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BENFORD’S LAW FOR COEFFICIENTS OF MODULAR FORMS

AND PARTITION FUNCTIONS

THERESA C. ANDERSON, LARRY ROLEN, AND RUTH STOEHR

Abstract. Here we prove that Benford’s law holds for coefficients of an infinite class
of modular forms. Expanding the work of Bringmann and Ono on exact formulas
for harmonic Maass forms, we derive the necessary asymptotics. This implies that the
unrestricted partition function p(n), as well as other natural partition functions, satisfy
Benford’s law.

1. Introduction and Statement of Results

It has long been observed that many naturally occurring statistics and arithmetic
functions have some surprising properties. In 1881, astronomer Simon Newcomb no-
ticed that the earlier pages in logarithm tables were more worn than later ones. Instead
of the a priori estimate that the first digit will be 1 one-ninth of the time, he found in
these instances that this frequency is approximately 30% for the digit 1 and less than
5% for the digit 9 [10]. This phenomenon, known as Benford’s Law, appears in a wide
class of data including river lengths and population demographics. For a more detailed
discussion on the history and previous work on the subject see [1], [6], [7].

Although this “law” is well-known, it has only been proven to hold for a relatively
small class of arithmetic functions. For example, Miller and Kontorovich prove Benford’s
law for distributions of values of L-functions and the 3x+1 problem in [8]. The purpose
of this paper is to prove that the statistically observed frequencies dictated by Benford’s
law hold for an infinite class of sequences arising as the coefficients of modular forms,
including the partition function p(n).

We define a partition of a non-negative integer n ∈ N to be any non-increasing se-
quence of positive integers which sum to n. The partition number p(n) is the number of
partitions of n. For a sequence of positive integers a(n), let

(1) B(d, x, k; a(n)) =
# { n ≤ x : first digits of a(n) in base k are the string d}

x
.
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We say a(n) is Benford if lim
x→∞

B(d, x, k; a(n)) ≡ (logk(d + 1) − logk(d)) (mod 1) for

all integers k ≥ 2. We denote the space of Benford functions as B. Note that for a
function to belong to B, Benford’s Law must hold for any initial string of digits in any
base. We include this level of generality to study frequencies such as B(101, x, 2; a(n))
which counts the proportion of n ≤ x for which a(n) begins with the string d=“101” in
base 2. Since 1012 = 510 and log2(6)− log2(5) ≈ 0.263 (mod 1), the predicted frequency
for members of a Benford sequence to begin with 1012 is about 26.3%.

The following data for initial digits illustrates the plausibility of Benford’s Law for
p(n) for k = 10.

Table 1. B(d, x, 10; p(n))

x d = 1 2 3 4 5 6 7 8 9

102 0.33 0.16 0.14 0.09 0.07 0.06 0.07 0.05 0.03

103 0.305 0.177 0.127 0.094 0.076 0.068 0.057 0.052 0.044

104 0.302 0.177 0.126 0.096 0.078 0.067 0.057 0.051 0.046

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

∞? 0.301 0.176 0.125 0.097 0.079 0.067 0.057 0.051 0.046

We also have the following data for the first three digits of p(n) in base 2.

Table 2. B(d, x, 2; p(n))

x d = 100 d=101 d=110 d=111

200 0.285 0.270 0.205 0.225

400 0.308 0.273 0.209 0.205

600 0.313 0.267 0.217 0.198

800 0.314 0.263 0.219 0.201

1000 0.315 0.262 0.220 0.200

5000 0.321 0.264 0.222 0.194

↓ ↓ ↓ ↓ ↓

∞? 0.322 0.263 0.222 0.192

To start, we begin with the following definition and theorem.

Definition. We say that an integer-valued function a(n) is good whenever

a(n) ∼ b(n)ec(n)

(where f(x) ∼ g(x) means that lim
x→∞

f(x)/g(x) = 1) and the following conditions are

satisfied:

(1) There exists some integer h ≥ 1 such that c(n) is h-differentiable and c(h)(n)
tends to zero monotonically for sufficiently large n.

(2) lim
n→∞

n|c(h)(n)| = ∞

(3) lim
n→∞

D(h) log b(n)

c(h)(n)
= 0, where D(h) denotes the hth derivative.
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Our first result is the following theorem.

Theorem 1.1. If a(n) is good, then a(n) ∈ B.
As a special case of this result we obtain the following corollary.

Corollary 1.2. The partition function p(n) ∈ B.
Proof. Using the celebrated Hardy-Ramanujan asymptotic

p(n) ∼ 1

4n
√
3
· eπ

√
2n/3,

it immediately follows that p(n) is good and hence Benford. �

Next, we explicitly demonstrate that a large class of arithmetic functions arising from
the coefficients of modular forms is Benford, as in the following theorem.

Theorem 1.3. Suppose that M(z) is a weakly holomorphic modular form (see §3.1 for
the definition) of weight 1

2
≥ k ∈ 1

2
Z with integral Fourier coefficients and at least one

pole. Then the nonzero coefficients of M(z) are Benford.

Generalizing Corollary 1.2, we obtain the following corollary.

Corollary 1.4. For any positive integer we say that a partition is s-regular if it has no
part divisible by s. Denote by bs(n) the number of s-regular partitions. Then Theorem
1.3 implies that bs(n) is Benford.

Applying Theorem 1.1 to generalized Dedekind Eta-products, we have the following
corollary.

Corollary 1.5. For δ ≥ 2 and 0 < g < ⌊ δ+1
2
⌋ define rg,δ(n) to be the number of partitions

of n into parts congruent to ±g (mod δ). This includes the famous Rogers-Ramanujan
functions

∞
∑

n=0

qn
2+an

(q; q)n
=

∞
∏

n=0

1

(1− q5n+a+1)(1− q5n+4−a)
,

for a = 0, 1, where for n > 0, (a; q)n :=

n−1
∏

i=0

(1− aqi) is the q-Pochhammer symbol. Note

that these equalities are given by the celebrated Rogers-Ramanujan identities. Then
rg,δ(n) is Benford.

Remark.
It is well-known that every nonconstant weakly holomorphic modular form with non-

positive weight has a pole. Though this is not true for weights k ≥ 1
2
, Theorem 1.3

applies to all weakly holomorphic modular forms of weight 1
2
with a pole and essentially

all weakly holomorphic modular forms with higher weight which have a pole. See the
discussion and example in §3.2 for more details. For a more detailed discussion on weakly
holomorphic modular forms see §3.1 and [11].
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2. Theorems on Uniform Distribution

2.1. Preliminaries on Uniform Distribution and Properties of Benford Spaces.

We first note that proving a sequence is Benford reduces to a problem of uniform dis-
tribution. Using this formulation and some classical theorems on uniform distribuiton,
we derive a set of sufficient conditions for being Benford.

Definition. For a real sequence a(n), N ∈ N, and E ⊆ R, let A(E,N, a(n)) := #{n ≤
N | a(n) ∈ E}. Then a(n) is said to be uniformly distributed mod 1, if, for all intervals
[a, b) ⊆ [0, 1),

lim
n→∞

A([a, b), n, {a(n)})
n

= b− a,

where < x > denotes the fractional part of x.

We begin by recalling a result of Diaconis that a(n) ∈ B if and only if logk(a(n)) is
uniformly distributed mod 1 for all k [4]. To prove our results we need the following
preliminary theorem.

Theorem 2.1 (Weyl’s Criterion). The sequence a(n) is uniformly distributed mod 1 if
and only if

lim
N→∞

1

N

N
∑

n=1

e2πk·a(n) = 0

for any 0 6= k ∈ Z.

As a corollary to Van der Corput’s Difference Theorem we recall the following theorem:

Theorem 2.2 (Theorem 3.5 of [9]). Let k ∈ N and f(x) be a function defined for x ≥ 1
which is k-times differentiable for all x ≥ x0 for some x0 ∈ R+. Suppose that f (k) is
eventually monotonic,

lim
x→∞

f (k)(x) = 0,

and
lim
x→∞

x|f (k)(x)| = ∞.

Then {f(n) : n ∈ N} is uniformly distributed mod 1.

Finally, we note a few basic facts regarding Benford spaces.

Lemma.

(1) If f(n) ∈ B and c ∈ R− {0}, then cf(n) ∈ B.
(2) If f(n) ∈ B is nonzero, then 1

f(n)
∈ B.

(3) If f(n) ∈ B and f(n) ∼ g(n), then g(n) ∈ B.
Note that (1) and (2) follow directly from the definition of uniform distribution and

(3) follows easily using Weyl’s Criterion.
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2.2. Proof of Theorem 1.1. Here we prove Theorem 1.1 using these results on uniform
distribution.

Proof. First note that by Part 3 of the lemma, it suffices to show that b(n)ec(n) is Benford.
This is equivalent to showing the uniform distribution of log(b(n)) + c(n) (mod 1). We
see that c(n) satisfies the limit conditions of Theorem 2.2 by definition. By the order
assumption on D(h)(log(b(n))), the limits are unaffected upon adding log b(n). �

3. Proof of Theorem 1.3

3.1. Weakly Holomorphic Modular Forms. Here we give some of the preliminary
definitions and theorems on weakly holomorphic modular forms. For a more detailed
reference, see [11]. Throughout this discussion let q := e2πiz.

For any positive integer N , we define the level N congruence subgroups of SL2(Z) by

Γ0(N) :=
{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 mod N
}

Γ1(N) :=
{(

a b
c d

)

∈ SL2(Z) : a ≡ d ≡ 1 mod N and c ≡ 0 mod N
}

Γ(N) :=
{(

a b
c d

)

∈ SL2(Z) : a ≡ d ≡ 1 mod N and b ≡ c ≡ 0 mod N
}

Suppose that Γ is a congruence subgroup of SL2(Z). A cusp is an equivalence class of
P1(Q) under the usual fractional linear action of Γ.

Let f(z) be a meromorphic function on the upper half plane H, k ∈ Z, and Γ be a
congruence subgroup of level N . First, we define the “slash” operator by

(f |kγ)(z) := (det γ)k/2(cz + d)−kf(γz),

where γ ∈ SL2(Z) and γz := az+b
cz+d

.
Then f(z) is said to be a meromorphic modular form with integer weight k on Γ if the

following hold:

(1) For all z ∈ H and all
(

a b
c d

)

∈ Γ we have that

f
(az + b

cz + d

)

= (cz + d)kf(z).

(2) If γ0 ∈ SL2(Z), then (f |kγ0)(z) has a Fourier expansion of the form

(f |kγ0)(z) =
∑

n≥nγ0

aγ0(n)q
n/N .

If k = 0, then f(z) is known as a modular function on Γ.
We say that f(z) is a weakly holomorphic modular form if its poles are supported at

the cusps of Γ.
Here we recall the notion of a modular form of half-integral weight. First we define
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(

c
d

)

and ǫd. If d is an odd prime, let
(

c
d

)

be the usual Legendre symbol. For positive

odd d, define
(

c
d

)

by multiplicativity. For negative odd d, we let

( c

d

)

:=







(

c
|d|

)

if d < 0 and c > 0,

−
(

c
|d|

)

if d < 0 and c < 0.

Also let
(

0
±1

)

= 1. Define ǫd, for odd d, by

ǫd :=

{

1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4.

Let λ be a nonnegative integer and N a positive integer. Furthermore, suppose that
χ is a Dirichlet character modulo 4N . A meromorphic function g(z) on H is said to be
a modular form with Nebentypus χ and weight λ + 1

2
if it is meromorphic at the cusps

of Γ, and if

g
(az + b

cz + d

)

= χ(d)
( c

d

)2λ+1

ǫ−1−2λ
d (cz + d)λ+

1

2 g(z)

for all
(

a b
c d

)

∈ Γ0(4N).

Remark. As in the integral case, we say that a meromorphic modular form M(z) is
weakly holomorphic if its poles are supported on the cusps (that is, M is holomorphic
on H).

For example, consider Dedekind’s eta-function,

η(z) := q1/24
∞
∏

n=1

(1− qn),

which is a non-vanishing, weakly holomorphic modular form with weight 1/2. The
following theorem becomes useful in generating more examples of modular forms (see
for example, [11]).

Theorem 3.1. Let f(z) =
∏

δ|N η(δz)rδ be an eta-quotient with k = 1
2

∑

δ|N rδ ∈ Z.
Then if

∑

δ|N

δrδ ≡ 0 (mod 24)

and
∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies
(az + b

cz + d

)

= χ(d)(cz + d)kf(z)
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for every
(

a b
c d

)

∈ Γ0(N). Here the character χ is defined by χ(d) :=
( (−1)ks)

d

)

, where

s :=
∏

δ|N δrδ .

3.2. Proof of Theorem 1.3. We are now in position to prove Theorem 1.3.

Proof. We first consider the case where k is nonpositive. By hypothesis, M has at least
one pole at a cusp of the relevant subgroup Γ ⊆ SL2(Z). Recall that a harmonic Maass
form is a function defined in a similar manner as a modular form, but with relaxed
growth conditions and the additional requirement that it lies in the kernel of a certain
weight k Laplacian operator. Every such harmonic Maass form can be decomposed as
a sum of a holomorphic part f (+) and a nonholomorphic part f (−). It is well-known
that every weakly holomorphic modular form is a harmonic Maass form. In addition,the
nonholomorphic part f (−) is identically zero. By a recent paper of Bringmann and Ono
[3], we have exact formulas for the holomorphic part of harmonic Maass forms for k ≤ 1

2
.

Because in our setting f (−) is identically zero, these give us exact formulas for the Fourier
coefficients of M . The explicit formulas are quite complicated, so for brevity note that
if we write M :=

∑

n≥n0
m(n)qn, it is easy to show that there exists an integer t ≥ 1

such that for all 0 ≤ r ≤ t the nonzero coefficients satisfy

m(tn+ r) ∼ K(M, r, t) · (tn + r)
k−1

2 · I1−k(α(M, r, t)
√
tn + r)

where K(M, r, t) and α(M, r, t) are constants and I denotes the modified Bessel function
of the first kind. Using the standard asymptotics for Bessel functions, namely that

Iα(x) ∼
ex√
2πx

·
(

1 +
(1− 2α)(1 + 2α)

8x
+ . . .

)

,

we see that the sequence of nonzero coefficients is good and hence Benford.
If k = 1/2, then by Theorem 1.2 in [3], we have a new exact formula of the same form

with the addition of a finite number of terms which do not affect the asymptotic. �

Remark. Although we have stated and proved Theorem 1.3 for weights k ≤ 1
2
, it turns

out that a suitably modified version holds for all weights. Let M(z) be a weakly holo-
morphic modular form with weight k > 1

2
with integral coefficients and at least one pole,

which by definition must be at a cusp. We can decompose M(z) = P (z) +H(z), where
P (z) is a linear combination of Maass-Poincaré series and H(z) is a holomorphic mod-
ular form. Note that by [3] this decomposition is stated only for the case 1/2 ≥ k ∈ 1

2
Z,

but in fact it will hold for all k ∈ 1
2
Z. When k ≤ 0, it follows that H(z) = 0, and

when k = 1/2, H(z) is a linear combination of readily understood theta functions by
the Serre-Stark basis theorem [3]. Therefore, when k ≤ 1

2
this decomposition gives exact

formulas for the coefficients. For other k, we do not have a good theory for the possible
H(z), therefore we typically cannot obtain exact formulas for the coefficients of M(z).
However, it is well-known that the coefficients of all such H(z) are bounded by a fixed
power of n. To see this, note that the space of holomorphic modular forms is spanned
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by Eisenstein series and cusp forms. From the expansion of Eisenstein series in terms
of divisor functions, it is easily seen that the coefficients are bounded by a polynomial.
Cusp forms are also bounded by a power of n by Proposition 8 on page 23 of [13]. Con-
sequently, we obtain sufficient asymptotics for all coefficients which are nonvanishing
in P (z). These asymptotics will have subexponential growth, which will dominate the
coefficients from H(z).

Example. To illustrate the above remark, consider the weight 12 weakly holomorphic
modular form M(z) := j(z) ·E4(z)

3, where j(z) is the j-modular invariant and E4(z) is
the Eisenstein series of order 4. The first few terms are

M(z) = q−1 + 1464 + 911844q + 313589120q2 + · · ·
This function has a pole at ∞ so the above remark applies as is illustrated in the base
3 case below.

Table 3. B(d, x, 3; j(z) · E4(z)
3)

x d = 10 d=11 d=12 d=20 d=21 d=22

500 .2440 .2020 .1700 .1320 .1300 .1220

1000 .2590 .2050 .1610 .1360 .1270 .1120

1500 .2627 .2027 .1633 .1373 .1273 .1067

2000 .2635 .2030 .1660 .1375 .1245 .1055

↓ ↓ ↓ ↓ ↓ ↓ ↓

∞? .2619 .2031 .1660 .1403 .1215 .1072

4. Proof of Corollaries 1.4 and 1.5

In this section we use Theorem 1.1 to prove new examples of Benford sequences in
interesting cases.

4.1. Proof of Corollary 1.4. First note that

∞
∑

n=0

bs(n)q
n =

∞
∏

n=1

1− qsn

1− qn
.

Then in terms of Dedekind’s eta function, η(z), we have that

∞
∑

n=0

bs(n)q
24n+s−1 =

η(24sz)

η(24z)
.

Then by Theorem 1.64 [11], we see that bs(n) is obtained as the coeffients of a non-
constant modular form of weight zero on Γ0(576s). Moreover, as η(z) is nonvanishing
on H, the given modular form is weakly holomorphic and hence bs(n) is Benford.
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4.2. Proof of Corollary 1.5. It is easy to see that

∞
∑

n=0

rg,δ(n)q
n =

∏

1≤n≡g (mod δ)

1

(1− qn)

∏

1≤n≡−g (mod δ)

1

(1− qn)
.

For example, we have the Rogers-Ramanujan functions

∞
∑

n=0

qn
2+an

(q; q)n
=

∞
∏

n=0

1

(1− q5n+a+1)(1− q5n+4−a)
,

for a = 0, 1.
Our claim is that for all g and δ satisfying the above restrictions rg,δ is Benford. To

see this, define the generalized Dedekind Eta-product ηg,δ(z) by

ηg,δ(z) := e2πiP2(
g
δ
)δz

∏

1≤n≡g (mod δ)

(1− qn)
∏

1≤n≡−g (mod δ)

(1− qn).

Here P2(t) is the second Bernoulli function P2(t) := {t}2 − {t} + 1
6
, and {t} denotes

the fractional part of t. Then by [12], for g 6= 0, 1
2
δ, it follows that ηg,δ(z) is a modular

form of weight zero which is nonvanishing on H. The generating functions for rg,δ are
then given by the Fourier expansion of 1

ηg,δ(z)
shifted by an integral power of q. As this

is a nonconstant weakly holomorphic modular form of weight zero, it follows that rg,δ(n)
is Benford.
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