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A SUPERGEOMETRIC APPROACH TO POISSON REDUCTION

A.S. CATTANEO AND M. ZAMBON

Abstract. This work introduces a unified approach to the reduction of Poisson manifolds
using their description by graded symplectic manifolds. This yields a generalization of the
classical Poisson reduction by distributions and allows one to construct actions of strict
Lie 2-groups and to describe the corresponding reductions.
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1. Introduction

Many geometric structures (Poisson, Courant, generalized complex, . . . ) may equiva-
lently be described in terms of graded symplectic manifolds endowed with functions satis-
fying structural equations expressed in terms of the Poisson bracket. (Recall that a graded
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manifold is a supermanifold with a refined Z-grading, i.e., a Z-grading whose reduction is
the supermanifold Z2-grading).

Reduction of these structures may then be understood as graded symplectic reduction
compatible with the functions and the structural equations. The advantage of this viewpoint
is that in the (graded) symplectic world there is only one reduction: namely, that of (graded)
presymplectic submanifolds. Recall that a submanifold is presymplectic if the restriction
of the symplectic form has constant rank, and the reduction is by its kernel, also called
the characteristic distribution, which is always involutive. Functions whose restriction is
invariant under this distribution descend to the quotient. If the structural equations hold
on the quotient, the geometric structure has been successfully reduced. This unified point
of view clarifies the various (often ad hoc) known reduction procedures and introduces
new ones. Observe that (graded) presymplectic (or coisotropic) submanifolds may also be
induced by symplectic actions of (graded) Lie groups. This also defines suitable extensions
of group actions on the manifold carrying the geometric structure.

One step of our work consists of translating facts about graded (sub)manifolds into the
usual language of differential geometry. The second step consists of understanding (and
translating) the conditions under which the structural equations descend. Observe that
a sufficient condition is that the Hamiltonian vector fields of the functions defining the
geometric structure be tangent to the submanifold. This very strong condition (which
implies invariance and is equivalent to it in the coisotropic case) is far from being necessary.
However, various weaker sufficient conditions may be worked out.

In [4], which provided inspiration for the present paper, this method is applied to the
reduction of Courant algebroids and of generalized complex structures, recovering and ex-
tending the various known results. In this paper we concentrate on Poisson manifolds. In
Part 1 we recover the usual reduction of coisotropic and pre-Poisson submanifolds ([6, 8],
see also [19]), the Marsden–Ratiu reduction [19] and various generalizations thereof which
also go beyond the ones discussed in [11]. As an application, we obtain the somewhat sur-
prising result that every Poisson manifold may be obtained by generalized reduction from its
cotangent bundle with canonical symplectic structure, see Section 7. In Part 2 of the paper
we deduce a generalized notion of compatible actions. The objects that act infinitesimally
are certain DGLAs which correspond to crossed modules of Lie algebras (see Appendix A).
The corresponding global actions are by Lie 2-groups. Further, the global actions are Lie
group actions in the category of groupoids rather than in the category of smooth manifolds,
i.e. they are a categorification – in the sense of Baez and Dolan [2] – of the usual notion of
Lie group action. When the Lie 2-groups that act are just ordinary Lie groups, several of
our statements about actions and reductions specialize to some of the results of [13].

We use graded geometry as a unifying guide to obtain the results of this paper. However,
the results themselves may eventually be expressed using standard differential geometry.
The reader who is not interested in their derivation may see the classical statements di-
rectly in Prop. 5.17 and in Thms. 6.7 and 6.10 as well as Prop. 9.3, Prop. 12.1, Prop. 13.4
and Thm. 14.1 (using Cor. 8.5 to translate the assumptions into classical data).

Plan of the paper. In Part 1 of this paper we obtain a statement about the reduction
of Poisson manifolds (M,π), where the input data is a submanifold of M endowed with a
suitable “distribution”. In graded terms the Poisson manifold M corresponds to a degree
1 symplectic manifold M, and the input data to certain submanifolds of M. In Section 4
we consider coisotropic submanifolds of M and obtain Prop. 4.2. To obtain a more general
reduction statement, in Section 5 we are forced to consider presymplectic submanifolds
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of M. Studying their geometry we obtain Prop. 5.17, a reduction statement for Poisson
manifolds which essentially amounts to the well-known Marsden–Ratiu theorem [19]. In
Section 6 we perform reduction in stages of presymplectic submanifolds of M and obtain
Thm. 6.10, which generalizes and improves the Marsden–Ratiu theorem and Falceto’s results
with the second author [11] because it requires weaker assumptions. Finally in Section 7
we present several examples in which the Poisson manifold M is a cotangent bundle or the
dual of a Drinfeld double.

In Part 2 we consider actions on the degree 1 symplectic manifold M, which in turn
induce actions on the symplectic groupoid Γ of the Poisson manifold (M,π). In Sections
8–10 we consider an infinitesimal action on M (which turns out to correspond to nice clas-
sical data), the corresponding global action, construct the global and Marsden–Weinstein
quotients of Γ, and translate them into classical terms. In Section 11 we observe that an
action on M induces an action on the symplectic groupoid Γ in an interesting fashion. In
Sections 12 and 13 we construct its global and Marsden–Weinstein quotients. In Section
14 we show that, interestingly, the object acting on Γ is not just a Lie group but rather
a Lie 2-group, and that the action is an action in the category of Lie groupoids. In the
forthcoming work [27] by Zhu and the second author, the construction of the Lie 2-group
action (Thm. 14.1) is given a more conceptual explanation and extended to actions on any
integrable Lie algebroid. Finally 15 contains examples of the actions considered and their
reductions. The Appendix collects some known facts about crossed modules and 2-groups.

Notation. M always denotes a smooth manifold. If C is a submanifold of M we denote
its conormal bundle by N∗C := {ξ ∈ T ∗M |C : 〈ξ, TC〉 = 0}. If E is a subbundle of TM

over C, we use the notation Γ̃(E) to denote sections of the vector bundle TM which on
C lie in E, and C∞

E (M) to denote the functions on M whose differential, at points of C,
annihilates E. The notation C denotes a natural quotient of C. If M is endowed with a
Poisson bivector π, we denote by ♯ : T ∗M → TM the contraction ξ 7→ π(ξ).

As a general rule, we denote objects related to graded manifolds by script letters. M
is always a symplectic graded manifold, whose algebra of functions of degree i we denote
by Ci(M) and whose Poisson bracket we denote by {·, ·}. If I is a homogeneous ideal of
functions on M, we denote its Poisson normalizer by N (I).

Acknowledgments. We are grateful to Henrique Bursztyn, Rajan Mehta and Dimitry
Roytenberg for useful discussions and to Florian Schätz and James Stasheff for comments
that helped improve this manuscript. A.S.C. thanks the Centre de Recerca Matematica
(Barcelona) for hospitality. M.Z. also thanks João Martins and Chenchang Zhu for sev-
eral useful explanations. This work has been partially supported by SNF Grant 200020-
121640/1, by the European Union through the FP6 Marie Curie RTN ENIGMA (contract
number MRTN-CT-2004-5652), by the European Science Foundation through the MISGAM
program, and Grant SB2006-0141(Spanish MEC). Further M.Z. was partially supported by
the Centro de Matemática da Universidade do Porto, financed by FCT through the programs
POCTI and POSI, and by the FCT program Ciencia 2007.

2. The graded geometric description of Poisson manifolds

Before describing how graded geometry can be used to perform reduction of Poisson
manifolds, we need to recall some notions of graded geometry. We will be extremely brief,
since we will need only graded manifolds of a very special form, for which we will provide
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explicit descriptions. We refer the reader to [21, Section 2] and [9, Sections 2–4] for more
details.

Let E = ⊕i<0Ei be a graded vector bundle over a manifold M , graded by negative
integers i. The corresponding N-manifold is specified by the manifold M and the graded
commutative algebra Γ(S•E∗), the functions on the N-manifold, where S•E∗ denotes the
graded symmetric algebra of E∗. The degree of the N-manifold is the negative of the smallest
i appearing in the above direct sum. In this note we consider only N-manifolds of degree
1. When we endow them with graded symplectic forms which induce degree −1 Poisson
brackets on the graded algebra of functions, we speak of symplectic N-manifolds of degree
1.

Let M be a smooth manifold. We denote by T ∗[1]M the graded vector bundle E over
M with E−1 = T ∗M and Ei = {0} for i ≤ −2. The N-manifold T ∗[1]M is canonically a
symplectic N-manifold of degree 1, and all symplectic N-manifolds of degree 1 arise this way
[21, Prop. 3.1]. The algebra of functions C(T ∗[1]M) is given by the multivector fields on
M , and the Poisson bracket {·, ·} is the Schouten bracket. Recall that a Poisson structure
on M is a bivector field π ∈ Γ(∧2TM) such that [π, π] = 0. (This condition is equivalent
to the fact that the bracket {f, g}M := π(df, dg) on C∞(M) satisfies the Jacobi identity.)
A Poisson structure on M can be regarded as a degree 2 function S on T ∗[1]M which
Poisson commutes with itself. The Poisson bracket on M is recovered by a derived bracket
construction:

(1) {f, g}M = {{S, f}, g}

We record this:

Proposition 2.1. There is a one-to-one correspondence between:

• Poisson manifolds
• symplectic N-manifolds of degree 1, endowed with a degree 2 function S satisfying
{S,S} = 0.

For a proof see, e.g., [21, Prop. 4.1].

Part 1. Reduction of Poisson manifolds by distributions

3. The main idea

Our aim is to give a procedure which, starting with a Poisson manifold (M,π) and
making certain choices, allows one to construct a new Poisson manifold. The one-to-one
correspondence given by Prop. 2.1 allows us to phrase the problem as follows: starting
from a pair (M,S) consisting of a symplectic N-manifold of degree 1 and a degree 2 self-
commuting function S on it, making certain choices, construct another such pair. There is
a straightforward approach to the latter problem.

In geometric terms it reads:

(a) Take a graded presymplectic submanifold C of M so that the quotient C by its
characteristic distribution is smooth. Then C is necessarily a symplectic N-manifold
of degree 1, hence of the form T ∗[1]X for some manifold X.

(b) Assume that
1) S|C descend to a function S on the quotient C
2) S Poisson commutes with itself.

Then S corresponds to a Poisson bivector field on X.
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Of course, since N-manifolds are defined in terms of graded commutative algebras (the
“functions”), all of the above has to be carried out in algebraic terms.

(a) A graded presymplectic submanifold of M is defined by a homogeneous multiplica-
tive ideal I of C(M). The quotient of the submanifold is defined by the graded
Poisson algebra N (I)/(N (I) ∩ I). Here N (I) is the Poisson-normalizer of I in
C(M).

(b) The assumptions on S amount to
1) S ∈ N (I) + I
2) Conditions on S guaranteeing that S Poisson commutes with itself.

In the next Sections we will make the above algebraic procedure explicit and show that it
really corresponds to the geometric approach we outlined. The hardest part will be finding
sufficient conditions on S guaranteeing that S Poisson commutes with itself.

4. Coisotropic submanifolds

In this Section we perform the simplest kind of graded symplectic reduction, namely that
of coisotropic submanifolds. This will serve as a warm-up, since in later Sections we will
obtain strictly stronger results.

Let M be a smooth manifold. A graded submanifold C of M := T ∗[1]M is given by a
homogeneous graded ideal I in C(M) satisfying a smoothness property (Def. 7 of [9]), so
it is generated by

(2) I0 = Z(C) := {f ∈ C∞(M) : f |C = 0}

and

(3) I1 = Γ̃(E) := {X ∈ Γ(TM) : X|C ⊂ E}

for some closed submanifold C ⊂ M and some vector subbundle E → C of TM → M . In
other words, C = E◦[1], where E◦ ⊂ T ∗M |C denotes the annihilator of E. Here and in the

sequel we use the notation Γ̃(•) to denote sections of the vector bundle TM which restrict
to sections of the subbundle •.

Denote by N (I) the Poisson normalizer of I , i.e., the set of functions φ ∈ C(M) satisfying
{φ,I} ⊂ I . We have

(4) N (I)0 = {f ∈ C∞(M) : df |C ⊂ E◦} =: C∞
E (M)

and

(5) N (I)1 = {X ∈ Γ̃(TC) : [X, Γ̃(E)] ⊂ Γ̃(E)}.

Definition 4.1. The submanifold C of M is coisotropic if its vanishing ideal I is closed
under the Poisson bracket.

Now we assume that C is a coisotropic submanifold, and spell out the coisotropicity
condition. By degree reasons {I0,I0} always vanishes. If X ∈ I1 = Γ̃(E) and f ∈ I0 =
Z(C) we have {f,X} = −X(f). So {I0,I1} ⊂ I0 is equivalent to E ⊂ TC. If X,Y ∈ I1
then {X,Y } = [X,Y ], so {I1,I1} ⊂ I1 is equivalent to the involutivity of the distribution
E on C. Since by construction I is a Poisson ideal in the Poisson algebra N (I), the Poisson
bracket descends making N (I)/I into a graded Poisson algebra. In degree 0 it consists of
the E-invariant functions on C, so let us assume that the quotient C of C by the foliation
integrating E be a smooth manifold (so that the projection map is a submersion). In degree
1, N (I)/I consists of vector fields on C which are projectable w.r.t. the projection C → C,
modulo vector fields lying in the kernel E of the projection. In other words (N (I)/I)1 is
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isomorphic to the space of vector fields on C. We conclude1 that N (I)/I is the graded
Poisson algebra of functions on a graded symplectic manifold iff C is smooth, and in that
case it is the graded Poisson algebra of functions on T ∗[1]C .

Now we introduce a new piece of data: a Poisson bivector field π on M . In graded terms
it correspond to a degree 2 function S on M satisfying {S,S} = 0, see Prop. 2.1. The
function S induces a function S on T ∗[1]C iff S ∈ N (I). In that case, by the way we
defined the bracket on N (I)/I , it is clear that S commutes with itself. Hence we obtain a
reduced Poisson structure on C. We spell out what it means for S to lie in N (I). Since
for any function f on M we have {S, f} = [π, f ] = ♯df , the condition {S,I0} ⊂ I1 is
equivalent to ♯N∗C ⊂ E. Here ♯ : T ∗M → TM denotes contraction with the bivector π
and N∗C := {ξ ∈ T ∗M |C : 〈ξ, TC〉 = 0}. Notice that in particular C is a coisotropic
submanifold of (M,π). Further, for any vector field X on M , {S,X} = [π,X] = −LXπ,

so {S,I1} ⊂ I2 means (LXπ)|C ∈ Γ(E ∧ TM |C) for any X ∈ Γ̃(E), which using eq. (12)
below is equivalent to C∞

E (M) being closed under the Poisson bracket of M .
We summarize:

Proposition 4.2. Let M be a smooth manifold. A coisotropic submanifold C of T ∗[1]M
corresponds to a submanifold C of M endowed with an integrable distribution E. The
coisotropic quotient of C is smooth iff C = C/E is smooth, and in that case the coisotropic
quotient is canonically symplectomorphic to T ∗[1]C.

Let M be endowed with a Poisson structure π. The corresponding function S on M
descends to a degree 2 self-commuting function on T ∗[1]C (which therefore corresponds to a
Poisson structure on C) iff ♯N∗C ⊂ E and C∞

E (M) is closed under the Poisson bracket.

The Poisson-reduction result obtained from the above lemma is quite trivial, and is a
special case of the Marsden–Ratiu theorem [19]. In order to obtain less trivial and more
interesting results we have to allow C to be not just a coisotropic submanifold, but actually
a presymplectic submanifold of T ∗[1]M .

5. Presymplectic submanifolds

In this Section we first define and characterize presymplectic submanifolds. Then we carry
out the construction outlined in Section 3: Step (a) in Prop. 5.13, Step (b1) in Lemma 5.15
and Step (b2) in Lemma 5.16. We summarize the results in Prop. (5.17).

A definition of presymplectic submanifolds of symplectic supermanifolds was given in [5,
Def. 1.4]. It extends in an obvious manner to symplectic N-manifolds of degree 1, as follows:

Definition 5.1. The submanifold C of M = T ∗[1]M is presymplectic iff

{Xf |C : f ∈ I}/χ(C)

is locally a direct factor, i.e., any point x of the body C of C has an open neighborhood
U in C and a subsheaf E of [χ(M)|C/χ(C)]U with the following property: [{Xf |C : f ∈
I}/χ(C)]y ⊕ Ey = [χ(M)|C/χ(C)]y for all y ∈ U .

In this note we use a characterization which is more suitable for computations.

Definition 5.2. Let Aij be a matrix with entries in C(C), for C an N-manifold of degree 1.
A has constant rank iff for every point x in the body of C there exists a neighborhood U
with this property: switching columns and adding C(C)U -multiples of a column to another

1One actually needs to justify why the algebra N (I)/I is generated by elements in degree 0 and 1; this
is done in more generality in the proof of Prop. 5.13.
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column, AU can be brought to the form
(

⋆ 0
)

where the columns of ⋆ are linearly
independent at every point of U .

Remark 5.3. If A has constant rank in the above sense, then the rank of the degree zero
part of A is constant along the body of C. The converse does not hold (see Ex. 5.6 below).

Definition 5.4. Let M be a smooth manifold. A submanifold C of T ∗[1]M is presymplectic
iff locally there exist homogeneous generators φI of I for which the matrix {φI , φJ} mod I
has constant rank.

Remark 5.5. The equivalence of Def. 5.1 and Def. 5.4 follows from [5, Lemma 1.8]. Its
proof also shows that C is presymplectic iff {φI , φJ} mod I has constant rank for any
choice of homogeneous generators φI of I .

Example 5.6. a) Take M = R
3 with standard coordinates xi, and denote the corresponding

fiber coordinates on T ∗[1]R3 by θi. Consider the submanifold of T ∗[1]R3 whose vanishing
ideal I ⊂ C(M) is generated by φ1 = θ1 and φ2 = θ2 − x1θ3. The matrix of Poisson

brackets is
(

0 −θ3
θ3 0

)

. Evaluating at points of the body M we obtain the zero matrix, so the

submanifold determined by I is not presymplectic.
b) Now consider the larger ideal obtained adding the generator φ0 = x2. We have

{φI , φJ} =





0 0 −1
0 0 −θ3
1 θ3 0



 and ⋆ =





0 −1
0 −θ3
1 0



 ,

so the restriction of ⋆ to the body M has linearly independent columns. Hence the subman-
ifold of T ∗[1]M determined by φ0, φ1, φ2 is presymplectic.

In the previous Section we saw that (graded) submanifolds of T ∗[1]M are of the form E◦[1]
for some vector subbundle E → C of TM → M . We now characterize the presymplectic
condition in terms of E and C.

Proposition 5.7. C = E◦[1] is a graded presymplectic submanifold iff F := TC ∩ E is a
constant rank, involutive distribution on C.

Proof. Locally on C pick generators fi and Xα of I , of degree 0 and 1 respectively. Denote
them collectively by φI . The submanifold C is presymplectic iff the matrix {φI , φJ} mod I
has constant rank.

Assume first that C is presymplectic. By Remark 5.3 the constant rank of {φI , φJ} mod I
implies that the degree 0 matrix {fi,Xα} has constant rank, so E/(TC ∩E) and therefore
TC∩E have constant rank. Now refine further the choice of constraints as follows: fi ∈ Z(C)

so that the last elements annihilate E, Xα ∈ Γ̃(E) so that the first elements lie in TC ∩E.
We write down the 4 by 4 block-matrix

{φI , φJ} mod I =









0 0 0 α
0 0 0 0
0 0 γ ∗
β 0 δ ∗









,

for which α, β are invertible matrices of degree zero. The columns of the block δ can be
expressed as C1(C)-linear combinations of the columns of β. Since γ consists of degree 1
elements, it vanishes on C ⊂ C, so we conclude that {φI , φJ} mod I has constant rank iff

the entries of γ lie in I . This is equivalent to [Xα,Xβ ] ⊂ I1 = Γ̃(E) whenever Xα,Xβ ∈

Γ̃(TC ∩ E), which in turn is equivalent to TC ∩ E being involutive.
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Now assume that TC ∩E is of constant rank and involutive. Choosing the constraints φI
as above and reversing the above argument we conclude that {φI , φJ} mod I has constant
rank. �

Example 5.8. The graded submanifold of T ∗[1]R3 considered in Ex. 5.6 a) is not presym-
plectic. It is given by E◦[1] where E is the kernel of the standard contact form x1dx2 + dx3
on R

3, so in particular E is not involutive. This is consistent with Prop. 5.7.

Definition 5.9. Let C be a presymplectic submanifold of T ∗[1]M . The presymplectic quo-
tient of C is the graded manifold defined by the requirement that its algebra of functions is
isomorphic to N (I)/N (I) ∩ I .

Remark 5.10. 1) By the very definition of Poisson normalizer it is clear that N (I)/(N (I)∩I)
has an induced graded Poisson algebra structure, computed by lifting to functions in N (I)
and applying the bracket {·, ·} of C(T ∗[1]M).

2) The above quotient agrees with the quotient of C by its characteristic distribution. See
equation (9) below, which generalizes a well-known statement in the ordinary (ungraded)
case.

Before determining the quotient of C we need two technical lemmas.

Lemma 5.11. Let M be a manifold, C a submanifold, and E ⊂ TM |C a subbundle so that
F := TC ∩E is an involutive constant rank distribution on C so that C := C/F is smooth.
Then every vector field on C which is projectable w.r.t. C → C can be extended to a vector
field on M lying in {X ∈ Γ̃(TC) : [X, Γ̃(E)] ⊂ Γ̃(E)}.

Proof. Fix a subbundle B which is a complement to TC∩E in E. Extend it to a complement
νC of TC in TM |C , i.e., to a choice of normal bundle for C. Choose an Ehresmann
connection for the vector bundle νC → C which restricts to a connection on the subbundle
B → C. We claim that if X is a projectable vector field on C, then its horizontal lift
XH , a vector field on νC ∼= M , is an extension with the required property. Here we fix an
identification of the total space of νC with (a tubular neighborhood of C in) M .

Let YF ∈ Γ̃(F ), i.e., YF is a vector field on M ∼= νC whose restriction to C lies in F .
Then [XH , YF ]|C = [X, (YF )|C ] ⊂ F , since by assumption X is a projectable vector field.
Further take a section of the vector bundle B → C, extend it by translation to a vertical
vector field on B, and then to a vector field YB on νC ∼=M . Since the flow of XH preserves
the fibers of B → C it follows that [XH , YB ]|B is a vertical vector field on B. Altogether

this shows [XH , YF + YB] ∈ Γ̃(E). Since any element of Γ̃(E) can be written as YF + YB ,
up to a vector field vanishing on C, we are done. �

Lemma 5.12. Let N be an N-manifold, and denote by N its body. Let D be an involutive
distribution [5] on N . Assume that N , the quotient of N by the (degree zero part of) D, is
a smooth manifold such that the projection pr : N → N is a submersion. Suppose that the
following technical conditions are satisfied for every open subset U ⊂ N :

i) For every D-invariant f ∈ C(N )U of degree ≤ deg(N ) there exists a D-invariant
F ∈ C(N )pr−1(pr(U)) with F |U = f

ii) If two D-invariant functions F,G ∈ C(N )pr−1(pr(U)) agree on U , then they are equal.

Then
C(N )V := C(N )D−invariant

pr−1(V )
for all open subsets V ⊂ N

defines a sheaf (over N) of graded commutative algebras generated by their elements in
degrees 0, . . . ,deg(N ).
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Proof. By the graded Frobenius theorem [5, Thm. 2.1], there exist graded local coordinates
on N adapted to the distribution D. Clearly the invariant functions on N are those that
depend only on the coordinates transverse to D, so it is clear that on small open sets ofN the
algebra of invariant functions is generated by (invariant) elements in degrees 0, . . . ,deg(N ).

We show that this is true for open sets of the form pr−1(V ) where V is a small open
subset of N . Indeed let F be an invariant function in C(N )pr−1(V ). Take a small enough
open set U ⊂ N with pr(U) = V . By the first paragraph F |U ∈ C(N )U is a sum of
products of invariant element of C(N )U of degrees 0, . . . ,deg(N ). By assumption i) we can
extend them to invariant elements of C(N )pr−1(V ), which combine into an invariant function

F̂ ∈ C(N )pr−1(V ) extending F |U , which in turn by assumption ii) must be equal to F . We
conclude that the invariant functions in C(N )pr−1(V ) form a graded commutative algebra
generated by its elements in degrees 0, . . . ,deg(N ). For arbitrary open sets of N the same
holds using a partition of unity argument on N .

The fact that C(N ) is a sheaf follows immediately from C(N ) begin a sheaf and D-
invariance being a local property. �

Proposition 5.13. The presymplectic quotient of C = E◦[1] is smooth iff the quotient
C := C/(TC ∩ E) is smooth, and in this case it is canonically isomorphic to T ∗[1]C as a
graded symplectic manifold.

Proof. The characteristic distribution of C is by definition

Char(C) := {XF |C : F ∈ N (I) ∩ I},

where XF denotes the hamiltonian vector field of F . Denote by C(C)Char(C) the set of
functions on C which are invariant under the characteristic distribution. (It is really a
distribution by [5, Prop. 2.7].) We want to show that the algebra N (I)/N (I) ∩ I is

generated by elements in degrees 0 and 1. To do so we show that C(C)Char(C) is generated
by such elements and that it agrees with N (I)/N (I) ∩ I (eq. (9) below).

To start with, let us look at the degree 0 and 1 functions on M which restricts to invariant
functions on C. To do so we make use of

(N (I) ∩ I)0 = {f ∈ Z(C) : df |C ⊂ E◦},(6)

(N (I) ∩ I)1 = {X ∈ Γ̃(TC ∩ E) : [X, Γ̃(E)] ⊂ Γ̃(E)}.(7)

Let f ∈ C0(M). The condition {f,N (I)∩I} ⊂ I means that f |C is a function on C that is
constant along TC ∩E. Let X ∈ C1(M). The condition {X, (N (I) ∩ I)0} ⊂ I means that

X ∈ Γ̃(E + TC), so we may assume that X ∈ Γ̃(TC) by adding an element of Γ̃(E) = I1.
The condition {X, (N (I) ∩I)1} ⊂ I then says that X|C is a basic vector field with respect
to the projection pr : C → C.

We claim that C(C)Char(C) is generated by elements in degrees 0 and 1. The characteristic
distribution is involutive since N (I) ∩ I is closed under the Poisson bracket. Further the
invariant functions in degrees 0 and 1, by the above description, are given by functions and
vector fields on U which are projectable with respect to pr|U . They satisfy the assumptions
of Lemma 5.12: assumption i) by Lemma 5.11, and assumption ii) because vector fields on
C which projects to the same vector field on C must differ by sections of E ∩ TC. Hence
the claim follows immediately from Lemma 5.12.
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Next we claim that2

(8) {F ∈ C(M) : {F,N (I) ∩ I} ⊂ I} = N (I) + I.

We only show the inclusion “⊂”, because the other one is clear. Elements of the L.H.S. are
exactly the functions on M whose restriction to C lies in C(C)Char(C), and we just saw that
the latter is generated by elements in degrees 0 and 1. Hence it is sufficient to show the
inclusion “⊂” only for elements of the L.H.S. of degrees 0 and 1. We saw above that such
elements in degree 0 consist of f ∈ C0(M) such that f |C is constant along TC ∩ E, hence
they can be extended to a function in C∞

E (M) = N (I)0. We also saw that in degree 1, up
to elements of I1, they consist of X ∈ C1(M) such that X|C is a basic vector field with
respect to the projection C → C/(TC ∩ E), so by Lemma 5.11 we can extend them to an
element of N (I)1. This proves the claim.

Quotienting the identity (8) by I we obtain

(9) C(C)Char(C) = (N (I) + I)/I = N (I)/N (I) ∩ I.

This in particular shows that N (I)/N (I) ∩ I is generated by elements in degrees 0 and 1.
Now we show that N (I)/(N (I) ∩ I) ∼= C(T ∗[1]C). Since both sides are generated by

elements in degrees 0 and 1, it suffices to show that the elements in degrees 0 and 1 agree.
Using (6) we see that N (I)0/N (I)0 ∩ I0 consists of the E ∩ TC-invariant functions on C,
which agree with the space of functions on a smooth manifold iff C is a smooth manifold.
In this case N (I)0/N (I)0 ∩ I0 is canonically identified with C∞(C). In degree 1 we have
a map

N (I)1 →
{Y ∈ Γ(TC) : [Y,Γ(E ∩ TC)] ⊂ Γ(E ∩ TC)}

Γ(E ∩ TC)
∼= {vector fields on C}

obtained by restricting to C. The kernel is N (I)1 ∩ I1, and using Lemma 5.11 we see that
this map is also surjective. Hence N (I)1/N (I)1 ∩I1 is canonically isomorphic to the space
of vector fields on C. We conclude that the projection pr : C → C induces an isomorphism
C(C)Char(C) ∼= C(T ∗[1]C), which furthermore preserves brackets because pr preserves the
Schouten bracket. �

Remark 5.14. We describe in classical terms the construction of the quotient C from C,
which in Prop. 5.13 has been described algebraically (i.e., in terms of functions). Notice
that the submanifold C is endowed with the foliation integrating E∩TC, hence the normal
bundle to the foliation, which is TC/(E ∩ TC), is endowed with a flat E ∩ TC-connection
(the Bott connection), defined using the Lie bracket. Hence the dual bundle is endowed
with the dual connection, which is also flat. Explicitly, the dual bundle is (E ∩ TC)◦/TC◦

and the dual connection ∇Xξ := LXξ where X ∈ E ∩ TC and ξ ∈ Γ((E ∩ TC)◦) is a lift of
ξ ∈ Γ((E ∩ TC)◦/TC◦). (Here all annihilators are taken in TM |C).

The construction of C is as follows: starting from the vector bundle E◦ → C, quotient
the fibers by the intersection with TC◦, to obtain E◦/(TC◦ ∩E◦) ∼= (E ∩ TC)◦/TC◦ → C,
then identify fibers lying over the same leaf of TC ∩ E using the flat connection ∇. The
parallel sections of ∇ are exactly the pullbacks of 1-forms on C, so the resulting quotient is
T ∗C.

Now endow M with a Poisson tensor π, corresponding to a function S on T ∗[1]M . We
address the issue of when the function S induces a function S on the quotient C := T ∗[1]C ,
where C := C/F for F := TC ∩ E.

2To prove this claim it is important that I is not just any homogeneous ideal on C(M), but one that
defines a (presymplectic) submanifold.
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Lemma 5.15. S descends iff

♯E◦ ⊂ E + TC(10)

{C∞
E (M), C∞

E (M)}M ⊂ C∞
F (M).(11)

In this case the induced almost-Poisson bracket on C∞(C) is computed by lifting to functions
in C∞

E (M) and applying the Poisson bracket of M .

Proof. S descends iff its image under the restriction map C(M) → C(M)/I lies in N (I)/N (I)∩
I , i.e., iff S lies in N (I) + I . This is equivalent to {S,N (I) ∩ I} ⊂ I by eq. (8).

Using eq. (6) one sees that {S,N (I)0 ∩ I0} ⊂ I1 is equivalent to eq. (10). {S,N (I)1 ∩
I1} ∈ I2 means [π,X] ∈ Γ̃(E∧TM |C) for all X ∈ N (I)1∩I1. This is seen to be equivalent
to eq. (11) as follows: apply the identity

(12) X{f, g} = (LXπ)(df, dg) + π(d(Xf), dg) + π(df, d(Xg))

to f, g ∈ C∞
E (M), and observe that the last two terms vanish on C because of (10).

To compute the Poisson bracket of functions f, g on C we fix extensions f̂ , ĝ ∈ C∞
E (M).

Fix a choice of function Ŝ ∈ N (I) with Ŝ − S ∈ I (therefore also Ŝ = S). Such a function
exists because the fact that S descends means that S ∈ N (I) + I . We compute

{f , g}C = {{S , f}C , g}C = {{Ŝ , f̂}, ĝ} mod I = {{S, f̂}, ĝ} mod I = ({f̂ , ĝ}M )|C ,

where the third equality holds because Ŝ − S ∈ I and f̂ , ĝ ∈ N (I). �

When S descends, S might not commute with itself, as in Ex. 7.2. The reason is that
the Poisson bracket on N (I)/N (I) ∩ I is computed taking the derived bracket not with
S ∈ N (I) + I , but rather with an extension of S|C lying in N (I).

It is clear that if S lies in N (I), then the induced function on C still commutes with itself.
It turns out that it suffices to require that S satisfies the normalizer condition in degree 0.

Lemma 5.16. Suppose that S descends. A sufficient condition to guarantee {S,S} = 0 is
{S,I0} ⊂ I1 (or equivalently ♯TC◦ ⊂ E).

Proof. Let f, g, h functions on C, and fix extensions f̂ , ĝ, ĥ to functions in N (I)0 = C∞
E (M).

Fix a choice of function Ŝ ∈ N (I) with Ŝ − S ∈ I (therefore also Ŝ = S). To simplify the

notation we denote V := {f , g}C , and V̂ := {{Ŝ , f̂}, ĝ} is an extension lying in N (I)0. We
have

{{f , g}C , h}C = {V , h}C = {{S , V }C , h}C

= {{Ŝ , V̂ }, ĥ} mod I

= {{S, V̂ }, ĥ} mod I,

where we used the property Ŝ − S ∈ I in the last equality. The same property assures that

V̂ := {{Ŝ , f̂}, ĝ} = {{S, f̂}, ĝ}+ k

for some k ∈ I0. Putting this together we obtain

{{f , g}C , h}C = {{f̂ , ĝ}M , ĥ}M + {{S, k}, ĥ} mod I.

By assumption {S, k} ∈ I1, and since ĥ ∈ N (I) the whole second term lies in I . Taking
the cyclic sum shows that the Jacobiator of f , g, h vanishes.

Since {•, •}M satisfies the Jacobi identity we conclude that {•, •}C also satisfies the
Jacobi identity, i.e., that {S ,S} = 0. �
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We summarize in classical terms the results obtained in this Section:

Proposition 5.17. Let C be a submanifold of a Poisson manifold (M,π) and E a subbundle
of TM |C such F := TC ∩ E is a constant rank, involutive distribution on C. Assume that
the quotient C := C/(TC ∩ E) is smooth. If

♯E◦ ⊂ TC

and

{C∞
E (M), C∞

E (M)}M ⊂ C∞
F (M).

then C has an induced Poisson structure. Its Poisson bracket is computed lifting functions
on C to functions in C∞

E (M).

Proof. By Prop. 5.7 and 5.13 C := E◦[1] is a presymplectic submanifold of the symplectic
graded manifold T ∗[1]M such that its quotient C is canonically symplectomorphic to T ∗[1]C .
By Lemma 5.15 the degree 2 function S on T ∗[1]M , which encodes the Poisson bivector π,
descends to a function S on T ∗[1]C , and by Lemma 5.16 S commutes with itself. Hence
S corresponds to a Poisson bivector on C. Its Poisson bracket is computed as in Lemma
5.15. �

Notice that when E ⊂ TC we recover exactly the reduction statement in Prop. 4.2. Prop.
5.17 is a very mild extension of the Marsden–Ratiu theorem [19] (see [11], where Prop. 5.17
above appears as Prop. 4.1).

6. Reduction in stages

In this Section we derive a sufficient condition for {S,S} = 0 which is weaker than the
one of Lemma 5.16. To do so, we perform reduction in stages in an algebraic fashion. The
corresponding geometric picture is the following refinement of the one outlined in Section
3.

(a) We imbed C in a larger coisotropic3 submanifold A of M. We assume that the
presymplectic quotient C is smooth. Locally (i.e., if we choose small open sets
U ⊂ M and replace M by MU , C by CC∩U and A by AA∩U) we perform the
two-stage reduction

– take the image C̄ of C under the projection A → Ā := A/TAω; assuming that
TC ∩ TAω has constant rank, C̄ is a presymplectic submanifold.

– take the presymplectic quotient ¯̄C of C̄. It is a symplectic graded manifold
symplectomorphic4 to C.

(b) Assume that
1) S descends to C
2) locally, S descends to a function S̄ on Ā
2′) locally, S̄ satisfies the condition of Lemma 5.16, i.e., {S̄ , (IC̄)0} ⊂ (IC̄)1.

Since A is coisotropic, by condition 2) the function S̄ on Ā self-commutes, and

Lemma 5.16 together with condition 2′) imply that the function ¯̄S on ¯̄C commutes

3It seems more natural to require A to be presymplectic instead of coisotropic. However this more general
statement delivers conditions which reduce to Prop. 6.7 below.

4If instead of restricting ourselves to small open subsets U of M we work globally, we just get a map
¯̄C → C preserving symplectic structures.
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with itself. By (a) hence the function S on C also commutes with itself5, and
therefore corresponds to a Poisson bivector field on the body of C.

In the remainder of this Section we will phrase (a slightly more general version of) the
above construction in algebraic terms and proof that it really delivers a Poisson structure
on the body of C. We perform Step (a) in Lemma 6.3 and Step (b) in Thm. 6.5, and we
translate into classical geometrical terms in Thm. 6.7 and Thm. 6.10.

Let M be a smooth manifold, C a presymplectic submanifold of M = T ∗[1]M and A a
coisotropic submanifold containing C. Write C = E◦[1] for a subbundle E → C of TM .
E ∩ TC is an involutive constant rank distribution since C is presymplectic (Prop. 5.7),
and we assume that C := C/(E ∩ TC) is smooth. Write A = D◦[1] for another subbundle
D → A. D an integrable distribution on A since A is coisotropic (Prop 4.2). Further C ⊂ A
and D|C ⊂ E, since C ⊂ A.

Lemma 6.1. TC ∩TAω has constant rank iff the following compatibility conditions between
E → C and D → A are satisfied:

D|C ∩ TC has constant rank(13)

E ∩ TA|C has constant rank(14)

The flows of vector fields Y ∈ Γ(D) ⊂ χ(A) with Y |C ∈ χ(C) preserves E ∩ TA|C .(15)

Remark 6.2. 1) Condition (15) means that, assuming that A/D is smooth and contains
C/(D|C ∩ TC) as a smooth submanifold, the projection pr : A → A/D maps E ∩ TA|C to
a well-defined subbundle of T (A/D).

2) In our later proofs we will make use only of the conditions (13),(14), (15), and not of
the fact that they derive from the constant rank condition on TC ∩ TAω.

Proof. The constant rank condition on TC ∩ TAω is stated algebraically by saying that the
matrix {φi, ψj} mod IC has constant rank (see Def. 5.2), where φi are generators of IC
and ψj generators of IA.

Assume that TC ∩TAω has constant rank. By Remark 5.3 it follows that conditions (13)
and (14) hold. This allows to choose the generators φi of IC as follows: degree 0 generators

fi ∈ Z(C) so that the last elements annihilate E, degree 1 generators Xi ∈ Γ̃(E) so that
the first elements lie in TC ∩E. We choose the generators ψj of IA ⊂ IC to be compatible
with the above choice of φi’s in the following sense: the degree 0 generators gi ∈ Z(A) are

so that the last elements (restricted to C) annihilate E, the degree 1 generators Yi ∈ Γ̃(D)
so that the first elements (restricted to C) lie in TC ∩D|C .

We write down the 4 by 4 block-matrix

(16) {φi, ψj} mod IC =









0 0 0 α
0 0 0 0
0 0 0 ∗
β 0 δ ∗









.

(The “0 ”in the lower right block comes from involutivity of the distribution TC ∩ E). We
have

α = {fi, Yj} mod IC

5Notice that it is not relevant here whether C is globally diffeomorphic to ¯̄C: we assume that we have a

well-defined function S on C and use ¯̄C only to check a local property of S, namely that it commutes with
itself.
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where the differentials of fi ∈ Z(C) restricted to a complement of E ∩ TC in E form a

frame, and the Yj ∈ Γ̃(D) are a frame for a complement of D|C ∩ TC in D|C . Hence the
columns of the block α are linearly independent. Similarly we have

β = {Xi, gj} mod IC

where Xi ∈ Γ̃(E) are a frame for a complement of E ∩TC in E and the differentials of gj ∈
Z(A) restricted to a complement of E∩TA|C in E form a frame. Since E∩TC ⊂ E∩TA|C
the columns of β are linearly independent too.

Hence the above matrix (16) has constant rank iff the following condition is satisfied: δ
consist of C1(C)-linear combinations of the columns of β6.

Reordering the vector fields Xi ∈ Γ̃(E) used to define β so that the first few of them lie
in E ∩ TA|C , we may assume that β =

(

0
INV

)

where INV is an invertible matrix. The
above condition on δ then means that the top rows of δ are identically zero, i.e., that

[Xi, Yj ] ⊂ Γ̃(E)

where the Xi ∈ Γ̃(E) span a complement of E ∩ TC in E ∩ TA|C and Yj ∈ Γ̃(D) form a
frame for D|C ∩ TC at points of C. Using the fact that Yj |A is a vector field on A which
restricted to C lies in the integrable distribution E ∩ TC, we see that this is equivalent to

(17) [Γ̃(E ∩ TA|C), Yi] ⊂ Γ̃(E ∩ TA|C) for each i,

which is just condition (15). Conversely, if we assume conditions (13),(14), (15), reversing
the argument shows that TC ∩ TAω has constant rank. �

Consider the Poisson algebra (see Remark 6.4 for a motivation)

E := N (IA) ∩ [f : {f,IC ∩ N (IA)} ⊂ IC ].

Lemma 6.3. Assume eq. (13), (14), and (15). Then, locally on C, every class in N (IC)/N (IC)∩
IC admits a representative which lies in N (IC)∩E = N (IC)∩N (IA). In particular we have

N (IC)/(N (IC) ∩ IC) ⊂ E/(E ∩ IC),

where both sides are seen as subsets of C(C).

Remark 6.4. We explain why Lemma 6.3 is an algebraic version of Step (a) in the outline

at the beginning of this Section. When ¯̄C is smooth we have C( ¯̄C) = E/(E ∩ IC). Indeed
E consists exactly of the functions on M obtained as follows: start from a function on
¯̄C, lift it to C̄, extend it to a function on Ā lying in the normalizer of IC̄ (i.e., satisfying
{F,IC̄}Ā ⊂ IC̄), then lift to A and extend in any way to M. By Step (a) one expects a

well-defined natural (bracket-preserving) map C(C) → C( ¯̄C). If TA|C ∩ TCω has constant
rank (see Lemma 6.1), one expects further that every function on C can be extended to a
function on M that annihilates both TA and TCω, i.e., by a function which lies both in
N (IC) and in E .

Proof. We have to show that to any F ∈ N (IC) we can add some function in IC to obtain
a function in E ∩ N (IC). We will make repeated use of eq. (2), (3), (4), (5).

To write out E in classical terms notice that N (IA)1 agrees with Γ̃bas(TA), the set of
(extensions to M of) vector fields on A which are basic w.r.t. pr : A→ A/D. We have

(18) E0 = C∞
D (M) ∩ C∞

(E∩TA|C)(M),

6In that case the matrix ⋆ of Def. 5.2 will consist of the first and fourth columns of (16).
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(19) E1 = {X ∈ Γ̃bas(TA) : [X, •] preserves Γ̃bas(TA) ∩ Γ̃(E ∩ TA|C)}.

We have the following geometric set-up: the projection pr : A→ A/D =: Ā, and

E ∩ TA|C //

��

pr∗(E ∩ TA|C) =: Ē

��

C // C/(D|C ∩ TC) =: C̄ // C/(E ∩ TC) = C

.

Notice that C̄ is well-defined by eq. (13), and it can be regarded as a submanifold of Ā since
we are working locally on C. Also, the two vertical arrows are well-defined vector bundles
by (14) and (15). The (derivative of the) second quotient C̄ → C has kernel Ē ∩ T C̄.

To prove the lemma for degree 0 functions take f ∈ N (IC)0 = C∞
E (M). The restriction

f |C descends to a function on C̄ annihilating Ē ∩T C̄. Extend it to A/D in such a way that
annihilates Ē. Then pull back to a D-invariant function on A, and extend to a function
on M which annihilates E. This delivers an element of E0 ∩ N (IC)0 = C∞

D (M) ∩ C∞
E (M)

differs from f by an element of Z(C) = (IC)0.
To prove the lemma for degree 1 functions take an element of

N (IC)1 = {X ∈ Γ̃(TC) : [X, Γ̃(E)] ⊂ Γ̃(E)}.

The restriction X|C descends to a vector field on C, which we can lift to a vector field C̄.
Lemma 5.11, applied to the subbundle Ē → C̄ ⊂ Ā, assures that we can further extend to
a vector field on Ā whose Lie derivative respects Γ̃(Ē). Now lift by pr : A→ A/D =: Ā to a

vector field on A tangent to C; its Lie derivative will automatically preserve Γ̃(E ∩ TA|C).
Then an extension to a vector field on M whose Lie derivative preserves Γ̃(E), which exists
by Lemma 5.11, gives an element Y of E1 ∩N (IC)1. Since the projection C → C maps X|C
and Y |C to the same vector field on C, we conclude that X − Y ∈ Γ̃(E) = (IC)1.

Since N (IC)/(N (IC) ∩ IC) is generated by elements in degree 0 and 1 (see text after eq.
(9)) we are done. �

Now assume that M is endowed with a Poisson structure π, corresponding to a function
S on T ∗[1]M .

Theorem 6.5. Let C be a presymplectic submanifold of T ∗[1]M whith smooth presymplectic
quotient C. Let A be a graded coisotropic submanifold of M containing C and assume that
eq. (13), (14), and (15) hold. If

S ∈ N (IC) + IC ,(20)

{S,IA} ⊂ IC(21)

{S, (IC ∩ NC(IA))0} ⊂ IC ,(22)

then S descends to C and {S,S} = 0.
Here NC(IA) denotes the set of functions F with {F,IA} ⊂ IC.

Remark 6.6. Thm. 6.5 is slightly more general than the geometric construction outlined
at the beginning of this section: since we are ultimately interested in a quotient of C, the
requirement that S|A is constant along every leaf of the characteristic distribution of Ā
(condition (b2) in the outline) is weakened to a condition on C only (eq. (21)).

Proof. Let f, g, h functions on C (which is smooth by Prop. 5.13), and fix extensions f̂ , ĝ, ĥ

to functions in N (IC)0. Fix a choice of function Ŝ ∈ N (IC) with Ŝ − S ∈ IC (it exists by
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eq. (20)). The proof of Lemma 5.16 shows that

(23) {{f , g}C , h}C = {{f̂ , ĝ}M , ĥ}M + {{S, k}, ĥ} mod IC

where k ∈ (IC)0 is explicitly given as

k = {{Ŝ − S, f̂}, ĝ}.

Lemma 6.3 allows us to refine the choice of extensions Ŝ, f̂ , ĝ, ĥ so that they lie in N (IC)∩
N (IA). In that case we claim that k lies not only in IC but also in NC(IA). The proof

goes as follows. Since N (IA) is a Poisson subalgebra, {{Ŝ, f̂}, ĝ} lies in N (IA) ⊂ NC(IA).
Further we have

{{S, f̂},IA} = {S, {f̂ ,IA}} − {f̂ , {S,IA}} ⊂ {S,IA}+ {f̂ ,IC} ⊂ IC,

where we used f̂ ∈ N (IA) ∩ N (IC) and twice the fact that S ∈ NC(IA) (which is just

eq. (21)). Hence {S, f̂} ∈ NC(IA), and taking a further bracket with ĝ we conclude that

{{S, f̂}, ĝ} lies in NC(IA). Altogether this shows that k ∈ NC(IA), as claimed.

From eq. (22) it hence follows that {S, k} ∈ IC . Together with ĥ ∈ N (IC) this implies
that the whole second term of eq. (23) lies in IC . Taking the cyclic sum shows that {•, •}C
satisfies the Jacobi identity. �

Now we translate into classical terms Thm. 6.5. Until the end of this Section (M,π) is
a Poisson manifold, C a submanifold, and E ⊂ TM |C a subbundle such that F := E ∩ TC
is an involutive constant rank distribution. Assume that C := C/(E ∩ TC) is smooth.

Theorem 6.7. Let A be a submanifold of M containing C and D an integrable distribution
on A such that D|C ⊂ E. Assume eq. (13), (14), and (15), that means,

D|C ∩ TC has constant rank

E ∩ TA|C has constant rank

the flows of vector fields Y ∈ Γ(D) ⊂ χ(A) with Y |C ∈ χ(C) preserves E ∩ TA|C .

Assume that the Poisson structure on M satisfies

{C∞
E (M), C∞

E (M)}M ⊂ C∞
F (M)(24)

(LXi
π)|C ⊂ E ∧ TM |C(25)

♯E◦ ⊂ TC +D|C(26)

where the Xi are obtained as follows: for any p ∈ C make a choice of frame for D|C defined

near p and a choice of extension to elements Xi of Γ̃(D).
Then C is a Poisson manifold.

Proof. As usual let C = E◦[1], which is presymplectic with smooth presymplectic quotient
by Prop. 5.7 and 5.13. We translate in terms of tensors on M the three conditions on
the function S (given by the Poisson bivector π) appearing in Thm 6.5. The translation of
condition (20) is given in Lemma 5.15: it corresponds to (24) and ♯E◦ ⊂ TC+E. Condition
(21) is equivalent to

♯E◦ ⊂ TA|C(27)

(LΓ̃(D)π)|C ⊂ E ∧ TM |C .(28)

Condition (22) is equivalent to (26). We can forget (27) and ♯E◦ ⊂ TC+E because they are
implied by (26). Further (28) can be replaced by (25), i.e., it is enough to consider frames
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for D|C . To see this notice that any element of Γ̃(D) is locally a C∞(M)-linear combination
of the Xi above and a vector field vanishing on A, and use (27).

Hence all the assumptions of Thm 6.5 are satisfied, so S descends to a function on C
which commutes with itself. Since by Prop. 5.13 C is symplectomorphic to T ∗[1]C, we
obtain a Poisson structure on C. �

Remark 6.8. In Thm. 6.7 we can replace condition (25) by

{C∞(M)E ∩ C∞(M)D, C
∞(M)E ∩ C∞(M)D} ⊂ C∞(M)D|C ,

as can be shown using (26).

Remark 6.9. We give a geometric description of C̄, the quotient of C by TC ∩ TAω. Recall
from Rem. 5.14 (applied to A) that Ā is constructed as follows: divide the fibers of D◦ → A
to obtain D◦/TA◦ → A, which is endowed with the flat D-connection ∇; then identify
fibers using ∇. E◦ sits inside D◦, and after quotienting the fibers we obtain the subbundle
(E ∩ TA)◦/TA◦ of D◦/TA◦. Condition (15) is equivalent to ∇ preserving this subbundle,
and identifying its fibers via ∇ we obtain C̄.

A convenient application of Thm. 6.7 is obtained asking that F ⊂ D|C and that the
submanifold A be minimal (i.e., TA|C = TC + D|C). (One can show that these two
requirements are equivalent to TC+TAω = TA, which in turns means that, locally, C̄ = Ā.)

Theorem 6.10. Let D|C be a subbundle of TM |C with F ⊂ D|C ⊂ E and

(29) ♯E◦ ⊂ TC +D|C .

Let A be a submanifold containing C such that TA|C = TC+D|C , and assume that D|C
can be extended to an integrable distribution D on A such that

(30) (LXi
π)|C ⊂ E ∧ TM |C

where the Xi are obtained as follows: for any p ∈ C make a choice of frame for D|C defined

near p and a choice of extension to elements Xi of Γ̃(D).
Then C is a Poisson manifold.

Proof. We check the assumptions of Thm. 6.7. We have D|C∩TC = E∩TC and E∩TA|C =
D|C , so conditions (13),(14) and (15) are satisfied. Condition (24) follows from eq. (25).
To see this use Remark 6.8, F ⊂ D|C , and the fact that the bracket on C is independent of
the choice of extension in C∞

E (M) due to eq. (29). Since we are assuming conditions (25)
and (26), we are done. �

Remark 6.11. The graded geometric approach gave a systematic way to derive and prove
the statement of Thm. 6.10. A derivation without graded geometry seems hard. However
once the statement is known there is a quick direct proof of Thm. 6.10 using algebraic
arguments, which we wrote up in the Appendix of [9]

We conclude this Section by comparing Thm. 6.10 with the results of Falceto and the
second author [11]. When ♯E◦ ⊂ TC we can choose D|C = F , so that A = C. In this case
Thm. 6.10 recovers7 exactly Prop. 5.17, which is also Prop. 4.1 of [11], and which is a mild
extension of the Marsden–Ratiu theorem [19]. This also shows that the submanifold A in
general does not have any Poisson structure induced from M .

Further, by the “minimality” of A, Thm. 6.10 improves Prop. 4.2 of [11] because it
weakens its assumptions . Firstly, Prop. 4.2 of [11] requires to extend D|C to an integrable

7Use Remark 6.8 to see this.
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distribution on the whole of M (as opposed to just A). Secondly, a technical assumption in
Prop. 4.2 of [11] – on the compatibility between E and the foliation defined by D – is now
removed in Thm. 6.10.

Several examples for Thm. 6.10 have been discussed in [11]. Here we limit ourselves to
an example which, although trivial, displays how Thm. 6.10 improves Prop. 4.2 of [11].

Example 6.12. Let (M,π) = (R4,
∑

i
∂
∂xi

∧ ∂
∂yi

) and C = {(x1, y1, 0, 0) : x1, y1 ∈ R}. Let

E = span{ ∂
∂x1

, ∂
∂x2

, ∂
∂y2

+ x1
∂
∂y1

}. We have span( ∂
∂x1

− x1
∂
∂x2

) = ♯E◦ ⊂ TC + D|C for

D|C = span{ ∂
∂x1

, ∂
∂x2

}. Extending D|C to the hyperplane A = {y2 = 0} by the same

formula clearly give an integrable distribution on A, and condition (30) is satisfied because
L ∂

∂x1

π = L ∂
∂x2

π = 0. Hence Thm. 6.7 can be applied. (Since C is one dimensional, the

induced Poisson structure is of course trivial).
However the obvious extension of D|C to a distribution θ on the whole of M does not

satisfy the assumptions of Prop. 4.2 of [11]. Indeed it is not compatible with the subbundle
E, in the sense that the projection M → M/θ does not map the subbundle E ⊂ TM |C to
a well-defined subbundle of T (M/θ)|C .

7. Examples

We present three examples of the Poisson reduction procedure we established. The start-
ing data is a manifold M endowed with a (almost) Poisson structure, a submanifold C, and
a subbundle E ⊂ TM |C such that E ∩ TC is an involutive distribution. (Actually in all
three examples we have E ⊕ TC = TM |C , which implies that C := E◦[1] is a symplectic
submanifold of T ∗[1]M .). We describe the reduced structure both in the classical and in
the graded picture.

To this aim we state the following lemma, which allows to compute easily the reduced
Poisson structure in graded terms:

Lemma 7.1. Let C be a presymplectic submanifold and S a degree 2 function on T ∗[1]M ,
so that S|C descends to the quotient C. Denote by πC the corresponding bivector field on
C := C/(E ∩ TC). Let S ′ be a function such that S ′|C = S|C and so that S ′ corresponds to
a bivector field π′ on M with π′|C ∈ Γ(∧2TC). Then, writing pr : C → C, we have

πC = pr∗(π
′|C).

Proof. By the concrete form of the isomorphism N (I)/(N (I)∩I) ∼= C(T ∗[1]C) (see end of
the proof of Prop. 5.13) it is clear that the bivector field pr∗(π

′|C) on C corresponds to S ′.
Now just use S ′ = S. �

Example 7.2. Let

(M,π) = (R4, ∂x1 ∧ ∂x2 + ∂x3 ∧ ∂x4), C = {x4 = 0}, E = ∂x4 + α∂x1

for α = α(x1, x2, x3) ∈ C∞(C). This is Ex. 4.4 of [11], where the following is discussed: if
one applies our Thm. 6.10 (or Prop. 4.2 of [11]) with A = M and as D the extension of
E by translations in the x4 direction, one sees that the induced bivector field on C = C is
Poisson provided ∂

∂x1
α = 0.

Here we present the corresponding graded picture. Denote by θi the degree 1 coordinates
on the fibers of T ∗[1]M conjugate to the xi. The vanishing ideal IC of C = E◦[1] is generated
by x4 and θ4+αθ1, and C is a symplectic submanifold of T ∗[1]M since {x4, θ4+αθ1} = −1.
We have S = θ1θ2 + θ3θ4. Since S /∈ N (IC), we perform reduction in stages to determine
when S|C is a self-commuting function on C = C. Take the coisotropic submanifold A with
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constraint θ4 + αθ1. Notice that since C is a symplectic submanifold and C ⊂ A, it follows
that TCω ∩ TA|C has constant rank, hence the same holds for TC ∩ TA|ωC . Further Ā = C̄.

We check when S ∈ N (IA): a computation shows {S, θ4+αθ1} = −[ ∂
∂x1

α ·θ2+
∂
∂x3

α ·θ4]θ1,

which lies in IA iff ∂
∂x1

α = 0. In this case S|A descends to Ā = C̄ = C and commutes with
itself there.

Since on C we have θ4 = −αθ1, a function with S ′|C = S|C which corresponds to a
bivector field on C is S ′ := θ1(θ2 + αθ3), so by Lemma 7.1 we deduce that the induced
Poisson bivector field on C is ∂

∂x1
∧ ( ∂

∂x2
+ α ∂

∂x3
).

We end this example displaying explicitly an extension of S|C to a function Ŝ lying in

N (IC). To this aim we modify S ′ to obtain an element Ŝ := S ′ − x4{S
′, θ4 + αθ1}. Notice

that the commutator {Ŝ, Ŝ} lies in I iff8 {S ′,S ′} = −2(∂x1α)θ1θ2θ3 does. Hence we see
again that, unless α is independent of x1, S descends to a function on C = C which does
not commute with itself.

We show that every almost Poisson manifold may be obtained by reduction from its
cotangent bundle with canonical symplectic structure.

Example 7.3. Let C be a manifold endowed with a bivector field α (not necessarily Poisson).
Embed C as the zero section in M := T ∗C, which is endowed with the canonical symplectic
structure ωM . Let

E = graph(−
1

2
♯C) ⊂ TM |C = TC ⊕ T ∗C

where ♯C : T ∗C → TC denotes contraction with α. We claim that the bivector field induced
by the reduction of the triple (M,C,E) on C = C is again α.

In classical terms we know that the induced bracket on C is computed extending functions
on C to elements of C∞

E (M), taking their bracket with respect to the ωM , and restricting to
C (see Prop. 5.17). This can be computed choosing base coordinates xi on C and conjugated
fiber coordinates yi on M = T ∗C, so that E is spanned by the ∂

∂yi
− 1

2

∑

j αij
∂
∂xj

(where

α = 1
2αij

∂
∂xi

∧ ∂
∂xj

). We extend the functions xj on C to the functions x̃j := xj+
1
2

∑

i αijyi ∈

C∞
E (M). Then ({x̃j , x̃j′}M )|C = αjj′ as claimed.
This can be seen more easily in the graded picture. Take the degree 1 coordinates Qi and

Pi on the fibers of T ∗[1]M , conjugated to xi and yi. The graded submanifold C = E◦[1] of
T ∗[1]M is given locally by the constraints

yi = 0 Pi −
1

2
αijQj = 0 for all i.

The matrix obtained taking the Poisson bracket of these constraints in T ∗[1]M is non-
degenerate, so C is a graded symplectic submanifold, canonically symplectomorphic to
T ∗[1]C. The canonical symplectic structure ωM on M = T ∗C corresponds to the func-
tion S = QiPi on T ∗[1]M , and S|C = 1

2α
ijQiQj, so using Lemma 7.1 we see that it recovers

the bivector field α on C we started with.

We show that if g is a Lie bialgebra then the Poisson structure on its dual can be recovered
from the Poisson structure on the dual of the Drinfeld double.

Example 7.4. Let g be Lie bialgebra. Endow g ⊕ g∗ with the Drinfeld double Lie algebra
structure [17](which also contains cross-terms). Its dual M := (g⊕ g∗)∗ = g∗ ⊕ g is a linear

8Use {S ′, x4} = 0 and x4 ∈ I to see this.
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Poisson manifold. Let
C := g∗ ⊕ {0} ⊂ g∗ ⊕ g.

Let E(x,0) = {0}⊕g ⊂ T(x,0)M for all x ∈ g∗. The reduction of the triple (M,C,E) recovers

the natural Poisson9 structure on C = C, namely the one obtained as the dual of the Lie
algebra g. Since the subbundle E is transversal to C, this is seen simply extending linear
functions on C to linear functions on M that annihilate E.

The assumptions of our Prop. 5.17, which is essentially the Marsden–Ratiu theorem [19],
are not satisfied, since contraction with the Poisson bivector of M does not map E◦ into
TC (essentially due to the fact that the Drinfeld double bracket contains crossed terms).
Thm. 6.10 however applies, with A = M and D equal to the extension of E from C to M
by translation10.

The graded picture is as follows. C := E◦[1] coincides with the canonical copy of T ∗[1]C
inside T ∗[1]M , hence it is symplectic. If we choose a basis of g and the dual basis, we obtain
coordinates xi on g∗ and yi on g, hence coordinates on M . Denote by Pi and Qi respectively
the conjugated degree 1 coordinates on the fibers T ∗[1]M . Then C is given by setting to
zero all y and Q, and the degree 2 function encoding the Poisson structure on M is

S =
1

2

[

ckijxkP
iP j + dkijykQ

iQj + (cjikyk − dijkxk)P
iQk

]

.

The restriction to C consists just of the first summand above, and recovers the natural
Poisson structure on C.

We check explicitly that S|C commutes with itself. One computes {S, yl} /∈ IC, so S /∈
N (IC). On the other hand reduction in stages using the coisotropic submanifold A =

D◦[1] = {Q = 0} applies. Indeed S ∈ N (IA) since {S, Ql} = 1
2 [d

l
ijQ

iQj + cjilP
iQl], so

restricting S we obtain a function on Ā = C̄ = C with commutes with itself.

9C has a natural Poisson structure even thought it is not a Poisson submanifold of M (it is just a
coisotropic submanifold).

10To see that the assumptions of Thm. 6.10 are satisfied use Remark 6.8.
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Part 2. Reduction of Poisson manifolds by group actions

We saw in Prop. 2.1 that the data of a Poisson manifold (M,π) can be encoded in the
degree 1 symplectic manifold M := T ∗[1]M together with a degree 2 function S on M
satisfying {S,S} = 0. When considering actions on M one wishes to take into account
its symplectic structure and the function S. Notice that the latter endows the graded Lie
algebra of vector fields χ(M) with the differential [XS , ·] (obtained taking the Lie bracket
with the hamiltonian vector field of S), making χ(M) into a differential graded Lie algebra
(DGLA). Hence it is natural to act infinitesimally on M by a DGLA, rather than just by
a graded Lie algebra, and to ask that the action be hamiltonian (in the sense of ordinary
symplectic geometry).

We will consider such an action on M, construct its global and Marsden–Weinstein
quotients, and translate them into classical terms (Sections 8–10). Further, we will see
that there is an induced action on the symplectic groupoid Γ of (M,π), we show that
interestingly it is an action in the category of Lie groupoids, and construct its global and
Marsden–Weinstein quotients (Sections 11–14).

8. Actions on T ∗[1]M

Let M be a manifold, and consider the degree 1 symplectic manifold M := T ∗[1]M . In
this Section we introduce the infinitesimal actions on M that we will study in the rest of
the paper.

An infinitesimal action on M is a morphism of graded Lie algebras into χ(M), the graded
Lie algebra of vector fields on M. Since vector fields of degrees other than −1 and 0 vanish
on the body M , any graded Lie algebra with a locally free infinitesimal action on M must
be concentrated in degrees −1 and 0. Hence we are lead to consider a graded Lie algebra
(h[1]⊕g, [·, ·]) , where h and g are usual (finite dimensional) vector spaces. We suppose that
it acts infinitesimally on T ∗[1]M with moment map. This means that we have a morphism
of graded Lie algebras into the hamiltonian vector fields of M, i.e. one of the form

ψ : h[1] ⊕ g → χ−1(M) ⊕ χ0(M)

(w, v) 7→ XJ0∗w +XJ1∗v.

The notation is chosen so that J0
∗w ∈ C0(M) and J1

∗v ∈ C1(M). We spell out the data
we assumed. h[1] ⊕ g being a graded Lie algebra means that g is a (ordinary) Lie algebra
and h a g-module (where v ∈ g acts as [v, •]). J0

∗ is a linear map h → C0(M) = C∞(M),
so it corresponds to a map J0 : M → h∗, while J1

∗ is a linear map g → C1(M) = χ(M).
We do not spell out the requirement that ψ be a morphism of graded Lie algebras, since it
is implied by the requirement that the moment map be a Poisson map.

Lemma 8.1. The moment map (J0, J1) : M → (h[1] ⊕ g)∗[1] is a Poisson map iff

1) J1
∗ is an infinitesimal action of g on M

2) J0 :M → h∗ is g-equivariant, i.e., J1
∗v(J0

∗w) = J0
∗([v,w]) for all v ∈ g and w ∈ h.

Proof. We denote elements of g by v and elements of h by w. The equation {J1
∗v, J1

∗ṽ} =
J1

∗[v, ṽ] means by definition that J1
∗ is an infinitesimal action. The analog equation for ele-

ments of h is satisfied because both sides vanish by degree reasons. We have {J1
∗v, J0

∗w} =
J1

∗v(J0
∗w), where in the second term J1

∗v is viewed as a vector field on M acting on a
function. This is equal to J0

∗([v,w]) iff J0 is g-equivariant (recall that the action of g on h

is given by v 7→ [v, •]). �

Summarizing we have:
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Corollary 8.2. Let M be a manifold. An action of the graded Lie algebra h[1] ⊕ g on
M = T ∗[1]M so that the moment map is Poisson corresponds exactly to the following
classical data:

• a (ordinary) Lie algebra g

• a linear action of g on the vector space h

• an infinitesimal action of g on M (denoted by J∗
1 )

• a g-equivariant map J0 :M → h∗.

Until the end of this paper we will consider only actions on M with Poisson moment map.

Now we introduce new pieces of data. We assume that M is endowed with a Poisson
structure π, i.e that M is endowed with a self-commuting degree 2 function S (Prop. 2.1).
Then

(χ(M), [·, ·], [XS , ·])

is a differential graded Lie algebra (DGLA, see Def. A.1). Hence it is natural to assume
that M is acted upon not by a graded Lie algebra, but rather by a DGLA

(h[1]⊕ g, [·, ·], δ).

Remark 8.3. DGLAs concentrated in degrees −1 and 0 are in bijective correspondence to
crossed modules of Lie algebras, see Appendix A.

Lemma 8.4. Suppose that ψ : h[1] ⊕ g → χ(M) is a linear map of the form (w, v) 7→
XJ0

∗w +XJ1
∗v. Then ψ respects differentials iff

1) J1
∗(δw) = XM

J0
∗w for all w ∈ h

2) The g action on M is by Poisson vector fields.

Proof. As earlier we denote elements of g by v and elements of h by w. The equation
[XS ,XJ0

∗w] = XJ1
∗(δw) holds iff {S, J0

∗w} = J1
∗(δw), which is just 1).

Since δv = 0, we have to check when [XS ,XJ1∗v] vanishes. It vanishes iff {S, J1
∗v} =

−LJ1∗vπ vanishes, giving 2). �

We summarize:

Corollary 8.5. Let (M,π) be a Poisson manifold and M = T ∗[1]M . A structure of a
DGLA on h[1] ⊕ g together with a morphism of DGLAs ψ : h[1]⊕ g → χ(M) with Poisson
moment map is equivalent to the following classical data11:

• a (ordinary) Lie algebra g

• a linear action of g on the vector space h

• a linear map δ : h → g such that δ(v · w) = [v, δw] and (δw) · w̃ = −(δw̃) ·w, for all
v ∈ g and w, w̃ ∈ h

together with

• an infinitesimal action J∗
1 of g on (M,π) by Poisson vector fields

• a g-equivariant map J0 :M → h∗

satisfying the following “moment map condition” for all w ∈ h:

J1
∗(δw) = XM

J0∗w
.

11The first three items encode the fact that h[1] ⊕ g is a DGLA concentrated in degrees −1 and 0, and
can equivalently be expressed saying that h and g form a crossed module of Lie algebras, see Appendix A.
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See Section 15 for examples of morphisms of DGLA with Poisson moment map.

We comment on when J0 : M → h∗ is a Poisson map. Here h is endowed with the Lie
algebra structure [w, w̃]δ := [δw, w̃] (see also the text after Lemma A.3), and h∗ has the
corresponding linear Poisson structure.

Lemma 8.6. Let ψ be as in Lemma 8.4. J0 : (M,π) → h∗ is a Poisson map iff J0 is
equivariant under the action of the Lie subalgebra δ(h) ⊂ g.

Proof. For all w, w̃ ∈ h we have

{J∗
0w, J

∗
0 w̃}M = XM

J∗

0
w(J

∗
0 w̃) = J∗

1 (δw)(J
∗
0 w̃),

where we used Lemma 8.4 1) in the second equality. Further, by definition of [•, •]δ ,

J∗
0 [w, w̃]δ = J∗

0 [δw, w̃].

J0 being a Poisson map corresponds to equality of the left-most terms, and J0 being δ(h)-
equivariant corresponds to equality of the right-most terms. �

Remark 8.7. If ψ is a morphism of DGLAs with Poisson moment map, then J0 is a Poisson
map. This is clear from the Lemma 8.6 together with Lemma 8.1.

In the rest of this section we use the correspondence between degree 1 N -manifolds and
vector bundles in order to interpret in classical terms the action ψ.

Lemma 8.8. Let A → M be a vector bundle. There are canonical, bracket preserving
identifications

χ−1(A[1]) ∼= {vertical vector fields on A constant on each fiber}

χ0(A[1]) ∼= {vector fields on A preserving its vector bundle structure}.

Proof. We have C0(A[1]) = C∞(M) and C1(A[1]) = Γ(A∗) = C∞
lin(A), where the latter

denotes the fiber-wise linear functions on A. χ−1(A[1]) ⊕ χ0(A[1]) acts on C−1(A[1]) ⊕
C0(A[1]), hence it also acts (by non-graded derivations) on the functions on A which are
at most linear on the fibers. Since functions on A which are at most linear on the fibers
generate (up to completion issues) C∞(A), we conclude that we can view vector fields on
M of degree −1 and 0 as vector fields on A, and that this correspondence preserves the Lie
bracket operation on vector fields.

Concretely, χ−1(A[1]) acts by annihilating C∞(M) and acts on Γ(A∗) by contraction
with an element of Γ(A). χ0(A[1]) acts preserving the fiberwise constant and the fiberwise
linear functions on A. �

Remark 8.9. If A = T ∗M , so that A[1] = M, the identification of Lemma 8.8 restricts to:

∀F ∈ C0(M) = C∞(M) : XF ∈ χ−1(M) 7→ the constant extension of − dF ∈ Ω1(M)

∀Y ∈ C1(M) = χ(M) : XY ∈ χ0(M) 7→ the cotangent lift of Y.

Hence an infinitesimal action ψ of the graded Lie algebra h[1] ⊕ g in M = T ∗[1]M can be
also viewed as an infinitesimal action of the Lie algebra h ⊕ g (with the “same” bracket as
the one of the graded Lie algebra h[1] ⊕ g) on T ∗M :

ψ̂ : h⊕ g → χ(T ∗M)

(w, 0) 7→ −d(J0
∗w) viewed as vertical v.f. constant on fibers

(0, v) 7→ the cotangent lift of J1
∗v
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9. The global quotient of T ∗[1]M

In this section we consider quotients of M = T ∗[1]M by actions of graded Lie algebras
or DGLAs.

Let h[1] ⊕ g be a graded Lie algebra. This is equivalent to saying the g is a Lie algebra
and h is a g-module (see Section 8). Let G be the simply connected Lie group integrating
the Lie algebra g. Let ρ denote the Lie group action of G on h integrating the action of g
on h.

Lemma 9.1. The graded Lie group integrating the graded Lie algebra h[1] ⊕ g is G⋉ h[1],
with product

(31) (g1, w1) · (g2, w2) = (g1g2, w1 + ρ(g1)w2).

Proof. The graded Lie bracket on h[1] ⊕ g makes the vector space h⊕ g into an honest Lie
algebra, namely the semidirect product Lie algebra [23, Sect. 3.14] of g and h (viewed as
an abelian Lie algebra) by the action. This semidirect product Lie algebra integrates to
the semidirect product Lie group of G and the abelian Lie group h by the action ρ; its
multiplication is given by eq. (31) (see [23, Sect. 3.15]). The lemma follows since there is a
canonical identification between degree 1 N-manifolds and vector bundles (see Lemma 8.8),
and the construction of the graded Lie algebra of a graded Lie group is given by phrasing
the construction of the Lie algebra of an ordinary Lie group in algebraic terms [24, Sect.
7.1]. �

Now let ψ : h[1] ⊕ g → χ(M) be an infinitesimal action. The infinitesimal action ψ
integrates12 to a left action

Ψ: (G⋉ h[1]) ×M → M .

Remark 9.2. We saw in Remark 8.9 that the graded infinitesimal action ψ can be also viewed
as an infinitesimal action ψ̂ of a (ordinary) Lie algebra on T ∗M . Similarly, the action Ψ

corresponds to the integration of ψ̂, i.e., to the following action of G ⋉ h on T ∗M : G acts
by the cotangent lift of its action on M , and w ∈ h acts translating in the fiber directions
by −d(J0

∗w).

Now we determine the quotient of M by the action Ψ, defined as the graded manifold
whose algebra of functions is isomorphic to

(32) C(M)Ψ = C(M)ψ := {F ∈ C(M) : ψ(z)(F ) = 0 for all z ∈ h[1] ⊕ g}.

Proposition 9.3. Let h[1] ⊕ g be a graded Lie algebra. Let ψ : h[1] ⊕ g → χ(M) be an
infinitesimal action with Poisson moment map (J0, J1). Assume that J0 : M → h∗ is a sub-
mersion and that the G-action on M obtained integrating J∗

1 : g → χ(M) is free and proper.
Then the quotient of M by the Ψ action is smooth, and there is a canonical isomorphism

M/(G ⋉ h[1]) ∼= (D/G)∗[1]

where D := ker(J0)∗ ⊂ TM .
Assume further that h[1] ⊕ g is a DGLA, (M,π) a Poisson manifold, and that ψ is

a morphism of DGLAs. Then (D/G)∗[1] inherits a degree −1 Poisson structure and a
homological Poisson vector field. Hence D/G→M/G is a Lie bialgebroid.

12We introduce Ψ because, being a global action, it is geometrically more appealing than its infinitesimal
counterpart ψ. In what follows (Prop. 9.3 and Prop. 10.1) Ψ can be replaced by the infinitesimal ψ since
the Lie group G is connected.
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In the proof we will use the following characterizations of the notions of Lie algebroid [7]
and Lie bialgebroid [16].

Remark 9.4. A Lie algebroid is a vector bundle A such that A[1] is endowed with a homo-
logical vector field, i.e., a degree 1 vector field QA with [QA, QA] = 0 [22]. Equivalently, it
is a vector bundle A such that A∗[1] is endowed with a degree −1 Poisson structure [15,
Section 4.3]. A Lie bialgebroid is a vector bundle A such that A∗[1] is endowed with a
homological vector field QA∗ and a degree −1 Poisson structure {·, ·}, compatible in the
sense that Q{X,Y } = {Q(X), Y } + {X,Q(Y )} for all X,Y ∈ Γ(A) = C1(A

∗[1]). The
compatibility condition can be rephrased saying that Q is a Poisson vector field on A∗[1].

Proof. C0(M)Ψ agrees with C∞(M)G, since the G action on M is obtained integrating the
vector fields J∗

1 v for v ∈ g. C1(M)Ψ consists of sections of D which are invariant under the
G action on M . Notice that the G-action on M preserves D: elements X ∈ Γ(D) ⊂ χ(M)
are characterized by 〈d(J∗

0w),X〉 = 0 for all w ∈ h, and for all v ∈ g we have

〈d(J∗
0w),LJ∗

1
vX〉 = −〈LJ∗

1
vd(J

∗
0w),X〉 = −〈d(J∗

0 [v,w]),X〉 = 0

where the second equality holds by Lemma 8.1 2).
Our assumptions imply that the infinitesimal action ψ is locally free in the following sense:

for each p ∈M the linear map h[1]⊕g → TpM, obtained from ψ evaluating at p, is injective.
Using [24, Lemma 4.7.3] it follows that the image of ψ spans a distribution (in the sense of
[5]) on T ∗[1]M . Further it is an involutive distribution since the map ψ preserves brackets.
By the above description the degree 0 and 1 invariant functions satisfy assumptions i) and
ii) of Lemma 5.12. Using that Lemma and the fact that D/G → M/G is a smooth vector
bundle we conclude that C(M)Ψ ∼= C((D/G)∗[1]), proving the first statement.

To prove the second part of the lemma notice that C(M)Ψ is a graded Poisson subalgebra
of C(M) since the infinitesimal action ψ acts by Poisson vector fields. Hence (D/G)∗[1] is
endowed with a degree −1 Poisson structure. The homological vector field Q = XS = {S, •}
preserves13 C(M)Ψ: if X is an infinitesimal generator of the action and F ∈ C(M)Ψ then

X(Q(F )) = (−1)|X|Q(X(F )) + [X,Q](F ) = 0,

because the assumption that ψ is a morphism of DGLAs ensures that [X,Q] is also an in-
finitesimal generator of the action. So Q induces a homological vector field Q on (D/G)∗[1].
Q is a Poisson vector field, since Q is. Hence, by Remark 9.4, D/G is a Lie bialgebroid. �

10. Hamiltonian reduction of T ∗[1]M

In this Section we perform Marsden–Weinstein reduction at zero for the hamiltonian
action Ψ on M = T ∗[1]M .

Proposition 10.1. Let h[1] ⊕ g be a graded Lie algebra. Let ψ : h[1] ⊕ g → χ(M) be an
infinitesimal action with Poisson moment map (J0, J1). Assume that zero is a regular value
of J0 : M → h∗ and that the G-action on C := J−1

0 (0) obtained integrating14 J∗
1 : g → χ(M)

is free and proper. Then C := (J0, J1)
−1(0) is smooth, the Marsden–Weinstein reduced space

C/(G⋉h[1]) is a degree 1 symplectic manifold, and we have a canonical symplectomorphism

C/(G ⋉ h[1]) ∼= T ∗[1](C/G).

13The special case that S ∈ C(M)Ψ occurs iff the differential δ : h → g is trivial. In this case the fibers
of J0 are Poisson submanifolds of (M,π).

14Since J0 is g-equivariant by Lemma 8.1 2), G acts on C ⊂M .
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Assume further that h[1] ⊕ g is a DGLA, (M,π) a Poisson manifold, and that ψ is a
morphism of DGLAs. Then the function S ∈ C2(M) corresponding to π descends to a
self-commuting function on C/(G ⋉ h[1]). Hence C/G has an induced Poisson structure.

Remark 10.2. When h = {0}, the first part of Prop. 10.1 specializes (up to the degree
shift by one) to the following classical statement: given a free and proper action of a Lie
group G on a manifold M , the Marsden-Weinstein quotient at zero of its cotangent lift is
symplectomorphic to T ∗(M/G).

Proof. The degree 0 constraints I0 of C are generated by {J0
∗w}w∈h, and the degree 1

constraints I1 are generated by {J1
∗v}v∈g. Hence, due to the assumptions on the freeness of

the G-action and on the regular value of J0, C is a (smooth) graded submanifold of M. (We
have C = E◦[1] where E = [{J1

∗v}v∈g]|C ⊂ TM |C .) Further C a coisotropic submanifold
since (J0, J1) is a Poisson map. This means that the vector fields generating the infinitesimal
action ψ of h[1]⊕ g preserve I . The graded algebra of functions on C/(G⋉ h[1]) is given by

(C(M)/I)Ψ, defined analogously to eq. (32). We have

(C(M)/I)Ψ = N (I)/I,

where N (I) := {F ∈ C(M) : {I, F} ⊂ I} is the Poisson normalizer of I in C(M),
hence the quotient of C by the action Ψ coincides with the coisotropic quotient of C. Since
C/E = C/G is smooth by our assumptions on freeness and properness, we can apply the
first part of Prop. 4.2 to conclude the first half of our proof.

For the second half of the proof we notice that S ∈ N (I), since the infinitesimal action ψ
respect the differentials δ on h[1]⊕ g and [XS , ·] on χ(M) (and since the constant functions
lie in C0(M)). Hence S descends to a function on T ∗[1](C/G) which commutes with itself,
which by Prop. 2.1 corresponds to a Poisson bivector field on C/G. �

Remark 10.3. C is a coisotropic submanifold of (M,π) and ♯N∗C ⊂ E ⊂ TC. (This can
be seen from the text preceding Prop. 4.2 or from Lemmas 8.4 1) and 8.1 2).) The Poisson
bracket of two functions on the quotient C/G is computed as follows by Lemma 5.15: take
their pullbacks to C, take any extension to M , apply the Poisson bracket of M and restrict
to C.

Remark 10.4. Using the identification between the action Ψ on M = T ∗[1]M and the
action of G ⋊ h on T ∗M (see Remark 9.2) we can describe the first part of Prop. 10.1
as follows: E = [{J1

∗v}v∈g]|C consist of tangent spaces along C to the orbits of the G
action, and is tangent to C. The quotient of E◦ ⊂ T ∗M is obtained dividing out E◦ by
{d(J0

∗w)|C}w∈h = N∗C and then dividing by the cotangent lift of the G action.

11. Actions on the symplectic groupoid Γ

Until the end of this paper we assume the following set-up:

– (M,π) is an integrable15 Poisson manifold,
– h[1] ⊕ g is a DGLA,
– ψ : h[1] ⊕ g → χ(M) a morphism of DGLAs with Poisson moment map16 (J0, J1).

15This means that there exists a symplectic groupoid Γ integrating the Lie algebroid T ∗M .
16Many of the results that follow do not require the existence of a moment map for ψ at all, but just

that ψ be a morphism of DGLAs with values in χsympl(M). We assume the existence of a Poisson moment
map because it makes some results more explicit and simplifies the notation.
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We denote by (Γ,Ω) the source-simply connected symplectic groupoid of the Poisson
manifold (M,π) [10]. In this Section we construct Lie algebra and Lie group actions on Γ,
and their quotients will be the object of study of the next sections.

We adopt the conventions of [13] for the Lie groupoid Γ: the source map s and target
map t are such that g, h ∈ Γ are composable iff s(g) = t(h). For the Lie algebroid we use
the identification

(33) (Ker s∗)|M ∼= T ∗M

via v 7→ (ivΩ)|TM , hence we identify sections of T ∗M with right invariant vector fields on
Γ. Finally, the source map s : Γ → M is a Poisson map and the target t is an anti-Poisson
map.

11.1. Lie algebra actions. The infinitesimal action ψ̂ (see Remark 8.9) does not act by
infinitesimal Lie algebroid automorphisms of T ∗M . Nevertheless, we can associate to it an
infinitesimal action on the Lie groupoid Γ.
ψ̂ maps w ∈ h to −d(J0

∗w) ∈ Γ(T ∗M), which using (33) can be extended to a unique
right-invariant vector field on Γ (it is just the hamiltonian vector field XΓ

−t∗J0
∗w).

ψ̂ maps v ∈ g to the cotangent lift of J1
∗v ∈ χ(M), which, as an infinitesimal Lie

algebroid automorphism of T ∗M , by functoriality gives rise to a multiplicative vector field
on Γ, which we denote by (J1

∗v)Γ.
Hence we obtain a linear map h × g → χ(Γ), and it is natural to wonder if there is a

Lie algebra structure on the domain that makes this into a Lie algebra morphism. To this
aim recall that the DGLA h[1] ⊕ g corresponds to a crossed modules of Lie algebras (see
Appendix A), so in particular h is given a (non-trivial) Lie algebra structure [·, ·]δ and g

acts on h by derivations of the Lie bracket. Hence we can construct the semidirect product
Lie algebra [23, Sect. 3.14] h ⋊ g by the action of (g, [·, ·]) on (h, [·, ·]δ). Explicitly the Lie
bracket on h⋊ g is given by

[(w1, v1), (w2, v2)]h⋊g = ([δw1, w2] + [v1, w2]− [v2, w1] , [v1, v2]).

Proposition 11.1. If ψ is a morphism of DGLAs then

φ : h⋊ g → χsympl(Γ)

w + v 7→ XΓ
−t∗J0

∗w + (J1
∗v)Γ

is a morphism of Lie algebras.

Proof. Since g acts on M by Poissonomorphisms (Lemma 8.4 2)), by functoriality it is clear
that it acts on Γ too (by symplectomorphisms), i.e., that φ|g is a Lie algebra morphism.

We show now that φ|h is a Lie algebra morphism. Since t is an anti-Poisson map, this
follows from
(34)

{J0
∗w1, J0

∗w2} = XM
J0

∗w1
(J0

∗w2) = (J1
∗(δw1))J0

∗w2 = J0
∗[δw1, w2] = J0

∗[(w1, 0), (w2, 0)]h⋊g

where the second equality holds by Lemma 8.4 1) and the third equality holds by Lemma
8.1 2).

We are left with showing that [φ(w), φ(v)] = φ[w, v]h⋊g for w ∈ h and v ∈ g. We have

(35) (J1
∗v)Γ(t∗J0

∗w) = t
∗((J1

∗v)J0
∗w) = t

∗J0
∗[v,w] = −t

∗J0
∗[(w, 0), (0, v)]h⋊g ,
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the first equality because (J1
∗v)Γ t-projects to J1

∗v and the second by Lemma 8.1 2). So

[XΓ
−t∗J0∗w

, (J1
∗v)Γ] = XΓ

(J1∗v)Γ(t∗J0∗w)
= XΓ

−t∗J0
∗[(w,0),(0,v)]h⋊g

= φ([(w, 0), (0, v)]h⋊g)

where we used (35) in the second equality. �

11.2. Lie group actions. Let G and H be the simply connected Lie groups integrating
(g, [·, ·]) and (h, [·, ·]δ) respectively. The g-module structure on h integrates to a left action
ϕ of G on H by group automorphisms. Hence we can construct the semi-direct product
H ⋊ G, which is the simply connected Lie group integrating the Lie algebra h ⋊ g defined
just before Prop. 11.1 [23, Sect. 3.15]. The group multiplication on H ⋊G is given by

(36) (h1, g1) · (h2, g2) = (h1 · ϕ(g1)h2, g1 · g2).

Notice that we can decompose elements of H ⋊G as

(37) (h, g) = (h, e) · (e, g) = (e, g) · (ϕ(g−1)h, e)

(where e denotes the identity element of the group H or G).
Hence the infinitesimal action φ defined in Prop. 11.1 – which we assume to be complete

– integrates to a left17 group action of H ⋊G on Γ:

Φ: (H ⋊G)× Γ → Γ.

The vector fields XΓ
−t∗J0

∗w on Γ appearing in the infinitesimal action φ are not multi-
plicative vector fields. Hence the group action Φ does not act by groupoid automorphisms
of Γ, i.e., kx ◦ ky will usually not agree with k(x ◦ y) for all k ∈ H ⋊ G, where ◦ denotes
the groupoid multiplication on Γ. The compatibility condition between the action Φ and
the multiplication ◦ on Γ involves the group structure on H ⋊G, as well as the group mor-
phism ∂ : H → G obtained integrating δ : h → g. It is the following (see Thm. 14.1 for a
categorical interpretation).

Proposition 11.2. Assume that the G-action on M is free. Let x, y ∈ Γ be composable
elements (i.e., x ◦ y exists) and let k1 = (h1, g1), k2 = (h2, g2) be elements of H ⋊G.

The elements k1x and k2y are composable iff g1 = (∂h2)g2. In that case

k1x ◦ k2y = (h1h2, g2)(x ◦ y).

11.3. Proof of proposition 11.2. We start considering the two special cases in which
either k1 or k2 is the identity element of H ⋊G.

Lemma 11.3. Let x, y ∈ Γ be composable and let k ∈ H⋊G so that kx and y are composable.
Then kx ◦ y = k(x ◦ y).

Proof. Let k = (h, g). We claim that the composability assumptions on the pairs (x, y) and
(kx, y) imply that k is of the form (h, e). Indeed

(38) s(kx) = s[(h, e)(e, g)x] = s[(e, g)x] = gs(x),

where in the second equality we used the fact that the vector fields X−t∗J0∗w are tangent
to the s-fibers, and in the last equality that G acts by groupoid automorphisms of Γ. Since
s(kx) = t(y) = s(x), from the freeness of the G-action on M at s(x) we conclude that g = e,
proving our claim.

17The action Φ satisfies d
dt
|0Φ(exp(tv), x) = −(φ(v))|x for all v ∈ h⋊ g and x ∈ Γ.
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Assume first that h = exp(w) for some w ∈ h. The diffeomorphism of Γ induced by the
action of k = (h, e) is the time-1 flow of XΓ

t∗J0
∗w. Writing z := (h, e)(t(x)) ∈ Γ we have

(39) z ◦ x = (h, e)x,

since the groupoid action of Γ on itself by left multiplication is generated by right invariant
vector fields (such as XΓ

t∗J0
∗w). Hence

(40) kx ◦ y = (z ◦ x) ◦ y = z ◦ (x ◦ y) = k(x ◦ y),

where the first equality uses (39) and the last one uses (39) applied to x ◦ y.
To conclude we consider the case k = (h, e) for h a general element of H. Write h =

h1 · · · hn where the hi are in the image of the exponential map of h. The conclusion follows
from

kx ◦ y = k1x
′ ◦ y = k1(x

′ ◦ y) = · · · = k(x ◦ y)

where ki := (hi, e) and x′ := k2 · · · knx. In the second equality we used (40) (notice that x′

and y are composable). �

Lemma 11.4. Let x, y ∈ Γ be composable and k = (h, g) ∈ H ⋊ G. Then x and ky are
composable iff k is of the form (h, ∂h−1). In this case x ◦ ky = k(x ◦ y).

Proof. We start claiming that the target map t : Γ →M intertwines the action of h ∈ H on
Γ and the action of ∂h ∈ G on M . Assume first that h lies in the image of the exponential
map of h, i.e., that h = exp(w) for some w ∈ h. The action of h on Γ is obtained taking
the time-1 flow of the vector field XΓ

t∗J0
∗w. We have t∗(X

Γ
t∗J0

∗w) = −XM
J0

∗w = −J∗
1 (δw)

since t is an anti-Poisson map and by Lemma 8.4 1). Further exp(δw) = ∂h since ∂ is the
Lie group morphism integrating δ, so the time-1 flow of −J∗

1 (δw) is given by the element
∂h ∈ G under the action of G on M , proving the claim for h in the image of the exponential
map. If h is a general element of H, write h = h1 · · · hn where the hi are in the image of
the exponential map of h, and apply the above reasoning inductively starting from h1.

Therefore

(41) t(ky) = t((h, e)(e, g)y) = (∂h)t((e, g)y) = (∂h)gt(y)

where in the last equality we used that G acts by groupoid automorphisms. The elements
x and ky are composable if t(ky) agrees with s(x) = t(y). Since the G-action on M is free
we conclude that this is equivalent to (∂h)g = e, proving the first part of the lemma.

To show the second part of the lemma, assume first that h = exp(w) for some w ∈ h. On
the Lie group H⋊G we have (h, ∂h−1) = (h, e)(e, ∂h−1) = exp(w) exp(−δw) = exp(w−δw),
where in the last equality we used the Baker-Campell-Hausdorff formula and the fact that
[(w, 0), (0, δw)]h⋊g = 0. Further

(42) − (φ(w − δw) = XΓ
t∗J0

∗w + (J1
∗δw)Γ = XΓ

t∗J0
∗w + (XM

J0
∗w)

Γ = XΓ
s∗J0

∗w

where we used 1) of Lemma 8.4 in the first equality and Lemma 11.5 below in the second.
Consider the path h(t) := exp(tw) inH from e to h, inducing the path k(t) := (h(t), ∂h−1(t))
in H ⋊G and two paths in Γ: one is τ(t) := k(t)(x ◦ y), the other γ(t) := x ◦ k(t)y. Using
(42) we see that their velocity at time t is

τ̇(t) = (XΓ
s∗J0

∗w)|τ(t)(43)

γ̇(t) = (Lx)∗[(X
Γ
s∗J0∗w

)|k(t)y ] = (XΓ
s∗J0∗w

)|γ(t),(44)
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where the last equality follows from the fact that XΓ
s∗J0

∗w is a left invariant vector field.
Hence γ and τ are integral curves of the same vector field, and since they both start at
(x ◦ y) we conclude that

(45) x ◦ ky = γ(1) = τ(1) = k(x ◦ y).

Now assume that k = (h, ∂h−1) for an arbitrary h ∈ H, and as above we write h = h1 · · · hn
for elements hi in the image of the exponential map. We have

(h, ∂h−1) = (hn, ∂h
−1
n ) · · · (h1, ∂h

−1
1 )

using (A.4), hence the lemma is proven applying recursively18 eq. (45). �

The following is a special case (with G = R) of Thm. 3.3 (ii) of [13].

Lemma 11.5. Given any function f on a symplectic groupoid Γ we have

(46) (XM
f )Γ = XΓ

s∗f −XΓ
t∗f .

Proof of Prop. 11.2. Recall from (37) that any element of H ⋊G can be written as (h, g) =

(e, g)(h̃, e) where h̃ := ϕ(g−1)h (and e denotes the identity of H or G). Assume first that
k1x and k2y are composable. We have

k1x ◦ k2y =(47)

(e, g1)(h̃1, e)x ◦ (e, g2)(h̃2, e)y =(48)

(e, g1)
[

(h̃1, e)x ◦ (e, g−1
1 g2)(h̃2, e)y

]

=(49)

(e, g1)(e, g
−1
1 g2)(h̃2, e)

[

(h̃1, e)x ◦ y
]

=(50)

(e, g1)(e, g
−1
1 g2)(h̃2, e)(h̃1, e)

[

x ◦ y
]

(51)

where in the second equality we used that the G action on Γ is by groupoid automorphisms,
in the third equality we applied the second part of Lemma 11.4 to the underlined term
k := (e, g−1

1 g2)(h̃2, e) (notice that (h̃1, e)x and y are composable), and in the fourth equality

we applied Lemma 11.3 to k′ := (h̃1, e).
The composability assumption on k1x and k2y is clearly equivalent to the composability

of (h̃1, e)x and ky (see (49)). By the first part of Lemma 11.4 applied to (49), this is

equivalent to k being of the form (h, ∂h−1) for some h ∈ H. Now k = (e, g−1
1 g2)(h̃2, e) =

(ϕ(g−1
1 )h2, g

−1
1 g2), so it follows that ∂[ϕ(g−1

1 )h2] = g−1
2 g1, which using Def. A.4 means

∂h−1
2 g1 = g2. We conclude that k1x and k2y are composable iff g1 = (∂h2)g2, proving the

first part of the proposition.
Since g1 = (∂h2)g2 we have

h̃1 = ϕ(g−1
1 )h1 = ϕ(g−1

2 )ϕ(∂h−1
2 )h1 = ϕ(g−1

2 )(h−1
2 h1h2)

(the last equality using Def. A.4). Using this and h̃2 = ϕ(g−1
2 )h2 we get h̃2h̃1 = ϕ(g−1

2 )(h1h2),
and we can simplify the four terms before the square bracket in (51) to

(e, g2)(h̃2h̃1, e) = (e, g2) · (ϕ(g
−1
2 )(h1h2), e) = (h1h2, g2),

finishing the proof of Prop. 11.2. �

18 Notice that the composability assumptions are satisfied since the inverse of (hi, ∂h
−1

i ) is (h−1

i , ∂hi).
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12. The global quotient of Γ

We assume the set-up of Section 11. The action Φ of H ⋊G on Γ (see Subsection 11.2)
is not by Lie groupoid automorphisms. In this Section we show that, in spite of this, the
quotient space has an induced Lie groupoid structure. Further we show that it is a Poisson
groupoid, i.e., a Lie groupoid endowed with a Poisson structure for which the graph of the
multiplication is coisotropic [25].

Proposition 12.1. Suppose that the H ⋊G-action on Γ is free and proper. Then there is
a Poisson groupoid structure on

Γ/(H ⋊G)

������

M/G

for which the natural projection p : Γ → Γ/(H ⋊G) is a groupoid morphism and a Poisson
map.

Proof. We first show that there is an induced groupoid structure on the quotient Γ/(H⋊G).
We have s[(H ⋊G)x] ⊂ Gs(x) and t[(H ⋊G)x] ⊂ Gt(x) for each x ∈ Γ. Indeed by Prop.
11.1 the infinitesimal h ⋊ g-action φ on Γ is given by XΓ

−t∗J0
∗w + (J1

∗v)Γ, which under s∗

maps to J1
∗v and under t∗ maps to XM

J0
∗w+J1

∗v = J1
∗(δw+v) (the last equality by Lemma

8.4 1)). Hence there are well-defined source and target maps of Γ/(H ⋊ G) induced from
those of Γ.

We define the multiplication of composable elements x, y ∈ Γ/(H⋊G) as x◦y := p(x◦y),
where x, y ∈ Γ are composable elements with p(x) = x, p(y) = y. Since the fibers of p are
exactly the H ⋊ G orbits, by Prop. 11.2 the product x ◦ y is independent of the choice of
the choice of composable lifts x and y. The existence of the composable lifts x, y is clear:
if x̃, y are arbitrary lifts to Γ of x, y, the composability of x and y implies that there exists
g ∈ G such that t(y) = g · s(x̃) = s(g · x̃), so just take x := g · x̃.

There is an induced Poisson structure on Γ/(H ⋊ G) for which the projection p is a
Poisson map: the infinitesimal action φ on Γ is given by vector fields XΓ

−t∗J0
∗w and (J1

∗v)Γ,

which are symplectic vector fields (indeed hamiltonian vector fields, see (52).)
At last we prove the compatibility of the groupoid and Poisson structure on the quotient.

The fact that Γ is a symplectic groupoid means that (graph(mΓ)) ⊂ Γ×Γ×Γ̄ is a lagrangian
(in particular coisotropic) submanifold, where mΓ is the multiplication of Γ and Γ̄ denotes
the groupoid Γ endowed with the negative of its symplectic form. The projection p× p× p
is a Poisson map and maps graph(mΓ) surjectively onto graph(mΓ/(H⋊G)). Now if f1, f2
are functions vanishing on graph(mΓ/(H⋊G)) then the pullbacks (p×p×p)−1fi to Γ×Γ× Γ̄
are functions which vanish on graph(mΓ). Therefore their Poisson bracket also vanishes
on graph(mΓ/(H⋊G)), and hence {f1, f2} vanishes on graph(mΓ/(H⋊G)). This shows that
graph(mΓ/(H⋊G)) is a coisotropic submanifold of the corresponding triple product, i.e., that
Γ/(H ⋊G) ⇉M/G is a Poisson groupoid. �

We compare the global quotients of Γ (a Poisson groupoid) with the global quotient of
T ∗[1]M (which corresponds to a Lie bialgebroid). Recall that the infinitesimal counterpart
of a Poisson groupoid is a Lie bialgebroid [16].

Proposition 12.2. The Lie bialgebroid structure on D/G induced by the global quotient of
T ∗[1]M (as in Prop. 9.3) is exactly the infinitesimal counterpart of the the global quotient
of Γ (as in Prop. 13.4).
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Proof. Recall from Remark 9.4 that a Lie algebroid structure on a vector bundle A is
equivalent to a homological vector field on A[1], via the derived bracket construction. The
Lie algebroid structure on D∗/G induced by the global quotient of T ∗[1]M is given using the
pushforward of the vector field XS to (D∗/G)[1]. Hence it is the unique one so that T ∗M →
(T ∗M/D◦)/G = D∗/G is a Lie algebroid morphism. On the other hand the groupoid
structure on Γ/(H ⋊G) is determined by the fact that p : Γ → Γ/(H ⋊G) is a Lie groupoid
morphism, which in turn induces a morphism of Lie algebroids p∗ : ker(s∗)|M → ker(s∗)|M/G

where s denotes the source map of the quotient groupoid. Under the identification at the
beginning of Section 11 this map is just the quotient map T ∗M → (T ∗M/D◦)/G = D∗/G.
We conclude that the Lie algebroid structures on D∗/G determined by Prop. 9.3 and Prop.
13.4 agree.

Recall that a Lie algebroid structure on a vector bundle A is also determined by a degree -1
Poisson bracket on A∗[1], or equivalently by a fiber-wise linear Poisson structure on A∗. The
canonical Lie algebroid structure on TM is determined by the Poisson bracket corresponding
to the standard symplectic form on T ∗[1]M . The Lie algebroid structure on D/G induced by
the global quotient of T ∗[1]M is determined by the projection T ∗[1]M → (D∗/G)[1] being
a Poisson map. On the other hand the projection Γ → Γ/(H ⋊ G) is a Poisson groupoid
morphism by Prop. 12.1, so the induced map on Lie algebroids T ∗M → D∗/G is also a
Poisson map [18, Prop. 11.4.13]. This shows that the two Lie algebroid structures on D/G
determined by Prop. 9.3 and Prop. 13.4 agree. �

13. Hamiltonian reduction of Γ

We assume again the set-up of Section 11 and consider the action Φ of H ⋊G on Γ (see
Subsection 11.2). In this Section we show that the Marsden–Weinstein quotient of Γ at
zero is a symplectic groupoid (not necessarily source simply connected) of J−1

0 (0)/G. This
generalizes results of [13], in which a conventional group G is acting (i.e., h = 0).

The G-action J∗
1 on M is by Poisson diffeomorphism (Lemma 8.4 2)). By Thm. 3.3 of [13]

the lifted G-action on Γ is hamiltonian, and there is a canonical moment map JΓ
1 : Γ → g∗

which is G-equivariant. In particular we have

(52) (J∗
1 v)

Γ = XΓ
(JΓ

1
)∗v

for all v ∈ g. Therefore a moment map for the H ⋊G-action Φ is

JΓ := (−J0 ◦ t, J
Γ
1 ) : Γ → (h⋊ g)∗,

with components −t
∗(J∗

0w) + (JΓ
1 )

∗v where w + v ∈ h⋊ g.
The following is a refinement of Prop. 11.1.

Lemma 13.1. The moment map JΓ is a Poisson map.

Proof. (JΓ)∗|g×g = (JΓ
1 )

∗ preserves Poisson brackets because, by Thm. 3.3 of [13], JΓ
1 : Γ →

g∗ is a G-equivariant moment map.
The computation to show that (JΓ)∗|h×h respects brackets is (34).
To show that (JΓ)∗|h×g respects brackets we compute, for w ∈ h and v ∈ g,

{−t
∗J0

∗w, (JΓ
1 )

∗v} = (XΓ
(JΓ

1
)∗v)(t

∗J0
∗w) = −t

∗J0
∗[(w, 0), (0, v)]h⋊g

where we used (52) and (35) in the second equality. �

Lemma 13.2. Assume that 0 is a regular value of J0 : M → h∗ and that the G-action on
C := (J0)

−1(0) is almost free. Then the identity connected component of (JΓ)−1(0) is a Lie
subgroupoid of Γ with base C.
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Proof. We first argue that (JΓ)−1(0) is a smooth submanifold of Γ. Since 0 is a regular
value of J0 it follows that the assignment w ∈ h 7→ (XΓ

−t∗(J∗

0
w))x is injective for every x ∈

(J0 ◦ t)
−1(0). The almost freeness assumption means that the assignment v ∈ g 7→ (J∗

1 v)m
is injective for every m ∈ J−1(0), hence the assignment v ∈ g 7→ (J∗

1 v)
Γ
x is injective for every

x ∈ (J0 ◦ t)
−1(0) (recall that (J∗

1 v)
Γ
t-projects to J∗

1 v). Since the XΓ
−t∗(J∗

0
w) are tangent to

the s-fibers while the (J∗
1 v)

Γ = XΓ
(JΓ

1
)∗v

are transversal to them, we conclude that JΓ is a

submersion at every point of (J0 ◦ t)
−1(0). In particular 0 ∈ (h ⋊ g)∗ is a regular value of

JΓ = (−J0 ◦ t, J
Γ
1 ), proving our claim.

Denote by Σ the identity connected component of (JΓ
1 )

−1(0), which is a Lie subgroupoid
of Γ by Cor. 4.3 of [13]. We claim that the identity connected component of (JΓ)−1(0),
which is Σ ∩ t

−1(C), is actually contained in s
−1(C). Therefore it is the intersection of the

subgroupoids Σ and t
−1(C) ∩ s

−1(C), and therefore it is itself a subgroupoid.
To prove the claim19 we use that the Lie algebroid A of Σ at p ∈ M , under the identifi-

cation (33), is given by Ap = Tp(G · p)◦ (by Cor. 4.3 of [13] together with eq. (13) there).
We have ♯A|C ⊂ TC: indeed if p ∈ C and ξ ∈ Ap = Tp(G · p)◦, then for all w ∈ h we have

〈♯ξ, d(J∗
0w)〉 = 〈ξ,XM

J∗

0
w〉 = 〈ξ, J∗

1 (δw)〉 = 0

where in the second equality we used Lemma 8.4 1) and in the last one that the infinitesimal
G-action on M is given by the vector fields J∗

1 (v) for v ∈ g. The subgroupoid Σ is obtained
considering the right-invariant distribution R∗(A) ⊂ ker(s∗) on Γ and taking its leaves
through points of the base M (Section 3 of [20]). Take a point in the identity connected
component of (JΓ)−1(0), i.e., take g of Σ with t(g) ∈ C. We can join g to s(g) by a path γ
in the s-fiber, so t∗(γ̇(t)) ∈ TC for all times t by the above, showing that the whole path
t ◦ γ lies in C. In particular s(g) ∈ C, proving the claim. �

Remark 13.3. In [13, Sect. 4.1] a statement analogous to Lemma 13.2 is proved using the
fact that the moment map is a groupoid 1-cocycle. In our case JΓ = (−J0 ◦ t, J

Γ
1 ) is not a

groupoid 1-cocycle, unless J0 ≡ 0.

Proposition 13.4. Assume that 0 is a regular value of J0. Assume that the G-action on
(J0)

−1(0) and the H-action on [(JΓ)−1(0)]id are free, where the latter denotes the identity
connected component of (JΓ)−1(0) ⊂ Γ, and the H ⋊ G action on [(JΓ)−1(0)]id is proper.
Then there are induced symplectic and Lie groupoid structures making

[(JΓ)−1(0)]id/(H ⋊G)

������

(J0)
−1(0)/G

into a symplectic groupoid.

Remark 13.5. When h = {0}, Prop. 13.4 recovers a symplectic groupoid of M/G (see Ex.
15.1).

Proof. [(JΓ)−1(0)]id is smooth by Lemma 13.2. The lifted G-action and the H-action on it
are free. We deduce that the H ⋊ G-action on [(JΓ)−1(0)]id is free. Indeed, assume that
(g, h) ∈ H ⋊ G fixes x ∈ Γ. Then we have s((e, g)x) = s((h, g)x) = s(x), from which we

19Our proof shows that the claim holds even if we replace C = J−1

0
(0) by any other level set of J0.
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conclude that g = e and hence h = e, showing freeness. By the properness assumption, the
quotient [(JΓ)−1(0)]id/(H ⋊G) is smooth.

Lemma 13.1 ensures that JΓ is (H ⋊G)-equivariant, so the Marsden–Weinstein reduced
space at zero, [(JΓ)−1(0)]id/(H ⋊G), is a symplectic manifold.

[(JΓ)−1(0)]id is a Lie subgroupoid of Γ by Lemma 13.2, and [(JΓ)−1(0)]id/(H ⋊ G) has
an induced Lie groupoid structure (see the first half of the proof of Thm. 12.1).

To show the compatibility between the symplectic and groupoid structure, notice that
the dimension of (JΓ)−1(0)/(H ⋊G) is double the dimension of the base (J0)

−1(0)/G, and
that the reduced symplectic form is multiplicative because the symplectic form on Γ is
multiplicative. �

We conclude this section comparing the structures on the Marsden–Weinstein quotients
of Γ and T ∗[1]M .

Proposition 13.6. The Poisson structure on (J0)
−1(0)/G given20 by the quotient symplec-

tic groupoid of Prop. 13.4 agrees with the one obtained in Prop. 10.1.

Proof. Denote C := (J0)
−1(0). Endow C/G with the Poisson structure {·, ·}C/G obtained in

Prop. 10.1, which by Remark 10.3 is computed pulling back functions on C/G to functions
on C. Consider the commutative diagram:

Γ ⊃ (JΓ)−1(0)
π̃
//

s

��

(JΓ)−1(0)/(H ⋊G)

s

��

M ⊃ C
π

// C/G

.

Given functions f1, f2 on C/G we have

(s ◦ π̃)∗{f1, f2}C/G = (π ◦ s)∗{f1, f2}C/G = {(π ◦ s)∗f1, (π ◦ s)∗f2} = π̃∗{s∗f1, s
∗f2}.

Here we used that π ◦ s and π̃ preserve Poisson brackets (upon extensions of functions,
which cause no problems since the two inclusions on the left are inclusions of coisotropic
submanifolds). Now just use the fact that π̃∗ is injective, to conclude that s is a Poisson
map. �

14. Lie 2-group actions

In this Section we show that the action Φ of H ⋊G on Γ defined in Subsection 11.2 is an
action in Gpd, the category of Lie groupoids (rather than just an action in the category of
smooth manifolds).

We start recalling some notions from Appendix A. The DGLA h[1] ⊕ g corresponds to
a crossed module of Lie algebras, which integrates to a crossed module of Lie groups. A
crossed module of Lie groups gives rise to a (strict) Lie 2-group, as follows. Given a crossed
module of Lie groups (H,G, ∂, ϕ), consider the action of H on G by h 7→ ∂h· and the
induced transformation groupoid

H ×G

�� ����

G

,

20By the requirement that its source map s be Poisson.
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which we denote by G. This means that the source and target maps are given by

s(h, g) = g t(h, g) = ∂h · g

and the groupoid multiplication is (h1, g1) ◦ (h2, g2) = (h1h2, g2). Endow the spaces of
arrows with the semi-direct group structure given by the action ϕ of G on H (see (36)).
The space of objects G already has a group structure. These data make G into a Lie-2 group
(Def. A.5).

Thinking of a Lie 2-group as a group object in Gpd leads to define a strict action of a
Lie 2-group G on a Lie groupoid Γ as a Lie groupoid morphism G × Γ → Γ which is also a
group action (for the groups H ⋊G and G).

Theorem 14.1. The group actions Φ of H ⋊ G on Γ (integrating φ) and of G on M
(integrating J∗

1 , which we assume to be a free action) combine to a strict action of the Lie
2-group H ×G⇉G on Γ⇉M .

Proof. We have to check that the map

Φ: (H ×G)× Γ

�� ����

// Γ

�� ����

G×M // M

is a groupoid morphism, i.e., that it respects source map, target map and multiplication.
Let (h, g) ∈ H ⋊ G and x ∈ Γ. The source is preserved because s((h, g)x) = gs(x) by

(38). The target is preserved because because t((h, g)x) = (∂h)gt(x) by (41).
To show that the multiplication is preserved let (h1, g1, x1) and (h2, g2, x2) be composable

elements of the product groupoid (H × G) × Γ. This means that g1 = (∂h2)g2 (by the
definition of the transformation groupoid H ×G⇉G) and that x1 and x2 are composable.
We have to show that applying first Φ and then the multiplication in Γ yields the same as
applying first the multiplication in the groupoid (H ×G)× Γ and then Φ. In other words,
we have to show

(53) (h1, g1)x1 ◦ (h2, g2)x2 = (h1h2, g2)[x1 ◦ x2].

This equation holds by Prop. 11.2. �

Wockel defines in [26, Def. I.8] the notion of principal G-2-bundle over a base manifold N ,
where G is a (strict) Lie 2-group. It is a categorified version of the usual notion of principal
bundle. One reason why principal G-2-bundles are interesting is the following [26, Rem.
II.11]: when the Lie 2-group G corresponds to a crossed module of Lie groups of the form
(H,Aut(H), ∂, ϕ), where H is a Lie group and ∂ : H → Aut(H) is given by conjugation,
then principal G-2-bundles define gerbes over N .

We show that, under certain assumptions, our action Φ defines a principal G-2-bundle:

Proposition 14.2. If the action Φ is such that both the G-action on M and the H ⋊ G-
action on Γ are free and proper with the same quotient N := M/G = Γ/(H ⋊G), then the
action Φ makes

Γ
π
→ N

into a principal G-2-bundle.

Proof. We have to check one by one the items of Definition I.8 of [26].

a) Φ is both a Lie group action and a morphism of Lie groupoids by Thm. 14.1.
b) The projection π : Γ → Γ/G = N is a Lie groupoid morphism by Prop. 12.1.
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c) If {Ui} is an open cover of N over which both the G-bundle M and the H⋊G-bundle
Γ are trivial, then there exist Lie groupoid isomorphisms Γ|π|−1

M
(Ui)

∼= Ui × G which

intertwine the G-action by Φ on the L.H.S. and the G-action by left multiplication
on the R.H.S.

To prove this we first need
Claim: let x ∈ Ui and x̂ ∈M with π(x̂) = x. Then

(54) G ∼= Φ(G, x̂), k 7→ Φ(k, x̂)

is a Lie groupoid isomorphism (where the R.H.S. is seen as a subgroupoid of Γ) and
intertwines the G-actions.
To prove the claim notice that the above map is a bijection because the G-action on
Γ is free. It is a Lie groupoid morphism as consequence of the fact that Φ is a Lie
groupoid morphism (Thm. 14.1). It intertwines the G-actions because Φ is a Lie
group action.

By the principality assumptions we can choose a section of π|M : M → N over
Ui. For every x ∈ U denote by x̂ ∈ M its image under the section. Since Γ/G is
the trivial groupoid N⇉N it follows that the orbits of the Lie groupoid Γ⇉M lie
inside the fibers of π|M : M → N . Hence we can write Γ|π|−1

M
(Ui)

= ∪x∈Ui
Γ|π|−1

M
(x) =

∪x∈Ui
Φ(G, x̂), and from (54) we conclude that

(55) ϕi : Ui × G ∼= Γ|π|−1

M
(Ui)

, (x, k) 7→ Φ(k, x̂)

is an isomorphism of Lie groupoids intertwining the G-actions.
d) ϕi intertwines the first projection onto Ui and π since π(x̂) = x.

�

15. Examples

Let (M,π) be a Poisson manifold and Γ its source simply connected symplectic groupoid.
We present examples for the global quotient and the Marsden–Weinstein quotient at

zero of Γ (the Poisson groupoid of Prop. 12.1 and the symplectic groupoid of Prop. 13.4
respectively).

In the first example we let h = 0 and recover a symplectic groupoid for M/G, as in [13].

Example 15.1. Let g be a Lie algebra. View it as a DGLA concentrated in degree 0. This
corresponds to the crossed module of Lie algebras (Def. A.2) obtained setting h = 0.

A morphism of DGLAs g → χ(T ∗[1]M) with Poisson moment map corresponds simply
to an action of g on M by Poisson vector fields (see Cor. 8.5). In this case the action Φ
on Γ (Section 11.2) is just the lift of the G-action on M . Hence the Marsden–Weinstein
quotient of Prop. 13.4 is the symplectic groupoid for M/G constructed in Cor. 4.7 of [13]
(which generally is not source-simply connected).

In the second example we let h = g, recover hamiltonian actions, and construct a sym-
plectic groupoid for the “Marsden–Weinstein quotient” of M .

Example 15.2. Let g be a Lie algebra. Then δ = Id : g → g, together with the adjoint
action, gives a crossed module of Lie algebras. Denote the corresponding DGLA by g[1]⊕g.
A morphism of DGLAs ψ : g[1]⊕g → χ(M) with Poisson moment map corresponds exactly
to a g-action on (M,π) with equivariant moment map J0 : M → g∗ (see Cor. 8.5). The
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corresponding infinitesimal action on the symplectic groupoid Γ is

φ : g⋊ g → χsympl(Γ)

w + v 7→ XΓ
−t∗J0

∗w +Xs∗J0
∗v−t∗J0

∗v,

by Prop. 11.1 together with Lemma 11.5. This integrates to a Lie group action Φ of G⋊G
on Γ, whose Marsden–Weinstein quotient as in Prop. 13.4 is a symplectic groupoid for
J−1
0 (0)/G, the Marsden–Weinstein quotient of the G action on M .
The global quotient of Γ as in Prop. 12.1 is a Poisson groupoid over M/G of dimension

2 dim(M/G). However it is not a symplectic groupoid in general. For instance consider the
g = R action on M = (R4, ∂

∂y1
∧ ∂
∂y2

+ ∂
∂y3

∧ ∂
∂y4

) with moment map J0 = y4. The action Φ

of G⋊G on Γ = R
4 × R

4 has moment map (−x4, y4 − x4), and the global quotient of Γ is
the pair groupoid R

3 × R
3 with Poisson structure − ∂

∂x1
∧ ∂
∂x2

+ ∂
∂y1

∧ ∂
∂y2

.

Remark 15.3. Thm. 3.6 of [12] considers Poisson actions of Poisson Lie groups on (M,π)
with moment map J0. In the special case in which the Poisson Lie group G has trivial
Poisson structure, their construction is the following: they lift the action to a hamiltonian
action of the product group G×G on Γ, and state that the Marsden–Weinstein quotient is
a symplectic groupoid of J−1

0 (0)/G.
The corresponding infinitesimal action and our action φ in Ex. 15.2 coincide21 by means

of the Lie algebra isomorphism g ⋊ g ∼= g × g, (w, v) 7→ (w + v, v), so this G × G action
and the global action Φ in Ex. 15.2 coincide by means of the Lie group isomorphism
G⋊G ∼= G×G, (h, g) 7→ (hg, g).

In the third example we let h be an arbitrary g-module, generalizing Ex. 15.1.

Example 15.4. Let g be a Lie algebra and h a g-module. Viewing h as an abelian Lie
algebra and setting δ : h → g to be the zero map we obtain a crossed module. A morphism
of DGLAs h[1] ⊕ g → χ(T ∗[1]M) with Poisson moment map corresponds to an action of g
on M by Poisson vector fields and a g-equivariant map J0 : M → h∗ (which we assume to
be a submersion) whose fibers are Poisson submanifolds of M (see Cor. 8.5). An instance
of such a situation is given by M = N × h∗, where N is a Poisson manifold on which g acts
by Poisson vector fields: as g action on M = N × h∗ one can take the diagonal action, and
as J0 just the natural projection. The quotient M/g is interesting because usually it is not
a product (even though M = N × h∗ is).

Appendix A. DGLAs, crossed modules, Lie 2-groups

In this Appendix we explain the correspondences between the following algebraic struc-
tures:

• DGLAs concentrated in degrees −1 and 0
• crossed modules of Lie algebras
• crossed modules of Lie groups
• Lie 2-groups.

Definition A.1. A graded Lie algebra consists of a a graded vector space22 L = ⊕i∈ZLi
together with a bilinear bracket [·, ·] : L× L→ L such that

– the bracket is degree-preserving: [Li, Lj ] ⊂ Li+j

21Up to a global sign, due to different conventions.
22We assume that L is bounded, i.e., that there exists an integer I such that Li = {0} whenever |i| > I .
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– the bracket is graded skew-symmetric: [a, b] = −(−1)|a||b|[b, a]
– the adjoint action [a, ·] is a degree |a| derivation of the bracket: [a, [b, c]] = [[a, b], c]+
(−1)|a||b|[b, [a, c]].

A differential graded Lie algebra (DGLA) (L, [·, ·], δ) is a graded Lie algebra together with
a linear δ : L→ L such that

– δ is a degree 1 derivation of the bracket: δ(Li) ⊂ Li+1 and δ[a, b] = [δa, b] +

(−1)|a|[a, δb]
– δ2 = 0.

Above a, b, c are homogeneous elements of L of degrees |a|, |b|, |c| respectively.

Definition A.2. [1, Def. 47] A crossed module of Lie algebras (or differential crossed
module) consists of Lie algebras h, g with a Lie algebra morphism δ : h → g and a left Lie
algebra action λ of g on h by derivations satisfying

– λ(δw) = [w, ·]h
– δ(λ(v)w) = [v, δw]g

for all w ∈ h and v ∈ g.

Lemma A.3. DGLAs concentrated in degrees −1 and 0 are in one-to-one correspondence
with crossed modules of Lie algebras.

This lemma is a well-known fact. An explicit proof is given in [27]; here we recall one
direction of this correspondence. A DGLA concentrated in degrees −1 and 0 is of the form
L = h[1]⊕ g for usual vector spaces h, g. To such DGLA (h[1] ⊕ g, [·, ·], δ) one associates

– the Lie algebra (h, [·, ·]δ) where [w1, w2]δ = [δw1, w2]
– the Lie algebra g

– the Lie algebra morphism δ : h → g

– the action of g on h given by v 7→ [v, ·].

Definition A.4. [14, Sec. 3] A crossed module of Lie groups consists of groups H,G, a
homomorphism ∂ : H → G and a left action ϕ of G on H by group automorphisms such
that for all h ∈ H and g ∈ G:

– ϕ(∂h1)h2 = h1h2h
−1
1

– ∂(ϕ(g)h) = g∂hg−1.

Crossed modules of Lie algebras clearly integrate to crossed modules of Lie groups for
which the groups G and H are simply connected.

Definition A.5. [14, Sec. 3] A (strict) Lie 2-group (also known as categorical group) is a
group object in Gpd, where Gpd denotes the category of Lie groupoids and (strict) Lie
groupoid homomorphisms. In other words, a Lie 2-group consists of a Lie groupoid G and
(strict) Lie groupoid morphisms ◦ : G × G → G, e : ({pt}⇉{pt}) → G, and i : G → G,
satisfying the usual conditions for the multiplication, identity element and inverses on a
group.

Remark A.6. Writing Ω⇉M for G, in particular both the space of arrows Ω and the space
of objects M are groups.

Lemma A.7. [3][14, Sec. 3]. Crossed modules of Lie groups are in one-to-one correspon-
dence to Lie 2-groups.

We recall one direction of this correspondence in Section 14.
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