Mathematical Structures Defined by Identities II

Constantin M. Petridi
cpetridi@hotmail.com

Abstract

In our paper arXiv: math.RA/0110333 v1 Oct 2001 we showed that the number of algebras defined by a binary operation satisfying a formally irreducible identity between two n-iterates is $O\left(e^{-n / 16} S_{n}^{2}\right)$ for $n \rightarrow \infty, S_{n}$ being the n th-Catalan number. This was proved by using exclusively the series of tableaux A_{n}. By using also the series of tableaux B_{n}, we now sharpen this result to $O\left(\left|\frac{n+2}{n} e^{-n / 16}-\frac{2}{n}\right| S_{n}^{2}\right)$.

The exposition follows, in abbreviated form, the outline of above arXiv paper, denoted by MS, to which we refer for explanation of concepts and symbols.

1. Since tableau A_{n} has n-lines and tableau B_{n} has 2 lines, tableau $A_{n} \oplus B_{n}$ has $n+2$ lines. The relations of MS 2.2 regarding the number of their (lines) common elements, have to be unchanged as follows, so that we again have for $k=1,2, \ldots, n+2$

$$
\left|L_{i_{1}} \cap L_{i_{2}} \cap \cdots \cap L_{i_{k}}\right|= \begin{cases}S_{n-1} & \text { if } i_{1}=i_{2}=\cdots=i_{k} \\ 0 & \text { if at least one }\left|i_{1}-i_{2}\right|, \ldots,\left|i_{k-1}-i_{k}\right|, \\ & \text { all taken mod } \mathrm{n}, \text { is equal to } 1 \\ S_{n-k} & \text { otherwise. }\end{cases}
$$

For example, for $n=6, k=2$, there are 8 lines $L_{1}, L_{2}, \ldots, L_{8}$ in tableau $A_{6} \oplus B_{6}$. The 8×8 table $\left(\left|L_{i} \cap L_{j}\right|\right)$ looks as follows (only the entries on and above the diagonal are shown since $\left|L_{i} \cap L_{j}\right|=\left|L_{j} \cap L_{i}\right|$.)

	L_{1}	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}	L_{7}	L_{8}			L_{1}	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}	L_{7}
L_{8}																	
L_{1}	S_{6}	0	S_{5}	S_{5}	S_{5}	S_{5}	S_{5}	0		L_{1}	42	0	14	14	14	14	14
L_{2}		S_{6}	0	S_{5}	S_{5}	S_{5}	S_{5}	S_{5}		L_{2}		42	0	14	14	14	14
L_{3}			S_{6}	0	S_{5}	S_{5}	S_{5}	S_{5}	$=$	L_{3}			42	0	14	14	14
L_{4}				S_{6}	0	S_{5}	S_{5}	S_{5}		L_{4}				42	0	14	14
L_{5}					S_{6}	0	S_{5}	S_{5}		L_{5}					42	0	14
L_{6}						S_{6}	0	S_{5}	L_{6}						42	0	14
L_{6}																	
L_{7}							S_{6}	0	L_{7}							42	0
L_{8}								S_{6}	L_{8}								42

2. The multiplicity $M\left(J_{i}^{n}\right)$ of an n-interate J_{i}^{n} is the number of times the iterate occurs in tableau $A_{n} \oplus B_{n}$. The number of n-iterates with same multiplicity k, is now denoted by $T_{n, k}^{A_{n} \oplus B_{n}}$. As stated at the end of MS 2.6 this number has been found to be, for $k \geq 1$

$$
\begin{equation*}
T_{n, k}^{A_{n} \oplus B_{n}}=T_{n, k}+2 T_{n-1, k-1}-2 T_{n-1, k}, \tag{1}
\end{equation*}
$$

where $T_{n, k}$ are the corresponding numbers with regard to tableau A_{n}, i.e.

$$
\begin{equation*}
T_{n, k}=2^{n-2 k+1}\binom{n-1}{2 k-2} S_{k-1}, \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

Calculating the terms of the left side of (1), we have from (2)

$$
\begin{gathered}
T_{n, k}=2^{n-2 k+1}\binom{n-1}{2 k-2} S_{k-1}=2^{n-2 k+1} \frac{(n-1) \ldots(n-2 k+2)}{(2 k-2)!} S_{k-1} \\
2 T_{n-1, k-1}=2^{n-2 k+3}\binom{n-2}{2 k-1} S_{k-2}=2^{n-2 k+3} \frac{(n-2) \ldots(n-2 k+3)}{(2 k-4)!} S_{k-2} \\
-2 T_{n-1, k}=-2^{n-2 k+1}\binom{n-2}{2 k-2} S_{k-1}=-2^{n-2 k+1} \frac{(n-2) \ldots(n-2 k+1)}{(2 k-2)!} S_{k-1} .
\end{gathered}
$$

Adding and using the recursion $S_{k}=2 \frac{2 k-1}{k+1} S_{k-1}$ for the Catalan numbers we get

$$
\begin{gathered}
T_{n, k}^{A_{n} \oplus B_{n}}=2^{n-2 k+1} \frac{(n+2) \ldots(n-2 k+3)}{(2 k-4)!}\left\{\frac{(n-1)(n-2 k+1)}{(2 k-3)(2 k-2)} S_{k-1}+\right. \\
\left.4 S_{k-2}-\frac{(n-2 k+2)(n-2 k+1)}{(2 k-3)(2 k-2)} S_{k-1}\right\} \\
=2^{n-2 k+1}\binom{n-2}{2 k-4}\left\{\frac{n-2 k+2}{(2 k-3)(2 k-2)}(n-1-n+2 k-1) S_{k-1}+4 S_{k-2}\right\} \\
=2^{n-2 k+1}\binom{n-2}{2 k-4}\left\{\frac{n-2 k+2}{2 k-3} S_{k-1}+4 S_{k-2}\right\} \\
=2^{n-2 k+1}\binom{n-2}{2 k-4}\left\{\frac{n-2 k+2}{k}+2\right\} 2 S_{k-2} \\
=2^{n-2 k+2}\binom{n-2}{2 k-4} \frac{n+2}{k} S_{k-2} .
\end{gathered}
$$

But from (2) we have that

$$
T_{n-1, k-1}=2^{n-2 k+2}\binom{n-2}{2 k-4} S_{k-2}
$$

so that finally

$$
\begin{equation*}
T_{n, k}^{A_{n} \oplus B_{n}}=\frac{n+2}{k} T_{n-1, k-1} . \tag{3}
\end{equation*}
$$

3. Formal reducibility of an identity $J_{i}^{n}=J_{j}^{n}$ and incidence matrix relative to tableau $A_{n} \oplus B_{n}$ are defined in the same way as for tableau A_{n}. The number of formally reducible identities $J_{i}^{n}=J_{j}^{n}$ of order n, which we denote by $I_{n}^{A_{n} \oplus B_{n}}$, to distinguish it from I_{n} relative to tableau A_{n}, is given by

$$
I_{n}^{A_{n} \oplus B_{n}}=\sum_{1 \leq i, j \leq S_{n}} \delta\left(J_{i}^{n}, J_{j}^{n}\right)
$$

where

$$
\delta\left(J_{i}^{n}, J_{j}^{n}\right)=\left\{\begin{array}{llll}
1 & \text { if } & J_{i}^{n}=J_{j}^{n} & \text { formally reducible } \\
0 & \text { if } & J_{i}^{n}=J_{j}^{n} & \text { formally irreducible }
\end{array}\right.
$$

As an example, we display the incidence matrices relative to tableaux A_{3} and $A_{3} \oplus B_{3}$, which clearly shows, as expected that $I_{3}^{A_{3} \oplus B_{3}}>I_{3}$.

	A_{3}						$A_{3} \oplus B_{3}$						
	J_{1}^{3}	J_{2}^{3}	J_{3}^{3}	J_{4}^{3}	J_{5}^{3}	$\sum_{i} 1$		J_{1}^{3}	J_{2}^{3}	J_{3}^{3}	J_{4}^{3}	J_{5}^{3}	$\sum_{i} 1$
J_{1}^{3}	1	1	0	0	0	2	J_{1}^{3}	1	1	1	0	0	3
J_{2}^{3}	1	1	0	0	1	3	J_{2}^{3}	1	1	0	0	1	3
J_{3}^{3}	0	0	1	1	0	2	J_{3}^{3}	1	0	1	1	0	3
J_{4}^{3}	0	0	1	1	0	2	J_{4}^{3}	0	0	1	1	1	3
J_{5}^{3}	0	1	0	0	1	2	J_{5}^{3}	0	1	0	1	1	3
				I_{3}	$=$	11					$I_{3}^{A_{3} \oplus B_{3}}$	$=$	15

For $n=4$ and $n=5$ the corresponding findings are

$$
\begin{array}{lll}
n=4 & I_{4}=88 & I_{4}^{A_{4} \oplus B_{4}}=116 \\
n=5 & I_{5}=834 & I_{5}^{A_{4} \oplus B_{4}}=1050
\end{array}
$$

4. The arguments which led us to establish the fundamental Theorem of MS 2.4 can be applied verbatim, resulting in

$$
\begin{equation*}
\sum_{j=1}^{S_{n}} \delta\left(J_{i}^{n}, J_{j}^{n}\right)=\sum_{\nu=1}^{M\left(J_{i}^{n}\right)}\left(-1^{\nu-1}\right)\binom{M\left(J_{i}^{n}\right)}{\nu} S_{n-\nu} \tag{4}
\end{equation*}
$$

where $M\left(J_{i}^{n}\right.$ is the multiplicity of J_{i}^{n} in tableau $A_{n} \oplus B_{n}$. (4) means that the number of formally reducible identities in the line L_{i} of tableau $I_{n}^{A_{n} \oplus B_{n}}$ does not depend on J_{i}^{n} but only on the multiplicity of $M\left(J_{i}^{n}\right)$, as was the case in MS 2.4, when solely the series of tableaux A_{n} was used. Since $\binom{M\left(J_{i}^{n}\right)}{\nu}=0$, for $\nu>M\left(J_{i}^{n}\right)$ we can forget the upper limit $M\left(J_{i}^{n}\right)$ for the index ν and write instead

$$
\begin{equation*}
\sum_{j=1}^{S_{n}} \delta\left(J_{i}^{n}, J_{j}^{n}\right)=\sum_{\nu=0}^{\infty}\left(-1^{\nu-1}\right)\binom{M\left(J_{i}^{n}\right)}{\nu} S_{n-\nu} \tag{5}
\end{equation*}
$$

This convention will be used for all finite series of the form $\sum_{\nu=n}^{N}\binom{f(N)}{\nu} c_{\nu}$, $f(x)$ a positive arithmetic function which from now on will be written as $\sum_{\nu=n}^{\infty}\binom{f(N)}{\nu} c_{\nu}$, since $\binom{f(N)}{\nu}=0$ for $\nu>f(N)$.
5. Following identity from MS 2.5 for various values of the indices n and k will be needed in the sequel

$$
\sum_{\nu=0}^{\left[\frac{n+1}{2}\right]-k}\binom{k+\nu}{k} T_{n, k+\nu}=\binom{n-k+1}{k} S_{n-k}
$$

which, because of said convention, will be written

$$
\begin{equation*}
\sum_{\nu=0}^{\infty}\binom{k+\nu}{k} T_{n, k+\nu}=\binom{n-k+1}{k} S_{n-k} \tag{6}
\end{equation*}
$$

6. On basis of above results we can now evaluate $I_{n}^{A_{n} \oplus B_{n}}$. By definition $I_{n}^{A_{n} \oplus B_{n}}$ is the sum of 1's in the incidence matrix relative to tableau $A_{n} \oplus B_{n}$. Counting them by lines and because of (4) we therefore have

$$
\begin{align*}
I_{n}^{A_{n} \oplus B_{n}} & =\sum_{1 \leq i, j \leq S_{n}} \delta\left(J_{i}^{n}, J_{j}^{n}\right)=\sum_{i=1}^{S_{n}}\left(\sum_{j=1}^{S_{n}} \delta\left(J_{i}^{n}, J_{j}^{n}\right)\right) \\
& =\sum_{i=1}^{S_{n}}\left(\sum_{\nu=1}^{M\left(J_{i}^{n}\right)}(-1)^{\nu-1}\binom{M\left(J_{i}^{n}\right)}{\nu} S_{n-\nu}\right) . \tag{7}
\end{align*}
$$

Since there are $T_{n, k}^{A_{n} \oplus B_{n}} n$-iterates with multiplicity $k, k=1,2, \ldots$, the double sum can be rearranged by pooling together all terms with $M\left(J_{i}^{n}\right)=k$. As a consequence, using our convention, we have

$$
\begin{equation*}
I^{A_{n} \oplus B_{n}}=\sum_{k=1}^{\infty} T_{n, k}^{A_{n} \oplus B_{n}}\left[\sum_{\nu=1}^{\infty}(-1)^{\nu-1}\binom{k}{\nu} S_{n-\nu}\right] . \tag{8}
\end{equation*}
$$

Substituting $T_{n, k}^{A_{n} \oplus B_{n}}$ by its value from (4) we obtain

$$
I_{n}^{A_{n} \oplus B_{n}}=\sum_{k=1}^{\infty} \frac{n+2}{k} T_{n-1, k-1}\left[\sum_{\nu=1}^{\infty}(-1)^{\nu-1}\binom{k}{\nu} S_{n-\nu}\right],
$$

and reversing the order of summation we get,

$$
\begin{gather*}
I_{n}^{A_{n} \oplus B_{n}}=(n+2)\left\{S_{n-1}\left[\sum_{k=1}^{\infty} \frac{1}{k}\binom{k}{1} T_{n-1, k-1}\right]-S_{n-2}\left[\sum_{k=1}^{\infty} \frac{1}{k}\binom{k}{2} T_{n-1, k-1}\right]+\ldots\right. \\
\left.+(-1)^{n-\nu} S_{n-\nu}\left[\sum_{k=1}^{\infty} \frac{1}{k}\binom{k}{\nu} T_{n-1, k-1}\right]+\ldots\right\} . \tag{9}
\end{gather*}
$$

Observing that $\frac{1}{k}\binom{k}{\nu}=\frac{1}{\nu}\binom{k-1}{\nu-1}$ and setting $\mu=k-1$ as a new running index (9) becomes

$$
\begin{align*}
I_{n}^{A_{n} \oplus B_{n}}= & (n+2)\left\{\frac{S_{n-1}}{1}\left[\sum_{\mu=0}^{\infty}\binom{\mu}{0} T_{n-1, \mu}\right]-\frac{S_{n-2}}{2}\left[\sum_{\mu=0}^{\infty}\binom{\mu}{0} T_{n-1, \mu}\right]+\ldots\right. \\
& \left.+(-1)^{\nu-1} \frac{S_{n-\nu}}{\nu}\left[\sum_{\mu=0}^{\infty}\binom{\mu}{\nu-1} T_{n-1, \mu}\right]+\ldots\right\} . \tag{10}
\end{align*}
$$

The expressions in brackets can be evaluated from (6) by replacing n by $n-1$, $\binom{k+\nu}{\nu}$ by $\binom{k+\nu}{k}$ and k successively by $0,1, \ldots$. This gives

$$
\begin{array}{rlrl}
k=0 & & \sum_{\nu=0}^{\infty}\binom{\nu}{0} T_{n-1, \nu}=\binom{n}{0} S_{n-1} \\
k=1 & & \sum_{\nu=0}^{\infty}\binom{\nu+1}{1} T_{n-1, \nu+1}=\binom{n-1}{1} S_{n-2} \\
\ldots & \ldots \\
k=k & & \sum_{\nu=0}^{\infty}\binom{\nu+k}{k} T_{n-1, \nu+k}=\binom{n-k}{k} S_{n-k-1}
\end{array}
$$

Inserting these values in (10) we obtain

$$
\begin{equation*}
I_{n}^{A_{n} \oplus B_{n}}=(n+2) \sum_{\nu=0}^{\infty}(-1)^{\nu} \frac{1}{\nu+1}\binom{n-\nu}{\nu} S_{n-\nu-1}^{2} \tag{11}
\end{equation*}
$$

Actually this sum is finite since for $\nu>\frac{n}{2}$ all coefficients $\binom{n-\nu}{\nu}$ are zero. It can be asymptotically evaluated by the same heuristic method we used in MS 2.6 to evaluate I_{n}. Setting $\nu=k-1$ and after obvious transformations, (11) becomes

$$
\begin{equation*}
I_{n}^{A_{n} \oplus B_{n}}=(n+2) S_{n}^{2} \sum_{k=1}^{\infty}(-1)^{k-1} \frac{1}{k}\binom{n-k+1}{k-1}\left(\frac{S_{n-k}}{S_{n}}\right)^{2} \tag{12}
\end{equation*}
$$

On the other hand for $n \rightarrow \infty$ and k finite

$$
\begin{gathered}
\frac{S_{n-k}}{S_{n}} \backsim \frac{1}{4^{k}} \\
\frac{1}{k}\binom{n-k+1}{k-1} \backsim \frac{n^{k-1}}{k!}
\end{gathered}
$$

so that the general term of the series in (12) behaves for $n \rightarrow \infty$ like

$$
(-1)^{k-1} \frac{n^{k-1}}{k!}\left(\frac{1}{4^{k}}\right)^{2}=(-1)^{k-1} \frac{1}{k!} \frac{1}{4^{2 k}} n^{k-1}
$$

We now sum over k to get

$$
\begin{align*}
I_{n}^{A_{n} \oplus B_{n}} & \backsim(n+2) S_{n}^{2} \sum_{k=1}^{\infty}(-1)^{k-1} \frac{1}{4^{2} k!} \frac{1}{4^{2 k-2}} n^{k-1} \\
& \backsim \frac{(n+2) S_{n}^{2}}{4^{2}} \sum_{k=1}^{\infty}(-1)^{k-1} \frac{1}{k!}\left(\frac{n}{4^{2}}\right)^{k-1} \\
& \backsim \frac{(n+2) S_{n}^{2}}{n} \sum_{k=1}^{\infty}(-1)^{k-1} \frac{1}{k!}\left(\frac{n}{4^{2}}\right)^{k} \\
& \backsim \frac{n+2}{n} S_{n}^{2}\left(1-e^{-\frac{n}{16}}\right) \tag{13}
\end{align*}
$$

As said in MS 2.6 above argument is not rigorous, but can be made so by estimating for $n \rightarrow \infty$ the differences $\left|\frac{S_{n-k}}{S_{n}}-\frac{1}{4^{k}}\right|$ and $\left|\frac{1}{k}\binom{n-k+1}{k}-\frac{n^{k-1}}{k!}\right|$. A stronger result can be obtained if we apply the Sterling formula to the binomial coefficients, taking into account that even $S_{n}=\frac{1}{n+1}\binom{2 n}{n}$ contains binomial coefficients (see SP).
6. $I_{n}^{A_{n} \oplus B_{n}}$ was defined as the number of formally reducible identities $J_{i}^{n}=J_{j}^{n}$ of order n, so that the number of formally irreducible identities is $S_{n}^{2}-I_{n}^{A_{n} \oplus B_{n}}$, since the total number of n-identities is S_{n}^{2}.
(13) means that the order of $I_{n}^{A_{n} \oplus B_{n}}$ for $n \rightarrow \infty$ is $O\left(\frac{n+2}{n}\left(1-e^{-\frac{n}{16}}\right) S_{n}^{2}\right)$, which gives for $S_{n}^{2}-I_{n}^{A_{n} \oplus B_{n}}$ the order $O\left(\left|\frac{n+2}{n} e^{-n / 16}-\frac{2}{n}\right| S_{n}^{2}\right)^{n}$.

Summarizing and using the terminology of algebras (see BO), we have proved following.

Theorem. The number of algebras defined by a binary operation satisfying a formally irreducible identity between two n-iterates of the operation is, for $n \rightarrow \infty, O\left(\left|\frac{n+2}{n} e^{-n / 16}-\frac{2}{n}\right| S_{n}^{2}\right)$.

Acknowledgment. I wish to thank Peter Krikelis, University of Athens, Dep. of Mathematics, for his help.

References.

1. MS Petridi, Constantin M., Krikelis, Peter B.: Mathematical Structures defined by identities, arXiv: math.RA/0110333 v1 Oct 2001
2. BO Bakhturin Yu.A., Ol'Shanskij A.Yu.: II Identities, Encyclopedia of Mathematical Sciences Vol. 18, Springer - Verlag Berlin Heideberg 1991.
3. SP Stanica, Pantelimon: Good lower and upper bounds on binomial coefficients, Journal of Inequalities in Pure and Applied Mathematics, Vol 2, Issue 3, Article 30, 2001
