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Abstract

For regularized estimation, the upper tail behavior of the random Lipschitz coefficient asso-

ciated with empirical loss functions is known to play an important role in the error bound of

Lasso for high dimensional generalized linear models. The upper tail behavior is known for linear

models but much less so for nonlinear models. We establish exponential type inequalities for

the upper tail of the coefficient and illustrate an application of the results to Lasso likelihood

estimation for high dimensional generalized linear models.
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1 Introduction

Let (Y1, Z1), . . . , (YN , ZN) be independent random variables taking values in a product measurable
space Y × Z, with Yi being regarded as response variables and Zi as covariates. In order to cover
both random designs and fixed designs, (Yi, Zi) are not necessarily identically distributed. A large
class of Lasso type estimators for high dimensional generalized linear models can be formulated as

θ̂ = argmin
v∈D0




∑

i≤N

[γi(h(Zi)
⊤v, Yi) + b(v)] +

∑

j≤p

λj |vj |



 , (1)

where D0 6= ∅ is a domain in R
p, γi(t, y) are a given set of real valued functions on R×Y, oftentimes

identical to each other, h = (h1, . . . , hp) : Z → R
p and b : D0 → R are given functions, and

λ1, . . . , λp > 0 are coefficients of the weighted ℓ1 penalty on v. In this article, we only consider
nonadaptive Lasso, in which λ1, . . . , λN are fixed beforehand.

Under the setting of (1), for each v ∈ D0, we have N loss functions, each defined as (y, z) →
γi(h(z)

⊤v, y) + b(v). The corresponding empirical losses are γi(h(Zi)
⊤v, Yi) + b(v), and the corre-

sponding expected total loss is

L(v) =
∑

i≤N

E[γi(h(Zi)
⊤v, Yi) + b(v)], v ∈ D0. (2)

As the title suggests, the main interest of the article is the so called “local stochastic Lipschitz”
(LSL) condition. By LSL we mean the following. For the time being, denote by

L̃(v) =
∑

i≤N

[γi(h(Zi)
⊤v, Yi) + b(v)]− L(v)
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the fluctuation of the empirical total loss from its expectation at parameter value v. Let θ ∈ R
p be

fixed. Under smooth conditions for γi, it is easy to see L̃(v) is differentiable with probability (w.p.)
1, which in general leads to Lipschitz continuity of L̃(v) provided D0 is compact. The LSL condition,
on the other hand, refers to a bound on the upper tail probability of the random variable

sup
v∈D0, v 6=θ

|L̃(v) − L̃(θ)|∑
j≤p λj |vi − θj |

. (3)

Note that the LSL condition is with respect to a weighted ℓ1 norm of Rp. The condition is called
“local” because θ is fixed, even though its value is typically unknown.

Although it might not be apparent at this point, the LSL condition is closely related to the
issue of estimation error for Lasso. For linear regression with square loss function (y − h(z)⊤v)2,
this relationship is well known and has been regularly employed to obtain estimation error bounds
[4, 3, 2, 1]. Indeed, in this case, due to linearity, the LSL condition is rather easy to establish. However,
for other loss functions, the LSL condition is much less clear and, to my best knowledge, has not been
fully explored. An alternative to the LSL condition is a convexity assumption, in which γi(t, y) is
convex in t and b(v) is convex in v. The convexity assumption allows a linear interpolation technique
to be employed to yield upper bounds for estimation error [12]. While the convexity assumption
allows for nondifferentiable γi, it is not clear how the technique can be extended to nonconvex loss
functions.

We shall establish the LSL condition for general loss functions. For differentiability, we only require
that γi(t, y) be first order differentiable in t with the partial derivative being Lipschitz. After getting
various results on the LSL condition, we will then illustrate an application of the LSL condition to
Lasso type nonlinear regression, by finding an upper bound for the ℓ2 norm of estimation error.

Previously, in [6], the LSL condition was studied for loss functions of the form (y − gi(h(z)
⊤v))2,

i ≤ N , where gi : R → R are nonlinear. The condition was established under the assumptions that gi
are twice continuously differentiable and

Yi = gi(h(Zi)
⊤θ) + εi, (4)

where εi are uniformly bounded zero mean noise. In this article, we extend the result on two aspects.
First, the LSL condition is established for general γi(t, y), while still under the assumption of uniform
boundedness. Second, it is established for (4) when εi are Gaussian. Whereas the bounds for general
γi(t, y) is of Bernstein type, the bounds for the Gaussian case is of Hoeffding type. In [6], a truncation
argument was suggested for the Gaussian case. However, the LSL condition obtained in this way is
not as tight as the one to be obtained here. The tools used to get the results on the LSL condition
are various measure concentration and comparison inequalities in Probability [9, 8, 7].

Section 2 presents several results on the LSL condition. The discussion in the section is actu-
ally more general. It provides upper bounds on the tail probability of the remainder of the Taylor
expansion of L̃(v). The LSL condition is a simple consequence of these bounds.

In Section 3, we consider an application of the LSL condition to Lasso. Besides the LSL condition,
Lasso involves another issue, that is, the amount of separation of v and θ based on the difference
between γi(h(Zi)

⊤v, Yi) and γi(h(Zi)
⊤θ, Yi). This issue is of different nature from the LSL condition,

and its resolution in general requires further conditions on the matrix [hj(Zi)]i≤N,j≤p. The issue has
been studied in quite a few works [14, 2, 5, 1, 13]. For transparency, we will use a restricted eigenvalue
condition in [1] for our purpose. We will consider an example of Lasso type MLE for high dimensional
generalized linear model and apply the LSL condition to bound the ℓ2 norm of the estimation error.
Unfortunately, the method of the example gives no clue on model selection or more elaborate bounds
similar to those obtained for linear models under square loss [13, 1, 4]. All the proofs are presented
in Section 4.
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1.1 Notation

For q ∈ [1,∞), denote by ‖a‖q the ℓq norm of a ∈ R
d. For two vectors a = (a1, . . . , am)⊤ and

b = (b1, . . . , bn)
⊤, recall that their tensor product is

a⊗ b = (a1b
⊤, . . . , amb

⊤)⊤ = (a1b1, . . . , a1bn, . . . , anb1, . . . , ambn)
⊤ ∈ R

mn.

Denote by v⊗k the tensor product of k copies of v.
If f is a function on a domain Ω ⊂ R

d, then it is Lipschitz (under the Euclidean norm) if

‖f‖Lip := sup
x 6=y∈Ω

|f(x)− f(y)|
‖x− y‖2

<∞.

Finally, for any random vector X , denote its deviation from mean by

[[X ]] = X − EX.

By linearity of expectation, [[X + Y ]] = [[X ]] + [[Y ]]. By this notation,

L̃(v) =
∑

i≤N

[[
γi(h(Zi)

⊤v, Yi)
]]
.

The right hand side is independent of b(v) and at the same time better reveals the other quantities
involved. We will discard the notation L̃ in favor of [[·]] for the rest of the article.

1.2 Notes

The methods in Section 2 can be used with little change to deal with the following additive mixture
of loss functions, ∑

i≤N

∑

k≤q

[γik(hk(Zi)
⊤v, Yi) + bk(v)]

where for each k ≤ q and i ≤ N , hk = (hk1, . . . , hkp) is a function from Z to R
p, and γik is a loss

function. For example ∑

i≤N

γi(h(Zi)
⊤v, Yi) +

∑

i≤N

γ̃i(h̃(Z̃i)
⊤u, Yi)

is a special case of additive mixture, where Zi and Z̃i are covariates that may be identical or have
completely different sets of coordinates. Due to identifiability issue in the context of parameter
estimation, such mixtures will not further considered in the article.

2 Local stochastic Lipschitz condition

In this section, we present exponential bounds on the tail probability of the random local Lipschitz
coefficient (3). As noted earlier, these bounds are consequences of more general results on the tail
probability of remainders of Taylor expansion of random functions. Therefore, most of the discussion
below will be on the latter and the results on the LSL condition will be given as corollaries.

2.1 General loss function

Suppose γ1, . . . , γN satisfy the following regularity condition.
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Assumption 1 (Regularity). There are m ∈ {0, 1, 2, . . .} and −∞ ≤ ai < bi ≤ ∞, i ≤ N , such that
w.p. 1, each γi(t, Yi) as a function of t is m times differentiable on (ai, bi) with the m-th derivative
being bounded and Lipschitz. Let Fm, Fm+1 be constants such that w.p. 1,





∣∣∣∣
∂mγi(t, Yi)

∂tm

∣∣∣∣ ≤ Fm,

∣∣∣∣
∂mγi(t, Yi)

∂tm
− ∂mγi(t

′, Yi)

∂tm

∣∣∣∣ ≤ Fm+1|t− t′|,
∀ t, t′ ∈ (ai, bi), i ≤ N.

Suppose h satisfies the following condition.

Assumption 2 (Boundedness). There are constants d1, . . . , dp ∈ (0,∞), such that

Pr

{
max
i≤N

|hj(Zi)| ≤ dj , ∀ j ≤ p

}
= 1.

Next, let D0 6= ∅ be a domain in R
p.

Assumption 3 (Parameter Domain). For (ai, bi) as in Assumption 1 and h as in Assumption 2,

Pr
{
h(Zi)

⊤v ∈ (ai, bi), ∀ v ∈ D0, i ≤ N
}
= 1.

From Assumption 1 and dominated convergence, differentiation and expectation can be exchanged
for γi(t, Yi), i.e.,

E

[
∂kγi(t, Yi)

∂tk

]
=
∂kE[γi(t, Yi)]

∂tk
, t ∈ (ai, bi), i ≤ N, k ≤ m.

By Assumption 2, |hj(Zi)/dj | ≤ 1 w.p. 1. Therefore, dj can be thought of as the “scales” of the
functions hj.

Theorem 2.1. Under Assumptions 1 – 3, fix an arbitrary θ ∈ D0. Then for v ∈ D0,
∑

i≤N

[[
γi(h(Zi)

⊤v, Yi)
]]

=
∑

k≤m

1

k!

∑

i≤N

[[
∂kγi(h(Zi)

⊤θ, Yi)

∂tk
[h(Zi)

⊤(v − θ)]k
]]
+ ξ(v)


∑

j≤p

dj |vj − θj |




m

(5)

=
∑

k≤m

1

k!

∑

i≤N

[[
∂kγi(h(Zi)

⊤θ, Yi)

∂tk
h(Zi)

⊗k

]]⊤
(v − θ)⊗k + ξ(v)



∑

j≤p

dj |vj − θj |




m

, (6)

where {ξ(v), v ∈ D0} is a process that has the following upper tail property

Pr

{
sup
v∈D0

|ξ(v)| > A
√
2 ln(2p) +B

√
2 ln(pm/q) + C ln(pm/q)

}
≤ q, ∀ q ∈ (0, 1)

with A, B, and C being set as follows. First, let

R = sup
u,v∈D0

∑

j≤p

dj |uj − vj |, φ = min

(
2Fm

m!
,
Fm+1R

(m+ 1)!

)
, ψ =

{
Fm+1/m! m 6= 1

Fm+1/2 m = 1.
. (7)

Then

A = 8ψRE

√
max
j≤p

∑

i≤N

[hj(Zi)/dj ]2, B = φ

√
Emax

j≤p

∑

i≤N

[hj(Zi)/dj ]2m, C = 8φ,

where in the definition of B the convention x0 ≡ 1 is used for m = 0.
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Note that if Fm+1 > 0, then the above result is meaningful only when R < ∞, that is, D0 is
bounded. On the other hand, if w.p. 1, for i ≤ N , γi(t, Yi) is a linear function of t, then one can set
Fm+1 = 0. By Theorem 2.1, this yields A = B = C = 0, which implies ξ(v) ≡ 0. Of course, the last
fact is easy to be seen by the linearity of γi(t, Yi).

Of particular interest is the case where m = 1. From Theorem 2.1, the following result obtains.

Corollary 2.2. Under Assumptions 1 – 3 with m = 1, fix an arbitrary θ ∈ D0. Then for v ∈ D0,
∑

i≤N

[[
γi(h(Zi)

⊤v, Yi)
]]
=
∑

i≤N

[[
γi(h(Zi)

⊤θ, Yi)
]]
+ [ξ1 + ξ(v)]

∑

j≤p

dj |vj − θj | (8)

where ξ(v) is as in Theorem 2.1 and ξ1 is a random variable with the following upper tail property

Pr

{
|ξ1| > F1

√
2N ln(2p/q)

}
≤ q, ∀ q ∈ (0, 1).

Since

|ξ1|+ sup
v∈D0

|ξ(v)| ≥ sup
v∈D0, v 6=θ

1∑
j≤p λj |vi − θj |

∣∣∣∣∣∣

∑

i≤N

[[
γi(h(Zi)

⊤v, Yi)− γi(h(Zi)
⊤θ, Yi)

]]
∣∣∣∣∣∣
,

from the result, we then get a desired form of the LSL condition. For any q, q′ ∈ (0, 1) not necessarily
equal, one can find M(q, q′), such that w.p. at least 1− q − q′, the random local Lipschitz coefficient
on the right hand side is no greater than M(q, q′). Moreover, one can set

M(q, q′) = A
√
2 ln(2p) +B

√
2 ln(p/q) + C ln(p/q) + F1

√
2N ln(2p/q′),

with A, B and C given as in Theorem 2.1 with m = 1.

2.2 Gaussian case

Suppose Z1, . . . , ZN are fixed and
Yi = µi − ωi

where µi are some unknown constants, and ω1, . . . , ωN are independent square-integrable random
variables with mean 0. Let f1, . . . , fN : R → R be a set of transforms specified beforehand, and
h = (h1, . . . , hp) : Z → R

p a measurable function. Suppose the goal is to use fi(h(Zi)
⊤v) to

approximate µi under the square loss functions

γi(t, Yi) = (Yi − fi(t))
2/2. (9)

For any v, provided that h(Zi)
⊤v is in the domain of fi for all i ≤ N ,

[[
γi(h(Zi)

⊤v, Yi)
]]
=

1

2
(µi − ωi − fi(h(Zi)

⊤v))2 − 1

2
E[(µi − ωi − fi(h(Zi)

⊤v))2]

= ωi[fi(h(Zi)
⊤v)− µi] +

1

2
[ω2

i − Var(ωi)].

Thus, for any θ, provided that h(Zi)
⊤θ is in the domain of fi for all i ≤ N as well

∑

i≤N

[[
γi(h(Zi)

⊤v, Yi)
]]
−
∑

i≤N

[[
γi(h(Zi)

⊤θ, Yi)
]]
=
∑

i≤N

ωi

[
fi(h(Zi)

⊤v)− fi(h(Zi)
⊤θ)
]
.

As a result, we will focus on the expansion of the random function

v →
∑

i≤N

ωifi(h(Zi)
⊤v)

around any fixed θ ∈ D0.
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Assumption 4 (Regularity). There are m ∈ {0, 1, 2, . . .} and −∞ ≤ ai < bi ≤ ∞, i ≤ N , such that
each fi is m times differentiable on (ai, bi) with the m-th derivative being bounded and Lipschitz. Let

Fm = max
i≤N

sup
t∈(ai,bi)

|f (m)
i (t)|, Fm+1 = max

i≤N

∥∥∥f (m)
i

∥∥∥
Lip

.

Since Zi are fixed, Assumption 2 is no longer needed. Instead, simply define

dj = max
i≤N

|hj(Zi)|.

Also, modify Assumption 3 as follows.

Assumption 5 (Parameter Domain). The domain D0 6= ∅ of candidate parameter values satisfies
h(Zi)

⊤v ∈ (ai, bi), ∀v ∈ D0, i ≤ N .

In [6], the case where ωi are uniformly bounded is considered. Here we shall deal with the following
situation.

Assumption 6 (Gaussian). ω1, . . . , ωN are independent Gaussian variables with Var(ωi) ≤ σ2
0 , i ≤

N , where σ0 ∈ (0,∞) is a constant.

Theorem 2.3. Let the loss functions γ1, . . . , γN be as in (9). Under Assumptions 4 – 6, fix an
arbitrary θ ∈ D0. Then for v ∈ D0,

∑

i≤N

ωifi(h(Zi)
⊤v)

=
∑

k≤m

1

k!



∑

i≤N

ωif
(k)
i (h(Zi)

⊤θ)[h(Zi)
⊤(v − θ)]k


+ ξ(v)



∑

j≤p

dj |vj − θj |




m

(10)

=
∑

k≤m

1

k!


∑

i≤N

ωif
(k)
i (h(Zi)

⊤θ)h(Zi)
⊗k




⊤

(v − θ)⊗k + ξ(v)


∑

j≤p

dj |vj − θj |




m

, (11)

where {ξ(v), v ∈ D0} is a process that has the following upper tail property

Pr

{
sup
v∈D0

|ξ(v)| > σ0(A
√

ln(2p) +B
√
2 ln(pm/q))

}
≤ q, ∀ q ∈ (0, 1)

with A and B being set as follows. First, set R, φ and ψ as in (7). Then

A = 8ψR

√
max
j≤p

∑

i≤N

[hj(Zi)/dj ]2, B = φ

√
max
j≤p

∑

i≤N

[hj(Zi)/dj ]2m,

where in the definition of B the convention x0 ≡ 1 is used for m = 0.

Comparing to Theorem 2.1, the above upper tail bound does not have a term of the form
C ln(pm/q). This is because in the Gaussian case, we can get a Hoeffding type inequality for the
upper tail instead of a Bernstein type inequality.

From Theorem 2.3, the following result for the case m = 1 obtains. Note that the result is not
entirely the same as Corollary 2.2.

Corollary 2.4. Under Assumptions 4 – 6 with m = 1, fix an arbitrary θ ∈ D0. Define positive
constants w1, . . . , wp as

w2
j = σ−2

0

∑

i≤N

Var(ωi)hj(Zi)
2. (12)
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Then for v ∈ D0,
∑

i≤N

ωifi(h(Zi)
⊤v) =

∑

i≤N

ωifi(h(Zi)
⊤θ) + σ0F1ξ1

∑

j≤p

wj |vj − θj |+ ξ(v)
∑

j≤p

dj |vj − θj | (13)

where {ξ(v) : v ∈ D0} is as in Theorem 2.3 and ξ1 is a random variable with the following upper tail
property

Pr

{
|ξ1| >

√
2 ln(p/q)

}
≤ q, ∀ q ∈ (0, 1).

Similar to Corollary 2.2, the above result can be used to get the LSL condition. For example, for
any q, q′ ∈ (0, 1), one can set

M(q, q′) = σ0

[
A
√
ln(2p) +B

√
2 ln(p/q) + F1

√
2 ln(p/q′)

]
,

with A and B given as in Theorem 2.3 with m = 1, such that w.p. at least 1 − q − q′, the following
random local Lipschitz coefficient

sup
v∈D0, v 6=θ

1∑
j≤p λj |vi − θj |

∣∣∣∣∣∣

∑

i≤N

ωi[fi(h(Zi)
⊤v)− fi(h(Zi)

⊤θ)]

∣∣∣∣∣∣

is no greater than M(q, q′), where λj = max(wj , dj).

3 An application to high dimensional Lasso

Under Assumptions 1 – 3, we consider the case where Z1, . . . , ZN are fixed. For simplicity, assume
d1 = . . . = dN = d in Assumption 2. Consider the following Lasso functional

θ̂ = argmin
v∈D0




∑

i≤N

γi(h(Zi)
⊤v, Yi) + λd‖v‖1



 , (14)

where λ > 0 is the tuning parameter. Suppose D0 is compact so that the minimum is always obtained.
The goal is to have θ̂ approximate to θ, where

θ = argmin
v∈D0

∑

i≤N

E[γi(h(Zi)
⊤v, Yi)].

We next consider applying Corollary 2.2 to bound ‖θ̂− θ‖2. Denote Xi = h(Zi) and X the N × p
matrix with X⊤

i as the i-th row vector. The total expected loss function now can be written as

L(v) =
∑

i≤N

E[γi(X
⊤
i v, Yi)], v ∈ D0.

Denote by spt(v) = {j ≤ p : vj 6= 0} and by ‖v‖0 the cardinality of the set. In general, in order to

bound ‖θ̂− θ‖2, some conditions on X are needed in order to get a bound in terms of the ℓ2 norm of
v − θ (cf. [13, 4, 1]). For transparency, we use a “restricted eigenvalue” condition formulated in [1],
which says that for some 1 ≤ s ≤ p and c > 0,

κ(s,K) := min

{ ‖Xv‖2√
N‖vJ‖2

: 1 ≤ |J | ≤ s, v 6= 0, ‖vJc‖1 ≤ K‖vJ‖1
}
> 0.

To see where the LSL condition is to be used, we first summarize an argument that has been more
or less used for special cases of Lasso (cf. [12, 1]). Note that the argument does not lead to model
selection or more elaborate bounds that have been obtained especially for linear models under square
loss [5, 13, 1, 4].
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Theorem 3.1. Suppose the following conditions are satisfied.

1) For some K > 1,

κ := κ(2‖θ‖0,K) > 0 (15)

2) For some Cγ > 0,

L(v)− L(θ) ≥ Cγ‖X(v − θ)‖22, ∀v ∈ D0. (16)

3) Given q ∈ (0, 1), suppose there is Mq > 0, such that w.p. at least 1− q,

∣∣∣∣∣∣

∑

i≤N

[[
γi(X

⊤
i θ̂, Yi)− γi(X

⊤
i θ, Yi)

]]
∣∣∣∣∣∣
≤Mqd‖θ̂ − θ‖1. (17)

Then, by setting

λ =
(K + 1)Mqd

K − 1
(18)

in the Lasso functional (14), on the event that (17) holds,

‖θ̂ − θ‖2 ≤ Mq

√
‖θ‖0

N
× 2

√
2 +K2Kd

Cγκ2(K − 1)
(19)

Theorem 3.1 has three conditions. The first one is the aforementioned restricted eigenvalue con-
dition. In some cases, the second condition is easy to establish. The third condition is the LSL
condition. By Corollaries 2.2 and 2.4, Mq can be set reasonably small, ideally of order

√
N or even

smaller.

Example 3.1. Let Y be a Euclidean space and F = {f(y | t) : y ∈ Y, t ∈ [a, b]} a family of densities
on Y, where −∞ < a < b <∞. Suppose given Zi, the density of Yi is

f(y |X⊤
i θ)

where θ is the parameter and Xi again is h(Zi). Suppose it is known that θ ∈ D0, where D0 ⊂ R
p is

an open bounded region such that for v ∈ D0, X
⊤
i v ∈ [a, b] for each i ≤ N . Then any solution θ̂ to

(14) with

γi(t, y) = − ln f(y | t) := ℓ(t, y), i ≤ N (20)

is an ℓ1 regularized MLE of θ. Suppose X satisfies (15). We next find some conditions in order for
(16) to hold. Let I(t) denote the Fisher information of F at t and

D(t, s) =

∫
f(y | t) ln f(y | t)

f(y | s) dy = E[ℓ(s, Y )]− E[ℓ(t, Y )], Y ∼ f(y | t),

the Kullback-Leibler distance from f(y | s) to f(y | t). For F with enough regularity, it is not hard to
show D has the following properties:

1) D, ∂D/∂s, ∂2D/∂s2 are continuous in (t, s);

2) D(t, t) = (∂D/∂s)(t, t) = 0, I(t) = (∂2D/∂s2)(t, t) > 0;

3) every t ∈ [a, b] is identifiable in F ; and

8



4) as h→ 0, D(t, t+ h)/h2 → I(t) uniformly for t ∈ [a, b].

Property 2) implies that for s in a neighborhood of t, D(t, s) ≥ I(t)(t− s)2/2. Together with the
other three properties and the compactness of [a, b] × [a, b], for some CF > 0, D(t, s) ≥ CF (t − s)2

for all t, s. Now for i ≤ N and v ∈ D0, since Yi has density f(y |X⊤
i θ),

E[γi(X
⊤
i v, Yi)]− E[γi(X

⊤
i θ, Yi)] = D(X⊤

i θ,X
⊤
i v) ≥ CF |X⊤

i θ −X⊤
i v|2.

Then by the definition of L(v),

L(v)− L(θ) ≥ CF

∑

i≤N

|X⊤
i (v − θ)|2 = CF‖X(v − θ)‖22,

so (16) is satisfied.
Finally, if γi defined in (20) satisfies Assumptions 1 – 3, then by Corollary 2.2 and Theorem 3.1,

given q1, q2 ∈ (0, 1) with q1 + q2 < 1, the following bound

‖θ̂ − θ‖2 ≤ (M1 +M2)
√

‖θ‖0
N

× 2
√
2 +K2Kd

CFκ2(K − 1)

holds with probability at least 1 − q1 − q2, where M1 and M2 are as follows. Denote by V1, . . . , Vp
the column vectors of X and

∆ = sup
u,v∈D0

‖u− v‖1.

Denote

F1 = ess sup

(
sup
t

max
i≤N

∣∣∣ℓ̇(t, Yi)
∣∣∣
)
, F2 = ess sup

(
max
i≤N

∥∥∥ℓ̇(·, Yi)
∥∥∥
Lip

)
.

Note d1 = . . . = dN = d. Then

M1 = A
√
2 ln(2p) +B

√
2 ln(p/q1) + 8φ ln(p/q1), M2 = F1

√
2N ln(2p/q2),

where
A = 4F2∆max

j≤p
‖Vj‖2, B = (F2/2)∆max

j≤p
‖Vj‖2, φ = min(2F1, F2d∆/2).

Up to a factor of
√
ln(p/q2), M2 = O(

√
N). Typically, for well designed X , maxj≤p ‖Vj‖2 =

O(
√
N). Therefore, M1 = O(

√
N) up to a multiplicative factor

√
ln(p/q1) and an additive remainder

of order ln(p/q1). As a result, ‖θ̂ − θ‖2 is of order
√
‖θ‖0/N up to factors much smaller than

√
N

unless p is extremely large.
Similar conclusions can be made if f(y |X⊤

i θ) is the density of N(X⊤
i θ, σ

2
0). In this case, we can

use Corollary 2.4. For brevity, the detail is omitted.

4 Proofs

In this section we give proofs for the results in previous sections. First, recall that for q ∈ [1,∞),

‖a⊗ b‖qq = ‖a‖qq‖b‖qq, (21)

and for a1, a2 ∈ R
m, b1, b2 ∈ R

n, (a⊤1 a2)(b
⊤
1 b2) = (a1 ⊗ b1)

⊤(a2 ⊗ b2), giving

(a⊤1 a2)
k = (a⊗k

1 )⊤(a⊗k
2 ). (22)
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4.1 Proofs for Section 2

Proof of Theorem 2.1. By (22), (5) and (6) are equivalent. For notational brevity, we shall avoid
explicit use of dj . For this reason, the domain D0 is not the one to be directly worked on. Rather,
we shall consider

D = {(d1v1, . . . , dpvp)⊤ : v ∈ D0}. (23)

In other words, D is the image of D0 under the 1-1 transform T : v → (d1v1, . . . , dpvp)
⊤. We shall

use the ℓ1 norm on D. Note that the norm induces a weighted ℓ1 norm on D0 as

‖u− v‖ = ‖Tu− Tv‖1 =
∑

j≤p

dj |uj − vj |,

which is the reason why
∑

j≤p dj |uj − θj | appears in the expansions (5) and (6). Moreover, R in (7)
can be expressed as the diameter of D under ℓ1,

R = sup
u,v∈D

‖u− v‖1.

Based on the same consideration as (23), denote for i ≤ N , j ≤ p,

Xij = hj(Zi)/dj , Xi = (Xi1, . . . , Xip)
⊤, Vj = (X1j , . . . , XNj)

⊤. (24)

Then Assumption 2 on the boundedness of hj(Zi) implies

Pr {|Xij | ≤ 1, ∀i ≤ N, j ≤ p} = 1. (25)

Furthermore, for v ∈ D, let u ∈ D0 such that Tu = v. Then X⊤
i v = h(Zi)

⊤u, so we can easily
translate an expansion in terms of X⊤

i v into one in terms of h(Zi)
⊤u. Therefore, until the end of the

proof, we will focus on D.
For brevity, for each i ≤ N , denote

fi(t) = γi(t, Yi), f
(k)
i (t) =

∂kγi(t, Yi)

∂tk
, k ≤ m+ 1.

Fix θ ∈ D . For i ≤ N and v, define random vectors c = (c1, . . . , cN ) and t = (t1, . . . , tN ) with

ci = X⊤
i θ, ti = X⊤

i (v − θ).

For i ≤ N , let ϕi be the following random function on R,

ϕi(t) =





t−m


fi(ci + t)−

∑

k≤m

f
(k)
i (ci)

k!
tk


 , t 6= 0;

0, t = 0.

(26)

We need the following property of ϕi.

Lemma 4.1. W.p. 1, each ϕi ∈ C(ai − ci, bi − ci), and

|ϕi(t)| ≤ min

(
2Fm

m!
,
Fm+1|t|
(m+ 1)!

)
(27)

and ‖ϕi‖Lip ≤ ψ, where

ψ =

{
Fm+1/m! m 6= 1

Fm+1/2 m = 1.

10



Lemma 4.1 will be proved later. Clearly,

∑

i≤N

γi(X
⊤
i v, Yi) =

∑

i≤N

fi(ci + ti) =
∑

i≤N



∑

k≤m

f
(k)
i (ci)

k!
tki + ϕi(ti)t

m
i




=
∑

k≤m

1

k!



∑

i≤N

f
(k)
i (ci)t

k
i


+

∑

i≤N

ϕi(ti)t
m
i ,

where, by Assumption 2, w.p. 1, ti = X⊤
i (v − θ) ∈ (ai − ci, bi − ci), ∀i ≤ N , v ∈ D. Then by (22),

∑

i≤N

γi(X
⊤
i v, Yi) =

∑

k≤m

1

k!



∑

i≤N

f
(k)
i (ci)X

⊗k
i




⊤

(v − θ)⊗k +



∑

i≤N

ϕi(ti)X
⊗m
i




⊤

(v − θ)⊗m.

Therefore,

∑

i≤N

[[
γi(X

⊤
i v, Yi)

]]
=

m∑

k=1

1

k!

∑

i≤N

[[
f
(k)
i (ci)X

⊗k
i

]]⊤
(v − θ)⊗k +

∑

i≤N

[[
ϕi(ti)X

⊗m
i

]]⊤
(v − θ)⊗m. (28)

By Hölder inequality and (21),
∣∣∣∣∣∣

∑

i≤N

[[
ϕi(ti)X

⊗m
i

]]⊤
(v − θ)⊗m

∣∣∣∣∣∣
≤

∥∥∥∥∥∥

∑

i≤N

[[
ϕi(ti)X

⊗m
i

]]
∥∥∥∥∥∥
∞

‖v − θ‖m1 . (29)

For each  = (j1, . . . , jp) with js ≤ p, denote

Xi = Xij1 · · ·Xijm ,

where the product on the right hand side is defined to be 1 if m = 0. Then the coordinates of X⊗m
i

can be written as Xi, with  sorted, say, in the dictionary order. Let

Z = sup
v∈D

∣∣∣∣∣∣

∑

i≤N

[[ϕi(ti)Xi]]

∣∣∣∣∣∣
.

Then from (29),
∣∣∣∣∣∣

∑

i≤N

[[
ϕi(ti)X

⊗m
i

]]⊤
(v − θ)⊗m

∣∣∣∣∣∣
≤ ‖v − θ‖m1 max



∣∣∣∣∣∣

∑

i≤N

[[ϕi(ti)Xi]]

∣∣∣∣∣∣
≤ ‖v − θ‖m1 max


Z. (30)

By (25), w.p. 1, |Xij | ≤ 1, i ≤ N , j ≤ p, and so |ti| = |X⊤
i (v − θ)| ≤ ‖v − θ‖1 ≤ R. Then by

Lemma 4.1,

|ϕi(ti)| ≤ min

(
2Fm

m!
,
Fm+1R

(m+ 1)!

)
= φ.

It follows that

|ϕi(ti)Xi| ≤ φ, |[[ϕi(ti)Xi]]| ≤ 2φ :=M0, ∀ , w.p. 1. (31)

Observe that given v ∈ D, for each i ≤ N , ϕi(ti)Xi is a function only in (Yi, Zi). Therefore, by
independence, for m ≥ 0 and v ∈ D,

Var


∑

i≤N

ϕi(ti)Xi


 =

∑

i≤N

Var (ϕi(ti)Xi) ≤
∑

i≤N

E
[
ϕi(ti)

2X2
i

]
≤ φ2E


∑

i≤N

X2
i


 .
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If m = 0, then the right hand side is Nφ2. If m ≥ 1, by Young inequality,

∑

i≤N

X2
i =

∑

i≤N

X2
ij1 · · ·X2

ijm ≤
∏

s≤m



∑

i≤N

X2m
ijs




1/m

=
∏

s≤m

‖Vjs‖22m ≤ max
j≤p

‖Vj‖2m2m.

Therefore,

Var



∑

i≤N

ϕi(ti)Xi


 ≤ S2

0 :=

{
φ2N m = 0

φ2E
[
maxj≤p ‖Vj‖2m2m

]
m ≥ 1.

(32)

Fix one  = (j1, . . . , jp). We next combine (31) and (32) with measure concentration to bound the
upper tail of Z. Again, note that given v, ϕi(ti)Xi is a function only in (Yi, Zi), with ti = X⊤

i (v−θ).
Let

T = {τ = (τ1v,a, . . . , τ
N
v,a) : v ∈ D, a ∈ {−1, 1}},

be a collection of functions parameterized by D × {−1, 1} mapping (Y × Z)N into R
N , such that

τ iv,a(Yi, Zi) = aM−1
0 [[ϕi(ti)Xi]] , i ≤ N.

Then Z =M0Z̃, S
2
0 =M2

0 S̃
2, with

Z̃ = sup
τ∈T

∑

i≤N

τ i(Yi, Zi), S̃2 = sup
τ∈T

Var



∑

i≤N

τ i(Yi, Zi)


 .

From (31), for v ∈ D and a = ±1, τ iv,a ∈ [−1, 1]. Clearly, Eτ iv,a(Yi, Zi) = 0. Furthermore, w.p. 1,

τ iv,a(Yi, Zi) is continuous in v. Therefore, by dominated convergence argument, Theorem 1.1 in [7]

can be applied to Z̃. Let w = 2EZ̃ + S̃2 = 2EZ/M0 + S2
0/M

2
0 . Then by [7],

Pr {Z > EZ +M0a} = Pr

{
Z̃ > EZ̃ + a

}
≤ exp

{
− a2

2w + 3a

}
, ∀a > 0.

For s > 0, a = (1/2)(3s+
√
9s2 + 8sw) is the unique positive solution to a2/(2w + 3a) = s. Using√

a+ b ≤ √
a+

√
b and 2

√
ab ≤ a+ b,

EZ +M0a ≤ EZ + (M0/2)(3s+
√
9s2 +

√
8sw)

= EZ +M0

(
3s+

√
2s(2EZ/M0 + S2

0/M
2
0 )

)

≤ EZ +M0

(
3s+

√
4sEZ/M0 +

√
2sS2

0/M
2
0

)

≤ EZ +M0(4s+ EZ/M0 + (S0/M0)
√
2s).

Then

Pr

{
Z > 2EZ + S0

√
2s+ 4M0s

}
≤ e−s. (33)

To find an upper bound for EZ, let ε1, . . . , εN be a Rademacher sequence independent of (Yi, Zi).
By symmetrization inequality (cf. [9], Lemma 6.3)

EZ ≤ 2E sup
v∈D

∣∣∣∣∣∣

∑

i≤N

εiϕi(ti)Xi

∣∣∣∣∣∣
. (34)
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By Fubini Theorem, the expectation on the right hand side is

EX,Y Eε sup
v∈D

∣∣∣∣∣∣

∑

i≤N

εiϕi(ti)Xi

∣∣∣∣∣∣
,

where EX,Y denotes the expectation only with respect to the (marginal) distribution of (X1, Y1), . . . ,
(XN , YN ), and similarly for Eε.

From (26), ϕi(0) = 0. Assume ψ > 0 first. Given (X1, Y1), . . . , (XN , YN ), by Lemma 4.1 and
(25),

t→ ϕi(t)Xi/ψ

is a contraction for each i ≤ N . Meanwhile, we can write

Eε sup
v∈D

∣∣∣∣∣∣

∑

i≤N

εiϕi(ti)Xi

∣∣∣∣∣∣
= Eε sup

t∈T

∣∣∣∣∣∣

∑

i≤N

εiϕi(ti)Xi

∣∣∣∣∣∣
,

with T = T (X1, . . . , XN ) = {(t1, . . . , tN) : ti = X⊤
i (v− θ), v ∈ D}. Then by a comparison inequality

(cf. Theorem 4.12 in [9]),

Eε sup
v∈D

∣∣∣∣∣∣

∑

i≤N

εiϕi(ti)Xi

∣∣∣∣∣∣
≤ 2ψEε sup

t∈T

∣∣∣∣∣∣

∑

i≤N

εiti

∣∣∣∣∣∣
.

Using ti = X⊤
i (v − θ) and by the same argument for (29)

Eε sup
t∈T

∣∣∣∣∣∣

∑

i≤N

εiti

∣∣∣∣∣∣
= Eε sup

v∈D

∣∣∣∣∣∣

∑

i≤N

εiX
⊤
i (v − θ)

∣∣∣∣∣∣

≤ Eε sup
j≤p, v∈D

∣∣∣∣∣∣

∑

i≤N

εiXij

∣∣∣∣∣∣
‖v − θ‖1 ≤ REε max

j≤p

∣∣ε⊤Vj
∣∣ ,

where ε = (ε1, . . . , εN )⊤. With (Xi, Yi) being fixed, by a result in [10] (Lemma 5.2),

Eε max
j≤p

∣∣ε⊤Vj
∣∣ ≤

√
2 ln(2p)max

j≤p
‖Vj‖2.

Combining the inequalities and taking expectation with respect to (Xi, Yi),

E sup
v∈D

∣∣∣∣∣∣

∑

i≤N

εiϕi(ti)Xi

∣∣∣∣∣∣
≤ 2

√
2ψR

√
ln(2p)E

[
max
j≤p

‖Vj‖2
]
. (35)

If ψ = 0, then ϕi ≡ 0 and the above inequality holds trivially. Combining (33) – (35) yields

Pr

{
Z > M1

√
2 ln(2p) +

√
2S0

√
s+ 4M0s

}
≤ e−s.

where

M1 = 8ψRE

[
max
j≤p

‖Vj‖2
]
. (36)

Finally, since there are pm different values of , by union-sum inequality,

Pr

{
max


Z > M1

√
ln(2p) +

√
2S0

√
ln(pm/q) + 4M0 ln(p

m/q)

}
≤ q, ∀ q ∈ (0, 1). (37)

NoteM1, S
2
0 and 4M0 are exactlyA, B and C in Theorem 2.1. Then by (30), the proof is complete.

13



Proof of Corollary 2.2. As in the proof of Theorem 2.1, we consider the domain D in (23) and Xi in
(24). Still denote ci = X⊤

i θ. For m = 1, by Theorem 2.1, for θ, v ∈ D

∑

i≤N

[[
fi(X

⊤
i v)

]]
=
∑

i≤N

[[fi(ci)]] +
∑

i≤N

[[f ′
i(ci)Xi]]

⊤
(v − θ) + ξ(v)‖v − θ‖1.

By Hölder inequality,

∣∣∣∣∣∣

∑

i≤N

[[f ′
i(ci)Xi]]

⊤
(v − θ)

∣∣∣∣∣∣
≤ ‖v − θ‖1max

j≤p

∣∣∣∣∣∣

∑

i≤N

[[f ′
i(ci)Xij ]]

∣∣∣∣∣∣
.

Given j ≤ p, [[f ′
i(ci)Xij ]] are independent with mean 0, and each |f ′

i(ci)Xij | ≤ F1. Therefore, by
Hoeffding inequality ([11], p. 191) and union-sum inequality,

Pr



max

j≤p

∣∣∣∣∣∣

∑

i≤N

[[f ′
i(ci)Xij ]]

∣∣∣∣∣∣
≥ t



 ≤ 2p exp

{
− t2

2NF 2
1

}
.

Given q ∈ (0, 1), let t =
√
NF1

√
2 ln(2p/q) to get the right hand side no greater than q. Combining

this with the bound for ξ(v), the proof is complete.

Proof of Theorem 2.3. The proof is similar to that of Theorem 2.1, so we will be brief. Define domain
D as (23) and Xij , Xi, Vj as in (24). Let c = (c1, . . . , cN ) and t = (t1, . . . , tN ) with

ci = X⊤
i θ, ti = X⊤

i (v − θ).

Define ϕi as in (26), however, note that the meaning of fi is different here. In particular, fi are
nonrandom and hence ϕi are nonrandom as well. In spite of this, Lemma 4.1 still holds. Corresponding
to (28),

∑

i≤N

ωifi(h(Zi)
⊤v)

=
∑

k≤m

1

k!


∑

i≤N

ωif
(k)
i (ci)X

⊗k
i




⊤

(v − θ)⊗k +


∑

i≤N

ωiϕi(ti)X
⊗m
i




⊤

(v − θ)⊗m.

The next step is to bound the upper tail probability of max Z, where for  = (j1, . . . , jm),

Z = sup
v∈D

∣∣∣∣∣∣

∑

i≤N

ωiϕi(ti)Xi

∣∣∣∣∣∣
, ω = (ω1, . . . , ωN )⊤.

Write ωi = σiεi, where σ
2
i = Var(ωi) ≤ σ2

0 and ε1, . . . , εN are i.i.d. ∼ N(0, 1). Fix one . Then

Z = Z(ε) = sup
v∈D

∣∣∣∣∣∣

∑

i≤N

εiσiϕi(ti)Xi

∣∣∣∣∣∣
, ε = (ε1, . . . , εN)⊤.

The function Z is Lipschitz on R
N under the Euclidean norm (ℓ2 norm), because for a, b ∈ R

N ,

|Z(a)− Z(b)| ≤ sup
v∈D

∣∣∣∣∣∣

∑

i≤N

(ai − bi)σiϕi(ti)Xi

∣∣∣∣∣∣
≤ ‖a− b‖2σ0S0,
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where, as in (32),

S2
0 =

{
φ2N m = 0

φ2 maxj≤p ‖Vj‖2m2m m ≥ 1.

Now by a concentration inequality for Gaussian measure ([8], p. 41)

Pr {Z(ε) ≥ EZ(ε) + rσ0S0} ≤ exp(−r2/2), ∀r > 0. (38)

By Lemma 4.1 and |Xij | ≤ 1, t → ϕi(t)Xi/ψ is a contraction with 0 being mapped to 0. Then
by a comparison result for Gaussian process ([9], Corollary 3.17 and (3.13))

EZ(ε) ≤ 4σ0ψE sup
v∈D

∣∣∣∣∣∣

∑

i≤N

εiti

∣∣∣∣∣∣
= 4σ0ψE sup

v∈D

∣∣∣∣∣∣

∑

i≤N

εiX
⊤
i (v − θ)

∣∣∣∣∣∣
≤ 4σ0RψEmax

j≤p

∣∣ε⊤Vj
∣∣ ,

and

Emax
j≤p

∣∣ε⊤Vj
∣∣ ≤ 3

√
ln pmax

j≤p

√
Var(ε⊤Vj) = 3

√
ln pmax

j≤p
‖Vj‖2.

Using an argument in [10], one can get a bound for the expectation that is tighter for large p.

Lemma 4.2. There is
Emax

j≤p

∣∣ε⊤Vj
∣∣ ≤ 2

√
ln(2p)max

j≤p
‖Vj‖2.

Now (38) can be written in terms of Z. Then, as in (37), for q ∈ (0, 1),

Pr

{
max


Z > σ0

(
M1

√
ln(2p) +

√
2 ln(pm/q)S0

)}
≤ q, (39)

where
M1 = 8Rψmax

j≤p
‖Vj‖2.

This then finishes the proof.

Proof of Corollary 2.4. From Theorem 2.3, it is seen that
∑

i≤N

ωifi(h(Zi)
⊤v) =

∑

i≤N

ωifi(h(Zi)
⊤θ) + ζ + ξ(v)

∑

j≤p

dj |vj − θj |,

where

ζ =
∑

j≤p



∑

i≤N

ωif
′
i(h(Zi)

⊤θ)hj(Zi)


 (vj − θj).

Therefore, with wj being defined as in (12),

|ζ| ≤ σ0F1

∑

j≤p

wj |vj − θj | ×max
j≤p

|Wj |,

with

Wj =
1

σ0F1wj

∑

i≤N

ωif
′
i(h(Zi)

⊤θ)hj(Zi).

It is easy to see that each Wj is Gaussian with mean 0 and variance no greater than 1. As a result,

Pr

{
max
j≤p

|Wj | ≥ t

}
≤ p exp(−t2/2), t ≥ 0.

Given q ∈ (0, 1), letting t =
√
2 ln(p/q) then finishes the proof.
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4.2 Proof for Section 3

Proof of Theorem 3.1. For A ⊂ {1, . . . , p} and v ∈ R
p, denote by vA the vector u ∈ R

p with ui =

vi1 {i ∈ A}. By definition of θ̂,

L(θ̂)− L(θ) ≤
∑

i≤N

[[
γi(X

⊤
i θ, Yi)− γi(X

⊤
i θ̂, Yi)

]]
+ λd(‖θ‖1 − ‖θ̂‖1).

Let λ = (1 + 1/c)Mqd, where c > 0 is to be determined. Then, writing r = 1/c, on the event that
(17) holds,

L(θ̂)− L(θ) ≤Mqd
[
‖θ̂ − θ‖1 + (1 + r)(‖θ‖1 − ‖θ̂‖1)

]
.

Fix any J containing spt(θ). Then

‖θ̂ − θ‖1 + (1 + r)(‖θ‖1 − ‖θ̂‖1)

=
∑

i∈J

|θ̂i − θi|+
∑

i6∈J

|θ̂i|+ (1 + r)


∑

i∈J

|θi| −
∑

i∈J

|θ̂i| −
∑

i6∈J

|θ̂i|




=
∑

i∈J

[
|θ̂i − θi|+ (1 + r)(|θi| − |θ̂i|)

]
− r

∑

i6∈J

|θ̂i|

≤ (2 + r)‖θ̂J − θ‖1 − r‖θ̂Jc‖1.
On the one hand, the above inequalities yield

L(θ̂)− L(θ) ≤Mqd(2 + 1/c)‖θ̂J − θ‖1, (40)

and on the other, since by definition of θ, L(θ̂) ≥ L(θ),

‖θ̂Jc‖1 ≤ (1 + 2c)‖θ̂J − θ‖1. (41)

Set c = (K−1)/2. Then λ = (1+1/c)Mqd is as in (18). By (15), (16) and (40), for any J ⊃ spt(θ)
with |J | ≤ 2‖θ‖0,

NCγκ
2‖θ̂J − θ‖22 ≤ L(θ̂)− L(θ) ≤ 2MqKd

K − 1
‖θ̂J − θ‖1.

Since ‖θ̂J − θ‖1 ≤
√
|J |‖θ̂J − θ‖2, it follows that

‖θ̂J − θ‖2 ≤ b
√
|J | with b =

Mq

N
× 2Kd

Cγκ2(K − 1)
. (42)

Let A be the set of indices i 6∈ spt(θ) corresponding to the ‖θ‖0 largest |θ̂i|. Then (42) holds for
both J0 = spt(θ) and J1 = spt(θ) ∪ A. It is well known that (cf. [5])

‖θ̂Jc

1
‖22 ≤ ‖θ̂Jc

0
‖21

‖θ‖0
.

By (41) and Cauchy-Schwartz inequality followed by (42),

‖θ̂Jc

1
‖22 ≤ K2‖θ̂J0

− θ‖21
‖θ‖0

≤ K2‖θ̂J0
− θ‖22 ≤ K2b2‖θ‖0.

Combining this with (42) applied to J = J1,

‖θ̂ − θ‖22 = ‖θ̂J1
− θ‖22 + ‖θ̂Jc

1
‖22 ≤ b2|J1|+K2b2‖θ‖0 = (2 +K2)b2‖θ‖0.

So we finally arrive at (19).
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4.3 Proof of Lemmas

Proof of Lemma 4.1. If m = 0, then ϕi(t) = fi(ci+ t)− fi(ci). From Assumptions 1 and 3, the result
is straightforward.

Let m ≥ 1. For t > 0, by Taylor expansion with an integral remainder,

fi(ci + t)−
∑

k≤m

f
(k)
i (ci)

k!
tk =

1

(m− 1)!

∫ t

0

(t− s)m−1[f
(m)
i (ci + s)− f

(m)
i (ci)] ds, (43)

yielding

ϕi(t) =
t−m

(m− 1)!

∫ t

0

(t− s)m−1[f
(m)
i (ci + s)− f

(m)
i (ci)] ds.

Therefore, by Assumption 1, on the one hand,

|ϕi(t)| ≤
t−m

(m− 1)!

∫ t

0

(2Fm)(t− s)m−1 ds =
2Fm

m!
,

and on the other,

|ϕi(t)| ≤
t−m

(m− 1)!

∫ t

0

(t− s)m−1(Fm+1s) ds =
Fm+1|t|
(m+ 1)!

.

The inequalities hold likewise for t < 0. Therefore, (27) holds. The above inequality also implies that
ϕi is continuous at 0. It is clear that ϕi(t) is continuous at t 6= 0. Thus ϕi ∈ C(ai − ci, bi − ci).

It remains to show ‖ϕi‖Lip ≤ ψ. Since ϕi is differentiable at t 6= 0, it is enough to show |ϕ′
i(t)| ≤ ψ

for t 6= 0. First, let m = 1. For t 6= 0,

ϕ′
i(t) = t−2[fi(ci)− fi(ci + t) + tf ′

i(ci + t)] = t−2

∫ t

0

[f ′
i(ci + t)− f ′

i(ci + t− s)] ds.

By Assumption 1, |f ′
i(ci + t)− f ′

i(ci + t− s)| ≤ F2|s|. Consequently |ϕ′
i(t)| ≤ F2/2 = ψ.

Finally, let m ≥ 2. Define g(t) = mfi(ci + t)− tf ′
i(ci + t). Then for k < m,

g(k)(t) = (m− k)f
(k)
i (ci + t)− tf

(k+1)
i (ci + t)

and then

ϕ′
i(t) = t−m

(
f ′
i(ci + t)−

m∑

k=1

f
(k)
i (ci)t

k−1

(k − 1)!

)
−mt−m−1

(
fi(ci + t)−

m∑

k=0

f
(k)
i (ci)t

k

k!

)

= −t−m−1

(
mfi(ci + t)− tf ′

i(ci + t)−
m−1∑

k=0

(m− k)f
(k)
i (ci)t

k

k!

)

= −t−m−1

(
g(t)−

m−1∑

k=0

g(k)(0)tk

k!

)

= − t−m−1

(m− 2)!

∫ t

0

(t− s)m−2[g(m−1)(s)− g(m−1)(0)] ds,

where the last equality is by similar Taylor expansion as (43), now applied to g with order m− 1. For
each s,

g(m−1)(s)− g(m−1)(0) = f
(m−1)
i (ci + s)− sf

(m)
i (ci + s)− f

(m−1)
i (ci)

=

∫ s

0

[f
(m)
i (ci + s− u)− f

(m)
i (ci + s)] du,

17



giving |g(m−1)(s)− g(m−1)(0)| ≤ Fm+1s
2/2. Then

|ϕ′
i(t)| ≤

t−m−1Fm+1

2(m− 2)!

∫ t

0

(t− s)m−2s2 ds =
Fm+1

m!
= ψ.

This finishes the proof.

Proof of Lemma 4.2. Let x = Emaxj≤p |ε⊤Vj |. By Jensen inequality, for any t > 0,

exp(tx) ≤ E

[
exp

(
tmax

j≤p
|ε⊤Vj |

)]
= E

[
max
j≤p

exp(t|ε⊤Vj |)
]
≤
∑

j≤p

E[exp(t|ε⊤Vj |)].

Since ε⊤Vj ∼ N(0, ‖Vj‖22),

E[exp(t|ε⊤Vj |)] ≤ E[exp(tε⊤Vj)] + E[exp(−tε⊤Vj)] = 2 exp(t‖Vj‖22).

Then

exp(tx) ≤ 2p exp

(
t2 max

j≤p
‖Vj‖22

)
.

The proof is finished by letting t = x/(2maxj≤p ‖Vj‖22).
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