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TWISTED ACYCLICITY OF A CIRCLE

AND LINK SIGNATURES

OLEG VIRO

Abstract. Homology of the circle with non-trivial local coefficients is trivial.
From this well-known fact we deduce geometric corollaries concerning links
of codimension two. In particular, the Murasugi-Tristram signatures are ex-
tended to invariants of links formed of arbitrary oriented closed codimension
two submanifolds of an odd-dimensional sphere. The novelty is that the sub-
manifolds are not assumed to be disjoint, but are transversal to each other,
and the signatures are parametrized by points of the whole torus. Murasugi-
Tristram inequalities and their generalizations are also extended to this setup.

1. Introduction. The goal of this paper is to simplify and generalize a part
of classical link theory based on various signatures of links (defined by Trotter [19]
Murasugi [10],[11], Tristram [18], Levine [7] [8], Smolinsky [17], Florens [2] and
Cimasoni and Florens [1]). This part is known for its relations to topology of 4-
dimensional manifolds, see [18], [20], [21] [4], [6] and applications in topology of real
algebraic curves [12], [13] and [2].

Similarity of the signatures to the new invariants [15], [14], which were defined
in the new frameworks of link homology theories and had spectacular applications
[15], [9], [16] to problems on classical link cobordisms, gives a new reason to revisit
the old theory.

There are two ways to introduce the signatures: the original 3-dimensional, via
Seifert surface and Seifert form, and 4-dimensional, via the intersection form of the
cyclic coverings of 4-ball branched over surfaces. I believe, this paper clearly demon-
strates advantages of the latter, 4-dimensional approach, which provides more con-
ceptual definitions, easily working in the situations hardly available for the Seifert
form approach.

In the generalization considered here the classical links are replaced by collections
of transversal to each other oriented submanifolds of codimension two.

Technically the work is based on a systematic use of twisted homology and the
intersection forms in the twisted homology. Only the simplest kinds of twisted
homology is used, the one with coefficients in C, see Appendix.

1.1. Twisted acyclicity of a circle. A key property of twisted homology,
which makes the whole story possible, is the following well-known fact, which I call
twisted acyclicity of a circle:

Twisted homology of a circle with coefficients in C and non-trivial monodromy

vanishes.

This implies that the twisted homology of this kind completely ignores parts of
the space formed by circles along which the monodromy of the coefficient system
is non-trivial (for precise and detailed formulation see Section Appendix B).
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1.2. How the acyclicity works. In particular, twisted acyclicity of a circle
implies that the complement of a tubular neighborhood of a link looks like a closed
manifold, because the boundary, being fibered to circles, is invisible for the twisted
homology.

Moreover, the same holds true for a collection of pairwise transversal generically
immersed closed manifolds of codimension 2 in arbitrary closed manifold, provided
the monodromy around each manifold is non-trivial. The twisted homology does
not feel the intersection of the submanifolds as a singularity.

The complement of a cobordism between such immersed links looks (again, from
the point of view of twisted homology) like a compact cobordism between closed
manifolds.

This, together with classical results about signatures of manifolds and relations
between twisted homology and homology with constant coefficients, allows us to
deal with a link of codimension two as if it was a single closed manifold.

1.3. Organization of the paper. I cannot assume the twisted homology
well-known to the reader, and review the material related to it. Of course, the
material on non-twisted homology is not reviewed. The review is limited to a very
special twisted homology, the one with complex coefficients. More general twisted
homology is not needed here.

The review is postponed to appendices. The reader somehow familiar with
twisted homology may visit this section when needed. The experts are invited
to look through appendices, too.

We begin in Section 2 with a detailed exposition restricted to the classical links.
Section 3 is devoted to higher dimensional generalization, including motivation for
our choice of the objects. Section 4 is devoted to span inequalities, that is, restric-
tions on homology of submanifolds of the ball, which span a given link contained
in the boundary of the ball. Section 5 is devoted to slice inequalities, which are
restrictions on homology of a link with given transversal intersection with a sphere
of codimension one.

2. In the classical dimension.

2.1. Classical knots and links. Recall that a classical knot is a smooth sim-
ple closed curve in the 3-sphere S3. This is how one usually defines classical knots.
However it is not the curve per se that is really considered in the classical knot
theory, but rather its placement in S3. Classical knots incarnate the idea of knot-
tedness: both the curve and S3 are topologically standard, but the position of the
curve in S3 may be arbitrarily complicated topologically. Therefore a classical knot
is rather a pair (S3,K), where K is a smooth submanifold of S3 diffeomorphic to
S1.

A classical link is a pair (S3, L), where L is a smooth closed one-dimensional
submanifold of S3. If L is connected, then this is a knot.

2.2. Twisted homology of a classical link exterior. An exterior of a
classical link (S3, L) is the complement of an open tubular neighborhood of L.
This is a compact 3-manifold with boundary. The boundary is the boundary of the
tubular neighborhood of L. Hence, this is the total space of a locally trivial fibration
over L with fiber S1. An exterior X(L) is a deformation retract of the complement
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S3 r L. It’s a nice replacement of S3 r L, because IntX(L) is homeomorphic to
S3 r L, but X(L) is compact manifold and has a nice boundary.

If L consists ofm connected components, L = K1∪· · ·∪Km, then by the Alexan-
der dualityH0(X(L)) = Z, H1(X(L)) = Zm, H2(X(L)) = Zm−1 andHi(X(L)) = 0
for i 6= 0, 1, 2. The group H1(X(L)) is dual to H1(L) with respect to the Alexander
linking pairing H1(L)×H1(X(L)) → Z. Hence a basis of H1(L) defines a dual basis
in H1(X(L)). An orientation of L determines a basis [K1], . . . , [Km] of H1(L), and
the dual basis of H1(X(L)), which is realized by meridians M1, . . . , Mm positively
linked to K1, . . . , Km, respectively. (The meridians are fibers of a tubular fibration
∂X(L) → L over points chosen on the corresponding components.)

Therefore, if L is oriented, then a local coefficient system on X(L) with fiber C
is defined by an m-tuple of complex numbers (ζ1, . . . , ζm), the images under the
monodromy homomorphism H1(X(L)) → C× of the generators [M1], . . . , [Mm] of
H1(X(L)).

Thus for an oriented classical knot L consisting of m connected components,
local coefficient systems on X(L) with fiber C are parametrized by (C×)m.

2.3. Link signatures. Let L = K1 ∪ · · · ∪Km ⊂ S3 be a classical link, ζi ∈ C,
|ζi| = 1, ζ = (ζ1, . . . , ζm) ∈ (S1)m and µ : H1(S

3 rL) → C× takes to ζi a meridian
of Ki positively linked with Ki.

Let F1, . . . Fm ⊂ D4 be smooth oriented surfaces transversal to each other with
∂Fi = Fi ∩ ∂D4 = Ki. Extend the tubular neighborhood of L involved in the
construction of X(L) to a collection of tubular neighborhoods N1, . . . , Nm of F1,
. . . , Fm, respectively.

Without loss of generality we may choose Ni in such a way that they would
intersect each other in the simplest way. Namely, each connected component B of
Ni ∩ Nj would contain only one point of Fi ∩ Fj and no point of others Fk and
would consist of entire fibers of Ni and Nj, so that the fibers define a structure of
bi-disk D2 ×D2 on B.

To achieve this, one has to make the fibers of the tubular fibration Ni → Fi at
each intersection point of Fi and Fj coinciding with a disk in Fj and then diminish
all Ni appropriately.

Now let us extend X(L) to X(F ) = D4 r ∪m
i=1 IntNi. This is a compact 4-

manifold. Its boundary contains X(L), the rest of it is a union of pieces of bound-
aries of Ni with i = 1, . . . ,m. These pieces are fibered over the corresponding pieces
of Fi with fiber S1.

By the Alexander duality, the orientation of Fi gives rise to a homomorphism
H1(X(F )) → Z that maps a homology class to its linking number with Fi. These
homomorphisms altogether determine a homomorphism H1(X(F )) → Zm. For any
ζ = (ζ1, . . . , ζm), the composition of this homomorphism with the homomorphism

Zn → (C×)m : (n1, . . . , nm) → (ζn1

1 , . . . , ζnm

m )

is a homomorphism H1(X(F )) → (C×)m extending µ. If each Fi has no closed
connected components, then this extension is unique. Let us denote it by µ.

According to Appendix D.6, in H2(X(F );Cµ) there is a Hermitian intersection
form. Denote its signature by σζ(L).

Theorem 2.A. σζ(L) does not depend on F1, . . . , Fm.
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Proof. Any F ′
i with ∂F ′

i = F ′
i ∩ ∂D4 = Ki is cobordant to Fi. The cobordisms

Wi ⊂ D4 × I can be made pairwise transversal. They define a cobordism D4 × I r
∪i IntN(Wi) between X(F ) and X(F ′). By Theorem D.B,

σζ(∂D
4 × I r ∪i IntN(Wi)) = 0.

The manifold ∂D4 × I r ∪i IntN(Wi) is the union of X(F ), −X(F ′) and a homo-

logically negligible part ∂(N(∪i IntWi)), the boundary of a regular neighborhood
of the cobordism ∪iWi between ∪iFi and ∪iF

′
i . By Theorem D.A,

σζ(∂D
4 × I r ∪i IntN(Wi)) = σζ(D

4 r ∪iFi)− σζ(D
4 r ∪iF

′

i )

Hence, σζ(D
4 r ∪iFi) = σζ(D

4 r ∪iF
′
i ). �

2.4. Colored links. In the definition of signature σζ(L) above one needs to
numerate the components Ki of L to associate to each of them the corresponding
component ζi of ζ, but there is no need to require connectedness of each Ki. This
leads to a notion of colored link.

An m-colored link L is an oriented link in S3 together with a map (called color-

ing) assigning to each connected component of L a color in {1, . . . ,m}. The sublink
Li is constituted by the components of L with color i for i = 1, . . . ,m.

For an m-colored link L = L1 ∪ · · · ∪ Lm and ζ = (ζ1, . . . , ζm) ∈ (S1)m, the
signature σζ(L) is defined as above, but each component Kj colored with color i is
associated to ζi.

2.5. Relations to other link signatures. If ζi = −1 for all i = 1, . . . ,m,
then the signature σζ(L) coincides with the Murasugi signature ξ(L) introduced in
[11]. If all ζi are roots of unity of a degree, which is a power of a prime number
and all linking numbers lk(Li, Lj) vanish, then σζ(L) coincides with the signature
defined by Florens [2].

In the most general case, σζ(L) coincides with the signature defined for arbitrary
ζ by Cimasoni and Florens [1] using a 3-dimensional approach, with a version of
Seifert surface, C-complex.

3. In higher dimensions.

3.1. Apology for the generalization of higher dimensional links.
There is a spectrum of objects considered as generalizations of classical knots and
links. The closest generalization of classical knots are pairs (Sn,K), where K
is a smooth submanifold diffeomorphic to Sn−2. Then the requirements on K
are weakened. Say, one may require K to be only homeomorphic to Sn−2, not
diffeomorphic. Or just a homology sphere of dimension n− 2. The codimension is
important in order to keep any resemblance to classical knots.

In the same spirit, for the closest higher-dimensional counter-part of classical
links one takes a pair consisting of Sn and a collection of its disjoint smooth sub-
manifolds diffeomorphic to Sn−2. One allows to weaken the restrictions on the
submanifolds. Up to arbitrary closed submanifolds.

I suggest to allow transversal intersections of the submanifolds.

Of course, the main excuse for this is that some results can extended to this
setup. Here is a couple of other reasons.
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First, in the classical dimension, it is easy for submanifolds to be disjoint. Gener-
ically curves in 3-sphere are disjoint. If they intersect, it is a miracle or, rather, has
a special cause.

Generic submanifolds of codimension two in a manifold of dimension > 3 inter-
sect. If they do not intersect, this is a miracle, or consequence of a special cause.

Second, classical links emerge naturally as links of singular points of complex
algebraic curves in C2. Recall that for an algebraic curve C ⊂ C2 and a point p ∈ C
the boundary of a sufficiently small ball B centered at p, the link (∂B, ∂B ∩ C) is
well-defined up to diffeomorphism, and it is called the link of C at p.

An obvious generalization of this definition to an algebraic hypersurface C ⊂ Cn

gives rise to a pair (S2n−1,K) with connected K. It cannot be a union of disjoint
submanifolds of S2n−1.

It would not be difficult to extend the results of this paper to a more general
setup. For example, one can replace the ambient sphere with a homology sphere,
or even more general manifold. However, one should stop somewhere. The author
prefers this early point, because the level of generality accepted here suffices for
demonstrating the new opportunities open by a systematic usage of twisted ho-
mology. On the other hand, further generalizations can make formulations more
cumbersome.

3.2. Colored links. By an m-colored link of dimension n we shall mean a col-
lection of m oriented smooth closed n-dimensional submanifolds L1, . . . , Lm of the
sphere Sn+2 such that any sub-collection has transversal intersection. The latter
means that for any x ∈ Li1 ∩ · · · ∩ Lik the tangent spaces TxLi1 , . . . , TxLik are
transverse, that is, dim(TxLi1 ∩ · · · ∩ TxLik) = n+ 2− 2k.

3.3. Generic configurations of submanifolds. More generally, anm-colo-
red configuration of transversal submanifolds in a smooth manifold M is a family
of m smooth submanifolds L1, . . . , Lm of M such that any sub-collection has
transversal intersection. If M has a boundary, the submanifolds are assumed to
be transversal to the boundary, as well as the intersection of any sub-collection.
Furthermore, assume that ∂M ∩ Li = ∂Li for any i = 1, . . . ,m.

As above, in Section 2.3, for any m-colored configuration L of transversal sub-
manifolds L1, . . . , Lm in M one can find a collection of their tubular neighborhoods
N1, . . . , Nm which agree with each other in the sense that for any sub-collection
Li1 , . . . , Liν the intersection of the corresponding neighborhoods Ni1 ∩ · · · ∩Niν is
neighborhood of the intersection Li1 ∩ · · · ∩ Liν fibered over this intersection with
the corresponding poly-disk fiber.

Denote the complementMr∪m
i=1 IntNi byX(L) and call it an exterior of L. This

is a smooth manifold with a system of corners on the boundary. The differential
type of the exterior does not depend on the choice of neighborhoods. Moreover, one
can eliminate the choice of neighborhoods and deleting of them from the definition.
Instead, one can make a sort of real blowing up of M along L1, . . . , Lm. However,
for the purposes of this paper it is easier to stay with the choices.

3.4. Link signatures. Let L = L1∪· · ·∪Lm be an m-colored link of dimension
2n− 1 in S2n+1.

As well known (see, e.g., [7]), for each oriented closed codimension 2 submanifold
K of S2n+1 there exists an oriented smooth compact submanifold F of D2n+2 such



6 OLEG VIRO

that ∂F = K. Choose for each Li such a submanifold of D2n+2, denote it by Fi,
and make all the Fi transversal to each other by small perturbations.

As a union of m-colored transversal submanifolds of D2n+2, F = F1 ∪ · · · ∪
Fm has an exterior X(F ). By the Alexander duality, H1(X(F );C×) is naturally
isomorphic to H2n(F,L;C

×). Let ζ = (ζ1, . . . , ζm) ∈ (S1)m. Take
∑m

i=1 ζi[Fi] ∈
H2n(F,L;C

×) and denote by µ the Alexander dual cohomology class considered as
a homomorphism H1(X(F )) → C×. Denote by Cµ the local coefficient system on
X(F ) corresponding to µ.

According to Appendix D.6, in Hn+1(X(F );Cµ) there is an intersection form,
which is Hermitian, if n is odd, and skew-Hermitian, if n is even. Denote its
signature by σζ(L).

Theorem 3.A. σζ(L) does not depend on F1, . . . , Fm.

Proof. Any F ′
i with ∂F ′

i = F ′
i ∩ ∂D2n+2 = Li is cobordant to Fi. The cobordisms

Wi ⊂ D2n+2 × I can be made pairwise transversal to form m-colored configuration
W of transversal submanifolds of D2n+2 × I. They define a cobordism X(W )
between X(F ) and X(F ′). By Theorem D.B,

σζ(∂X(W )) = 0.

The manifold ∂X(W ) = ∂D2n+2 × I r∪i IntN(Wi) is the union of X(F ), −X(F ′)
and a homologically negligible part ∂(N(∪i IntWi)), the boundary of a regular
neighborhood of the cobordism ∪iWi between F and F ′. By Theorem D.A,

σζ(∂X(W )) = σζ(X(F ))− σζ(X(F ′))

Hence, σζ(X(F )) = σζ(X(F ′)). �

4. Span inequalities. Let L = L1 ∪ . . . ,∪Lm be an m-colored link of
dimension 2n − 1 in S2n+1. Let F = F1 ∪ · · · ∪ Fm be an m-colored configura-
tion of transversal oriented compact 2n-dimensional submanifolds of D2n+2 with
∂Fi = Fi ∩ ∂D2n+2 = Li. In this section we consider restrictions on homological
characteristics of F in terms of invariants of L.

4.1. History. The first restrictions of this sort were found by Murasugi [10]
and Tristram [18] for classical (1-colored) links. To m-colored classical links and
pairwise disjoint surfaces Fi the Murasugi-Tristram inequalities were generalized by
Florens [2]. A further generalization to m-colored classical links and intersecting
Fi was found by Cimasoni and Florens [1]. Higher dimensional generalizations for
1-colored links were found by the author [21], [22].

4.2. No-nullity span inequalities. The most general results in this direction
are quite cumbersome. Therefore, let me start with weak but simple ones.

Recall that σζ(L) can be obtained from F : for an appropriate local coefficient
system Cµ on X(F ), this is the signature of a Hermitian intersection form defined
in Hn+1(X(F );Cµ). The signature of an Hermitian form cannot be greater than
the dimension of the underlying space. In particular,

(1) |σζ(L)| ≤ dimC Hn+1(X(F );Cµ).

This can be considered as a restriction on a homological characteristic of F
in terms of invariants of L. However, dimC Hn+1(X(F );Cµ) is not a convenient
characteristic of F . It can be estimated in terms of more convenient ones.
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Let ζ = (ζ1, . . . , ζm) ∈ (S1)m. Let p1, . . . , pk ∈ Z[t1, t
−1
1 . . . , tm, t−1

m ] be genera-
tors of the ideal of relations satisfied by complex numbers ζi. Let d be the greatest
common divisor of the integers p1(1, . . . , 1), . . . , pk(1, . . . , 1), if at least one of these
integers does not vanish, and zero otherwise. Cf. Appendix C.6. Let

P =

{

Z/pZ, if d > 1 and p is a prime divisor of d

Q, if d = 0

By C.C,

dimC Hn+1(X(F );Cµ) ≤ dimP Hn+1(X(F );P ).

The advantage of passing to homology with non-twisted coefficients is that we can
use the Alexander duality:

Hn+1(X(F );P ) = Hn+1(D
2n+2 r F ;P )

= Hn+1(D2n+2, ∂D2n+2 ∪ F ;P )

= Hn(∂D2n+2 ∪ F ;P ) = Hn(F,L;P ).

Hence,

|σζ(L)| ≤ dimP Hn(F,L;P ).

4.3. General span inequalities. The inequality (1) can be improved. Indeed,
the manifoldX(F ) has a non-empty boundary. Therefore, its intersection form may
be degenerate and the right hand side of (1) may be replaced by a smaller quantity,
the rank of the form. The rank is known to be the rank of the homomorphism
Hn+1(X(F );Cµ) → Hn+1(X(F ), ∂X(F );Cµ). Let us estimate this rank.

Lemma 4.A. For any exact sequence . . .
ρk+1→ Ck

ρk→ Ck−1
ρk−1→ . . . of vector spaces

and any integers n and r

(2) rk(ρn+1) + rk(ρn−2r) =

2r
∑

s=0

(−1)s dimCn−s

Proof. The Euler characteristic of the exact sequence

0 → Im ρn+1 →֒ Cn
ρn→ Cn−1 → . . .

ρn−2r+1→ Cn−2r → Im ρn−2r → 0

is the difference between the left and right hand sides of (2). On the other hand,
it vanishes, as the Euler characteristic of an exact sequence. �

Lemma 4.B. Let X be a topological space, A its subspace, ξ a local coefficient

system on X with fiber C. Then for any natural n and r ≤ n
2

(3) rk(Hn+1(X ; ξ) → Hn+1(X,A; ξ)) + rk(Hn−2r(X ; ξ) → Hn−2r(X,A; ξ))

=

2r
∑

s=0

(−1)sbn+1−s(X,A)−
2r
∑

s=0

(−1)sbn−s(A) +

2r
∑

s=0

(−1)sbn−s(X)

where bk(∗) = dimC Hk(∗; ξ)

Proof. Apply Lemma 4.A to the homology sequence of pair (X,A) with coefficients
in ξ. �
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Theorem 4.C. For any integer r with 0 ≤ r ≤ n
2

(4) |σζ(L)|+
2r
∑

s=0

(−1)s dimC Hn−s(S
2n+1 r L;Cζ)

≤
2r
∑

s=0

(−1)s dimHn+1+s(F,L;P ) +

2r
∑

s=0

(−1)s dimHn+s(F ;P )

(5) |σζ(L)|+
2r
∑

s=0

(−1)s dimC Hn+1+s(S
2n+1 r L;Cζ)

≤
2r
∑

s=0

(−1)s dimHn−s(F,L;P ) +

2r
∑

s=0

(−1)s dimHn−s−1(F ;P )

where ζ and P are is in Section 4.2

Proof. As mentioned above,

(6) |σζ(L)| ≤ rk(Hn+1(X(F );Cµ) → Hn+1(X(F ), ∂X(F );Cµ)).

By Lemma 4.B ,

(7) rk(Hn+1(X(F );Cµ) → Hn+1(X(F ), ∂X(F );Cµ))

≤
2r
∑

s=0

(−1)s dimC Hn+1−s(X(F ), X(L);Cζ)−
2r
∑

s=0

(−1)s dimC Hn−s(X(L);Cζ)

+

2r
∑

s=0

(−1)s dimC Hn−s(X(F );Cζ).

Summing up these inequalities and moving one of the sums from the right hand
side to the left, we obtain:

(8) |σζ(L)|+
2r
∑

s=0

(−1)s dimC Hn−s(X(L);Cζ)

≤
2r
∑

s=0

(−1)s dimC Hn+1−s(X(F ), X(L);Cζ) +
2r
∑

s=0

(−1)s dimC Hn−s(X(F );Cζ).

The left hand sum of (8) coincides with the left hand side of (4). The right hand
side can be estimated using Theorem C.C:

(9)

2r
∑

s=0

(−1)s dimC Hn+1−s(X(F ), X(L);Cζ) +

2r
∑

s=0

(−1)s dimC Hn−s(X(F );Cζ)

≤
2r
∑

s=0

(−1)s dimP Hn+1−s(X(F ), X(L);P ) +

2r
∑

s=0

(−1)s dimP Hn−s(X(F );P ).

Further,

Hn+1−s(X(F ), X(L);P ) = Hn+1−s(D
2n+2 r F, S2n+1 r L;P ).
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By the Alexander duality,

Hn+1−s(D
2n+2 r F, S2n+1 r L;P ) = Hn+1+s(D2n+2, F ;P ).

By exactness of the pair sequence, Hn+1+s(D2n+2, F ;P ) = Hn+s(F ;P ).
Similarly,

Hn−s(X(F );P ) = Hn−s(D
2n+2 r F ;P )

= Hn+2+s(D2n+2, F ∪ S2n+1;P )

= Hn+1+s(S2n+1 ∪ F ;P ) = Hn+1+s(F,L;P )

The last equality in this sequence holds true if n+ 1 + s < 2n+ 1, that is, s < n.
Since P is a field,

dimP Hn+s(F ;P ) = dimP Hn+s(F ;P ),(10)

dimP Hn+1+s(F,L;P ) = dimP Hn+1+s(F,L;P ).(11)

Combining formulas (10), (11) with the calculations above and equalities (9) and
(8), we obtain the first desired inequalities (4).

The inequalities (5) are proved similarly. Namely, by Lemma 4.B

(12) rk(Hn+1(X(F );Cµ) → Hn+1(X(F ), ∂X(F );Cµ))

≤
2r
∑

s=0

(−1)s dimC Hn+2+s(X(F ), X(L);Cζ)−
2r
∑

s=0

(−1)s dimC Hn+1+s(X(L);Cζ)

+
2r
∑

s=0

(−1)s dimC Hn+1+s(X(F );Cζ).

Summing up inequalities (6) and (12) and moving one of the sums from the right
hand side to the left, we obtain:

(13) |σζ(L)|+
2r
∑

s=0

(−1)s dimC Hn+1+s(X(L);Cζ)

≤
2r
∑

s=0

(−1)s dimC Hn+2+s(X(F ), X(L);Cζ) +
2r
∑

s=0

(−1)s dimC Hn+1+s(X(F );Cζ).

After this the same estimates and transformations as in the proof of (4) gives rise
to (5). �

4.4. Nullities. The sum in the left hand side of the inequalities (4) is an invariant
of the link L. Its special case for classical links with r = 0 is known as ζ-nullity
and appeared in the Murasugi-Tristram inequalities and their generalizations.

Denote
∑2r

s=0(−1)s dimHn−s(S
2n+1 r L;Cµ) by nr

ζ(L) and call it rth ζ-nullity
of L.

By the Poincaré duality (see Appendix D.3), Hn−s(S
2n+1rL;Cµ) is isomorphic

to Hn+1+s(S2n+1 r L;Cµ). The latter vector space is dual to Hn+1+s(S
2n+1 r

L;Cµ−1) and anti-isomorphic to Hn+1+s(S
2n+1rL;Cµ), see Appendix D.5. There-

fore,

(14) nr
ζ(L) =

2r
∑

s=0

(−1)s dimC Hn+1+s(S
2n+1 r L;Cµ)
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and nr
ζ(L) = nr

ζ
(L). This sum is a part of the left hand side of (5).

Now we can rewrite Theorem 4.C as follows:

Theorem 4.D. For any integer r with 0 ≤ 2r ≤ n

(15) |σζ(L)|+ nr
ζ(L)

≤
2r
∑

s=0

(−1)s dimHn+s+1(F,L;P ) +

2r
∑

s=0

(−1)s dimHn+s(F ;P )

(16) |σζ(L)|+ nr
ζ(L)

≤
2r
∑

s=0

(−1)s dimHn−s(F,L;P ) +

2r
∑

s=0

(−1)s dimHn−s−1(F ;P )

If Fi are pairwise disjoint, than the right hand sides of (15) and (16) are equal
due to Poincaré-Lefschetz duality for F , but we do not assume that F = ∪Fi is
a manifold, and therefore the inequalities (15) and (16) are not equivalent and we
have to keep both of them.

5. Slice inequalities. Again, as in the preceding section, let L1, . . . , Lm ⊂
S2n+1 be smooth oriented transversal to each other submanifolds constituting an
m-colored link L = L1 ∪ · · · ∪ Lm of dimension 2n− 1.

Let Λi ⊂ S2n+2 be oriented closed smooth submanifolds transversal to each
other and to S2n+1, with ∂Λi∩S2n+1 = Li. In this section we consider restrictions
on homological characteristics of Λ = ∪m

i=1Λi in terms of invariants of link L. Of
course, some results of this kind can be deduced from the results of the preceding
section, but an independent consideration gives better results.

5.1. No-nullity slice inequalities. The most general results in this direction
are quite cumbersome. Therefore, let me start with weak but simple ones.

We will use the same algebraic objects as in the preceding section. In particular,
ζ = (ζ1, . . . , ζm) ∈ (S1)m, p1, . . . , pk ∈ Z[t1, t

−1
1 . . . , tm, t−1

m ] are generators of the
ideal of relations satisfied by complex numbers ζi. Integer d is the greatest common
divisor of the integers p1(1, . . . , 1), . . . , pk(1, . . . , 1), if at least one of them does not
vanish, and d = 0 otherwise. Cf. 4.2 and Appendix C.6. Finally,

P =

{

Z/pZ, if d > 1 and p is a prime divisor of d

Q, if d = 0

Let µ : H1(S
2n+1 r L) → C× be the homomorphism which maps the meridian

of Li to ζi. The local coefficient system Cµ on S2n+1 r L defined by µ extends to
S2n+2 r Λ. We will denote the extension by the same symbol Cµ.

The sphere S2n+1 bounds in S2n+2 two balls, hemi-spheres S2n+2
+ and S2n+2

− such

that ∂S2n+2
+ = S2n+1 and ∂S2n+2

− = −S2n+1 with the orientations inherited from

the standard orientation of S2n+2. In Hn+1(S
2n+2rΛ;Cµ) there is a (Hermitian or

skew-Hermitian) intersection form. Its signature is zero by Theorem D.B, because
Λ bounds a configuration of pairwise transversal submanifolds ∆ = ∆1 ∪ · · · ∪∆m

in D2n+3 and Cµ extends over D2n+3 r∆.
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Theorem 5.A. Under the assumption above,

(17) 2|σζ(L)| ≤ dimP Hn(Λ;P ).

Proof. The intersection form on Hn+1(S
2n+2 r Λ;Cµ) restricted to the images of

Hn+1(S
2n+2
+ rΛ;Cµ) and Hn+1(S

2n+2
− rΛ;Cµ) has signatures σζ(L) and −σζ(L),

respectively. Therefore the dimension of each of the images is at least |σζ(L)|.
The images are obviously orthogonal to each other with respect to the intersec-

tion form, because their elements can be realized by cycles lying in disjoin open
hemi-spheres. Hence

2|σζ(L)| ≤ dimC Hn+1(S
2n+2 r Λ;Cµ).

On the other hand, by Theorem C.C,

dimC Hn+1(S
2n+2 r Λ;Cµ) ≤ dimP Hn+1(S

2n+2 r Λ;P ) = dimP Hn(Λ;P ).

Summing up these two inequalities, we obtain the desired one. �

5.1.1. General slice inequalities.

Theorem 5.B. Under assumptions above

(18) 2|σζ(L)|+ 2nr
ζ(L)

≤
2r
∑

s=0

(−1)s dimP Hn−s(Λr L;P ) +

2r−1
∑

s=−2r+1

(−1)s dimP Hn−s(Λ;P )

Lemma 5.C. Let j be the inclusion S2n+1 r L → S2n+2 r Λ. Then

(19) 2|σζ(L)|+ 2 rk(j∗ : Hn+1(S
2n+1 r L;Cµ) → Hn+1(S

2n+2 r Λ;Cµ))

≤ dimC Hn+1(S
2n+2 r Λ;Cµ)

Proof. Denote by i± the inclusion S2n+2
± rΛ → S2n+2rΛ. Observe that the space

Hn+1(S
2n+2 r Λ;Cµ) has a natural filtration:

(20) j∗Hn+1(S
2n+1 r L;Cµ)

⊂ i+∗ Hn+1(S
2n+2
+ r Λ;Cµ) + i−∗ Hn+1(S

2n+2
− r Λ;Cµ)

⊂ Hn+1(S
2n+2 r Λ;Cµ)

The inclusion homomorphisms

j∗ : Hn+1(S
2n+1 r L;Cµ) → Hn+1(S

2n+2 r Λ;Cµ)

and the boundary homomorphism

∂ : Hn+1(S
2n+2 r Λ;Cµ) → Hn(S

2n+1 r L;Cµ)

of the Mayer-Vietoris sequence of the triad (S2n+2 r Λ;S2n+2
+ r Λ, S2n+2

− r Λ) are
dual to each other with respect to the intersection forms:

j∗(a)◦b = a◦∂(b) for any a ∈ Hn+1(S
2n+1rL;Cµ) and b ∈ Hn+1(S

2n+2rΛ;Cµ).

Since the intersection forms are non-singular, it follows that rk j∗ = rk ∂.
By exactness of the Mayer-Vietoris sequence, the rank of ∂ is the dimensions of

the top quotient of the filtration (20), while the rank of j∗ is the dimension of the
smallest term j∗Hn+1(S

2n+1 r L;Cµ) of this filtration.



12 OLEG VIRO

The middle term of the filtration contains the subspaces i+∗ Hn+1(S
2n+2
+ rΛ;Cµ)

and i−∗ Hn+1(S
2n+2
− r Λ;Cµ). Their intersection is the smallest term, which is

orthogonal to both of the subspaces. Therefore the dimension of the quotient of
the middle term of the filtration by the smallest term is at least 2|σζ(L)|

The dimension of the whole space Hn+1(S
2n+2 r Λ;Cµ) is the sum of the di-

mensions of the factors. We showed above that the top and lowest factor have the
same dimensions equal to rk j∗ and that the dimension of the middle factor is at
least 2|σζ(L)|. �

Lemma 5.D. For any exact sequence . . .
ρk+1→ Ck

ρk→ Ck−1
ρk−1→ . . . of vector spaces

and any integers n and t

(21) rk(ρn)− rk(ρn+2t) =

2t−1
∑

s=0

(−1)s dimCn+s

Proof. The Euler characteristic of the exact sequence

0 → Im ρn+2t →֒ Cn+2t−1
ρn+2t−1→ Cn+2t−2 → . . .

ρn+1→ Cn → Im ρn → 0

is rk(ρn)−
∑2t−1

s=0 (−1)s dimCn+s − rk(ρn + 2t), that is the difference between the
left and right hand sides of (21). On the other hand, it vanishes, as the Euler
characteristic of an exact sequence. �

Lemma 5.E. Let X be a topological space, A its subspace, ξ a local coefficient

system on X with fiber C. Then for any natural n and integer r

(22) rk(Hn+1(A; ξ) → Hn+1(X ; ξ))− rk(Hn+2+2r(X ; ξ) → Hn+2+2r(X,A; ξ))

=

2r
∑

s=0

(−1)sbn+1+s(A)−
2r
∑

s=0

(−1)sbn+2+s(X,A) +

2r−1
∑

s=0

(−1)sbn+2+s(X)

where bk(∗) = dimC Hk(∗; ξ).

Proof. Apply Lemma 5.D to the homology sequence of pair (X,A) with coefficients
in ξ. �

Lemma 5.F. For any integer r with 0 ≤ r ≤ n
2

(23) 2|σζ(L)|+ 2nr
ζ(L)

≤ 2
2r
∑

s=0

(−1)s dimC Hn+2+s(S
2n+2 r Λ, S2n+1 r L;Cµ)

+
2r−1
∑

s=−2r+1

(−1)s dimC Hn+1+s(S
2n+2 r Λ;Cµ)
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Proof. By Lemma 5.E applied to the pair (S2n+2 r Λ, S2n+1 r L), we obtain

(24) rk(j∗ : Hn+1(S
2n+1 r L;Cµ) → Hn+1(S

2n+2 r Λ;Cµ))

≥
2r
∑

s=0

(−1)sHn+1+s(S
2n+1 r L;Cµ)

−
2r
∑

s=0

(−1)s dimC Hn+2+s(S
2n+2 r Λ, S2n+1 r L;Cµ)

+
2r−1
∑

s=0

(−1)s dimC Hn+2+s(S
2n+2 r Λ;Cµ)

From this inequality and inequality (19) we obtain

(25) 2|σζ(L)|+ 2nr
ζ(L)

≤ 2

2r
∑

s=0

(−1)s dimC Hn+1+s(S
2n+2 r Λ, S2n+1 r L;Cµ)

− 2

2r−1
∑

s=0

(−1)s dimC Hn+s+2(S
2n+2 r Λ;Cµ)

+ dimC Hn+1(S
2n+2 r Λ;Cµ)

From this and the Alexander duality (which states that Hn+1+s(S
2n+2 r Λ;Cµ) is

isomorphic to Hn+1−s(S
2n+2 r Λ;Cµ)) the desired inequality follows. �

Lemma 5.G.

(26)

2r
∑

s=0

(−1)s dimC Hn+1+s(S
2n+2 r Λ, S2n+1 r L;Cµ)

≤
2r
∑

s=0

(−1)s dimP Hn−s(Λ r L;P )

Proof. By Theorem C.C

(27)

2r
∑

s=0

(−1)s dimC Hn+1+s(S
2n+2 r Λ, S2n+1 r L;Cµ)

≤
2r
∑

s=0

(−1)s dimP Hn+1+s(S
2n+2 r Λ, S2n+1 r L;P ).

By Poincaré duality (cf. Appendix D.3), Hn+1+s(S
2n+2 r Λ, S2n+1 r L;P ) is

isomorphic to Hn+1−s(S2n+2 r S2n+1,Λ r L;P ). The latter is isomorphic to
Hn−s(Λ r L;P ). By the universal coefficients formula, Hn−s(Λ r L;P ) is iso-
morphic to Hn−s(Λr L;P ). �
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Lemma 5.H .

(28)

2r−1
∑

s=−2r+1

(−1)s dimC Hn+1+s(S
2n+2 r Λ;Cµ)

≤
2r−1
∑

s=−2r+1

(−1)s dimP Hn−s(Λ;P )

Proof. By Theorem C.C

(29)

2r−1
∑

s=−2r+1

(−1)s dimC Hn+1+s(S
2n+2 r Λ;Cµ)

≤
2r−1
∑

s=−2r+1

(−1)s dimP Hn+1+s(S
2n+2 r Λ;P ).

By Poincaré duality, Hn+1+s(S
2n+2 rΛ;P ) is isomorphic to Hn+1−s(S2n+2,Λ;P ).

From the sequence of pair (S2n+2,Λ) it follows that Hn+1−s(S2n+2,Λ;P ) is isomor-
phic to Hn−s(Λ;P ). By the universal coefficient formula, Hn−s(Λ;P ) is isomorphic
to Hn−s(Λ;P ). �

Proof of Theorem 5.B . Sum up the inequalities of the last three Lemmas. �

Appendix Appendix. Twisted homology.

Appendix A. Twisted coefficients and chains.

Appendix A.1. Local coefficient system. Let X be a topological space, and ξ
be a C-bundle over X with a fixed flat connection.

Here by a connection we mean operations of parallel transport: for any path s
in X connecting points x and y the parallel transport Ts is an isomorphism from
the fiber Cx over x to the fiber Cy over y, such that the parallel transport along
product of paths equals the composition of parallel transports along the factors. In
formula: Tuv = Tv ◦ Tu. A connection is flat, if the parallel transport isomorphism
does not change when the path is replaced by a homotopic path.

A flat connection in a bundle ξ over a simply connected X gives a trivialization
of ξ.

Another name for ξ is a local coefficient system with fiber C.

Appendix A.2. Monodromy representation. Recall that for a path-connected
locally contractible X (and in more general situations, which would not be of in-
terest here) it is defined by the monodromy reprensentation π1(X, x0) → C×, where
C× = Cr0 is the multiplicative group of C. The monodromy representation assigns
to σ ∈ π1(X, x0) a complex number ζ such that the parallel transport isomorphism
along a loop which represents σ is multiplication by ζ.

Since C× is commutative, a homomorphism π1(X, x0) → C× factors through
the abelianization π1(X, x0) → H1(X). Thus a local coefficient system with fiber
C is defined also by a homology version µ : H1(X) → C× of the monodromy
representation, which can be considered also as a cohomology class belonging to
H1(X ;C×).
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The local coefficient system defined by a monodromy representation µ : H1(X) →
C× is denoted by Cµ. Sometimes instead of µ we will write data which defines µ,
for example the images under µ of generators of H1(X) selected in a special way.

Appendix A.3. Twisted singular chains. Homology groups Hn(X ; ξ) of X
with coefficients in ξ is a classical invariant studied in algebraic topology. It is an
immediate generalization of Hn(X ;C). Hence it is quite often ignored in textbooks
on homology theory, I recall the singular version of the definition.

Recall that a singular p-dimensional chain of X with coefficients in C is a formal
finite linear combination of singular simplices fi : T p → X with complex coeffi-
cients.

A singular chain of X with coefficients in ξ is also a formal finite linear combina-
tion of singular simplices, but each singular simplex fi : T

p → X appears in it with
a coefficient taken from the fiber Cfi(c) of ξ over fi(c), where c is the baricenter of
T p. Of course, all the fibers of ξ are isomorphic to C. So, a chain with coefficients
in ξ can be identified with a chain with coefficients in C, provided the isomorphisms
Cfi(c) → C are selected. But they are not.

All singular p-chains of X with coefficients in ξ form a complex vector space
Cp(X ; ξ).

The boundary of such a chain is defined by the usual formula, but one needs
to bring the coefficient from the fiber over fi(c) to the fibers over fi(ci), where ci
is the baricenter of the ith face of T p. For this, one may use translation along
the composition with fi of any path connecting c to ci in T p: since T p is simply
connected and the connection of ξ is flat, the result does not depend on the path.

These chains and boundary operators form a complex. Its homology is called
homology with coefficients in ξ and denoted by Hp(X ; ξ).

Homology with coefficients in the local coefficient system corresponding to the
trivial monodromy representation 1 : H1(X) → C× coincides with homology with
coefficients in C.

Appendix A.4. Twisted cellular chains. It is possible to calculate the ho-
mology with coefficients in a local coefficient system using cellular decomposition.
Namely, a p-dimensional cellular chain of a cw-complex X with coefficients in a
local coefficient system ξ is a formal finite linear combination of p-dimensional cells
in which a coefficient at a cell belongs to the fiber over a point of the cell. It does
not matter which point is this, because fibers over different points in a cell are
identified via parallel transport along paths in the cell: any two points in a cell can
be connected in the cell by a path unique up to homotopy.

In order to describe the boundary operator, let me define the incidence number

(zσx : τ)y ∈ Cy where σ is a p-cell, τ is a (p − 1)-cell, z ∈ Cx, x ∈ σ, y ∈ τ . The
boundary operator is then defined by the incidence numbers:

∂(zσ) =
∑

τ

(zσx : τ)yτ.

Let f : Dp → X be a characteristic map for σ. Assume that a point y in
(p− 1)-cell τ is a regular value for f . This means that y has a neighborhood U in
τ such that f−1(U) ⊂ Sp−1 ⊂ Dp is the union of finitely many balls mapped by f
homeomorphically onto U . Connect f−1(x) ∈ Dp with all the points of f−1(y) by
straight paths. Compositions of these paths with f are paths s1,. . . sN connecting
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x with y. Then put

(zσ : τ)y =

N
∑

i=1

εiTsi(z)

where Tsi is a parallel transport operator and εi = +1 or −1 according to whether
f preserves or reverses the orientation on the ith ball out of N balls constituting
f−1(U).

Appendix B. Twisted acyclicity.

Appendix B.1. Acyclicity of circle. According to one of the most fundamental
properties of homology, the dimension of H0(X ;C) is equal to the number of path-
connected components of X . In particular, H0(X ;C) does not vanish, unless X is
empty.

This is not the case for twisted homology. A crucial example is the circle S1.
Let µ : H1(S

1) → C× maps the generator 1 ∈ Z = H1(S
1) to ζ ∈ C×.

Theorem B.A. Twisted acyclicity of circle. H∗(S
1;Cµ) = 0, iff ζ 6= 1.

Proof. The simplest cw-decomposition of S1 consists of two cells, one-dimensional
σ1 and zero-dimensional σ0. One can easily see that ∂σ1 = (ζ − 1)σ0. Hence
∂ : C1(S

1;Cµ) → C0(S
1;Cµ) is an isomorphism, iff ζ 6= 0. �

Appendix B.2. Vanishing of twisted homology.

Corollary B.B. Let X be a path connected space and µ : H1(S
1 ×X) → C× be a

homomorphism. Denote by ζ the image under µ of the homology class realized by

a fiber S1 × point. Then H∗(S
1 ×X ;Cµ) = 0, if ζ 6= 0.

Proof. SinceH1(S
1×X) = H1(S

1)×H1(X), the homomorphism µ can be presented
as product of homomorphisms µ1 : H1(S

1) → C× and µ2 : H1(X) → C× which
can be obtained as compositions of µ with the inclusion homomorphisms. Thus
Cµ = Cµ1 ⊗ Cµ2 , and we can apply Künneth formula

Hn(S
1 ×X ;Cµ) =

n
∑

p=0

Hp(S
1;Cµ1)⊗Hn−p(X ;Cµ2)

and refer to Theorem B.A. �

Corollary B.C. Let B be a path connected space, p : X → B a locally trivial

fibration with fiber S1. Let µ : H1(X) → C× be a homomorphism. Denote by ζ the

image under µ of homology class realized by a fiber of p. Then H∗(X ;Cµ) = 0, if
ζ 6= 0.

Proof. It follows from Theorem B.A via the spectral sequence of fibration p.
�

Appendix C. Estimates of twisted homology.
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Appendix C.1. Equalities underlying the Morse inequalities.

Lemma C.A. For a complex C : · · · → Ci
∂i→ Ci−1 → of finite dimensional vector

spaces over a field F

(C.30)

2n+r
∑

s=r

(−1)s−r dimF Hs(C) =

2n+r
∑

s=r

(−1)s−r dimF Cs − rk ∂r−1 − rk ∂2n+r.

Proof. First, prove inequality (C.30) for n = 0. Since Hs(C) = Ker ∂s/ Im∂s+1, we
have dimF Hs(C) = dimKer ∂s − dimF Im ∂s+1. Further, dimF Im ∂s+1 = rk ∂s+1,
and dimF Ker ∂s = dimF Cs − rk ∂s. It follows

(C.31) dimF Hs(C) = dimF Cs − rk ∂s − rk ∂s+ 1

This is a special case of (C.30) with n = 0, r = s.
The general case follows from it: make alternating summation of (C.31) for

s = r, . . . , 2n+ s. �

Appendix C.2. Algebraic Morse type inequalities.

Lemma C.B. Let P and Q be fields, R be a subring of Q and let h : R → P be a

ring homomorphism. Let C : · · · → Cp → Cp−1 → · · · → C1 → C0 be a complex of

free finitely generated R-modules. Then for any n and r

2n+r
∑

s=r

(−1)s−r dimQ Hs(C ⊗R Q) ≤
2n+r
∑

s=r

(−1)s−r dimP Hs(C ⊗h P )

Thus, the greater ranks of differentials, the smaller

2n+r
∑

s=r

(−1)s−r dimF Hs(C).

Proof. Choose free bases in modules Ci. Let Mi be the matrix representing ∂i :

Ci → Ci−1 in these bases. The same matrix represents the differential ∂Q
i of C⊗RQ.

The matrix obtained from Mi by replacement the entries with their images under
h represents the differential ∂P

i of C ⊗h P . The minors of the latter matrix are the

images of the former one under h. Consequently, the rk ∂Q
i ≥ rk ∂P

i .
By Lemma C.A

(C.32)

2n+r
∑

s=r

(−1)s−r dimQ Hs(C ⊗R Q) =

2n+r
∑

s=r

(−1)s−r dimQ Cs ⊗R Q− rk ∂Q
r−1 − rk ∂Q

r+2n
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and

(C.33)

2n+r
∑

s=r

(−1)s−r dimP Hs(C ⊗h P ) =

2n+r
∑

s=r

(−1)s−r dimP Cs ⊗h P − rk ∂P
r−1 − rk ∂P

r+2n

Compare the right hand sides of these equalities. The dimensions dimP Cs⊗hP ,
dimQ Cs ⊗R Q are equal to the rank of free R-module Cs. Since, as it was shown

above, rk ∂Q
i ≥ rk ∂P

i , the right hand side of (C.33) is smaller than the right hands
side of (C.33). �

Probably, the simplest application of Lemma C.B gives well-known upper esti-
mation of the Betti numbers with rational coefficients by the Betti numbers with
coefficients in a finite field. It follows from the universal coefficients formula.

Appendix C.3. Application to twisted homology.

Theorem C.C. Let X be a finite cw-complex, and µ : H1(X) → C× be a homo-

morphism. If Imµ ⊂ C× generates a subring R of C and there is a ring homo-

morphism h : R → Q, where Q is a field, such that hµ(H1(X)) = 1, then we can

apply Lemma C.B and get an upper estimation for dimensions of twisted homology

groups in terms of dimensions of non-twisted ones.

(C.34)

2n+r
∑

s=r

(−1)s−r dimQ Hs(X ;Cµ) ≤
2n+r
∑

s=r

(−1)s−r dimP Hs(X ;P )

Here are several situations in which the assumptions of this theorem are fulfilled.

Appendix C.4. Estimates by untwisted Z/pZ Betti numbers. Let H1(X)
be generated by g and ζ = µ(g) be an algebraic number. Assume that p is the
minimal integer polynomial with relatively prime coefficients which annihilates ζ.
Assume also that g(1) is divisible by a prime number p. Then for R we can take
Q[ζ] ⊂ C, for P the field Z/pZ, and for h the ring homomorphism Q[ζ] → Z/pZ
mapping ζ 7→ 1.

Here is a more general situation: Let H1(X) be generated by g1,. . . gk, and
ζi = µ(gi) be an algebraic number for each i. Assume that pi is the minimal integer
polynomial with relatively prime coefficients which annihilates ζi. Assume also that
the greatest common divisor of g1(1),. . . , gk(1) is divisible by a prime number p.
Then for R we can take Q[ζ1, . . . , ζk] ⊂ C, for P the field Z/pZ, and for h the ring
homomorphism Q[ζ1, . . . , ζk] → Z/pZ mapping ζi 7→ 1 for all i.

Appendix C.5. Estimates by rational Betti numbers. Let H1(X) be gener-
ated by g and ζ = µ(g) be transcendent. Then for R we can take the ring Z[ζ, ζ−1],
for Q the field Q(ζ), for P the field Q, and for h the ring homomorphism Z[ζ] → Q

which maps ζ to 1.
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Appendix C.6. The most general estimates. Let H1(X) be generated by
g1,. . . gk and ζi = µ(gi). Laurent polynomials with integer coefficients annihilated
by ζ1, . . . , ζm form an ideal in the ring Z[t1, t

−1
1 . . . , tm, t−1

m ]. Let p1, . . . , pk be
generators of this ideal. Let d be the greatest common divisor of the integers
p1(1, . . . , 1), . . . , pk(1, . . . , 1), if at least one of them is not 0. Otherwise, let d = 0

In other words, consider the specialization homomorphism

S : Z[t1, t
−1
1 . . . , tm, t−1

m ] → C : ti 7→ ζi.

Let K be the kernel of S, and let d be the generator of the ideal which is the image
of K under the homomorphism

Z[t1, t
−1
1 . . . , tm, t−1

m ] → Z : ti 7→ 1.

Then for R we can take the ring Z[ζ1, ζ
−1
1 , . . . , ζk, ζ

−1
k ]. For Q we can take the

quotient field of R, but since both Q and its quotient field are contained in C, let
us take Q = C.

If d > 1, then we can take for P the field Z/pZ with any prime p which divides
d. If d = 0, then let P = Q. The case d = 1 is the most misfortunate: then our
technique does not give any non-trivial estimate. For d > 1 or d = 0 we have the
inequality (C.34).

Appendix D. Twisted duality.

Appendix D.1. Cochains and cohomology. Cochain groups Cp(X ; ξ) (which
are vector spaces over C) and cohomologyHp(X ; ξ) are defined similarly: p-cochain
with coefficients in ξ is a function assigning to a singular simplex f : T p → X an
element of Cf(c), the fiber of ξ over f(c).

This can be interpreted as the chain complex of the local coefficient system
Hom(C, ξ) whose fiber over x ∈ X is HomC(C,Cx). More generally, for any local
coefficient systems ξ and η on X with fiber C there is a local coefficient system
Hom(ξ, η) constructed fiber-wise with the parallel transport defined naturally in
terms of the parallel transports of ξ and η. If the monodromy representations of ξ
and η are µ and ν, respectively, then the monodromy representation of Hom(ξ, η)
is µ−1ν : H1(X) → C× : x 7→ µ−1(x)ν(x).

Similarly, for any local coefficient systems ξ and η on X with fiber C there is
a local coefficient system ξ ⊗ η. If µ, ν : H1(X) → C× are homomorphisms, then
Cµ ⊗ Cν is the local coefficient system Cµν corresponding to the homomorphism-
product µν : H1(X) → C× : x 7→ µ(x)ν(x).

If ν = µ−1 (that is µ(x)ν(x) = 1 for any x ∈ H1(X)), then Cµ ⊗ Cν is the
non-twisted coefficient system with fiber C.

In contradistinction to non-twisted case, there is no way to calculateHn(X ; ξ⊗η)

in terms of H∗(X ; ξ) and H∗(X ; η). Indeed, both H∗(S
1;Cµ) and H∗(S

1;Cµ−1

)

vanish, unless µ : H1(S
1) → C× is trivial, but H0(S

1;Cµ⊗Cµ−1

) = H0(S
1;C) = C.

Appendix D.2. Multiplications. Usual definitions of various cohomological and
homological multiplications are easily generalized to twisted homology. For this one
needs a bilinear pairing of the coefficient systems. (Recall that in the case of non-
twisted coefficient system a pairing of coefficient groups also is needed.) For local
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coefficient systems ξ, η and ζ with fiber C on X , a pairing ξ⊕ η → ζ is a fiber-wise
map which is bilinear over each point of X . Given such a pairing, there are pairings

`: Hp(X ; ξ)×Hq(X ; η) → Hp+q(X ; ζ),

a: Hp+q(X ; ξ)×Hq(X ; η) → Hp(X ; ζ),

etc.
A pairing ξ ⊕ η → ζ of local coefficients systems can be factored through the

universal pairing ξ ⊕ η → ξ ⊗ η.

Since Cµ ⊗ Cµ−1

is a non-twisted coefficient system with fiber C, this gives rise
to a non-singular pairing

Cp(X ;Cµ−1

)⊗ Cp(X ;Cµ) → C

which induces a non-singular pairing

a: Hp(X ;Cµ−1

)⊗Hp(X ;Cµ) → C

Thus, the vector spaces Hp(X ;Cµ−1

) and Hp(X ;Cµ) are dual.

Appendix D.3. Poincaré duality. Let X be an oriented connected compact
manifold of dimension n. Then Hn(X, ∂X) is isomorphic to Z and the orienta-
tion is a choice of the isomorphism, or, equivalently, the choice of a generator of
Hn(X, ∂X). We denote the generator by [X ].

Let µ : H1(X) → C× be a homomorphism. There are the Poincaré-Lefschetz
duality isomorphisms

[X ] a: Hp(X ;Cµ) → Hn−p(X, ∂X ;Cµ),

[X ] a: Hp(X, ∂X ;Cµ) → Hn−p(X ;Cµ)

Similarly to the case of non-twisted coefficients, there are non-singular pairings:
the cup-product pairing

`: Hp(X ;Cµ)×Hn−p(X, ∂X ;Cµ−1

) → Hn(X ;C) = C

and intersection pairing

(D.35) ◦ : Hp(X ;Cµ)×Hn−p(X, ∂X ;Cµ−1

) → C

However, the local coefficient systems of the homology or cohomology groups in-
volved in a pairing are different, unless Imµ ⊂ {±1}.

Appendix D.4. Conjugate local coefficient systems. Recall that for vector
spaces V and W over C a map f : V → W is called semi-linear if f(a + b) =
f(a) + f(b) for any a, b ∈ V and f(za) = zf(a) for z ∈ C and a ∈ V . This notion
extends obviously to fiber-wise maps of complex vector bundles. If ξ and η local
coefficient systems of the type that we consider, then fiber-wise semi-linear bijection
ξ → η commuting with all the transport maps is called a semi-linear equivalence

between ξ and η.
For any local coefficient system ξ with fiber C on X there exists a unique local

coefficient system on X which is semi-linearly equivalent to ξ. It is denoted by ξ
and called conjugate to ξ. If ξ = Cµ, then ξ is Cµ, where µ(x) = µ(x) for any
x ∈ H1(X).
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Appendix D.5. Unitary local coefficient systems. A homomorphism µ :
H1(X) → C× is called unitary if Imµ ⊂ S1 = U(1) = {z ∈ C | |z| = 1}. In
S1 the inversion z 7→ z−1 coincides with the complex conjugation: if |z| = 1, then

z−1 = z. Therefore if µ : H1(X) → C× is unitary, then Cµ = Cµ−1

and there exists

a semi-linear equivalence Cµ → Cµ−1

.
This semi-linear equivalence induces semi-linear equivalence

Hk(X ;Cµ) → Hk(X ;Cµ−1

)

and similar semi-linear equivalences in cohomology and relative homology and co-
homology.

Combining a semi-linear isomorphism

Hn−p(X, ∂X ;Cµ) → Hn−p(X, ∂X ;Cµ−1

)

of this kind with the intersection pairing (D.35) we get a sesqui-linear pairing

(D.36) ◦ : Hp(X ;Cµ)×Hn−p(X, ∂X ;Cµ) → C

(Sesqui-linear means that it is linear on the first variable, and semi-linear on the
second one.) This pairing is non-singular, because the bilinear pairing (D.35) is
non-singular, and (D.36) differs from it by a semi-linear equivalence on the second
variable.

Appendix D.6. Intersection forms. Let X be an oriented connected compact
smooth manifold of even dimension n = 2k and µ : H1(X) → C× be a unitary
homomorphism. Combining the relativisation homomorphism

Hn−p(X ;Cµ) → Hn−p(X, ∂X ;Cµ)

with the pairing (D.36) for p = k define sesqui-linear form

(D.37) ◦ : Hk(X ;Cµ)×Hk(X ;Cµ) → C

It is called the intersection form of X .
If k is even, this form is Hermitian, that is α ◦ β = β ◦ α. If k is odd, it is

skew-Hermitian, that is α ◦ β = −β ◦ α.
The difference between Hermitian and skew-Hermitian forms is not as deep as the

difference between symmetric and skew-symmetric bilinear forms. Multiplication
by i =

√
−1 turns a skew-Hermitian form into a Hermitian one, and the original

form can be recovered. In order to recover, just multiply the Hermitian form by
−i.

The intersection form (D.37) may be singular. Its radical, that is the orthogonal
complement of the whole Hk(X ;Cµ), is the kernel of the relativisation homomor-
phism Hk(X ;Cµ) → Hk(X, ∂X ;Cµ). It can be described also as the image of the
inclusion homomorphism

Hk(∂X ;Cµ in∗) → Hk(X ;Cµ),

where in∗ is the inclusion homomorphism H1(∂X) → H1(X).
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Appendix D.7. Twisted signatures and nullities. As well-known for any Her-
mitian form on a finite-dimensional space V there exists an orthogonal basis in
which the form is represented by a diagonal matrix. The diagonal entries of the
matrix are real. The number of zero diagonal entries is called the nullity , and the
difference between the number of positive and negative entries is called the signature
of the form. These numbers do not depend on the basis.

For a skew-Hermitian form by nullity and signature one means the nullity and
signature of the Hermitian form obtained by multiplication of the skew-Hermitian
form by i.

For a compact oriented 2k-manifold X and a homomorphism µ : H1(X) → C

the signature and nullity of the intersection form

◦ : Hk(X ;Cµ)×Hk(X ;Cµ) → C

are denoted by σµ(X) and nµ(X), respectively, and called the twisted signature
and nullity of X .

The classical theorems about the signatures of the symmetric intersection forms
of oriented compact 4k-manifolds are easily generalized to twisted signatures:

Theorem D.A. Additivity of Signature. Let X be an oriented compact man-

ifold of even dimension. If A and B are its compact submanifolds of the same

dimension such that A ∪ B = X, IntA ∩ IntB = ∅ and ∂(A ∩ B) = ∅, then for

any µ : H1(X) → C×

σµ(X) = σµ in∗
(A) + σµ in∗

(B)

where in denotes an appropriate inclusion.

Theorem D.B. Signature of Boundary. Let X be an oriented compact mani-

fold of odd dimension. Then σµ in∗
(∂X) = 0 for any µ : H1(X) → C×.
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