The Hamilton-Waterloo problem for Hamilton cycles and $C_{4 k}$-factors *

Hongchuan Lei ${ }^{\dagger} \quad$ Huang-Lin $\mathrm{Fu}^{\ddagger} \quad$ Hao Shen ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, Shanghai Jiao Tong University
${ }^{\ddagger}$ Department of Applied Mathematics, National Chiao Tung University

Abstract

In this paper we give a complete solution to the Hamilton-Waterloo problem for the case of Hamilton cycles and $C_{4 k}$-factors for all positive integers k.

Keywords: 2-factorization; Hamilton-Waterloo problem; Hamilton cycle; cycle decompositions

1 Introduction

The Hamilton-Waterloo problem is a generalization of the well known Oberwolfach problem, which asks for a 2 -factorization of the complete graph K_{n} in which r of its 2 -factors are isomorphic to a given 2 -factor R and s of its 2 -factors are isomorphic to a given 2 -factor S with $2(r+s)=n-1$. The most interesting case of the HamiltonWaterloo problem is that R consists of cycles of length m and S consists of cycles of length k, such a 2 -factorization of K_{n} is called uniform and denoted by $H W(n ; r, s ; m, k)$. The corresponding HamiltonWaterloo problem is the problem for the existence of an $H W(n ; r, s ; m, k)$.

[^0]There exists no 2-factorization of K_{n} when n is even since the degree of each vertex is odd. In this case, we consider the 2-factorizations of $K_{n}-I_{n}$ (where I_{n} is a 1-factor of K_{n}) instead. The corresponding 2 -factorization is also denoted by $H W(n ; r, s ; m, k)$. Obviously $2(r+s)=n-2$.

It is easy to see that the following conditions are necessary for the existence of an $H W(n ; r, s ; m, k)$:

Lemma 1.1. If there exists an $H W(n ; r, s ; m, k)$, then
$n \equiv 0 \quad(\bmod m)$ when $s=0 ;$
$n \equiv 0 \quad(\bmod k)$ when $r=0$;
$n \equiv 0 \quad(\bmod m)$ and $n \equiv 0 \quad(\bmod k)$ when $r \neq 0$ and $s \neq 0$;
The Hamilton-Waterloo problem attracts much attention and progress has been made by several authors. Adams, Billington, Bryant and El-Zanati [1] deal with the case $(m, k) \in\{(3,5),(3,15),(5,15)\}$. Danziger, Quattrocchi and Stevens[3] give an almost complete solution for the case $(m, k)=(3,4)$, which is stated below:

Theorem 1.2. [3] An $H W(n ; r, s ; 3,4)$ exists if and only if $n \equiv 0 \quad(\bmod 12)$ and $(n, s) \neq(12,0)$ with the following possible exceptions:
$n=24$ and $s=2,4,6 ;$
$n=48$ and $s=6,8,10,14,16,18$.
The case $(m, k)=(n, 3)$, i.e. Hamilton cycles and triangle-factors, is studied by Horak, Nedela and Rosa [8], Dinitz and Ling [4, 5] and the following partial result obtained:

Theorem 1.3. [4, 5, 8]
(a) If $n \equiv 3(\bmod 18)$, then an $H W(n ; r, s ; n, 3)$ exists except possibly when $n=93,111,129,183,201$ and $r=1$;
(b) If $n \equiv 9(\bmod 18)$, then an $H W(n ; r, s ; n, 3)$ exists except $n=9$ and $r=1$,
except possibly when

$$
n=153,207 \text { and } r=1
$$

(c) If $n \equiv 15 \quad(\bmod 18)$ and $r \in\left\{1, \frac{(n+3)}{6}, \frac{(n+3)}{6}+2, \frac{(n+3)}{6}+3, \ldots\right.$, $\left.\frac{(n-1)}{2}\right\}$, then an $H W(n ; r, s ; n, 3)$ exists except possibly when $n=123,141,159,177,213,249$ and $r=1$.

For $n \equiv 0 \quad(\bmod 6)$, the problem for the existence of an $H W(n ; r$, $s ; n, 3)$ is still open.

The cases $(m, k) \in\{(t, 2 t) \mid t>4\}$ and $(m, k) \in\{(4,2 t) \mid t>3\}$ have been completely solved by Fu and Huang [6].

Theorem 1.4.[6]
(a) Suppose $t \geq 4$, an $H W(n ; r, s ; t, 2 t)$ exists if and only if $n \equiv 0$ $(\bmod 2 t)$.
(b) For an integer $t \geq 3$, an $H W(n ; r, s ; 4,2 t)$ exists if and only if $n \equiv 0 \quad(\bmod 4)$ and $n \equiv 0 \quad(\bmod 2 t)$.

For $r=0$ or $s=0$, the Hamilton-Waterloo problem is in fact the problem for the existence of resolvable cycle decompositions of the complete graph, which has been completely solved by Govzdjak [7].

Theorem 1.5.[7] There exists a resolvable m-cycle decomposition of K_{n} (or $K_{n}-I$ when n is even) if and only if $n \equiv 0(\bmod m)$, $(n, m) \neq(6,3)$ and $(n, m) \neq(12,3)$.

The purpose of this paper is to give a complete solution to the Hamilton-Waterloo problem for the case of Hamilton cycles and $C_{4 k^{-}}$ factors which is stated in the following theorem.

Theorem 1.6. For given positive integer k, an $H W(n ; r, s ; n, 4 k)$ exists if and only if $r+s=\left[\frac{n-1}{2}\right]$ and $n \equiv 0(\bmod 4 k)$ if $s>0$ or $n \geq 3$ if $s=0$.

2 Preliminaries

In this section, we provide some basic constructions.
For convenience, we introduce the following notations first. A $C_{m^{-}}$ factor of K_{n} is a spanning subgraph of K_{n} in which each component is a cycle of length m. Let $r+s=[(n-1) / 2]$ and

$$
H W^{*}(n ; m, k)=\{r \mid a n H W(n ; r, s ; m, k) \text { exists }\}
$$

We use HC to represent Hamilton cycle for short.
By Lemma 1.1, the necessary condition for the existence of $H W(n$; $r, s ; n, 4 k)$ with $s>0$ is $n \equiv 0 \quad(\bmod 4 k)$, we assume $n=4 k t$ and the vertex set of K_{n} is $Z_{2 t} \times Z_{2 k}$. We write $V_{i}=\{i\} \times Z_{2 k}=$ $\left\{i_{0}, i_{1}, \ldots, i_{2 k-1}\right\}$ for $i \in Z_{2 t}$. Let $K_{V_{i}, V_{j}}$ be the complete bipartite graph define on two partite sets V_{i} and V_{j}, and $K_{V_{i}}$ be the complete graph of order $2 k$ define on the vertex set V_{i}. Obviously,

$$
E\left(K_{4 k t}\right)=\bigcup_{i=0}^{2 t-1} E\left(K_{V_{i}}\right) \cup \bigcup_{i \neq j} E\left(K_{V_{i}, V_{j}}\right)
$$

Further for $d \in Z_{2 k}$, we define sets of edges $(i, j)_{d}=\left\{\left(i_{l} j_{l+d}\right) \mid l \in\right.$ $\left.Z_{2 k}\right\}$ for $i, j \in Z_{2 t}$. Clearly, $(i, j)_{d}$ is a perfect matching in $K_{V_{i}, V_{j}}$. In
fact,

$$
E\left(K_{V_{i}, V_{j}}\right)=\bigcup_{d=0}^{2 k-1}(i, j)_{d}
$$

The following lemmas are useful in our constructions.
Lemma 2.1. [6] Let $I_{2 n}=\left\{\left(v_{0} v_{n}\right)\right\} \cup\left\{\left(v_{i} v_{2 n-i}\right) \mid 1 \leq i \leq n-1\right\}$. Then $K_{2 n}-I_{2 n}$ can be decomposed into $n-1 \mathrm{HCs}$, Each HC can be decomposed into two 1-factors. Moreover, by reordering the vertices of $K_{2 n}$ if necessary, we may assume one of the HCs is $\left(v_{0}, v_{1}, \ldots, v_{2 n-1}\right)$.

The following lemma is a generalization of Lemma 1 in [8].
Lemma 2.2. Let π be a permutation of $Z_{2 t}, d_{0}, d_{1}, \ldots, d_{2 t-1}$ be nonnegative integers. Then the set of edges

$$
(\pi(0), \pi(1))_{d_{0}} \cup(\pi(1), \pi(2))_{d_{1}} \cup \cdots \cup(\pi(2 t-1), \pi(0))_{d_{2 t-1}}
$$

forms an HC of K_{n} if $d_{0}+d_{1}+\cdots+d_{2 t-1}$ and $2 k$ are relatively prime.
Proof. Set $d=d_{0}+d_{1}+\cdots+d_{2 t-1}$, then arrange the edges as
$H=\left(\pi(0)_{0}, \pi(1)_{d_{0}}, \pi(2)_{d_{0}+d_{1}}, \cdots, \pi(0)_{d}, \pi(1)_{d+d_{0}}, \cdots, \pi(2 t-1)_{2 k d-d_{2 t-1}}\right)$.
Since $(d, 2 k)=1$, the vertices

$$
\pi(i)_{d_{0}+d_{1}+\cdots+d_{i-1}}, \pi(i)_{d+d_{0}+d_{1}+\cdots+d_{i-1}}, \ldots, \pi(i)_{(2 k-1) d+d_{0}+d_{1}+\cdots+d_{i-1}}
$$

are mutually distinct for $i \in Z_{2 t}$. Thus all vertices in H are mutually distinct, so H is an HC.

Lemma 2.3. Let d_{1}, d_{2} be nonnegative integers. If $d_{1}-d_{2}$ and $2 k$ are relatively prime, then the set of edges $(i, j)_{d_{1}} \cup(i, j)_{d_{2}}$ forms a cycle of length $4 k$ on the vertex set $V_{i} \cup V_{j}$.

Proof. It's a direct consequence of Lemma 2.2. Arranging the edges as a cycle $\left(i_{0}, j_{d_{1}}, i_{d_{1}-d_{2}}, j_{2 d_{1}-d_{2}}, \cdots, j_{2 k d_{1}-(2 k-1) d_{2}}\right)$ completes the proof.

3 Proof of the main theorem

With the above preparations, now we are ready to prove our main theorem.

Let \widetilde{G} be a complete graph defined on $\left\{V_{0}, V_{1}, \ldots, V_{2 t-1}\right\}$. By Lemma $2.1, \widetilde{\sim}$ can be decomposed into $2 t-1$ 1-factors, denoted by $\widetilde{F}_{1}, \widetilde{F}_{2}, \ldots, \widetilde{F}_{2 t-1}$, and $\widetilde{F}_{2 i-1} \cup \widetilde{F}_{2 i}$ forms an HC for $i=1,2, \ldots, t-1$. By reordering the vertices if necessary, we may assume

$$
\widetilde{F}_{1}=\left\{V_{0} V_{1}, V_{2}, V_{3}, \ldots, V_{2 t-2} V_{2 t-1}\right\}
$$

$$
\begin{gathered}
\widetilde{F}_{2}=\left\{V_{1} V_{2}, V_{3} V_{4}, \ldots, V_{2 t-1} V_{0}\right\}, \\
\widetilde{F}_{2 t-1}=\left\{V_{0} V_{t}\right\} \cup\left\{V_{i} V_{2 t-i} \mid i=1,2, \ldots, t-1\right\} .
\end{gathered}
$$

Let

$$
F_{x}=\bigcup_{V_{i} V_{j} \in E\left(\widetilde{F}_{x}\right)} E\left(K_{V_{i}, V_{j}}\right) \text { for } x \in Z_{2 t} \backslash\{0\}
$$

and

$$
H_{l}=(0,1)_{l} \cup(1,2)_{2 k-l} \cup(2,3)_{l} \cup \cdots \cup(2 t-1,0)_{2 k-l} \quad \text { for } l \in Z_{2 k} .
$$

Then $F_{1} \cup F_{2}=H_{0} \cup H_{1} \cup \cdots \cup H_{2 k-1}$.
Lemma 3.1. $F_{2 i-1} \cup F_{2 i}(i=0,1, \ldots, k-1)$ can be decomposed into $r_{i} \in\{0,2, \ldots, 2 k\} \mathrm{HCs}$ and $2 k-r_{i} C_{4 k}$-factors of K_{n}.

Proof. We only give the proof for the case $i=1$, i.e. $F_{1} \cup F_{2}$, the remaining cases are similar.

For $l=0,1, \ldots, k-1, H_{2 l} \cup H_{2 l+1}$ can be decomposed into two edge sets:

$$
\begin{gathered}
\bigcup_{j=0}^{t-1}\left((2 j, 2 j+1)_{2 l} \bigcup(2 j, 2 j+1)_{2 l+1}\right) \\
\bigcup_{j=0}^{t-1}\left((2 j+1,2 j+2)_{2 k-2 l} \bigcup(2 j+1,2 j+2)_{2 k-2 l-1}\right),
\end{gathered}
$$

by Lemma 2.3, each forms a $C_{4 k}$-factor of K_{n}.
Similarly, $H_{2 l} \cup H_{2 l+1}$ can be decomposed into another two edge sets:

$$
\begin{gathered}
\left(H_{2 l}-(2 t-1,0)_{2 k-2 l}\right) \cup(2 t-1,0)_{2 k-2 l-1}, \\
\left(H_{2 l+1}-(2 t-1,0)_{2 k-2 l-1}\right) \cup(2 t-1,0)_{2 k-2 l},
\end{gathered}
$$

by Lemma 2.2, each forms an HC of K_{n}.
Finally, by decomposing $H_{2 l} \cup H_{2 l+1}$ into two HCs when $l \in$ $\left\{0,1, \ldots, \frac{r_{i}}{2}-1\right\}$ or into two $C_{4 k}$-factors when $l \in\left\{\frac{r_{i}}{2}, \frac{r_{i}}{2}+1, \ldots, k-\right.$ $1\}$, we have the proof.

Lemma 3.2. For each $i \in Z_{2 t} \backslash\{0\}, F_{i} \cup\left(\bigcup_{i \in Z_{2 t}} K_{V_{i}}\right)$ can be decomposed into $2 k-1 C_{4 k}$-factors and a 1 -factor of K_{n}.

Proof. Noticing that $F_{i} \cup\left(\bigcup_{i \in Z_{2 t}} K_{V_{i}}\right)=t K_{4 k}$ and these complete graphs of order $4 k$ are edge-disjoint. By Lemma 2.1, each can be decomposed into $2 k-1 \mathrm{HCs}$ and one 1 -factor of $K_{4 k}$. Hence, these HCs and 1-factors form $2 k-1 C_{4 k}$-factors and a 1-factor of K_{n}. This concludes the proof.

For convenience in presentation, we use X to denote $\bigcup_{i \in Z_{2 t}} K_{V_{i}}$ in what follows.

Proposition 3.3. $\left\{0,2,4, \ldots, \frac{n}{2}-2 k\right\} \subseteq H W^{*}(n ; n, 4 k)$ for all positive integers $n \equiv 0 \quad(\bmod 4 k)$.

Proof. Since $K_{n}=F_{1} \cup F_{2} \cup \cdots \cup F_{2 t-1} \cup \mathrm{X}$, applying Lemma 3.2 to $F_{2 t-1} \cup \mathrm{X}$ and Lemma 3.1 to $F_{2 i} \cup F_{2 i-1}(1 \leq i \leq t-1)$ completes the proof.

Proposition 3.4. $\left\{1,3,5, \ldots, \frac{n}{2}-4 k+1\right\} \subseteq H W^{*}(n ; n, 4 k)$ for all positive integers $n \equiv 0 \quad(\bmod 4 k)$.

Proof. First, by Lemma 3.2, we decompose $F_{2} \cup \mathrm{X}$ into $2 k-1$ $C_{4 k}$-factors and a 1-factor. Without loss of generality, assume the 1-factor is $I_{n}^{\prime}=(1,2)_{0} \cup(3,4)_{0} \cup \cdots \cup(2 t-1,0)_{0}$.

Since $E\left(F_{1}\right)=\bigcup_{i=0}^{2 k-1}\left((0,1)_{i} \cup(2,3)_{i} \cdots(2 t-2,2 t-1)_{i}\right)$, we decompose $E\left(F_{1}\right) \cup I_{n}^{\prime}$ into $k-1 C_{4 k}$-factors, an HC and a 1-factor:

$$
\begin{gathered}
C_{i}=\left((0,1)_{2 i-1} \cup(0,1)_{2 i}\right) \cup\left((2,3)_{2 i-1} \cup(2,3)_{2 i}\right) \cup \cdots \cup\left((2 t-2,2 t-1)_{2 i-1} \cup\right. \\
\left.(2 t-2,2 t-1)_{2 i}\right), \quad i=1,2, \ldots, k-1, \\
H C_{1}=(0,1)_{2 k-1} \cup(1,2)_{0} \cup(2,3)_{0} \cup \cdots \cup(2 t-2,2 t-1)_{0}, \\
I_{n}=(0,1)_{0} \cup(2,3)_{2 k-1} \cup(4,5)_{2 k-1} \cdots \cup(2 t-2,2 t-1)_{2 k-1} .
\end{gathered}
$$

It is straightforward to verify that C_{i} is a $C_{4 k}$-factor, $H C_{1}$ is an HC , I_{n} is a 1-factor and they are edge-disjoint.

Finally, applying Lemma 3.1 to $F_{2 i-1} \cup F_{2 i}(2 \leq i \leq t-1)$ gives $\left\{1,3,5, \ldots, \frac{n}{2}-4 k+1\right\} \subseteq H W^{*}(n ; n, 4 k)$.

Lemma 3.5. If $r_{1} \in\{2 k, 2 k+1,2 k+2, \ldots, 4 k-1\}$, then $F_{1} \cup$ $F_{2} \cup F_{2 t-1} \cup \mathrm{X}$ can be decomposed into $r_{1} \mathrm{HCs}, 4 k-1-r_{1} C_{4 k}$-factors and a 1-factor of K_{n}.

Proof. It is well known that every complete graph with even order can be decomposed into Hamilton paths[2]. Noticing that

$$
F_{2 t-1} \cup \mathrm{X}=\left\{K_{V_{0} \cup V_{t}}\right\} \cup\left\{K_{V_{i} \cup V_{2 t-i}} \mid i=1,2, \ldots, t-1\right\}=t K_{4 k}
$$

and these complete graphs of order $4 k$ have no common vertex. Let $P_{i, j}[u \ldots v]$ be the Hamilton path of $K_{V_{i} \cup V_{j}}$ with u and v as its end vertices. We may decompose $F_{2 t-1} \cup \mathrm{X}$ into $\left\{P_{0}, P_{1}, \ldots, P_{2 k-1}\right\}$ where $P_{j}=\left\{P_{0, t}\left[0_{j}, \ldots, t_{j}\right]\right\} \cup\left\{P_{i, 2 t-i}\left[i_{j}, \ldots,(2 t-i)_{j}\right] \mid i=1,2, \ldots, t-1\right\}$.

For each j, connecting the Hamilton paths of P_{j} with t edges $\left(0_{j} 1_{j}\right)$, $\left(2_{j} 3_{j}\right), \ldots,\left((2 t-2)_{j}(2 t-1)_{j}\right) \in(0,1)_{0} \cup(2,3)_{0} \cup \cdots \cup(2 t-2,2 t-1)_{0} \subseteq$
H_{0} which gives an $H C$. Then we have $2 k$ Hamilton cycles $H C_{j}$, $j \in Z_{2 k}$, when t is odd,

$$
\begin{aligned}
H C_{j}= & \left(0_{j}, 1_{j}, P_{1,2 t-1}\left[1_{j}, \ldots,(2 t-1)_{j}\right],(2 t-1)_{j},(2 t-2)_{j},\right. \\
& \left.P_{2 t-2,2}\left[(2 t-2)_{j}, \ldots, 2_{j}\right], \ldots,(t-1)_{j}, t_{j}, P_{t, 0}\left[t_{j}, \ldots, 0_{j}\right]\right) ;
\end{aligned}
$$

when t is even,

$$
\begin{aligned}
H C_{j}= & \left(0_{j}, 1_{j}, P_{1,2 t-1}\left[1_{j}, \ldots,(2 t-1)_{j}\right],(2 t-1)_{j},(2 t-2)_{j},\right. \\
& \left.P_{2 t-2,2}\left[(2 t-2)_{j}, \ldots, 2_{j}\right], \ldots,(t+1)_{j}, t_{j}, P_{t, 0}\left[t_{j}, \ldots, 0_{j}\right]\right) .
\end{aligned}
$$

Then we can decompose $H_{1} \cup\left(H_{0}-(0,1)_{0} \cup(2,3)_{0} \cup \cdots \cup(2 t-\right.$ $2,2 t-1)_{0}$) into an HC and a 1 -factor, or a $C_{4 k}$-factor and a 1-factor. In the first case, let

$$
\begin{gathered}
H C_{2 k}=H_{1} \cup(2 t-1,0)_{0}-(2 t-1,0)_{2 k-1}, \\
I_{n}=(1,2)_{0} \cup(3,4)_{0} \cup \cdots \cup(2 t-3,2 t-2)_{0} \cup(2 t-1,0)_{2 k-1} .
\end{gathered}
$$

By Lemma 2.2, $H C_{2 k}$ forms an HC. I_{n} is a 1 -factor. In the second case, let

$$
\begin{gathered}
C=\bigcup_{j=0}^{t-1}\left\{(2 j+1,2 j+2)_{0} \bigcup(2 j+1,2 j+2)_{2 k-1}\right\}, \\
I_{n}^{\prime}=(0,1)_{1} \cup(2,3)_{1} \cup \cdots \cup(2 t-2,2 t-1)_{1} .
\end{gathered}
$$

By Lemma 2.3, C is a $C_{4 k}$-factor and I_{n}^{\prime} is a 1 -factor.
Finally, in the same way as Lemma 3.1, for each $r_{1} \in\{2 k, 2 k+$ $2,2 k+4, \ldots, 4 k-2\}$, we decompose each $H_{2 l} \cup H_{2 l+1}$ into two HCs for $l \in\left\{1,2, \ldots, \frac{r_{1}}{2}\right\}$ or two $C_{4 k}$-factors for $l \in\left\{\frac{r_{1}}{2}+1, \frac{r_{1}}{2}+2, \ldots, k-1\right\}$. Then we have the proof.

Proposition 3.6. $\left\{2 k, 2 k+1,2 k+2, \ldots, \frac{n-2}{2}\right\} \subseteq H W^{*}(n ; n, 4 k)$ for all positive integers $n \equiv 0 \quad(\bmod 4 k)$.

Proof. Let $r=p \cdot 2 k+q$, where $0 \leq q<2 k$. If $2 k \leq r \leq 2 k t-2 k$ and q is even, by Lemma 3.5 , we may decompose $F_{1} \cup F_{2} \cup F_{2 t-1} \cup \mathrm{X}$ into $2 k$ HCs, $2 k-1 C_{4 k}$-factors and a 1 -factor. By Lemma 3.1, we may decompose $F_{2 i-1} \cup F_{2 i}$ into $2 k$ HCs for each $2 \leq i \leq p$, $F_{2 p+1} \cup F_{2 p+2}$ into q HCs and $2 k-q C_{4 k}$-factors, and $F_{2 j-1} \cup F_{2 j}$ into $2 k C_{4 k}$-factors for each $p+2 \leq j \leq t-1$. Then we have

$$
\{2 k, 2 k+2, \ldots, 2 k t-2 k\} \subseteq H W^{*}(n ; n, 4 k)
$$

If $2 k \leq r \leq 2 k t-2 k$ and q is odd, by Lemma 3.5, we may decompose $F_{1} \cup F_{2} \cup F_{2 t-1} \cup \mathrm{X}$ into $2 k+1$ HCs, $2 k-2 C_{4 k}$-factors
and a 1 -factor. By Lemma 3.1, we may decompose $F_{2 i-1} \cup F_{2 i}$ into $2 k$ HCs for each $2 \leq i \leq p, F_{2 p+1} \cup F_{2 p+2}$ into $q-1 \mathrm{HCs}$ and $2 k-q+1 C_{4 k}$-factors, and $F_{2 j-1} \cup F_{2 j}$ into $2 k C_{4 k}$-factors for each $p+2 \leq j \leq t-1$. Then we have

$$
\{2 k+1,2 k+3, \ldots, 2 k t-2 k-1\} \in H W^{*}(n ; n, 4 k)
$$

If $2 k t-2 k<r \leq \frac{n-2}{2}$ and q is even, by Lemma 3.5, we may decompose $F_{1} \cup F_{2} \cup F_{2 t-1} \cup \mathrm{X}$ into $4 k-2 \mathrm{HCs}$, a $C_{4 k}$-factor and a 1 -factor. When $q+2<2 k$, by Lemma 3.1 , we may decompose $F_{2 i-1} \cup F_{2 i}$ into $2 k$ HCs for each $2 \leq i \leq p-1, F_{2 p-1} \cup F_{2 p}$ into $q+2$ HCs and $2 k-q-2 C_{4 k}$-factors, and $F_{2 j-1} \cup F_{2 j}$ into $2 k C_{4 k}$-factors for each $p+1 \leq j \leq t-1$; when $q+2=2 k$, we decompose $F_{2 i-1} \cup F_{2 i}$ into $2 k$ HCs for each $2 \leq i \leq p$ and $F_{2 j-1} \cup F_{2 j}$ into $2 k C_{4 k}$-factors for each $p+1 \leq j \leq t-1$. Then we have

$$
\{2 k t-2 k+2,2 k t-2 k+4, \ldots, 2 k t-2\} \in H W^{*}(n ; n, 4 k)
$$

If $2 k t-2 k<r \leq \frac{n-2}{2}$ and q is odd, by Lemma 3.5, we may decompose $F_{1} \cup F_{2} \cup F_{2 t-1} \cup \mathrm{X}$ into $4 k-1 \mathrm{HCs}$ and a 1-factor. When $q+1=2 k$, by Lemma 3.1, we may decompose each $F_{2 i-1} \cup F_{2 i}$ into $2 k$ HCs for each $2 \leq i \leq p$ and $F_{2 j-1} \cup F_{2 j}$ into $2 k C_{4 k}$-factors for each $p+1 \leq i \leq t-1$; when $q+1 \neq 2 k$, we decompose $F_{2 i-1} \cup F_{2 i}$ into $2 k$ HCs for each $2 \leq i \leq p-1, F_{2 p-1} \cup F_{2 p}$ into $q+1 \mathrm{HCs}$ and $2 k-q-1 C_{4 k}$-factors, and $F_{2 j-1} \cup F_{2 j}$ into $2 k C_{4 k}$-factors for each $p+1 \leq j \leq t-1$. Then we have

$$
\{2 k t-2 k+1,2 k t-2 k+3, \ldots, 2 k t-1\} \in H W^{*}(n ; n, 4 k) . \square
$$

Combining Proposition 3.3, Proposition 3.4 and Proposition 3.6, we have the main result of this paper.

Theorem 3.7. $\left\{0,1,2, \ldots, \frac{n-2}{2}\right\}=H W^{*}(n ; n, 4 k)$ for all positive integers $n \equiv 0 \quad(\bmod 4 k)$.

Proof. For $n=4 k$, the theorem is obvious by Theorem 1.5. For $n=8 k$, the result is also correct by Theorem 1.4. When $n>8 k$, we have $\frac{n}{2}-2 k>2 k$ and $\frac{n}{2}-4 k+1 \geq 2 k+1$, then combining with Proposition 3.3, Proposition 3.4 and Proposition 3.6 completes the proof.

4 Concluding remarks

It would be interesting to determine the necessary and sufficient conditions for the existence of an $H W(n ; r, s ; n, k)$ for any even integer
k. As a first step, we proved in this paper that for any integer $k \equiv 0$ $(\bmod 4)$ the necessary condition for the existence of $H W(n ; r, s ; n, k)$ is $n \equiv 0 \quad(\bmod k)$, and the necessary condition is also sufficient. The next step is for the case when $k \equiv 2(\bmod 4)$, we conjecture that for $k \equiv 2 \quad(\bmod 4)$ and $s>0$ there exists an $H W(n ; r, s ; n, k)$ if and only if $n \equiv 0 \quad(\bmod k)$.

References

[1] P. Adams, E.J. Billington, D.E. Bryant, S.I. El-Zanati, On the Hamilton-Waterloo problem, Graph Combin. 18 (2002) 31-51.
[2] C. J. Colbourn, J. H. Dinitz (Editors), The CRC Handbook of Combinatorial Designs. 2nd edn, CRC Press Series on Discrete Mathematics, CRC, Boca Raton, 2007.
[3] P. Danziger, G. Quattrocchi, B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Combin. Designs. 17 (2009) 342-352.
[4] J. H. Dinitz, A. C. H. Ling, The Hamilton-Waterloo problem with triangle-factors and Hamilton cycles: The case $n \equiv 3(\bmod 18)$, J. Combin. Math. Combin. Comput., to appear.
[5] J.H. Dinitz, A. C. H. Ling, The Hamilton-Waterloo problem: the case of triangle-factors and one Hamilton cycle, J. Combin. Designs. 17 (2009) 160-176.
[6] H. L. Fu, K. C. Huang, The Hamilton-Waterloo problem for two even cycles factors, Taiwanese Journal of Mathematics 12 (2008) 933-940.
[7] P. Govzdjak, On the Oberwolfach problem for the complete mutigraphs, Discrete Math. 173(1997)61-69.
[8] P. Horak, R. Nedela, A. Rosa, The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors, Discrete Math. 284 (2004) 181-188.

[^0]: *Research supported by National Natural Science Foundation of China under Grant 10771137
 ${ }^{\dagger}$ E-mail: chuan@sjtu.edu.cn
 ${ }^{\ddagger}$ E-mail: hlfu@math.nctu.edu.tw
 ${ }^{\S}$ Corresponding author. E-mail: haoshen@sjtu.edu.cn

