.1.2 that G has a z-extension and hence a central cover with
simply-connected derived subgroup. This cover may not have a twisting element
either. But we shall now see that a rather simple z-extension of this cover does
have one.

Proposition 5.2.4. Suppose that G has simply connected derived subgroup. Then
there is a z-extension

1 → Gm → G̃ → G → 1

such that G̃ has a twisting element.

Proof. We give an explicit construction that gives little away; a remark after the
proof will indicate where the construction came from.

Fix a Borel B containing a maximal torus T in GF . Let Gder denote the derived

subgroup of G, and define Bder := B ∩ (Gder)F and Tder := T ∩ (Gder)F , a Borel

and a maximal torus in (Gder)F . Now Gder is assumed simply-connected, so half
the sum of the positive roots (with respect to Bder) is a character η of Tder. Then
η induces a character d of the centre Zder := Z(Gder) of Gder, defined over F .
One checks that d is independent of the choice of Borel and torus chosen, and
furthermore (via a diagram-chase) that d on F -points commutes with the actions
of Galois and hence d is defined over F . If Z := Z(G) is the centre of G then it
is well-known that the map Gder × Z → G induced by the inclusions is a central

isogeny over F with kernel Zder (embedded via z 7→ (z, z−1) say). Now define G̃, a
connected reductive group over F , by

G̃ := (Gder × Z ×Gm)/Zder

with Zder embedded in the right hand side via the map sending z to (z, z−1, d(z)).
An easy diagram chase shows that there is an exact sequence

0 → Gm → G̃ → G → 0

making G̃ a z-extension of G. Let T̃ denote the pre-image of T in G̃F .

We need to check that G̃ has a twisting element. Define θ : (Tder×ZF ×GmF ) →
GmF by θ(a, b, c) := η(a)/c. Then θ is trivial on (Zder)F embedded as above, so

θ descends to a character of the image of Tder × ZF × GmF in G̃, which is exactly

T̃ , the pre-image of T in G̃F . Furthermore, θ restricts to η on Tder, from which it
follows easily that θ pairs to 1 with every simple coroot.

It remains to check that θ ∈ X∗(T̃ ) is Galois-stable, with respect to the Galois

action on X∗(T̃ ) defined using the L-group formalism with respect to the Borel
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subgroup B̃, the pre-image of B in G̃F , and this is just an explicit diagram chase,
which comes down to the fact that η is Galois-stable in X∗(Tder). �

Remark 5.2.5. What is going on here is that if Q denotes the quotient G/Gder then
we have a short exact sequence

0 → Tder → T → QF → 0

over F , and hence a short exact sequence of character groups

0 → X∗(QF ) → X∗(T ) → X∗(Tder) → 0.

If we give X∗(QF ) the Galois action coming from the fact that Q is defined over
F , then this becomes an exact sequence of Galois modules. The element η is a
Galois-stable element of X∗(Tder), and G has a twisting element if and only if η
lifts to a Galois-stable element of X∗(T ) (and conversely, any twisting element in
X∗(T ) must map to η ∈ X∗(Tder)). Note in particular, as we asserted earlier, that
if G splits and has simply-connected derived subgroup, then Galois acts trivially on
everything, so any lift of η to X∗(T ) is a twisting element for G. The obstruction
to this lift existing in general is the image ζ of η in H1(Gal(F/F ), X∗(QF )), and ζ
gives rise to an extension

0 → X∗(QF ) → E → Z → 0

of Galois modules, which gives an extension of Q by Gm over F and hence an
extension of G by Gm over F ; an easy diagram-chase shows that this is the extension
that we have constructed.

In particular, if we replace F by a finite extension K where G splits, then η does

lift to X∗(T ), so ζ = 0 and we deduce that over K, G̃ is just a product G ×GL1.

In particular, the dual group (G̃)̂ is just Ĝ×GL1 over Q. The next lemma takes
this observation further.

Lemma 5.2.6. With notation as in Proposition 5.2.4, we have

LG̃ ∼= (Ĝ×Gm)⋊Gal(F/F ),

where g ∈ Gal(F/F ) acts on Ĝ×Gm by

g(x, λ) =
((

ζ̃(g)
)
(λ).gx, t

)

where ζ̃ is a cocycle representing the element ζ ∈ H1(Gal(F/F ), X∗(Q)) = H1(Gal(F/F ), X∗(Q̂)
from Remark 5.2.5.

Proof. This is mostly just an unravelling of definitions. The map T̃ → T and the

map θ : T̃ → Gm induce an isomorphism T̃ = T × Gm and hence isomorphisms

X∗(T̃ ) = X∗(T ) ⊕ Z and X∗(T̃ ) = X∗(T ) ⊕ Z, which are direct sums as Galois

modules but not in general as based root data, for the simple coroots in X∗(T̃ ) are
of the form (α∨, 1) with α ∈ X∗(T ) a simple coroot. So let us instead decompose

T̃ as T × Gm in a way which is less ideal from the point of view of the Galois
action but better from the point of view of the root data. We achieve this thus:
we have η ∈ X∗(Tder), half the sum of the positive roots. Lift η arbitrarily to
η ∈ X∗(T ), which may not be fixed by Galois if G has no splitting element. Then

η induces a character of T̃ also denoted η. Now define a character σ : T̃ → GL1

by σ = η/θ. Because θ = η = η on Tder, we see that Tder ⊆ ker(σ). Furthermore

the composite of the natural inclusion Gm → T̃ and σ is the identity on Gm,
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and hence σ and the projection T̃ → T induce an isomorphism T̃ = T × Gm,

which induces an isomorphism between the based root datum of G̃ and the direct

sum of the based root data for G̃ and Gm. We fix this identification for the rest
of this argument. This direct sum is not in general Galois-stable; an elementary

calculation shows that for (α, n) ∈ X∗(T̃ ) = X∗(T )⊕Z and g ∈ Gal(F/F ) we have
g(α, n) = (gα + n(gη − η), n). Note that g 7→ gη − η is a cocycle representing ζ.

It suffices now to find an action of Gal(F/F ) on Ĝ×GL1 which induces the above

action on the cocharacter groups X∗(T̂ )⊕ Z = X∗(T )⊕ Z, but the formula in the
statement of the lemma is easily checked to give an action (note that the image of

ζ̃ is in Q̂, which is central in Ĝ) which does this. �

Corollary 5.2.7. Any connected reductive group over a number field has a z-
extension which has a twisting element.

Proof. This follows from Proposition 5.1.2, Proposition 5.2.4 and Lemma 5.1.3. �

Remark 5.2.8. Once can now (having chosen a z-extension and a twisting element
for the covering group as above) use Conjecture 3.2.1 to formulate a conjecture
associating Galois representations to C-algebraic automorphic representations (for
example, to cohomological representations by Lemma 7.3.2 below) for an arbitrary
connected reductive group G over a number field. One uses Lemma 5.1.4 to pull
the C-algebraic representations back to a C-algebraic representation on a group
with a twisting element, twists them so they become L-algebraic, and then uses
Conjecture 3.2.1 on this bigger group. For an explicit example of this, see section
8.3.

We end this section by showing that the results in it imply the equivalence of
Conjectures 3.1.5 and 3.1.6 (made for all groups simultaneously).

Proposition 5.2.9. Let G be a connected reductive group over a number field. If
Conjecture 3.1.5 is true for all z-extensions of G then Conjecture 3.1.6 is true for G.
Similarly if Conjecture 3.1.6 is true for all z-extensions of G then Conjecture 3.1.5
is true for G.

Proof. We prove the first assertion; the second one is similar. Say G is connected
and reductive, and π is C-arithmetic (resp. C-algebraic). By Corollary 5.2.7 there
is a z-extension G′ of G with a twisting element θ. Let π′ be the pullback of π to G′.
Then π′ is C-arithmetic (resp. C-algebraic) by Lemma 5.1.4. By Proposition 5.2.3
(resp. Proposition 5.2.2) π′ ⊗ |.|θ−δ is L-arithmetic (resp. L-algebraic). Applying
Conjecture 3.1.5 to G′ we deduce that π′⊗|.|θ−δ is L-algebraic (resp. L-arithmetic).
Running the argument backwards now shows us that π is C-algebraic (resp. C-
arithmetic). �

6. Functoriality.

6.1. Suppose that G, G′ are two connected reductive groups over F , and that we
have an L-group homomorphism

r : LG → LG
′
,

i.e. a homomorphism of algebraic groups over Q which respects the projections to
Gal(F/F ). Assume that G′ is quasi-split over F . Then we have the following weak
version of Langlands’ functoriality conjecture (note that we are only demanding
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compatibility with the local correspondence at a subset of the unramified places,
and at infinity).

Conjecture 6.1.1. If π is an automorphic representation of G, then there is an
automorphic representation π′ of G′, called a functorial transfer of π, such that

• For all infinite places v, and for all finite places v at which π and G′ are
unramified, rπ′

v
is Ĝ′(C)-conjugate to r ◦ rπv

.

A trivial consequence of the definitions is

Lemma 6.1.2. If π is L-algebraic, then any functorial transfer of π is L-algebraic.

We also have the only slightly less trivial

Lemma 6.1.3. If π is L-arithmetic, then any functorial transfer of π is L-arithmetic.

Proof. This result follows from a purely local assertion. If v is a finite place where
G and G′ are unramified and if k is the completion of F at v then the morphism r
of L-groups induces a morphism Ĝ → Ĝ′ which commutes with the action of the
Frobenius at v. If Td (resp. T ′

d) denotes a maximal k-split torus in G/k (resp.

G′/k) with centralizer T (resp. T ′) then the map Ĝ → Ĝ′ induces a map T̂ → T̂ ′

(well-defined up to restricted Weyl group actions) which commutes with the action

of Frobenius, and hence maps T̂d → T̂ ′
d and X∗(T̂ ′

d) = X∗(T ′
d) → X∗(T̂d) = X∗(Td).

Now looking at the explicit definition of the Satake isomorphism in Proposition 6.7
of [Bor79] we see, after unravelling, that the map Q[X∗(T ′

d)]
W ′

d → Q[X∗(Td)]
Wd

induced from X∗(T ′
d) → X∗(Td) above has the property that, after tensoring up to

C and taking spectra, it sends the point in Spec(C[X∗(Td)]
Wd) corresponding to rπv

to the point in Spec(C[X∗(T ′
d)]

W ′

d) corresponding to r ◦ rπv
. We now deduce that if

the Satake parameter of πv is defined over a subfield E of C then so is the Satake
parameter of π′

v (because the homomorphism Q[X∗(T ′
d)]

W ′

d → C corresponding to
π′
v factors through Q[X∗(Td)]

Wd and hence through E) and the result follows. �

In addition,

Proposition 6.1.4. If Conjecture 3.2.1 holds for π, then it holds for any functorial
transfer of π.

Proof. With notation as above, one easily checks that ρπ′,ι := r ◦ ρπ,ι satisfies all
the conditions of Conjecture 3.2.1. �

Note that functoriality relies on things normalised in Langlands’ canonical way;
the natural analogues of the results above in the C-algebraic and C-arithmetic cases
are not true in general, because a morphism of algebraic groups does not send half
the sum of the positive roots to half the sum of the positive roots in general.

7. Reality checks.

7.1. By Proposition 2 of [Lan79] any automorphic representation π on G is a

subquotient of an induction Ind
G(AF )
P (AF ) σ, where P is a parabolic subgroup of G

with Levi quotient M , and σ is a cuspidal representation of M . If π′ is another

automorphic subquotient of Ind
G(AF )
P (AF ) σ, then πv and π′

v are equal for all but finitely

many places, so π is C-arithmetic (respectively L-arithmetic) if and only if π′ is
C-arithmetic (respectively L-arithmetic). The following lemma shows that π is
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C-algebraic (respectively L-algebraic) if and only if π′ is C-algebraic (respectively
L-algebraic).

Lemma 7.1.1. Suppose that π and π′ are subquotients of a common induction

Ind
G(AF )
P (AF ) σ. Then π and π′ have the same infinitesimal character.

Proof. This is immediate from the calculation of the infinitesimal character of an
induction - see for example Proposition 8.22 of [Kna01]. �

Furthermore, we can check the compatibility of Conjecture 3.2.1 for π and π′

(note that we cannot check the compatibility for Conjecture 3.2.2 because π and
π′ may be ramified at different places).

Proposition 7.1.2. Suppose that π and π′ are subquotients of a common induction

Ind
G(AF )
P (AF ) σ. Suppose that π is L-algebraic. If Conjecture 3.2.1 is valid for π then it

is valid for π′.

Proof. Suppose that Conjecture 3.2.1 is valid for π. We wish to show that ρπ′,ι :=
ρπ,ι satisfies all the conditions in Conjecture 3.2.1. Since for all but finitely many
places πv and π′

v are unramified and isomorphic, the first two conditions are cer-
tainly satisfied. The third condition is satisfied by Lemma 7.1.1. It remains to
check that if v is a real place, then (with obvious notation) λv(i)µv(i)rπv

(j) and

λ′
v(i)µ

′
v(i)rπ′

v
(j) are Ĝ(C)-conjugate. As explained to us by David Vogan, it follows

from the results of [ABV92] (specifically from Theorem 1.24 and Proposition 6.16)

that λv(−1)rπv
(j) and λ′

v(−1)rπ′

v
(j) are Ĝ(C)-conjugate. It is easy to check that

these are Ĝ(C)-conjugate to λv(i)µv(i)rπv
(j) and λ′

v(i)µ
′
v(i)rπ′

v
(j) respectively (for

example, via rπv
(eiπ/4), rπ′

v
(eiπ/4)), as required. �

More generally, if π, π′ are nearly equivalent (that is, πv and π′
v are isomorphic

for all but finitely many v), then π is C-arithmetic (respectively L-arithmetic) if
and only if π′ is C-arithmetic (respectively L-arithmetic). We would like to be
able to prove as above that π and π′ have the same infinitesimal character, and we
would like to obtain the analogue of Proposition 7.1.2. Unfortunately, these seem in
general to be well beyond the reach of current techniques. However, we can prove
these results for GLn, and we can then deduce them for general groups under the
assumption of functoriality.

Proposition 7.1.3. If G = GLn and π, π′ are nearly equivalent, then π, π′ have the
same infinitesimal character. Suppose further that π is L-algebraic. If Conjecture
3.2.1 is valid for π then it is valid for π′.

Proof. By the strong multiplicity one theorem for isobaric representations (Theorem

4.4 of [JS81]), π, π′ are both subquotients of a common induction Ind
G(AF )
P (AF ) σ. The

result follows from Lemma 7.1.1 and Proposition 7.1.2. �

Proposition 7.1.4. Let G be arbitrary. Assume Conjecture 6.1.1. If π and π′

are nearly equivalent automorphic representations of G, then for any infinite place
v, πv and π′

v have the same infinitesimal characters. Suppose further that π is
L-algebraic. If Conjecture 3.2.1 is valid for π then it is valid for π′.

Proof. To begin with, note that for each infinite place v we have a natural injection
LGv → LG, where Gv is the base change of G to Fv. Since rπv

|C× is valued in
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LGv, as is cv := λv(i)µv(i)rπv
(j), we see that their Ĝ(C)-conjugacy classes in LG

are determined by their Ĝ(C)-conjugacy classes in LGv.

Now, the Ĝ(C)-conjugacy classes of semisimple elements of LGv(C) are deter-
mined by the knowledge of the conjugacy classes of their images under all repre-
sentations of LGv(C). To see this, note that since the formation of the L-group is
independent of the choice of inner form, it suffices to check this in the case where
Gv is quasi-split; but the result then follows immediately from Proposition 6.7 of
[Bor79].

Let r : LG → GLn ×Gal(F/F ) be a homomorphism of L-groups. Then by
Conjecture 6.1.1, there are automorphic representations Π, Π′ on GLn which are
functorial transfers of π, π′ respectively. By Proposition 7.1.3, Π and Π′ have the
same infinitesimal characters. Thus for each infinite place v, rΠv

|C× and rΠ′

v
|C× are

conjugate, i.e. r ◦ rπ,ι|C× and r ◦ rπ′,ι|C× are conjugate. Since this is true for all
r, we see that rπ,ι|C× and rπ′,ι|C× are conjugate, whence π and π′ have the same
infinitesimal character.

As in the proof of Proposition 7.1.2, it remains to check that if v is a real place
of F , then cv := λv(i)µv(i)rπv

(j) and c′v := λ′
v(i)µ

′
v(i)rπ′

v
(j) are Ĝ(C)-conjugate.

By a similar argument to that used in the first half of this proof, we see that if
r : LG → GLn ×Gal(F/F ) is a homomorphism of L-groups, then r(cv) and r(c′v)
are conjugate in GLn(C). Now, cv and c′v are both semisimple; for example, cv =
λv(i)µv(i)rπv

(j) = µv(−1)rπv
(ij), a product of commuting semisimple elements.

Thus cv and c′v are Ĝ(C)-conjugate. �

7.2. Cohomological representations.

7.3. Cohomological automorphic representations provide a good testing ground for
our conjectures. It follows easily (see below) that any cohomological representation
is C-algebraic, and one can often show that they are C-arithmetic, too. In the
case G = GLn these arguments are due to Clozel, who also shows that for GLn

any regular C-algebraic representation is cohomological after possibly twisting by
a quadratic character (see Lemme 3.14 of [Clo90]).

Let v be an infinite place of F , and let Kv be the fixed choice of a maximal
compact subgroup of G(Fv) used in the definition of automorphic forms on G. Let
gv be the complexification of the Lie algebra of G(Fv). Recall that πv may be
thought of as a (gv,Kv)-module, with underlying C-vector space Vv, say.

Definition 7.3.1. We say that πv is cohomological if there is an algebraic complex
representation U of G(Fv) and a non-negative integer i such that

Hi(gv,Kv;U ⊗ Vv) 6= 0.

We say that π is cohomological if πv is cohomological for all archimedean places v.

Lemma 7.3.2. If π is cohomological, then it is C-algebraic.

Proof. By Corollary 4.2 of [BW00], if π is cohomological then for each archimedean
place v there is a continuous finite-dimensional representation Uv of G(Fv) such
that πv and Uv have the same infinitesimal characters. The result then follows
from Lemma 7.3.3 below. �

Lemma 7.3.3. If v is an archimedean place of F and U is a continuous finite
dimensional representation of G(Fv) with infinitesimal character χv, identified with
an element of X∗(T )⊗Z C as in section 2.3, then χv − δ ∈ X∗(T ).
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Proof. This follows almost at once from the definition of the Harish-Chandra iso-
morphism; see for example (5.43) in [Kna02]. �

We note that a cuspidal cohomological unitary automorphic representation π is
also C-arithmetic, at least when π∞ is cohomological for the trivial representation;
for we can restrict scalars down to Q and then follow the argument in §2.3 of [BR94].
This argument presumably works in some greater generality.

8. Relationship with theorems/conjectures in the literature.

8.1. In [Clo90], Clozel makes a number of conjectures about certain C-algebraic
automorphic representations for GLn. We now examine the compatibility of these
conjectures with those of this paper. Clozel calls an automorphic representation of
GLn algebraic if it is C-algebraic and isobaric; his principal reason for restricting
to isobaric representations is that he wishes to construct a Tannakian category of
automorphic representations.

Let π = ⊗′πv be an algebraic (in Clozel’s sense) representation of GLn over F .
Then Clozel conjectures (see conjectures 3.7 and 4.5 of [Clo90]) that

Conjecture 8.1.1. Let πf = ⊗′
v∤∞πv. Then there is a number field E ⊂ C such

that πf is defined over E (that is, such that πf ⊗C,σC ∼= πf for all automorphisms σ

of C which fix E pointwise). In addition, Conjecture 3.2.2 holds for π⊗ | · |(n−1)/2.

(In fact, Clozel conjectures much more than this—he conjectures that there is a
motive whose local L-factors agree with those of π ⊗ | · |(n−1)/2 at all finite places;
the required Galois representation is then obtained as the p-adic realisation of this
motive.)

By Proposition 7.1.3 we see, since any automorphic representation of GLn is
nearly equivalent to an isobaric one, that Conjecture 8.1.1 implies Conjecture 3.2.1
for GLn, and in fact an examination of the proof shows that it implies Conjecture
3.2.2. We claim that it also implies that π is C-arithmetic; in fact, this follows at
once from Proposition 3.1(iii) of [Clo90]. Thus for GLn our conjectures follow from
those of Clozel.

The reason that our conjectures are weaker than Clozel’s conjectures is that for
groups other than GLn we do not have as good an understanding of the local Lang-
lands correspondence, which makes (for example) the formulation of a definition of
L-arithmetic using all (possibly ramified) finite places problematic.

8.2. In [Gro99] Gross presents a conjecture which assigns a Galois representation
to an automorphic representation on a group G with the property that any arith-
metic subgroup is finite (in fact Gross gives six conditions equivalent to this in
Proposition 1.4 of [Gro99]). We now discuss the relationship of this conjecture to
our conjectures. The group G splits over a CM field L, and is assumed to have a
twisting element η in the sense of Definition 5.2.1. In fact, Gross has informed us
that one should in addition assume that the group G is semisimple and simply con-
nected, so we make this assumption from now on. This assumption in fact implies
that η = δ in the below, but for those who want to be more optimistic than Gross
we have kept the two notations distinct in the below.

Let V be an absolutely irreducible representation of G over Q with trivial central
character. Let S be a finite set of primes of size at least 2, containing all primes at
which G is ramified. For each l /∈ S we let Kl be a hyperspecial maximal compact
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subgroup of G(Ql), and for each l ∈ S we let Kl be the connected component of an
Iwahori subgroup of G(Ql). Let K be the product of the Kl. Then M(V,K) is the
space of algebraic modular forms given by

M(V,K) = {f : G(AQ)/(G(R)+ ×K) → V : f(γg) = γf(g) for all γ ∈ G(Q), g ∈ G(AQ)} .

Let TS be the unramified Hecke algebra, the product of the unramified Hecke
algebras Tl for each l /∈ S. Let TK be the full Hecke algebra, the product of
TS and the product of the Iwahori Hecke algebras Tl at places l in S. Let A be
TK ⊗ Q[π0(G(R))]. This acts on M(V,K) (see section 6 of [Gro99]), and we let
N be a simple A-submodule of M(V,K). We assume that N gives the Steinberg
character on Tl for all l ∈ S (see section 12 of [Gro99]), and if V is trivial and∏

l∈S G(Ql) is compact, we exclude the case that N is trivial.
By Proposition 12.3 of [Gro99], EndA(N) is a CM field, and by (7.4) of [Gro99],

π0(G(R)) acts on N through a character

φ∞ : π0(G(R)) → {±1} ⊂ E×.

By Proposition 8.5 of [Gro99], the simple submodules of N⊗C may be identified
(compatibly with the actions of HK) with irreducible automorphic representations

π = πf ⊗ π∞ with π∞
∼−→ V ⊗ C, and πl Steinberg for all l ∈ S. For all l /∈ S, the

unramified local Langlands correspondence (i.e. the Satake isomorphism) identifies
the character of Tl on N with a homomorphism rN,l : WQl

→ LG(C), and πl

corresponds to this parameter under the local Langlands correspondence. Fix such
a representation π.

Gross then makes the following conjecture (see Conjecture 17.2 as well as (15.3)
and (16.8) of [Gro99], and note that while Gross normalises local class field theory so
that an arithmetic Frobenius element corresponds to a uniformiser, this is equivalent
to our formulation by Remark 3.2.5):

Conjecture 8.2.1. If p is a prime, and ι : C
∼−→ Qp, then there is a continuous

Galois representation

ρN,ι : Gal(Q/Q) → LG(Qp)

satisfying

• If l /∈ S, then ρN,ι|WQl
is Ĝ(Qp)-conjugate to ι(rN,l)⊗ | · |η−δ.

• If s∞ is a complex conjugation in Gal(Q/Q), then ρN,ι(s∞) is Ĝ(Qp)-
conjugate to (ι(η(−1)φ∞(−1)), s∞).

This conjecture follows from Conjecture 3.2.2. The representation π is C-algebraic,
so by Proposition 5.2.2 π ⊗ | · |η−δ is L-algebraic. Applying Conjecture 3.2.2 gives
everything in Conjecture 8.2.1 (for the description of complex conjugation, see
[Gro]).

Note that Gross in fact conjectures something slightly stronger; he shows that
π is C-algebraic, and in fact that π is defined over E, and conjectures that for any
place λ|p of E there is a natural Galois representation ρN,λ : Gal(Q/Q) → LG(Eλ).
As Gross has explained to us, this rationality conjecture should follow from the
hypothesis that π is Steinberg at two places, together with local-global compatibility
for the Galois representations at these places.
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8.3. We now discuss an example drawn from [CHT08]. Let F be a totally real
field, and let E be a quadratic totally imaginary extension of F . Let G be an n-
dimensional unitary group over F which splits over E, and which is compact (that
is, isomorphic to U(n)) at all infinite places. Assume that n is even. Then the dual
group of G is GLn, and if we let Gal(E/F ) = {1, c}, then the L-group of G is given
by

LG = GLn ⋊Gal(F/F )

where Gal(F/F ) acts on GLn via its projection to Gal(E/F ) = {1, c}, with

xc := Φn
tx−1Φ−1

n

where Φn is an anti-diagonal matrix with alternating entries 1, −1. Note that
because n is even, tΦn = −Φn = Φ−1

n .
With the usual notation for characters of GLn, a choice of element η as in the

proof of Proposition 5.2.4 is given by η = (n − 1, n − 2, . . . , 0). Then c(η) − η =
(1− n, 1− n, . . . , 1− n), so that by Lemma 5.2.6 we have

LG̃ = (GLn ×Gm)⋊Gal(E/F )

with Gal(E/F ) acting by

(g, µ)c = (µ1−nΦn
tg−1Φ−1

n , µ).

In Section 1 of [CHT08] there is a definition of a group Gn. This group is also a
semidirect product (GLn ×Gm)⋊Gal(E/F ), but with Gal(E/F ) acting by

(g, µ)c = (µtg−1, µ).

We claim that there is an isomorphism j : Gn → LG̃ given by

j(g, µ) = (µ−n/2g, µ),

j(c) = (Φn,−1)c.

The key calculation is to check that

j(c(g, µ)c) = j(c)j(g, µ)j(c).

We have

j(c(g, µ)c) = j(µtg−1, µ)

= (µ1−n/2(tg−1), µ),

and

j(c)j(g, µ)j(c) = (Φn,−1)c(µ−n/2g, µ)(Φn,−1)c

= (Φn,−1)((−µ)1−nΦn
t(µ−n/2gΦn)

−1Φ−1
n ,−µ)

= ((−µ)1−nΦ2
n
t(µ−n/2gΦn)

−1Φ−1
n , µ)

= (µ1−nµn/2(tg−1)tΦ−1
n Φ−1

n , µ)

= (µ1−n/2(tg−1), µ),

as required.
Note that j−1 is given by

j−1(g, µ) = (µn/2g, µ),

j−1(c) = ((−1)n/2+1Φn,−1)c.
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Suppose now that π is a cuspidal automorphic representation of G. By the
assumption that G is compact at infinity, π is automatically cohomological, and
thus C-algebraic. Since n is even, it is easy to check that G does not have a
twisting element, so we cannot twist π to be L-algebraic. However, G̃ does have a
twisting element, so we expect that (after choosing a twisting element) there should

be a Galois representation associated to π, valued in LG̃, or (via j−1) in Gn. With

the usual notation for characters of GLn, we choose the twisting element η̃ for G̃
given by

η̃ = ((n− 1 + n/2, n− 2 + n/2, . . . , n/2),−1).

We will refer to the automorphic representation on G̃ corresponding to π as π
without fear of confusion, and let π′ = π ⊗ | · |η̃−δ. Then π′ is L-algebraic. Fix
ι : C → Qp; we wish to consider the conjectural Galois representation j−1 ◦ ρπ′,ι :

Gal(F/F ) → Gn(Qp).
Suppose that v is a place of F which splits in E, and for which πv is unramified.

Then Gv is isomorphic to GLn, and the obvious map j−1◦ρπ′,ι|Wv
: Wv → GLn(Qp)

should (by the form of η̃ − δ) be GLn(Qp)-conjugate to ι(rπv
⊗ | · |(n−1)/2). Note

that the set of such places is dense in F , so by the Cebotarev density theorem
this is already enough information to determine the representation j−1 ◦ ρπ′,ι up to

GLn(Qp)-conjugacy.
Suppose that v is an infinite place of F . Since Gv is compact, πv is a finite-

dimensional algebraic representation, of highest weight sv, say. Then the Hodge-
Tate weights of j−1 ◦ ρπ′,ι with respect to v should be sv + (n− 1, . . . , 0). In order
to specify complex conjugation, we need to consider the (GLn ×GL1)-conjugacy
classes of elements (g, µ)c of Gn of order 2. It is easy to see that there are precisely
two conjugacy classes: one with µ = 1, and one with µ = −1. We know (from the
explicit description of the local Langlands correspondence for discrete series repre-
sentations, cf. section 11 of [Bor79]) that (up to conjugacy) rπv

(z) = zsv+δz−sv−δ

for all z ∈ C×, and rπv
(j) = Φnc. Thus if cv is a complex conjugation at v, we

see that Conjecture 3.2.1 predicts that j−1 ◦ ρπ′,ι(cv) is in the conjugacy class of
elements of order 2 of the form (g,−1)c.

Now, under certain mild hypotheses on G and π, we note that a Galois repre-
sentation satisfying the above properties is proved to exist in [CHT08] and [Tay08].
Specifically, everything except the form of complex conjugation follows from Propo-
sition 3.4.4 of [CHT08] (although see also Theorems 4.4.2 and Theorems 4.4.3 of
[CHT08] for related results on GLn whose notation may be easier to compare to the
notation used in this paper), and the form of complex conjugation follows from The-
orem 4.1 of [Tay08]. [Note when comparing the unramified places that by definition
the local Langlands correspondence rec(πv) used in [CHT08] is our rπv

.]
Note that we assumed that n is even in the above discussion. In the case that n

is odd, the group G does have a twisting element (for example δ), and one can check
that the Galois representation to Gn constructed in [CHT08] gives (after twisting
by ǫ(n−1)/2, with ǫ the p-adic cyclotomic character) a Galois representation to LG,
consistently with Conjecture 3.2.2. Because of this, when n is odd the construction
of G̃ is not necessary and our conjecture is still consistent with their theorem.
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