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Abstract

In this paper we give a complete solution to the
Hamilton-Waterloo problem for the case of Hamilton cycles
and Cyi-factors for all positive integers k.
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1 Introduction

The Hamilton-Waterloo problem is a generalization of the well known
Oberwolfach problem, which asks for a 2-factorization of the com-
plete graph K, in which r of its 2-factors are isomorphic to a given
2-factor R and s of its 2-factors are isomorphic to a given 2-factor S
with 2(r +s) = n — 1. The most interesting case of the Hamilton-
Waterloo problem is that R consists of cycles of length m and S con-
sists of cycles of length k, such a 2-factorization of K, is called uni-
form and denoted by HW (n;r, s;m, k). The corresponding Hamilton-
Waterloo problem is the problem for the existence of an HW (n;r, s;m, k).
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There exists no 2-factorization of K,, when n is even since the de-
gree of each vertex is odd. In this case, we consider the 2-factorizations
of K,, — I,(where I, is a 1-factor of K,,) instead. The correspond-
ing 2-factorization is also denoted by HW (n;r, s;m, k). Obviously
2(r+s)=n-—2.

It is easy to see that the following conditions are necessary for the
existence of an HW (n;r, s;m, k):

Lemma 1.1. If there exists an HW (n;r, s;m, k), then

n=0 (mod m) when s =0;
n=0 (mod k) when r = 0;
n=0 (modm)andn=0 (mod k) when r # 0 and s # 0;

The Hamilton-Waterloo problem attracts much attention and progress
has been made by several authors. Adams, Billington, Bryant and
El-Zanati [1] deal with the case (m,k) € {(3,5),(3,15),(5,15)}.
Danziger, Quattrocchi and Stevens[3] give an almost complete so-
lution for the case (m, k) = (3,4), which is stated below:

Theorem 1.2. [3] An HW (n;r,s;3,4) exists if and only if
n =0 (mod12) and (n,s) # (12,0) with the following possible
exceptions:

n =24 and s = 2,4, 6;
n =48 and s = 6, 8,10, 14, 16, 18.

The case (m, k) = (n,3), i.e. Hamilton cycles and triangle-factors,
is studied by Horak, Nedela and Rosa [8], Dinitz and Ling [4, 5] and
the following partial result obtained:

Theorem 1.3. [4, 5, §]

(a) If n = 3 (mod 18), then an HW (n;r,s;n,3) exists except
possibly when n = 93,111,129,183,201 and r = 1;

(b) If n=9 (mod 18), then an HW (n;r, s;n,3) exists except
n=9andr =1,
except possibly when
n = 153,207 and r = 1;

- n+3) (n+3 n+3
(¢) fn=15 (mod 18) and r € {1, (8 o (ndd) 4 3

(";1)}, then an HW (n;r, s;n,3) exists except possibly when

n = 123,141,159, 177,213,249 and r = 1.

Forn =0 (mod 6), the problem for the existence of an HW (n;r,
s;n, 3) is still open.

The cases (m,k) € {(t,2t)[t > 4} and (m,k) € {(4,2t)|t > 3}
have been completely solved by Fu and Huang [6].



Theorem 1.4.[6]

(a) Suppose t > 4, an HW (n;r, s;t,2t) exists if and only if n =0
(mod 2t).

(b) For an integer t > 3, an HW (n;r,s;4,2t) exists if and only if
n=0 (mod4)andn=0 (mod 2t).

For r = 0 or s = 0, the Hamilton-Waterloo problem is in fact the
problem for the existence of resolvable cycle decompositions of the
complete graph, which has been completely solved by Govzdjak [7].

Theorem 1.5.[7] There exists a resolvable m-cycle decomposition
of K, (or K,, — I when n is even) if and only if n =0 (mod m),
(n,m) # (6,3) and (n,m) # (12, 3).

The purpose of this paper is to give a complete solution to the
Hamilton-Waterloo problem for the case of Hamilton cycles and Cly-
factors which is stated in the following theorem.

Theorem 1.6. For given positive integer k, an HW (n;r, s;n, 4k)
exists if and only if r + s = [%5] and n =0 (mod 4k) if s > 0 or
n>3if s=0.

2 Preliminaries

In this section, we provide some basic constructions.

For convenience, we introduce the following notations first. A C),-
factor of K, is a spanning subgraph of K, in which each component
is a cycle of length m. Let r + s = [(n — 1)/2] and

HW*(n;m, k) = {rlan HW (n;r,s;m, k) exists}.

We use HC to represent Hamilton cycle for short.

By Lemma 1.1, the necessary condition for the existence of HW (n;
r,s;m,4k) with s > 0is n =0 (mod 4k), we assume n = 4kt and
the vertex set of K, is Zoy X Zoi. We write V; = {i} X Zy, =
{io,i1,...,iop—1} for i € Zy. Let Ky, y, be the complete bipartite
graph define on two partite sets V; and V}, and Ky, be the complete
graph of order 2k define on the vertex set V;. Obviously,

2t—1
E(Kut) = |J B(Kv) U E(Kv,.v))-
i=0 i#j

Further for d € Zsy, we define sets of edges (i, 7)q = {(i1j1+a)|l €
Zoy} for i, j € Zy. Clearly, (4,7)q is a perfect matching in Kvy; y;. In
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fact,
2k—1

E(Kv,v;,) = | (i,4)a-
d=0

The following lemmas are useful in our constructions.

Lemma 2.1. [6] Let Io, = {(vovn)} U {(vivan—i)|l <i <n—1}.
Then Ky, — Is, can be decomposed into n — 1 HCs, Each HC
can be decomposed into two 1-factors. Moreover, by reordering
the vertices of Ko, if necessary, we may assume one of the HCs

is (Uo, (%R ,Ugn_l).
The following lemma is a generalization of Lemma 1 in [8].
Lemma 2.2. Let m be a permutation of Zy;, dg,d1,...,doy_1 be

nonnegative integers. Then the set of edges

(m(0), 7(1))ap U (r(1), (2))ay U -+~ U (w(2t = 1),7(0))ay,

forms an HC of K, if dy+dy+- - -+ do:—1 and 2k are relatively prime.
Proof. Set d =dy+dy + --- + do;_1, then arrange the edges as

H = (77(0)07 7T(l)do ) 77(2)d0+d17 T 77T(O)d7 7T(Dd-l-dov T 777(2t_1)2kd—d2t71 )

Since (d, 2k) = 1, the vertices

7T(i)do-l-th-l---~—|—da;71 ) W(i)d+d0+d1+“'+di717 s 7W(i)(2k—1)d+do+d1+---+di71

are mutually distinct for ¢ € Zo;. Thus all vertices in H are mutually
distinct, so H is an HC. O

Lemma 2.3. Let di,ds be nonnegative integers. If di — do and
2k are relatively prime, then the set of edges (i, 7)q, U (4, )4, forms
a cycle of length 4k on the vertex set V; U Vj.

Proof. It’s a direct consequence of Lemma 2.2. Arranging the
edges as a cycle (1o, ja,, idy —dy» J2di—da» " * 5 J2kdy —(2k—1)dz) COMPletes
the proof.O

3  Proof of the main theorem

With the above preparations, now we are ready to prove our main
theorem.

Let G be a complete graph defined on {Vo,Vi,...,Vay_1}. By
Lemma 2.1, G can be decomposed into 2t — 1 1-factors, denoted by
1?’1,152, .. ,15215_1, and F5;_1 Uﬁ’gi forms an HC for i =1,2,...,t—1.
By reordering the vertices if necessary, we may assume

Fy = {VoVi, Vo, Vs, ..., Vay_aVay 1},



Fy = {ViVa, V3V, ..., Vay_1 Vo },
Fyoy = {(VoVi} U{ViVargli = 1,2,...,t — 1}.

Let
F, = U E(K\/“VJ) fOT x € th\{O}
ViV EE(Fy)

and
H, = (0, 1)1 U (1, 2)2k—l U (2, 3)[ U---u (2t — 1, O)Qk_l forl € Zy.

Then FiUFy, = HyUH{U---UHo,_1.

Lemma 3.1. Fy_1 UF5(i=0,1,...,k — 1) can be decomposed
into r; € {0,2,...,2k} HCs and 2k — r; Cyx-factors of K.

Proof. We only give the proof for the case i = 1, i.e. Fj U Fb,
the remaining cases are similar.

For ] =0,1,...,k — 1, Hy U Hg+1 can be decomposed into two
edge sets:

U (24,25 + D)oy | (24,25 + 1)y 1)

t—1
U (25 + 1,25+ 2)9 0 U (25 + 1,25 + 2)gp_py1),
=0

by Lemma 2.3, each forms a Cy-factor of K,,.
Similarly, Ho; U Ho;11 can be decomposed into another two edge
sets:

(Hoy — (2t — 1,0)95—27) U (2t — 1,0)2—21—1,
(Hap41 — (2t = 1,0)2k—91-1) U (2t — 1,0)2—21,

by Lemma 2.2, each forms an HC of K.

Finally, by decomposing Ho; U Hojpq1 into two HCs when [ €
{0,1,..., % —1} or into two Cy-factors when I € {5, 5 +1,... k-
1}, we have the proof.0

Lemma 3.2. For each i € Zy\{0}, F; U( U Ky;) can be de-
1€ Lot
composed into 2k — 1 Cy,-factors and a 1-factor of K,.
Proof. Noticing that F; U ( |J Ky;) = tKy and these complete
1€ Lo
graphs of order 4k are edge-disjoint. By Lemma 2.1, each can be

decomposed into 2k — 1 HCs and one 1-factor of Ky4;. Hence, these
HCs and 1-factors form 2k —1 Cyj-factors and a 1-factor of K,,. This
concludes the proof. O



For convenience in presentation, we use X to denote |J Ky, in
1€ 2ot
what follows.

Proposition 3.3. {0,2,4,...,5 — 2k} C HW*(n;n,4k) for all
positive integers n =0 (mod 4k).

Proof. Since K,, = FiUFy,U---UFy_1UX, applying Lemma 3.2
to Fy—1 UX and Lemma 3.1 to Fy; U Fy_1(1 <i <t—1) completes
the proof. O

Proposition 3.4. {1,3,5,...,5 — 4k + 1} C HW*(n;n,4k) for
all positive integers n =0 (mod 4k).

Proof. First, by Lemma 3.2, we decompose Fs U X into 2k — 1
Cyp-factors and a 1-factor. Without loss of generality, assume the
1-factor is I, = (1,2)o U (3,4)g U--- U (2t — 1,0)q.

2k—1
Since E(F1) = U ((0,1);U(2,3),--- (2t — 2,2t — 1);), we de-
=0
compose E(F)UI, into k — 1 Cy-factors, an HC and a 1-factor:
C; = ((0, 1)22'_1U(0, 1)2i)U((2, 3)2i_1U(2, 3)22')U' . 'U((Qt—2, 2t—1)2i_1U

(2t — 2,2t — 1)), i=1,2,....k—1,
HCy = (0,1)2x—1 U (1,2)0 U (2,3)o U--- U (2t — 2,2t — 1),
I, = (0,1)0 U (2,3)2k—1 U (4,5)2p—1 - U (2t — 2,2t — 1)gp_1.

It is straightforward to verify that C; is a Cy-factor, HC7 is an HC,
I, is a 1-factor and they are edge-disjoint.

Finally, applying Lemma 3.1 to Fy; 1 U Fy;(2 < i <t — 1) gives
{1,3,5,...,5 —4k+ 1} € HW*(n;n,4k). O

Lemma 3.5. If r; € {2k,2k + 1,2k + 2,...,4k — 1}, then Fy U
FoUFy_1UX can be decomposed into r; HCs, 4k —1—1r; Cy.-factors
and a 1-factor of K,,.

Proof. It is well known that every complete graph with even
order can be decomposed into Hamilton paths[2]. Noticing that

Fy 1 UX = {KVOUV}} @] {KVZ'UVQFAZ. =1,2,...,t— 1} =tKy

and these complete graphs of order 4k have no common vertex. Let
P; j[u...v] be the Hamilton path of Ky,yy; with u and v as its end
vertices. We may decompose Fy;_1UX into { Py, P, ..., Pox_1} where

Pj = {PO,t[Oja R ,tj]} U {Pi,2t—i[ija RN (2t —Z)J”Z =1,2,...,t— 1}

For each j, connecting the Hamilton paths of P; with ¢ edges (0,1;),
(2j3j)7 ey ((2t—2)j(2t—1)j) S (0, 1)0U(2, 3)0U' . 'U(Qt—Z, 2t—1)0 -



Hy which gives an HC. Then we have 2k Hamilton cycles HC},
J € Zoi, when t is odd,

HCj= (05,15, Pros[ly,. .., (2t = 1) ], (2t = 1);, (2 = 2),,
Pa22[(2t —2),...,2)],.. ,(t Dj,tj, Prolty, - -, 05]);

when t is even,

HCj = (05,15, Pra—1[15,... 7<2t—1)] (2t_1)j’(2t_2)j’
P2t 22[(2t 2) .. 72j]7 (t—l_l)]vt]vpt,o[t]?’oj])

Then we can decompose H; U (Hp — (0,1)9 U (2,3)gU---U (2t —
2,2t —1)p) into an HC and a 1-factor, or a Cyi-factor and a 1-factor.
In the first case, let

HCy, = H{ U (2t — 1,0)0 — (2t — 170)2k—17

I, =(1,2)gU(3,4)gU---U (2t — 3,2t —2)g U (2t — 1,0)2%_1-

By Lemma 2.2, HCy; forms an HC. [, is a 1-factor. In the second
case, let

t—1

C=J{@+1,2+2),J @25+ 1,25 +2)9p 1},
=0

I =(0,1)1U(2,3);U---U (2t — 2,2t — 1)1.

By Lemma 2.3, C is a Cy-factor and I;L is a 1-factor.

Finally, in the same way as Lemma 3.1, for each r; € {2k, 2k +
2,2k+4,...,4k—2}, we decompose each HoyUHo; 11 into two HCs for
le{l,2,..., 5} or two Cy-factors for 1 € {Z +1, 53 4+2,..., k—1}.
Then we have the proof. O

Proposition 3.6. {2k,2k +1,2k+2,..., ”7_2} C HW*(n;n,4k)
for all positive integers n =0 (mod 4k).

Proof. Let r = p- 2k +¢q, where 0 < ¢ < 2k. If 2k <r < 2kt — 2k
and q is even, by Lemma 3.5, we may decompose Fy U Fo U Fy 1 UX
into 2k HCs, 2k — 1 Cy-factors and a 1-factor. By Lemma 3.1,
we may decompose Fp; 1 U Fy; into 2k HCs for each 2 < ¢ < p,
Fypi1 U Fyyo into ¢ HCs and 2k — g Cyp-factors, and Fyj_1 U Fy;
into 2k Cy-factors for each p+2 < j <t — 1. Then we have

{2k,2k +2,..., 2kt — 2k} C HW*(n;n, 4k).

If 2k < r < 2kt — 2k and ¢ is odd, by Lemma 3.5, we may
decompose Fy U Fy U Fy 1 U X into 2k + 1 HCs, 2k — 2 Cy.-factors



and a 1-factor. By Lemma 3.1, we may decompose Fy;_1 U Fy; into
2k HCs for each 2 < ¢ < p, Fyp11 U Fyypo into ¢ — 1 HCs and
2k — q + 1 Cyp-factors, and Fyj_1 U Fy; into 2k Cyi-factors for each
p+2<j<t—1. Then we have

{2k + 1,2k + 3,...,2kt — 2k — 1} € HW*(n;n,4k).

If 2kt — 2k < r < "T_z and ¢ is even, by Lemma 3.5, we may

decompose F7 U Fy U Fy;_1 U X into 4k — 2 HCs, a Cy-factor and
a l-factor. When ¢ + 2 < 2k, by Lemma 3.1, we may decompose
Fy_1 UFy; into 2k HCs for each 2 <7 <p—1, Fy,_1 U Fy, into ¢+ 2
HCs and 2k — g — 2 Cy,-factors, and Fpj_1 U Fy; into 2k Cyy-factors
for each p+1 < j <t—1; when ¢+ 2 = 2k, we decompose Fo;_1U Fb;
into 2k HCs for each 2 <7 < p and Fy;_1 U Fy; into 2k Cy-factors
for each p+1 < j <t — 1. Then we have

{2kt — 2k + 2,2kt — 2k + 4,...,2kt — 2} € HW*(n;n,4k).

If 2kt — 2k < r < "T_z and ¢ is odd, by Lemma 3.5, we may
decompose F1 U FoU Fo; 1 UX into 4k — 1 HCs and a 1-factor. When
q+1 = 2k,by Lemma 3.1, we may decompose each Fy; _1U Fy;into 2k
HCs for each 2 < ¢ < p and Fy;j_1 U Fy; into 2k Cy-factors for each
p+1<i<t—1; when ¢+ 1 # 2k, we decompose Fy; 1 U Fy;into
2k HCs for each 2 < i < p—1, Fy,_1 U Fy, into ¢ + 1 HCs and
2k — q — 1 Cyp-factors, and Fpj_1 U Fy; into 2k Cyi-factors for each
p+1<j<t—1. Then we have

{2kt — 2k + 1,2kt — 2k + 3,..., 2kt — 1} € HW*(n; n, 4k).0

Combining Proposition 3.3, Proposition 3.4 and Proposition 3.6,
we have the main result of this paper.

Theorem 3.7. {0,1,2,..., "T_z} = HW*(n;n,4k) for all positive
integers n =0 (mod 4k).

Proof. For n = 4k, the theorem is obvious by Theorem 1.5. For
n = 8k, the result is also correct by Theorem 1.4. When n > 8k, we
have 5 — 2k > 2k and § — 4k + 1 > 2k + 1, then combining with
Proposition 3.3, Proposition 3.4 and Proposition 3.6 completes the
proof. O

4 Concluding remarks

It would be interesting to determine the necessary and sufficient con-
ditions for the existence of an HW (n;r, s;n, k) for any even integer



k. As a first step, we proved in this paper that for any integer kK =0
(mod 4) the necessary condition for the existence of HW (n;r, s;n, k)
isn=0 (mod k), and the necessary condition is also sufficient. The
next step is for the case when k =2 (mod 4), we conjecture that
for k=2 (mod 4) and s > 0 there exists an HW (n;r, s;n, k) if and
onlyif n=0 (mod k).
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