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ON THE MULTI-DIMENSIONAL CONTROLLER AND STOPPER GAMES

ERHAN BAYRAKTAR AND YU-JUI HUANG

Abstract. We consider a zero-sum stochastic differential controller-and-stopper game in which

the state process is a controlled jump-diffusion evolving in a multi-dimensional Euclidean space. In

this game, the controller affects both the drift and the volatility terms of the state process. Under

appropriate conditions, we show that the lower value function of this game is a viscosity solution

to an obstacle problem for a Hamilton-Jacobi-Bellman equation, by generalizing the weak dynamic

programming principles in [3].
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1. Introduction

While the game of control and stopping is closely related to some common problems in Mathe-

matical Finance, such as pricing American-type contingent claims (see e.g. [9], [13] and [14]) and

minimizing the probability of ruin (see [2]), it has not been studied to a great extent except under

certain particular cases. Karatzas and Sudderth [12] study a zero-sum game in which the controller

affects the coefficients of a linear diffusion along a given interval on R, while the stopper decides the

time to halt the diffusion. Under appropriate conditions, they not only prove that this game has a

value but also describe fairly explicitly a saddle-point of optimal strategies. It is, however, difficult

to extend their remarkable results to multi-dimensional cases following the same line of arguments

because their techniques rely heavily on the optimal stopping results for one-dimensional diffusions.

Karatzas and Zamfirescu [15] develop a martingale approach to deal with a multi-dimensional game

of controll and stopping; but since their method makes use of Girsanov’s theorem, which demands

a nondegenerate condition on the volatility coefficient of the state process Xt,x,α
· , only the drift of

Xt,x,α
· is allowed to be controlled in this game.

In contrast, we investigate a much more general zero-sum controller-and-stopper game, at least

under a Markovian framework. In our game, the state process Xt,x,α
· is a controlled jump-diffusion

evolving in a multi-dimensional Euclidean space. The controller intends to maximize his payoff,

consisting of a running reward
∫ τ
t f(s,Xt,x,α

s , αs)ds and a terminal reward g(Xt,x,α
τ ), by selecting

a control α that affects all the coefficients, the drift, the volatility and the jump terms, of Xt,x,α
· .

The stopper intends to minimize his cost by choosing the duration of the game, in the form of a

stopping time τ . We show that the lower value function V of this game, as defined in Section 2, is

a viscosity solution to an obstacle problem for a Hamilton-Jacobi-Bellman equation.
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Our method differs largely from those in [12] and [15] mentioned above. We generalize the

weak dynamic programming principles (WDPPs) introduced in [3] to the controller-and-stopper

context. With the aid from the theory of Reflected Backward Stochastic Differential Equations

(RBSDEs) (see e.g. [6], [4] and [5]), we modify the arguments in Theorems 3.1 and 4.1 of [3] and

obtain a dynamic-programming-type result; see Proposition 3.1, which is the key to proving the

supersolution property of V . On the other hand, the proof of the corresponding WDPP in our case

requires some additional probabilistic techniques; see Theorem 4.1.

The structure of this paper is simple. We set up the framework of our study in Section 2, where

assumptions and notations are introduced. In Sections 3 and 4, the supersolution property and the

subsolution property of V are derived, respectively.

2. The Model

Consider the product space Ω := ΩW × ΩN , where ΩW := C([0, T ];Rd) and ΩN is the set of

interger-valued measures on [0, T ]×R
n. For any ω = (ω1, ω2) ∈ Ω, set W (ω) = ω1 and N(ω) = ω2.

Now define F
W = {FW

t }t∈[0,T ] (resp. F
N = {FN

t }t∈[0,T ]) as the smallest right-continuous filtration

on ΩW (resp. ΩN ) such that W (resp. N) is optional. Let PW denote the Wiener measure

on (ΩW ,FW
T ), and PN denote the measure on (ΩN ,FN

T ) under which N is a Poisson random

measure with intensity Ñ(dq, dt) = λ(dq)dt, for some finite measure λ on R
n. Now we define

the probability measure P := PW ⊗ PN on (Ω,FW
T ⊗ FN

T ) and let F = {Ft}t∈[0,T ] be the natural

right-continuous filtration generated by (W,N) which is augmented with P−null sets. Note that

under this construction, W and N are independent under P. Let Xτ,ξ,α denote a R
d-valued process

satisfying the following SDE:

dXτ,ξ,α
t = b(t,Xτ,ξ,α

t , αt)dt+ σ(t,Xτ,ξ,α
t , αt)dWt +

∫

Rn

γ(t,Xτ,ξ,α
t− , αt, q)N(dq, dt), t ∈ [τ, T ] (2.1)

where αt, the control, belongs to A, a subset of all progressively measurable processes valued in

R
m; τ is a stopping time and Xτ,ξ,α

τ = ξ is such that E[ξ2] < ∞.

We consider a game of control and stopping in a finite time horizon T with running gain f ≥ 0,

terminal reward g ≥ 0 and discount rate c ≥ 0. The functions f , g, c are assumed to be measurable.

We also assume that the discount rate is bounded above by some positive real number c̄. Let Tt,T

denote the set of all F-stopping times with values in [t, T ]. We introduce the lower value function

concerning this game

V (t, x) := sup
α∈At

inf
τ∈T t

t,T

E

[∫ τ

t
e−

∫ s

t
c(u,Xt,x,α

u )duf(s,Xt,x,α
s , αs)ds+ e−

∫ τ

t
c(u,Xt,x,α

u )dug(Xt,x,α
τ )

]
, (2.2)

for any (t, x) ∈ [0, T ] × R
d, where At is the set of all α ∈ A that are independent of Ft and T t

t,T is

the set of all τ ∈ Tt,T that are indepentdent of Ft.
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We assume that there exists a K > 0 such that for any t ∈ [0, T ], x, y ∈ R
d, q ∈ R

n and

α, β ∈ R
m,

|b(t, x, α) − b(t, y, β)| + |σ(t, x, α) − σ(t, y, β)| ≤ K|x− y|+ |α− β|,

|b(t, x, α)| + |σ(t, x, α)| ≤ K(1 + |x|+ |α|),

|γ(t, x, α, q) − γ(t, y, β, q)| ≤ K(|x− y|+ |α− β|),

|γ(t, x, α, q)| ≤ K(1 + |x|+ |α|).

(2.3)

The above conditions on the coefficients impliy that for any initial condition (t, x) ∈ [0, T ]×R
d and

any admissible control α ∈ A, equation (2.1) admits a unique strong solution Xτ,ξ,α and satisfies

the flow property; see Section 5 of [3]. In addition, we assume that g is continuous, and that f and

g satisfy the polynomial growth condition

|f(t, x, α)| + |g(x)| ≤ K(1 + |x|p) for some p ≥ 1. (2.4)

Remark 2.1. Under assumption (2.3) the solution of (2.1) satisfies

E

[
sup

τ≤r≤T
|Xτ,ξ,α

r |p

]
< ∞, (2.5)

for all p ≥ 1, see Section 5 of [3]. Therefore, the polynomial growth condition (2.4) on f and g

implies that for any (t, x) ∈ [0, T ]× R
d and control α ∈ A,

E

[∫ T

t
f(s,Xt,x,α

s , αs)ds + sup
t≤r≤T

g(Xt,x,α
r )

]
< ∞, (2.6)

as the following estimation demonstrates

E

[
sup

t≤r≤T

(∫ r

t
e−

∫ s
t
c(u,Xt,x,α

u )duf(s,Xt,x,α
s , αs)ds+ e−

∫ r
t
c(u,Xt,x,α

u )dug(Xt,x,α
r )

)]

≤ E

[
sup

t≤r≤T

∫ r

t
f(s,Xt,x,α

s , αs)ds

]
+ E

[
sup

t≤r≤T
g(Xt,x,α

r )

]

≤

∫ T

t
E[f(s,Xt,x,α

s , αs)]ds+ E

[
sup

t≤r≤T
g(Xt,x,α

r )

]

≤

∫ T

t
E|K(1 + |Xt,x,α

s |p)|ds+ E

[
sup

t≤r≤T
K(1 + |Xt,x,α

r |p)

]

< ∞.

(2.7)

For (t, x, p,A) ∈ [0, T ] × R
d × R

d × Sd, define

H(t, x, p,A) := inf
α∈Rm

Hα(t, x, p,A),

where

Hα(t, x, p,A) := −b(t, x, α)−
1

2
Tr[σσ′(t, x, α)A]−

∫

Rn

[v(t, x+γ(t, x, α, q))−v(t, x)]λ(dq)−f(t, x, α).
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The Hamilton-Jacobi-Bellman equation associated with this game is the following nonlinear PDE

max

{
c(t, x)v −

∂v

∂t
+H(t, x,Dxv,D

2
xv), v − g(x)

}
= 0, (2.8)

on [0, T ) × R
d, with the terminal condition

v(T, x) = g(x), ∀ x ∈ R
d. (2.9)

Also, consider the lower-semicontinuous envelope

H∗(z) := lim inf
z′→z

H(z′),

for any z = (t, x, p,A) ∈ [0, T ]× R
d × R

d × Sd.

2.1. Notation. First, observe that the value function can be written as

V (t, x) := sup
α∈At

inf
τ∈T t

t,T

E

[∫ τ

t
Y t,x,1,α
s f(s,Xt,x,α

s , αs)ds+ Y t,x,1,α
τ g(Xt,x,α

τ )

]
,

where dY t,x,y,α
s = −Y t,x,y,α

s c(s,Xt,x,α
s )ds, Y t,x,y,α

t = y > 0. By increasing the state process to

(X,Y,Z) with dZt,x,y,z,α
s = Y t,x,y,α

s f(s,Xt,x,α
s , αs)ds, Zt,x,y,z,α

t = z ∈ R+, and considering the value

function

V̄ (t, x, y, z) := sup
α∈At

inf
τ∈T t

t,T

E
[
F (Xt,x,α

τ , Y t,x,y,α
τ , Zt,x,y,z,α

τ )
]
,

where F (x, y, z) := z + yg(x), we have

V̄ (t, x, y, z) = yV (t, x) + z.

It follows that V (t, x) = V̄ (t, x, 1, 0) and V̄ ∗(t, x, y, z) = yV ∗(t, x) + z, where V ∗ is the upper

semi-continuous envelope of V

V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′).

We denote the lower semi-continuous envelope by

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′).

Remark 2.2. When |f(t, x, α) − f(t, y, α)| + |g(x) − g(y)| ≤ K|x − y|, the value function V is

continuous, i.e., V ∗ = V∗. However, in general this may not be true.

Let S := R
d × R

2
+. Mimicking the relation between V and V̄ , we define for any real-valued ϕ

with domain [0, T ] × R
d the function ϕ̄ : [0, T ]× S 7→ R by

ϕ̄(t, x, y, z) := yϕ(t, x) + z.

We also define Now set x̄ := (x, y, z) and

X̄t,x̄,α
s :=




Xt,x,α
s

Y t,x,y,α
s

Zt,x,y,z,α
s


 .
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For any (t, x̄) ∈ [0, T )× S, (α, τ) ∈ At × Tt,T , introduce the function

J(t, x̄;α, τ) := E[F (X̄t,x̄,α
τ )].

Observe that F (X̄t,x̄,α
τ ) = z + yF (X̄

t,(x,1,0),α
τ ); it follows that J(t, x̄;α, τ) = z + yJ(t, (x, 1, 0);α, τ).

Remark 2.3. In the definition of V (t, ·), we restrict to control processes and stopping times which

are independent of Ft for some technical reasons, as can be seen in the proof of Lemma 3.1 below.

It is, however, not restrictive under our model; namely, for any (t, x) ∈ [0, T ]×R
d, we demonstrate

in Proposition 2.1 below that

V (t, x) = Ṽ (t, x),

where

Ṽ (t, x) := sup
α∈A

inf
τ∈Tt,T

E

[∫ τ

t
e−

∫ s

t
c(u,Xt,x,α

u )duf(s,Xt,x,α
s , αs)ds+ e−

∫ τ

t
c(u,Xt,x,α

u )dug(Xt,x,α
τ )

]
. (2.10)

We first present a lemma that will be used in proving Proposition 2.1 and Theorem 4.1.

Lemma 2.1. For any (t, x̄) ∈ [0, T ]× S, θ ∈ Tt,T and α ∈ A, we have P-a.s. that

essinf
τ∈Tθ,T

E[F (X̄t,x̄,α
τ )|Fθ] = inf

τ∈Tθ,T
E[F (X̄t,x̄,α

τ )|Fθ].

Proof. Let T d
θ,T be the stopping times in Tθ,T that have values in the set of dyadic rationals. Then

we have P-a.e. ω ∈ Ω

(
essinf
τ∈Tθ,T

E[F (X̄t,x̄,α
τ )|Fθ]

)
(ω) ≤

(
essinf
τ∈T d

θ,T

E[F (X̄t,x̄,α
τ )|Fθ]

)
(ω) = inf

τ∈T d
θ,T

E[F (X̄t,x̄,α
τ )|Fθ](ω). (2.11)

Now we claim that

inf
τ∈T d

θ(ω),T

E[F (X̄t,x̄,α
τ )|Fθ](ω) = inf

τ∈Tθ(ω),T

E[F (X̄t,x̄,α
τ )|Fθ](ω). (2.12)

For any τ ∈ Tθ,T , there exists a decreasing sequence of stopping times {τn}n∈N ⊂ T d such that

τ = limn→∞ τn. By the dominated convergence theorem, which we can apply thanks to (2.5), (2.4),

and a calculation similar to (2.7), for P-a.e. ω ∈ Ω

lim
n→∞

E[F (X̄t,x̄,α
τn )|Fθ](ω) = E[F (X̄t,x̄,α

τ )|Fθ](ω), (2.13)

from which it follows that (2.12) is indeed true. The statement of the lemma is a consequence of

(2.11) and (2.12). �

Proposition 2.1. For any (t, x) ∈ [0, T ] × R
d, V (t, x) = Ṽ (t, x).

Proof. Fix α ∈ At. It is obvious that

inf
τ∈Tt,T

J(t, (x, 1, 0);α, τ) ≤ inf
τ∈T t

t,T

J(t, (x, 1, 0);α, τ). (2.14)
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Take an arbitrary τ ∈ T t
t,T . Observe that for any fix (ωs)0≤s≤t, the map τ(ωs)0≤s≤t

: (ωs−ωt)t≤s≤T 7→

τ((ωs)0≤s≤t, (ωs − ωt)t≤s≤T ) is a stopping time independent of Ft, thanks to the independence of

increments of the Brownian motion and the compound Poisson process. It follows that

J(t, (x, 1, 0);α, τ) = E

[
E[F (X̄t,x,1,0,α

τ(ωs)0≤s≤t
) | Ft]

]
=

∫
E

[
F (X̄t,x,1,0,α

τ(ωs)0≤s≤t
)
]
dP(ωs)0≤s≤t

≥ inf
τ∈T t

t,T

J(t, (x, 1, 0);α, τ). (2.15)

This, together with (2.14), shows that

inf
τ∈Tt,T

J(t, (x, 1, 0);α, τ) = inf
τ∈T t

t,T

J(t, (x, 1, 0);α, τ). (2.16)

We can therefore conclude

Ṽ (t, x) ≥ sup
α∈At

inf
τ∈Tt,T

J(t, (x, 1, 0);α, τ) = sup
α∈At

inf
τ∈T t

t,T

J(t, (x, 1, 0);α, τ) = V (t, x).

Now we want to show the opposite inequality. Fix x̄ ∈ S. For any α ∈ A, thanks to Lemma D.1

in Appendix D of [11], we know that there exists a sequence of stopping times {τn}n∈N ⊂ Tt,T such

that the sequence {E[F (X̄t,x̄,α
τn )|Ft]}n∈N is nonincreasing and

lim
n→∞

E[F (X̄t,x̄,α
τn )|Ft] = essinf

τ∈Tt,T
E[F (X̄t,x̄,α

τ )|Ft].

(Although Lemma D.1 is for esssup, we can state the corresponding result for essinf). Note that by

(2.5) and (2.4), E[F (X̄t,x̄,α
τ1 )|Ft] is integrable. Therefore, by the dominated convergence theorem,

inf
τ∈Tt,T

E[F (X̄t,x̄,α
τ )] ≤ lim

n→∞
E[F (X̄t,x̄,α

τn )] = lim
n→∞

E[E[F (X̄t,x̄,α
τn )|Ft]]

= E[ lim
n→∞

E[F (X̄t,x̄,α
τn )|Ft]] = E[essinf

τ∈Tt,T
E[F (X̄t,x̄,α

τ )|Ft]]

= E[ inf
τ∈Tt,T

E[F (X̄t,x̄,α
τ )|Ft]] =

∫
inf

τ∈Tt,T
E

[
F (X̄

t,x̄,α(ωs)0≤s≤t
τ )

]
dP(ωs)0≤s≤t

≤ sup
α∈At

inf
τ∈Tt,T

E[F (X̄t,x̄,α
τ )],

where the fourth equality comes from Lemma 2.1 and the last inequality is due to the fact that for

any fix (ωs)0≤s≤t, the map α(ωs)0≤s≤t
: (ωs − ωt)t≤s≤T 7→ α((ωs)0≤s≤t, (ωs − ωt)t≤s≤T ) is a control

independent of Ft, thanks again to the independence of increments of the Brownian motion and

the compound Poisson process. Now by taking supremum over α ∈ A, we get

sup
α∈A

inf
τ∈Tt,T

E[F (X̄t,x̄,α
τ )] ≤ sup

α∈At

inf
τ∈Tt,T

E[F (X̄t,x̄,α
τ )] ≤ sup

α∈At

inf
τ∈T t

t,T

E[F (X̄t,x̄,α
τ )].

Setting x̄ = (x, 1, 0), we see that the above inequality yields Ṽ (t, x) ≤ V (t, x). �

3. Supersolution Property

In this section, with the aid of some results concerning RBSDEs, we are able to modify the

arguments in [3] to show that the value function V∗ is a viscosity supersolution to (2.8).
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Lemma 3.1. Fix t ∈ [0, T ]. Then for any α ∈ At, the function

Wα(s, x̄) := inf
τ∈T s

s,T

J(s, x̄;α, τ)

is continuous on [0, t] × S.

Proof. Fix t ∈ [0, T ] and choose an arbitrary α ∈ At. For any s ∈ [0, t] and x̄ = (x, y, z) ∈ S, define

the function f̃ (s,x) : Ω× [s, T ]× R 7→ R by

f̃ (s,x)(r, y) := f(r,Xs,x,α
r , αr)− c(r,Xs,x,α

r )y.

Moreover, set ξ := g(Xs,x,α
T ) and Sr := g(Xs,x,α

r ) for r ∈ [s, T ]. Note that c(r,Xs,x,α
r ) is a bounded

process, and by (2.4) we have f(·,Xs,x,α
· , α·) ∈ H

2
s,T (R), ξ ∈ L

2, and E[supr∈[s,T ] |Sr|
2] < ∞. Now

let (Ys,x
r ,Zs,x

r ,Ks,x
r ; s ≤ r ≤ T ) be the unique solution to the RBSDE with RCLL obstacle (see e.g.

[7], [8]) associated with the data (ξ, f̃ , S). Following the arguments in Proposition 3.5 of [5] with

the help from equation (12) in [8], we have

Ys,x
r = essinf

τ∈Tr,T
E

[∫ τ

r
e−

∫ l
r
c(u,Xs,x,α

u )duf(l,Xs,x,α
l , αl)dl + e−

∫ τ
r
c(u,Xs,x,α

u )dug(Xs,x,α
τ )

∣∣∣∣Fr

]
.

(Although the results in [5] and [8] are stated for RBSDEs that characterize a process Ys,x
· bounded

below by the obstacle S·, we can state analogous results in the case whereYs,x
· is bounded above, not

below, by S·). Now we claim that for all s ∈ [0, t], Ys,x
s is deterministic and equals Wα(s, (x, 1, 0)).

Noting that α ∈ As for all s ∈ [0, t], we get

Ys,x
s ≤ essinf

τ∈T s
s,T

E[F (X̄s,x,1,0,α
τ ) | Fs] = inf

τ∈T s
s,T

E[F (X̄s,x,1,0,α
τ )] = Wα(s, (x, 1, 0))..

Since the opposite inequality follows from calculations similar to (2.15), the claim is proved.

Note that f̃ (s,x) and g satisfy (20), (21) and (22) in [4] and that the calculation in Proposition

3.6 of [4] still holds in our case with RCLL obstacle. We can therefore proceed as in Lemma 8.4 of

[4] and conclude that Ys,x
s = Wα(s, (x, 1, 0)) is continuous on [0, t]× R

d. Finally, observing that

Wα(s, x̄) = z + yWα(s, (x, 1, 0)),

we conclude that Wα(s, x̄) is continuous on [0, t] × S. �

Now, we want to modify the arguments in [3] to get the following result, which is the key to

proving the supersolution property of V .

Proposition 3.1. Fix (t, x̄) ∈ [0, T ] × S and ε > 0. Take arbitrary α ∈ At, θ ∈ T t
t,T and ϕ ∈

USC([0, T ]× R
d) with ϕ ≤ V . We have the following:

(i) E[ϕ̄+(θ, X̄t,x̄,α
θ )] < ∞;

(ii) If, moreover, E[ϕ̄−(θ, X̄t,x̄,α
θ )] < ∞, then there exists α∗ ∈ At with α∗

s = αs for s ∈ [t, θ]

such that

E[F (X̄t,x̄,α∗

τ )] ≥ E[Y t,x,y,α
τ∧θ ϕ(τ ∧ θ,Xt,x,α

τ∧θ ) + Zt,x,y,z,α
τ∧θ ]− 4ε, (3.1)

for any τ ∈ T t
t,T .
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Proof. (i) First, observe that for any x̄ = (x, y, z) ∈ S, ϕ̄(t, x̄) = yϕ(t, x) + z ≤ yV (t, x) + z ≤

yg(x) + z, which implies ϕ̄+(t, x̄) ≤ yg(x) + z. It follows that

ϕ̄+(θ, X̄t,x̄,α
θ ) ≤ Y t,x,y,α

θ g(Xt,x,α
θ ) + Zt,x,y,z,α

θ

≤ Y t,x,y,α
θ g(Xt,x,α

θ ) + z +

∫ θ

t
Y t,x,y,α
s f(s,Xt,x,α

s , αs)ds,

the right-hand-side is integrable as a result of (2.6).

(ii) For each (s, η) ∈ [0, T ]× S, by the definition of V̄ , there exists α(s,η),ε ∈ As such that

inf
τ∈T s

s,T

J(s, η;α(s,η),ε, τ) ≥ V̄ (s, η)− ε. (3.2)

Note that ϕ ∈ USC([0, T ] × R
d) implies ϕ̄ ∈ USC([0, T ] × S). Then by the upper semicontinuity

of ϕ̄ on [0, T ] × S and the lower semicontinuity of Wα(s,η),ε
on [0, s] × S (from Lemma 3.1), there

must exist an r(s,η) > 0 such that

ϕ̄(t′, x′)− ϕ̄(s, η) ≤ ε and Wα(s,η),ε
(s, η) −Wα(s,η),ε

(t′, x′) ≤ ε,

for any (t′, x′) ∈ B(s, η; r(s,η)) := {(t′, x′) ∈ [0, T ]×S | t′ ∈ (s− r(s,η), s), |x′− η| < r(s,η)}. It follows

that if (t′, x′) ∈ B(s, η; r(s,η)), we have

Wα(s,η),ε
(t′, x′) ≥ Wα(s,η),ε

(s, η)− ε ≥ V̄ (s, η)− 2ε ≥ ϕ̄(s, η)− 2ε ≥ ϕ̄(t′, x′)− 3ε,

where the second inequality is due to (3.2).

Note that {B(s, η; r) | (s, η) ∈ [0, T ] × S, 0 ≤ r ≤ r(s,η)} forms an open covering of [0, T ) × S.

Then by the Lindelöf covering theorem (see e.g. Theorem 3.28 in [1]), there exists a countable

subcovering {B(ti, xi; ri)}i∈N of [0, T ) × S. Now set A0 := {T} × S, C−1 := ∅ and define for all

i ∈ N ∪ {0}

Ai+1 := B(ti+1, xi+1; ri+1) \ Ci, where Ci := Ci−1 ∪Ai.

Under this construction, we have

[0, T ]×S ⊆ ∪i∈N∪{0}Ai, Ai∩Aj = ∅ for i 6= j, andWαi,ε

(t′, x′) ≥ ϕ̄(t′, x′)−3ε for (t′, x′) ∈ Ai, (3.3)

where αi,ε := α(ti,xi),ε.

For any n ∈ N, set An := ∪0≤i≤nAi and define

αε,n
s := 1[t,θ](s)αs + 1(θ,T ](s)

(
αs1(An)c(θ, X̄

t,x̄,α
θ ) +

n∑

i=0

1Ai
(θ, X̄t,x̄,α

θ )αi,ε
s

)
∈ At.

Note that αε,n
s = αs for s ∈ [t, θ]. Then for any τ ∈ T t

t,T ,

E[F (X̄t,x̄,αε,n

τ )1{τ≥θ}|Fθ]1An(θ, X̄t,x̄,α
θ ) = 1{τ≥θ}

n∑

i=0

J(θ, X̄t,x̄,α
θ ;αi,ε, τ)1Ai

(θ, X̄t,x̄,α
θ )

≥ 1{τ≥θ}

n∑

i=0

Wαi,ε

(θ, X̄t,x̄,α
θ )1Ai

(θ, X̄t,x̄,α
θ )

≥ 1{τ≥θ}[ϕ̄(θ, X̄
t,x̄,α
θ )− 3ε]1An(θ, X̄t,x̄,α

θ ), (3.4)
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where the last inequality follows from the last part of (3.3). Thus, we have

E[F (X̄t,x̄,αε,n

τ )] = E[F (X̄t,x̄,α
τ )1{τ<θ}] + E[F (X̄t,x̄,αε,n

τ )1{τ≥θ}]

= E[F (X̄t,x̄,α
τ )1{τ<θ}] + E[E[F (X̄t,x̄,αε,n

τ )1{τ≥θ}|Fθ]1An(θ, X̄t,x̄,α
θ )]

+ E[E[F (X̄t,x̄,αε,n

τ )1{τ≥θ}|Fθ]1(An)c(θ, X̄
t,x̄,α
θ )]

≥ E[F (X̄t,x̄,α
τ )1{τ<θ}] + E[1{τ≥θ}ϕ̄(θ, X̄

t,x̄,α
θ )1An(θ, X̄t,x̄,α

θ )]− 3ε

≥ E[1{τ<θ}ϕ̄(τ, X̄
t,x̄,α
τ )] + E[1{τ≥θ}ϕ̄(θ, X̄

t,x̄,α
θ )1An(θ, X̄t,x̄,α

θ )]− 3ε, (3.5)

where the first inequality comes from (3.4), and the second inequality is due to the observation that

F (X̄t,x̄,α
τ ) = Y t,x,y,α

τ g(Xt,x,α
τ ) + Zt,x,y,z,α

τ ≥ Y t,x,y,α
τ V (τ,Xt,x,α

τ ) + Zt,x,y,z,α
τ

≥ Y t,x,y,α
τ ϕ(τ,Xt,x,α

τ ) + Zt,x,y,z,α
τ .

Since E[ϕ̄+(θ, X̄t,x̄,α
θ )] < ∞, thanks to the first statement of this proposition, there exists n∗ ∈ N

such that

E[ϕ̄+(θ, X̄t,x̄,α
θ )]− E[ϕ̄+(θ, X̄t,x̄,α

θ )1An∗ (θ, X̄t,x̄,α
θ )] < ε.

We observe the following holds for any τ ∈ T t
t,T

E[1{τ≥θ}ϕ̄
+(θ, X̄t,x̄,α

θ )]− E[1{τ≥θ}ϕ̄
+(θ, X̄t,x̄,α

θ )1An∗ (θ, X̄t,x̄,α
θ )]

≤ E[ϕ̄+(θ, X̄t,x̄,α
θ )]− E[ϕ̄+(θ, X̄t,x̄,α

θ )1An∗ (θ, X̄t,x̄,α
θ )] < ε.

(3.6)

Suppose E[ϕ̄−(θ, X̄t,x̄,α
θ )] < ∞, then we can conclude from (3.6) that for any τ ∈ T t

t,T

E[1{τ≥θ}ϕ̄(θ, X̄
t,x̄,α
θ )] = E[1{τ≥θ}ϕ̄

+(θ, X̄t,x̄,α
θ )]− E[1{τ≥θ}ϕ̄

−(θ, X̄t,x̄,α
θ )]

≤ E[1{τ≥θ}ϕ̄
+(θ, X̄t,x̄,α

θ )1An∗ (θ, X̄t,x̄,α
θ )] + ε− E[1{τ≥θ}ϕ̄

−(θ, X̄t,x̄,α
θ )1An∗ (θ, X̄t,x̄,α

θ )]

= E[1{τ≥θ}ϕ̄(θ, X̄
t,x̄,α
θ )1An∗ (θ, X̄t,x̄,α

θ )] + ε. (3.7)

Taking α∗ = αε,n∗

, we now conclude from (3.5) and (3.7) that

E[F (X̄t,x̄,α∗

τ )] ≥ E[1{τ<θ}ϕ̄(θ, X̄
t,x̄,α
τ )] + E[1{τ≥θ}ϕ̄(θ, X̄

t,x̄,α
θ )]− 4ε

= E[ϕ̄(τ ∧ θ, X̄t,x̄,α
τ∧θ )]− 4ε

= E[Y t,x,y,α
τ∧θ ϕ(τ ∧ θ,Xt,x,α

τ∧θ ) + Zt,x,y,z,α
τ∧θ ]− 4ε.

�

We are ready to present the main result in this section.

Proposition 3.2. The value function V∗ defined in (2.2) is a viscosity supersolution of the HJB

equation (2.8).

Proof. Let h ∈ C1,2([0, T ) × R
d) be such that

0 = (V∗ − h)(t0, x0) < (V∗ − h)(t, x), for any (t, x) ∈ [0, T )× R
d, (t, x) 6= (t0, x0),
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for some (t0, x0) ∈ [0, T ) × R
d. If V (t0, x0) = g(x0), then there is nothing to prove. We, therefore,

assume that V (t0, x0) < g(x0). For such (t0, x0) it is enough to prove the following inequality:

0 ≤ c(t0, x0)h(t0, x0)−
∂h

∂t
(t0, x0) +H(·,Dxh,D

2
xh)(t0, x0). (3.8)

Assume the contrary. Then there must exist ζ0 ∈ R
m such that

0 > c(t0, x0)h(t0, x0)−
∂h

∂t
(t0, x0) +Hζ0(·,Dxh,D

2
xh)(t0, x0). (3.9)

Define the function h̃ by

h̃(t, x) := h(t, x) − |t− t0|
2 − |x− x0|

4.

Note that (h̃, ∂th̃,Dxh̃,D
2
xh̃)(x0, t0) = (h, ∂th,Dxh,D

2
xh)(x0, t0). We can choose r > 0 with t0+r <

T such that

0 > c(t, x)h̃(t, x) −
∂h̃

∂t
(t, x) +Hζ0(·,Dxh̃,D

2
xh̃)(t0, x0), for all (t, x) ∈ Br(t0, x0). (3.10)

Define ζ ∈ A by setting ζt = ζ0 for all t ≥ 0. Let (tn, xn) be a sequence in Br(t0, x0) such that

(tn, xn, V (tn, xn)) → (t0, x0, V∗(t0, x0)), and introduce the stopping time

θn := inf

{
s ∈ [tn, T ]

∣∣∣∣ (s,X
tn,xn,ζ
s ) /∈ Br(t0, x0)

}
∈ T tn

tn,T
.

Note that we have θn ∈ T tn
tn,T

because the control ζ is by definition independent of Ftn . Observe

that h ≥ h̃+ η on ([0, T ]×R
d) \Br/2(t0, x0) for some η > 0. Then by applying the product rule of

stochastic calculus to Y tn,xn,1,ζ
s h̃(s,Xtn,xn,ζ

s ) and recalling (3.10) and c ≤ c̄, we obtain that

h̃(tn, xn) = E

[
Y tn,xn,1,ζ
θn∧τ

h̃(θn ∧ τ,Xtn,xn,ζ
θn∧τ

)

+

∫ θn∧τ

tn

Y tn,xn,1,ζ
s

(
ch̃−

∂h̃

∂t
+Hζ0(·,Dxh̃,D

2
xh̃) + f

)
(s,Xtn,xn,ζ

s , ζ0)ds

]

< E

[
Y tn,xn,1,ζ
θn∧τ

h(θn ∧ τ,Xtn,xn,ζ
θn∧τ

) +

∫ θn∧τ

tn

Y tn,xn,1,ζ
s f(s,Xtn,xn,ζ

s , ζ0)ds

]
− e−c̄T η,

(3.11)

for any τ ∈ Ttn,T . Note that by construction, (h̃− V )(tn, xn) → 0 as n → ∞. This implies that we

can find an n̂ ∈ N large enough such that

V (tn̂, xn̂) < E

[
Y tn̂,xn̂,1,ζ
θn̂∧τ

h(θn̂ ∧ τ,Xtn̂,xn̂,ζ
θn̂∧τ

) +

∫ θn̂∧τ

tn̂

Y tn̂,xn̂,1,ζ
s f(s,Xtn̂,xn̂,ζ

s , ζ0)ds

]
−

e−c̄T η

2
, (3.12)

for any τ ∈ Ttn̂,T . Let

h̄(θn̂, X̄
tn̂,xn̂,1,0,ζ
θn̂

) := Y tn̂,xn̂,1,ζ
θn̂

h(θn̂,X
tn̂,xn̂,ζ
θn̂

) +

∫ θn̂

tn̂

Y tn̂,xn̂,1,ζ
s f(s,Xtn̂,xn̂,ζ

s , ζ0)ds.

Note from (3.11) that E[h̄(θn̂, X̄
tn̂,xn̂,1,0,ζ
θn̂

)] is bounded from below. It follows from this fact that

E[h̄−(θn̂, X̄
tn̂,xn̂,1,0,ζ
θn̂

)] < ∞ since we already have E[h̄+(θn̂, X̄
tn̂,xn̂,1,0,ζ
θn̂

)] < ∞ from Proposition 3.1(i).
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We can therefore apply Proposition 3.1(ii) and conclude that there exists an α∗ ∈ Atn̂ such that

E[F (X̄tn̂,xn̂,1,0,α
∗

τ )] ≥ E

[
Y tn̂,xn̂,1,ζ
θn̂∧τ

h(θn̂ ∧ τ,Xtn̂,xn̂,ζ
θn̂∧τ

) +

∫ θn̂∧τ

tn̂

Y tn̂,xn̂,1,ζ
s f(s,Xtn̂,xn̂,ζ

s , ζ0)ds

]
−
e−c̄T η

4
,

(3.13)

for any τ ∈ T tn̂
tn̂,T

. Next, observe that

V (tn̂, xn̂) ≥ inf
τ∈T

tn̂
tn̂,T

E

[
Y tn̂,xn̂,1,α

∗

τ g(τ,Xtn̂,xn̂,α
∗

τ ) +

∫ τ

tn̂

Y tn̂,xn̂,1,α
∗

s f(s,Xtn̂,xn̂,α
∗

s , α∗
s)ds

]

≥ E

[
Y tn̂,xn̂,1,α

∗

τ̂ g(τ̂ , Xtn̂,xn̂,α
∗

τ̂ ) +

∫ τ̂

tn̂

Y tn̂,xn̂,1,α
∗

s f(s,Xtn̂,xn̂,α
∗

s , α∗
s)ds

]
−

e−c̄T η

4
,

(3.14)

for some τ̂ ∈ T tn̂
tn̂,T

. Then we obtain from (3.13) and (3.14) that

V (tn̂, xn̂) ≥ E

[
Y tn̂,xn̂,1,ζ
θn̂∧τ̂

h(θn̂ ∧ τ̂ , Xtn̂,xn̂,ζ
θn̂∧τ̂

) +

∫ θn̂∧τ̂

tn̂

Y tn̂,xn̂,1,ζ
s f(s,Xtn̂,xn̂,ζ

s , ζ0)ds

]
−

e−c̄T η

2
,

which contradicts (3.12). �

4. Subsolution Property

In this section, we will first derive a weak dynamic programming principle, which corresponds

to the first statement in Theorem 3.1 in [3], for our value function V . Then we will show that the

subsolution property of V ∗ follows from this weak dynamic programming principle.

Theorem 4.1. For all (t, x) ∈ [0, T )× R
d and θ ∈ T t

t,T , we have

V (t, x) ≤ sup
α∈At

E[Y t,x,1,α
θ V ∗(θ,Xt,x,α

θ ) + Zt,x,1,0,α
θ ].

Proof. Fix (t, x) ∈ [0, T )×R
d. For any ω ∈ Ω and r ≥ t, set ωr

· := ω·∧r and Tr(ω)(·) := ω·∨r−ωr so

that ω· = ωr
· +Tr(ω)(·). Also, for any α ∈ At, θ ∈ T t

t,T , set α̃ω(ω̃) := α(ωθ(ω) +Tθ(ω)(ω̃)) ∈ Aθ(ω).

Then by the same calculation in Proposition 5.1 in [3], for any τ ∈ Tθ,T and P-a.e. ω ∈ Ω, we have

E[F (X̄t,x̄,α
τ )|Fθ](ω) = J(θ(ω), X̄t,x̄,α

θ(ω) ; α̃ω, τ).

Then from Lemma 2.1, for P-a.e. ω ∈ Ω
(
essinf
τ∈Tθ,T

E[F (X̄t,x̄,α
τ )|Fθ]

)
(ω) = inf

τ∈Tθ,T
E[F (X̄t,x̄,α

τ )|Fθ](ω) ≤ inf
τ∈T θ

θ,T

E[F (X̄t,x̄,α
τ )|Fθ](ω)

= inf
τ∈T θ

θ,T

J(θ(ω), X̄t,x̄,α
θ(ω) ; α̃ω, τ) ≤ V̄ (θ(ω), X̄t,x̄,α

θ(ω) )

≤ V̄ ∗(θ(ω), X̄t,x̄,α
θ(ω) ).. (4.1)

Applying Lemma D.1 in Appendix D of [11] (as what we did in the proof of Proposition 2.1),

we know that there exists a sequence of stopping times {τn}n∈N ⊂ Tθ,T such that the sequence

{E[F (X̄t,x̄,α
τn )|Fθ]}n∈N is nonincreasing and

lim
n→∞

E[F (X̄t,x̄,α
τn )|Fθ] = essinf

τ∈Tθ,T
E[F (X̄t,x̄,α

τ )|Fθ].
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Note that by (2.5) and (2.4), E[F (X̄t,x̄,α
τ1 )|Fθ] is integrable. Thus, by the dominated convergence

theorem and (4.1), we get

lim
n→∞

E[F (X̄t,x̄,α
τn )] = lim

n→∞
E[E[F (X̄t,x̄,α

τn )|Fθ]] = E[ lim
n→∞

E[F (X̄t,x̄,α
τn )|Fθ]] = E[essinf

τ∈Tθ,T
E[F (X̄t,x̄,α

τ )|Fθ]]

≤ E[V̄ ∗(θ, X̄t,x̄,α
θ )].

We, therefore, conclude that

inf
τ∈T t

t,T

E[F (X̄t,x̄,α
τ )] = inf

τ∈Tt,T
E[F (X̄t,x̄,α

τ )] ≤ inf
τ∈Tθ,T

E[F (X̄t,x̄,α
τ )] ≤ lim

n→∞
E[F (X̄t,x̄,α

τn )] ≤ E[V̄ ∗(θ, X̄t,x̄,α
θ )],

where the first equality is due to (2.16) as a consequence of α ∈ At. Taking supremum over all

α ∈ At, we get

V̄ (t, x, y, z) ≤ sup
α∈At

E[V̄ ∗(θ, X̄t,x̄,α
θ )] = sup

α∈At

E[Y t,x,y,α
θ V ∗(θ,Xt,x,α

θ ) + Zt,x,y,z,α
θ ].

By taking y = 1, z = 0, we get the desired result. �

Proposition 4.1. The value function V ∗ defined in (2.2) is a viscosity subsolution of the HJB

equation

max

{
c(t, x)v −

∂v

∂t
+H∗(t, x,Dxv,Dxxv), v − g(x)

}
= 0.

Proof. Assume the contrary that there exist h ∈ C1,2([0, T )×R
d) and (t0, x0) ∈ [0, T )×R

d satisfying

0 = (V ∗ − h)(t0, x0) > (V ∗ − h)(t, x), for any (t, x) ∈ [0, T )× R
d, (t, x) 6= (t0, x0),

such that

max

{
c(t0, x0)h(t0, x0)−

∂h

∂t
(t0, x0) +H∗(·,Dxh,Dxxh)(t0, x0), h(t0, x0)− g(x0)

}
> 0. (4.2)

Since V ∗(t0, x0) = h(t0, x0) and V ≤ g by definition, continuity of g implies that h(t0, x0) =

V ∗(t0, x0) ≤ g(x0). Therefore, we can conclude from (4.2) that

c(t0, x0)h(t0, x0)−
∂h

∂t
(t0, x0) +H∗(·,Dxh,Dxxh)(t0, x0) > 0

By the lower-semicontinuity of H∗, there exists r > 0 with t0 + r < T such that

c(t, x)h(t, x) −
∂h

∂t
(t, x) +Hα(·,Dxh,Dxxh)(t, x) > 0, ∀α ∈ R

m and (t, x) ∈ Br(t0, x0). (4.3)

Now define η > 0 by

− 2ηec̄T := max
∂Br(t0,x0)

(V ∗ − h) < 0. (4.4)

(One may need to modify h, so that (t0, x0) is a strict maximum of V ∗ − h, to obtain the strict

inequality above.) Take (t̂, x̂) ∈ Br(t0, x0) such that |(V − h)(t̂, x̂)| < η. For any α ∈ At̂, define the

stopping time

θ := inf
{
s ≥ t̂ | (s,X t̂,x̂,α

s ) /∈ Br(t0, x0)
}
∈ T t̂

t̂,x̂
.
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Note that we have θ ∈ T t̂
t̂,x̂

because the control α is independent of Ft̂. Applying the product rule

of stochastic calculus to Y t̂,x̂,1,α
s h(s,X t̂,x̂,α

s ), we get

h(t̂, x̂) = E

[
Y t̂,x̂,1,α
θ h(θ,X t̂,x̂,α

θ ) +

∫ θ

t̂
Y t̂,x̂,1,α
s

(
ch−

∂h

∂t
+Hα(·,Dxh,Dxxh) + f

)
(s,X t̂,x̂,α

s , αs)ds

]

≥ E

[
Y t̂,x̂,1,α
θ V ∗(θ,X t̂,x̂,α

θ ) +

∫ θ

t̂
Y t̂,x̂,1,α
s f(s,X t̂,x̂,α

s , αs)ds

]
+ 2η,

where the inequality follows from (4.4), (4.3) and c ≤ c̄. Finally, by our choice of (t̂, x̂), we have

V (t̂, x̂) + η > h(t̂, x̂). It follows that

V (t̂, x̂) ≥ E

[
Y t̂,x̂,1,α
θ V ∗(θ,X t̂,x̂,α

θ ) +

∫ θ

t̂
Y t̂,x̂,1,α
s f(s,X t̂,x̂,α

s , αs)ds

]
+ η.

Since α ∈ At̂ is arbitrary, this inequality contradicts Theorem 4.1. �
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