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Mathematical Structures Defined by Identities II

Constantin M. Petridi
cpetridi@hotmail.com

Abstract In our paper arXiv: math.RA/0110333 v1 Oct 2001 we showed that
the number of algebras defined by a binary operation satisfying a formally
irreducible identity between two n-iterates is O

(

e−n/16S2
n

)

for n → ∞, Sn

being the nth-Catalan number. This was proved by using exclusively the series
of tableaux An. By using also the series of tableaux Bn, we now sharpen this

result to O

(

|n+2

n e−n/16 − 2

n |S
2
n

)

.

The exposition follows, in abbreviated form, the outline of above arXiv paper,
denoted by MS, to which we refer for explanation of concepts and symbols.

1. Since tableau An has n-lines and tableau Bn has 2 lines, tableau An ⊕ Bn

has n + 2 lines. The relations of MS 2.2 regarding the number of their (lines)
common elements, have to be unchanged as follows, so that we again have for
k = 1, 2, . . . , n+ 2

|Li1 ∩ Li2 ∩ · · · ∩ Lik | =















Sn−1 if i1 = i2 = · · · = ik
0 if at least one |i1 − i2|, . . . , |ik−1 − ik|,

all taken mod n, is equal to 1
Sn−k otherwise.

For example, for n = 6, k = 2, there are 8 lines L1, L2, . . . , L8 in tableau
A6 ⊕ B6. The 8× 8 table (|Li ∩ Lj |) looks as follows (only the entries on and
above the diagonal are shown since |Li ∩ Lj | = |Lj ∩ Li|.)

L1 L2 L3 L4 L5 L6 L7 L8

L1 S6 0 S5 S5 S5 S5 S5 0
L2 S6 0 S5 S5 S5 S5 S5

L3 S6 0 S5 S5 S5 S5

L4 S6 0 S5 S5 S5

L5 S6 0 S5 S5

L6 S6 0 S5

L7 S6 0
L8 S6

=

L1 L2 L3 L4 L5 L6 L7 L8

L1 42 0 14 14 14 14 14 0
L2 42 0 14 14 14 14 14
L3 42 0 14 14 14 14
L4 42 0 14 14 14
L5 42 0 14 14
L6 42 0 14
L7 42 0
L8 42

2. The multiplicityM(Jn
i ) of an n-interate Jn

i is the number of times the iterate
occurs in tableau An ⊕Bn.The number of n-iterates with same multiplicity k,
is now denoted by TAn⊕Bn

n,k . As stated at the end of MS 2.6 this number has
been found to be, for k ≥ 1

TAn⊕Bn

n,k = Tn,k +2Tn−1,k−1− 2Tn−1,k, (1)

where Tn,k are the corresponding numbers with regard to tableau An, i.e.

Tn,k = 2n−2k+1

(

n− 1

2k − 2

)

Sk−1, k = 1, 2, . . . , (2)
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Calculating the terms of the left side of (1), we have from (2)

Tn,k = 2n−2k+1

(

n− 1

2k − 2

)

Sk−1 = 2n−2k+1 (n− 1) . . . (n− 2k + 2)

(2k − 2)!
Sk−1

2Tn−1,k−1 = 2n−2k+3

(

n− 2

2k − 1

)

Sk−2 = 2n−2k+3 (n− 2) . . . (n− 2k + 3)

(2k − 4)!
Sk−2

−2Tn−1,k = −2n−2k+1

(

n− 2

2k − 2

)

Sk−1 = −2n−2k+1 (n− 2) . . . (n− 2k + 1)

(2k − 2)!
Sk−1.

Adding and using the recursion Sk = 22k−1
k+1

Sk−1 for the Catalan numbers we
get

TAn⊕Bn

n,k = 2n−2k+1 (n + 2) . . . (n− 2k + 3)

(2k − 4)!

{

(n− 1)(n− 2k + 1)

(2k − 3)(2k − 2)
Sk−1+

4Sk−2 −
(n− 2k + 2)(n− 2k + 1)

(2k − 3)(2k − 2)
Sk−1

}

= 2n−2k+1

(

n− 2

2k − 4

)

{

n− 2k + 2

(2k − 3)(2k − 2)
(n− 1− n + 2k − 1)Sk−1 + 4Sk−2

}

= 2n−2k+1

(

n− 2

2k − 4

)

{

n− 2k + 2

2k − 3
Sk−1 + 4Sk−2

}

= 2n−2k+1

(

n− 2

2k − 4

)

{

n− 2k + 2

k
+ 2

}

2Sk−2

= 2n−2k+2

(

n− 2

2k − 4

)

n + 2

k
Sk−2.

But from (2) we have that

Tn−1,k−1 = 2n−2k+2

(

n− 2

2k − 4

)

Sk−2

so that finally

TAn⊕Bn

n,k =
n+ 2

k
Tn−1,k−1. (3)

3. Formal reducibility of an identity Jn
i = Jn

j and incidence matrix relative to
tableau An⊕Bn are defined in the same way as for tableau An. The number of
formally reducible identities Jn

i = Jn
j of order n, which we denote by IAn⊕Bn

n ,
to distinguish it from In relative to tableau An, is given by

IAn⊕Bn

n =
∑

1≤i,j≤Sn

δ(Jn
i , J

n
j ),

2



where

δ(Jn
i , J

n
j ) =

{

1 if Jn
i = Jn

j formally reducible
0 if Jn

i = Jn
j formally irreducible

As an example, we display the incidence matrices relative to tableaux A3 and
A3 ⊕ B3, which clearly shows, as expected that IA3⊕B3

3 > I3.

A3 A3 ⊕B3

J3
1 J3

2 J3
3 J3

4 J3
5

∑

i 1
J3
1 1 1 0 0 0 2

J3
2 1 1 0 0 1 3

J3
3 0 0 1 1 0 2

J3
4 0 0 1 1 0 2

J3
5 0 1 0 0 1 2

−
I3 = 11

J3
1 J3

2 J3
3 J3

4 J3
5

∑

i 1
J3
1 1 1 1 0 0 3

J3
2 1 1 0 0 1 3

J3
3 1 0 1 1 0 3

J3
4 0 0 1 1 1 3

J3
5 0 1 0 1 1 3

−

IA3⊕B3

3 = 15

For n = 4 and n = 5 the corresponding findings are

n = 4 I4 = 88 IA4⊕B4

4 = 116

n = 5 I5 = 834 IA4⊕B4

5 = 1050

4. The arguments which led us to establish the fundamental Theorem of MS
2.4 can be applied verbatim, resulting in

Sn
∑

j=1

δ(Jn
i , J

n
j ) =

M(Jn

i
)

∑

ν=1

(−1ν−1)

(

M(Jn
i )

ν

)

Sn−ν , (4)

where M(Jn
i is the multiplicity of Jn

i in tableau An ⊕Bn . (4) means that the
number of formally reducible identities in the line Li of tableau IAn⊕Bn

n does
not depend on Jn

i but only on the multiplicity of M(Jn
i ), as was the case in

MS 2.4, when solely the series of tableaux An was used. Since
(

M(Jn

i
)

ν

)

= 0,
for ν > M(Jn

i ) we can forget the upper limit M(Jn
i ) for the index ν and write

instead

Sn
∑

j=1

δ(Jn
i , J

n
j ) =

∞
∑

ν=0

(−1ν−1)

(

M(Jn
i )

ν

)

Sn−ν . (5)

This convention will be used for all finite series of the form
∑N

ν=n

(

f(N)
ν

)

cν ,
f(x) a positive arithmetic function which from now on will be written as
∑∞

ν=n

(

f(N)
ν

)

cν , since
(

f(N)
ν

)

= 0 for ν > f(N).
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5. Following identity from MS 2.5 for various values of the indices n and k

will be needed in the sequel

[n+1

2
]−k

∑

ν=0

(

k + ν

k

)

Tn,k+ν =

(

n− k + 1

k

)

Sn−k,

which, because of said convention, will be written

∞
∑

ν=0

(

k + ν

k

)

Tn,k+ν =

(

n− k + 1

k

)

Sn−k. (6)

6. On basis of above results we can now evaluate IAn⊕Bn

n . By definition IAn⊕Bn

n

is the sum of 1’s in the incidence matrix relative to tableau An⊕Bn. Counting
them by lines and because of (4) we therefore have

IAn⊕Bn

n =
∑

1≤i,j≤Sn

δ(Jn
i , J

n
j ) =

Sn
∑

i=1

(

Sn
∑

j=1

δ(Jn
i , J

n
j )
)

=
Sn
∑

i=1

(

M(Jn

i
)

∑

ν=1

(−1)ν−1

(

M(Jn
i )

ν

)

Sn−ν

)

. (7)

Since there are TAn⊕Bn

n,k n-iterates with multiplicity k, k = 1, 2, . . . , the double
sum can be rearranged by pooling together all terms with M(Jn

i ) = k. As a
consequence, using our convention, we have

IAn⊕Bn =
∞
∑

k=1

TAn⊕Bn

n,k

[

∞
∑

ν=1

(−1)ν−1

(

k

ν

)

Sn−ν

]

. (8)

Substituting TAn⊕Bn

n,k by its value from (4) we obtain

IAn⊕Bn

n =

∞
∑

k=1

n+ 2

k
Tn−1,k−1

[

∞
∑

ν=1

(−1)ν−1

(

k

ν

)

Sn−ν

]

,

and reversing the order of summation we get,

IAn⊕Bn

n = (n+ 2)
{

Sn−1

[

∞
∑

k=1

1

k

(

k

1

)

Tn−1,k−1

]

− Sn−2

[

∞
∑

k=1

1

k

(

k

2

)

Tn−1,k−1

]

+ . . .

+(−1)n−νSn−ν

[

∞
∑

k=1

1

k

(

k

ν

)

Tn−1,k−1

]

+ . . .
}

. (9)
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Observing that 1
k

(

k
ν

)

= 1
ν

(

k−1
ν−1

)

and setting µ = k − 1 as a new running index
(9) becomes

IAn⊕Bn

n = (n + 2)
{Sn−1

1

[

∞
∑

µ=0

(

µ

0

)

Tn−1,µ

]

−
Sn−2

2

[

∞
∑

µ=0

(

µ

0

)

Tn−1,µ

]

+ . . .

+(−1)ν−1Sn−ν

ν

[

∞
∑

µ=0

(

µ

ν − 1

)

Tn−1,µ

]

+ . . .
}

. (10)

The expressions in brackets can be evaluated from (6) by replacing n by n−1,
(

k+ν
ν

)

by
(

k+ν
k

)

and k successively by 0, 1, . . . . This gives

k = 0
∞
∑

ν=0

(

ν

0

)

Tn−1,ν =

(

n

0

)

Sn−1

k = 1

∞
∑

ν=0

(

ν + 1

1

)

Tn−1,ν+1 =

(

n− 1

1

)

Sn−2

. . . . . . . . .

k = k

∞
∑

ν=0

(

ν + k

k

)

Tn−1,ν+k =

(

n− k

k

)

Sn−k−1

. . . . . . . . .

Inserting these values in (10) we obtain

IAn⊕Bn

n = (n+ 2)
∞
∑

ν=0

(−1)ν
1

ν + 1

(

n− ν

ν

)

S2
n−ν−1. (11)

Actually this sum is finite since for ν > n
2
all coefficients

(

n−ν
ν

)

are zero. It
can be asymptotically evaluated by the same heuristic method we used in MS
2.6 to evaluate In. Setting ν = k − 1 and after obvious transformations, (11)
becomes

IAn⊕Bn

n = (n+ 2)S2
n

∞
∑

k=1

(−1)k−1 1

k

(

n− k + 1

k − 1

)

(Sn−k

Sn

)2

(12)

On the other hand for n → ∞ and k finite

Sn−k

Sn
∽

1

4k

1

k

(

n− k + 1

k − 1

)

∽

nk−1

k!

so that the general term of the series in (12) behaves for n → ∞ like

(−1)k−1n
k−1

k!

( 1

4k

)2

= (−1)k−1 1

k!

1

42k
nk−1.
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We now sum over k to get

IAn⊕Bn

n ∽ (n+ 2)S2
n

∞
∑

k=1

(−1)k−1 1

42k!

1

42k−2
nk−1

∽

(n + 2)S2
n

42

∞
∑

k=1

(−1)k−1 1

k!

( n

42

)k−1

∽

(n+ 2)S2
n

n

∞
∑

k=1

(−1)k−1 1

k!

( n

42

)k

∽

n+ 2

n
S2
n

(

1− e−
n

16

)

(13)

As said in MS 2.6 above argument is not rigorous, but can be made so by
estimating for n → ∞ the differences |

Sn−k

Sn
− 1

4k
| and | 1

k

(

n−k+1
k

)

− nk−1

k!
|. A

stronger result can be obtained if we apply the Sterling formula to the binomial
coefficients, taking into account that even Sn = 1

n+1

(

2n
n

)

contains binomial
coefficients (see SP).

6. IAn⊕Bn

n was defined as the number of formally reducible identities Jn
i = Jn

j

of order n, so that the number of formally irreducible identities is S2
n−IAn⊕Bn

n ,
since the total number of n-identities is S2

n.

(13) means that the order of IAn⊕Bn

n for n → ∞ is O
(

n+2
n
(1− e−

n

16 )S2
n

)

, which

gives for S2
n − IAn⊕Bn

n the order O
(

|n+2
n

e−n/16 − 2
n
|S2

n

)

.

Summarizing and using the terminology of algebras (see BO), we have proved
following.

Theorem. The number of algebras defined by a binary operation satisfying
a formally irreducible identity between two n-iterates of the operation is, for

n → ∞, O
(

|n+2
n

e−n/16 − 2
n
|S2

n

)

.
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