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Abstract

In this paper we give a complete solution to the
Hamilton-Waterloo problem for the case of Hamilton cycles
and C4k-factors for all positive integers k.
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1 Introduction

The Hamilton-Waterloo problem is a generalization of the well known
Oberwolfach problem, which asks for a 2-factorization of the com-
plete graph Kn in which r of its 2-factors are isomorphic to a given
2-factor R and s of its 2-factors are isomorphic to a given 2-factor S
with 2(r + s) = n − 1. The most interesting case of the Hamilton-
Waterloo problem is that R consists of cycles of length m and S con-
sists of cycles of length k, such a 2-factorization of Kn is called uni-
form and denoted byHW (n; r, s;m,k). The corresponding Hamilton-
Waterloo problem is the problem for the existence of anHW (n; r, s;m,k).
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There exists no 2-factorization of Kn when n is even since the de-
gree of each vertex is odd. In this case, we consider the 2-factorizations
of Kn − In(where In is a 1-factor of Kn) instead. The correspond-
ing 2-factorization is also denoted by HW (n; r, s;m,k). Obviously
2(r + s) = n− 2.

It is easy to see that the following conditions are necessary for the
existence of an HW (n; r, s;m,k):

Lemma 1.1. If there exists an HW (n; r, s;m,k), then
n ≡ 0 (mod m) when s = 0;
n ≡ 0 (mod k) when r = 0;
n ≡ 0 (mod m) and n ≡ 0 (mod k) when r 6= 0 and s 6= 0;

The Hamilton-Waterloo problem attracts much attention and progress
has been made by several authors. Adams, Billington, Bryant and
El-Zanati [1] deal with the case (m,k) ∈ {(3, 5), (3, 15), (5, 15)}.
Danziger, Quattrocchi and Stevens[3] give an almost complete so-
lution for the case (m,k) = (3, 4), which is stated below:

Theorem 1.2. [3] An HW (n; r, s; 3, 4) exists if and only if
n ≡ 0 (mod 12) and (n, s) 6= (12, 0) with the following possible
exceptions:

n = 24 and s = 2, 4, 6;
n = 48 and s = 6, 8, 10, 14, 16, 18.

The case (m,k) = (n, 3), i.e. Hamilton cycles and triangle-factors,
is studied by Horak, Nedela and Rosa [8], Dinitz and Ling [4, 5] and
the following partial result obtained:

Theorem 1.3. [4, 5, 8]

(a) If n ≡ 3 (mod 18), then an HW (n; r, s;n, 3) exists except
possibly when n = 93, 111, 129, 183, 201 and r = 1;

(b) If n ≡ 9 (mod 18), then an HW (n; r, s;n, 3) exists except

n = 9 and r = 1,

except possibly when

n = 153, 207 and r = 1;

(c) If n ≡ 15 (mod 18) and r ∈ {1, (n+3)
6 ,

(n+3)
6 +2, (n+3)

6 +3, . . . ,
(n−1)

2 }, then an HW (n; r, s;n, 3) exists except possibly when
n = 123, 141, 159, 177, 213, 249 and r = 1.

For n ≡ 0 (mod 6), the problem for the existence of anHW (n; r,
s;n, 3) is still open.

The cases (m,k) ∈ {(t, 2t)|t > 4} and (m,k) ∈ {(4, 2t)|t > 3}
have been completely solved by Fu and Huang [6].
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Theorem 1.4.[6]

(a) Suppose t ≥ 4, an HW (n; r, s; t, 2t) exists if and only if n ≡ 0
(mod 2t).

(b) For an integer t ≥ 3, an HW (n; r, s; 4, 2t) exists if and only if
n ≡ 0 (mod 4) and n ≡ 0 (mod 2t).

For r = 0 or s = 0, the Hamilton-Waterloo problem is in fact the
problem for the existence of resolvable cycle decompositions of the
complete graph, which has been completely solved by Govzdjak [7].

Theorem 1.5.[7] There exists a resolvablem-cycle decomposition
of Kn(or Kn − I when n is even) if and only if n ≡ 0 (mod m),
(n,m) 6= (6, 3) and (n,m) 6= (12, 3).

The purpose of this paper is to give a complete solution to the
Hamilton-Waterloo problem for the case of Hamilton cycles and C4k-
factors which is stated in the following theorem.

Theorem 1.6. For given positive integer k, an HW (n; r, s;n, 4k)
exists if and only if r + s = [n−1

2 ] and n ≡ 0 (mod 4k) if s > 0 or
n ≥ 3 if s = 0.

2 Preliminaries

In this section, we provide some basic constructions.
For convenience, we introduce the following notations first. A Cm-

factor of Kn is a spanning subgraph of Kn in which each component
is a cycle of length m. Let r + s = [(n− 1)/2] and

HW ∗(n;m,k) = {r|an HW (n; r, s;m,k) exists}.

We use HC to represent Hamilton cycle for short.
By Lemma 1.1, the necessary condition for the existence ofHW (n;

r, s;n, 4k) with s > 0 is n ≡ 0 (mod 4k), we assume n = 4kt and
the vertex set of Kn is Z2t × Z2k. We write Vi = {i} × Z2k =
{i0, i1, . . . , i2k−1} for i ∈ Z2t. Let KVi,Vj

be the complete bipartite
graph define on two partite sets Vi and Vj , and KVi

be the complete
graph of order 2k define on the vertex set Vi. Obviously,

E(K4kt) =
2t−1⋃

i=0

E(KVi
) ∪

⋃

i 6=j

E(KVi,Vj
).

Further for d ∈ Z2k, we define sets of edges (i, j)d = {(iljl+d)|l ∈
Z2k} for i, j ∈ Z2t. Clearly, (i, j)d is a perfect matching in KVi,Vj

. In
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fact,

E(KVi,Vj
) =

2k−1⋃

d=0

(i, j)d.

The following lemmas are useful in our constructions.
Lemma 2.1. [6] Let I2n = {(v0vn)} ∪ {(viv2n−i)|1 ≤ i ≤ n− 1}.

Then K2n − I2n can be decomposed into n − 1 HCs, Each HC
can be decomposed into two 1-factors. Moreover, by reordering
the vertices of K2n if necessary, we may assume one of the HCs
is (v0, v1, . . . , v2n−1).

The following lemma is a generalization of Lemma 1 in [8].
Lemma 2.2. Let π be a permutation of Z2t, d0, d1, . . . , d2t−1 be

nonnegative integers. Then the set of edges

(π(0), π(1))d0 ∪ (π(1), π(2))d1 ∪ · · · ∪ (π(2t − 1), π(0))d2t−1

forms an HC of Kn if d0+d1+ · · ·+d2t−1 and 2k are relatively prime.
Proof. Set d = d0 + d1 + · · ·+ d2t−1, then arrange the edges as

H = (π(0)0, π(1)d0 , π(2)d0+d1 , · · · , π(0)d, π(1)d+d0 , · · · , π(2t−1)2kd−d2t−1
).

Since (d, 2k) = 1, the vertices

π(i)d0+d1+···+di−1
, π(i)d+d0+d1+···+di−1

, . . . , π(i)(2k−1)d+d0+d1+···+di−1

are mutually distinct for i ∈ Z2t. Thus all vertices in H are mutually
distinct, so H is an HC. 2

Lemma 2.3. Let d1, d2 be nonnegative integers. If d1 − d2 and
2k are relatively prime, then the set of edges (i, j)d1 ∪ (i, j)d2 forms
a cycle of length 4k on the vertex set Vi ∪ Vj .

Proof. It’s a direct consequence of Lemma 2.2. Arranging the
edges as a cycle (i0, jd1 , id1−d2 , j2d1−d2 , · · · , j2kd1−(2k−1)d2) completes
the proof.2

3 Proof of the main theorem

With the above preparations, now we are ready to prove our main
theorem.

Let G̃ be a complete graph defined on {V0, V1, . . . , V2t−1}. By
Lemma 2.1, G̃ can be decomposed into 2t− 1 1-factors, denoted by
F̃1, F̃2, . . . , F̃2t−1, and F̃2i−1 ∪ F̃2i forms an HC for i = 1, 2, . . . , t− 1.
By reordering the vertices if necessary, we may assume

F̃1 = {V0V1, V2, V3, . . . , V2t−2V2t−1},

4



F̃2 = {V1V2, V3V4, . . . , V2t−1V0},

F̃2t−1 = {V0Vt} ∪ {ViV2t−i|i = 1, 2, . . . , t− 1}.

Let
Fx =

⋃

ViVj∈E(F̃x)

E(KVi,Vj
) for x ∈ Z2t\{0}

and

Hl = (0, 1)l ∪ (1, 2)2k−l ∪ (2, 3)l ∪ · · · ∪ (2t− 1, 0)2k−l for l ∈ Z2k.

Then F1 ∪ F2 = H0 ∪H1 ∪ · · · ∪H2k−1.
Lemma 3.1. F2i−1 ∪ F2i(i = 0, 1, . . . , k − 1) can be decomposed

into ri ∈ {0, 2, . . . , 2k} HCs and 2k − ri C4k-factors of Kn.
Proof. We only give the proof for the case i = 1, i.e. F1 ∪ F2,

the remaining cases are similar.
For l = 0, 1, . . . , k − 1, H2l ∪H2l+1 can be decomposed into two

edge sets:
t−1⋃

j=0

((2j, 2j + 1)2l
⋃

(2j, 2j + 1)2l+1),

t−1⋃

j=0

((2j + 1, 2j + 2)2k−2l

⋃
(2j + 1, 2j + 2)2k−2l−1),

by Lemma 2.3, each forms a C4k-factor of Kn.
Similarly, H2l ∪H2l+1 can be decomposed into another two edge

sets:
(H2l − (2t− 1, 0)2k−2l) ∪ (2t− 1, 0)2k−2l−1,

(H2l+1 − (2t− 1, 0)2k−2l−1) ∪ (2t− 1, 0)2k−2l,

by Lemma 2.2, each forms an HC of Kn.
Finally, by decomposing H2l ∪ H2l+1 into two HCs when l ∈

{0, 1, . . . , ri2 − 1} or into two C4k-factors when l ∈ {ri
2 ,

ri
2 +1, . . . , k−

1}, we have the proof.2
Lemma 3.2. For each i ∈ Z2t\{0}, Fi ∪ (

⋃
i∈Z2t

KVi
) can be de-

composed into 2k − 1 C4k-factors and a 1-factor of Kn.
Proof. Noticing that Fi ∪ (

⋃
i∈Z2t

KVi
) = tK4k and these complete

graphs of order 4k are edge-disjoint. By Lemma 2.1, each can be
decomposed into 2k − 1 HCs and one 1-factor of K4k. Hence, these
HCs and 1-factors form 2k−1 C4k-factors and a 1-factor of Kn. This
concludes the proof. 2
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For convenience in presentation, we use X to denote
⋃

i∈Z2t

KVi
in

what follows.
Proposition 3.3. {0, 2, 4, . . . , n2 − 2k} ⊆ HW ∗(n;n, 4k) for all

positive integers n ≡ 0 (mod 4k).
Proof. Since Kn = F1∪F2∪· · ·∪F2t−1∪X, applying Lemma 3.2

to F2t−1 ∪X and Lemma 3.1 to F2i ∪F2i−1(1 ≤ i ≤ t− 1) completes
the proof. 2

Proposition 3.4. {1, 3, 5, . . . , n2 − 4k + 1} ⊆ HW ∗(n;n, 4k) for
all positive integers n ≡ 0 (mod 4k).

Proof. First, by Lemma 3.2, we decompose F2 ∪ X into 2k − 1
C4k-factors and a 1-factor. Without loss of generality, assume the
1-factor is I

′

n = (1, 2)0 ∪ (3, 4)0 ∪ · · · ∪ (2t− 1, 0)0.

Since E(F1) =
2k−1⋃
i=0

((0, 1)i
⋃
(2, 3)i · · · (2t− 2, 2t− 1)i), we de-

compose E(F1) ∪ I
′

n into k − 1 C4k-factors, an HC and a 1-factor:

Ci = ((0, 1)2i−1∪(0, 1)2i)∪((2, 3)2i−1∪(2, 3)2i)∪· · ·∪((2t−2, 2t−1)2i−1∪

(2t− 2, 2t− 1)2i), i = 1, 2, . . . , k − 1,

HC1 = (0, 1)2k−1 ∪ (1, 2)0 ∪ (2, 3)0 ∪ · · · ∪ (2t− 2, 2t − 1)0,

In = (0, 1)0 ∪ (2, 3)2k−1 ∪ (4, 5)2k−1 · · · ∪ (2t− 2, 2t− 1)2k−1.

It is straightforward to verify that Ci is a C4k-factor, HC1 is an HC,
In is a 1-factor and they are edge-disjoint.

Finally, applying Lemma 3.1 to F2i−1 ∪ F2i(2 ≤ i ≤ t − 1) gives
{1, 3, 5, . . . , n2 − 4k + 1} ⊆ HW ∗(n;n, 4k). 2

Lemma 3.5. If r1 ∈ {2k, 2k + 1, 2k + 2, . . . , 4k − 1}, then F1 ∪
F2∪F2t−1∪X can be decomposed into r1 HCs, 4k−1−r1 C4k-factors
and a 1-factor of Kn.

Proof. It is well known that every complete graph with even
order can be decomposed into Hamilton paths[2]. Noticing that

F2t−1 ∪X = {KV0∪Vt
} ∪ {KVi∪V2t−i

|i = 1, 2, . . . , t− 1} = tK4k

and these complete graphs of order 4k have no common vertex. Let
Pi,j[u . . . v] be the Hamilton path of KVi∪Vj

with u and v as its end
vertices. We may decompose F2t−1∪X into {P0, P1, . . . , P2k−1} where

Pj = {P0,t[0j , . . . , tj ]} ∪ {Pi,2t−i[ij , . . . , (2t − i)j ]|i = 1, 2, . . . , t− 1}.

For each j, connecting the Hamilton paths of Pj with t edges (0j1j),
(2j3j), . . . , ((2t−2)j(2t−1)j) ∈ (0, 1)0∪(2, 3)0∪· · ·∪(2t−2, 2t−1)0 ⊆
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H0 which gives an HC. Then we have 2k Hamilton cycles HCj ,
j ∈ Z2k, when t is odd,

HCj = (0j , 1j , P1,2t−1[1j , . . . , (2t− 1)j], (2t − 1)j , (2t− 2)j,

P2t−2,2[(2t− 2)j, . . . , 2j ], . . . , (t− 1)j, tj , Pt,0[tj , . . . , 0j ]);

when t is even,

HCj = (0j , 1j , P1,2t−1[1j , . . . , (2t− 1)j], (2t − 1)j , (2t− 2)j,

P2t−2,2[(2t− 2)j, . . . , 2j ], . . . , (t+ 1)j, tj , Pt,0[tj , . . . , 0j ]).

Then we can decompose H1 ∪ (H0 − (0, 1)0 ∪ (2, 3)0 ∪ · · · ∪ (2t−
2, 2t−1)0) into an HC and a 1-factor, or a C4k-factor and a 1-factor.
In the first case, let

HC2k = H1 ∪ (2t− 1, 0)0 − (2t− 1, 0)2k−1,

In = (1, 2)0 ∪ (3, 4)0 ∪ · · · ∪ (2t− 3, 2t− 2)0 ∪ (2t− 1, 0)2k−1.

By Lemma 2.2, HC2k forms an HC. In is a 1-factor. In the second
case, let

C =
t−1⋃

j=0

{(2j + 1, 2j + 2)0
⋃

(2j + 1, 2j + 2)2k−1},

I
′

n = (0, 1)1 ∪ (2, 3)1 ∪ · · · ∪ (2t− 2, 2t − 1)1.

By Lemma 2.3, C is a C4k-factor and I
′

n is a 1-factor.
Finally, in the same way as Lemma 3.1, for each r1 ∈ {2k, 2k +

2, 2k+4, . . . , 4k−2}, we decompose each H2l∪H2l+1 into two HCs for
l ∈ {1, 2, . . . , r12 } or two C4k-factors for l ∈ { r1

2 +1, r12 +2, . . . , k−1}.
Then we have the proof. 2

Proposition 3.6. {2k, 2k +1, 2k+2, . . . , n−2
2 } ⊆ HW ∗(n;n, 4k)

for all positive integers n ≡ 0 (mod 4k).
Proof. Let r = p ·2k+ q, where 0 ≤ q < 2k. If 2k ≤ r ≤ 2kt−2k

and q is even, by Lemma 3.5, we may decompose F1∪F2 ∪F2t−1 ∪X
into 2k HCs, 2k − 1 C4k-factors and a 1-factor. By Lemma 3.1,
we may decompose F2i−1 ∪ F2i into 2k HCs for each 2 ≤ i ≤ p,
F2p+1 ∪ F2p+2 into q HCs and 2k − q C4k-factors, and F2j−1 ∪ F2j

into 2k C4k-factors for each p+ 2 ≤ j ≤ t− 1. Then we have

{2k, 2k + 2, . . . , 2kt− 2k} ⊆ HW ∗(n;n, 4k).

If 2k ≤ r ≤ 2kt − 2k and q is odd, by Lemma 3.5, we may
decompose F1 ∪ F2 ∪ F2t−1 ∪X into 2k + 1 HCs, 2k − 2 C4k-factors

7



and a 1-factor. By Lemma 3.1, we may decompose F2i−1 ∪ F2i into
2k HCs for each 2 ≤ i ≤ p, F2p+1 ∪ F2p+2 into q − 1 HCs and
2k − q + 1 C4k-factors, and F2j−1 ∪ F2j into 2k C4k-factors for each
p+ 2 ≤ j ≤ t− 1. Then we have

{2k + 1, 2k + 3, . . . , 2kt− 2k − 1} ∈ HW ∗(n;n, 4k).

If 2kt − 2k < r ≤ n−2
2 and q is even, by Lemma 3.5, we may

decompose F1 ∪ F2 ∪ F2t−1 ∪ X into 4k − 2 HCs, a C4k-factor and
a 1-factor. When q + 2 < 2k, by Lemma 3.1, we may decompose
F2i−1 ∪F2i into 2k HCs for each 2 ≤ i ≤ p− 1, F2p−1∪F2p into q+2
HCs and 2k − q − 2 C4k-factors, and F2j−1 ∪F2j into 2k C4k-factors
for each p+1 ≤ j ≤ t−1; when q+2 = 2k, we decompose F2i−1∪F2i

into 2k HCs for each 2 ≤ i ≤ p and F2j−1 ∪ F2j into 2k C4k-factors
for each p+ 1 ≤ j ≤ t− 1. Then we have

{2kt− 2k + 2, 2kt − 2k + 4, . . . , 2kt− 2} ∈ HW ∗(n;n, 4k).

If 2kt − 2k < r ≤ n−2
2 and q is odd, by Lemma 3.5, we may

decompose F1∪F2∪F2t−1∪X into 4k−1 HCs and a 1-factor. When
q+1 = 2k,by Lemma 3.1, we may decompose each F2i−1∪F2iinto 2k
HCs for each 2 ≤ i ≤ p and F2j−1 ∪ F2j into 2k C4k-factors for each
p + 1 ≤ i ≤ t − 1; when q + 1 6= 2k, we decompose F2i−1 ∪ F2iinto
2k HCs for each 2 ≤ i ≤ p − 1, F2p−1 ∪ F2p into q + 1 HCs and
2k − q − 1 C4k-factors, and F2j−1 ∪ F2j into 2k C4k-factors for each
p+ 1 ≤ j ≤ t− 1. Then we have

{2kt− 2k + 1, 2kt − 2k + 3, . . . , 2kt− 1} ∈ HW ∗(n;n, 4k).2

Combining Proposition 3.3, Proposition 3.4 and Proposition 3.6,
we have the main result of this paper.

Theorem 3.7. {0, 1, 2, . . . , n−2
2 } = HW ∗(n;n, 4k) for all positive

integers n ≡ 0 (mod 4k).
Proof. For n = 4k, the theorem is obvious by Theorem 1.5. For

n = 8k, the result is also correct by Theorem 1.4. When n > 8k, we
have n

2 − 2k > 2k and n
2 − 4k + 1 ≥ 2k + 1, then combining with

Proposition 3.3, Proposition 3.4 and Proposition 3.6 completes the
proof. 2

4 Concluding remarks

It would be interesting to determine the necessary and sufficient con-
ditions for the existence of an HW (n; r, s;n, k) for any even integer
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k. As a first step, we proved in this paper that for any integer k ≡ 0
(mod 4) the necessary condition for the existence of HW (n; r, s;n, k)
is n ≡ 0 (mod k), and the necessary condition is also sufficient. The
next step is for the case when k ≡ 2 (mod 4), we conjecture that
for k ≡ 2 (mod 4) and s > 0 there exists an HW (n; r, s;n, k) if and
only if n ≡ 0 (mod k).
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