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HARDY INEQUALITIES WITH BOUNDARY SINGULARITIES

CRISTIAN CAZACU

BCAM-Basque Center for Applied Mathematics, Biskaia Technology Park, Building 500,
E-48160, Derio-Basque Country-Spain

and

Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid,
28049 Madrid, Spain

Abstract. In this work we prove some Hardy-Poincaré inequalities with quadratic singular
potentials localized on the boundary of a smooth domain. Then, we consider conical domains
with vertex on the singularity and we show upper and lower bounds for the corresponding
optimal constants in the Hardy inequality. In particular, we prove the asymptotic behavior
of the optimal constant when the slot of the cone tends to zero.

1. Introduction

Hardy inequalities represent a classical subject in which there has been intensive research
in the recent past, mainly motivated by its applications to Partial Differential Equations
(PDE’s) and, more precisely, with the positivity of the Schrödinger operator

Lλ := −∆− λ

|x|2 , with λ ∈ R, (1.1)

involving the inverse square singular potential 1/|x|2.
Inverse square potentials are interesting because of their criticality since they are homoge-

neous of degree -2. They often appear in the linearization of critical nonlinear PDE’s playing
a crucial role in the asymptotic behaviour of branches of solutions in bifurcation problems
(e.g. [10], [31], [33]). The operator Lλ arises in physics and in particular in the relativity the-
ory and quantum mechanics [16]. We also mention other interesting applications in molecular
physics [27], quantum cosmology [4], combustion models [22], brownian motion [26], etc.

In [25], G. H Hardy proved that, in the one dimensional case, the optimal inequality

∫ ∞

0
|u′(r)|2dr ≥ 1

4

∫ ∞

0

u2(r)

r2
dr, (1.2)
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holds for functions belonging to H1
0 (0,∞). More precisely,

inf
u∈H1

0
(0,∞)

(

∫ ∞

0
|u′(r)|2dr

/

∫ ∞

0

u2

r2
dr

)

=
1

4
. (1.3)

The classical multi-dimensional Hardy inequality (cf. [24]) asserts that for any Ω an open
subset of RN , N ≥ 3, it holds that

∫

Ω
|∇u|2dx ≥ (N − 2)2

4

∫

Ω

u2

|x|2 dx, (1.4)

for all u ∈ H1
0 (Ω). Moreover, if Ω contains the origin, the constant (N − 2)2/4 is optimal and

it is not attained. For N = 2, inequality (1.4) is trivially true.

The reader interested in the existing literature on the extensions of the classical Hardy
inequality is referred, in particular, to the following papers and the references therein: [22],
[2], [11], [3], [18], [19], [32]. Recently, improved versions of (1.4) have been established in
open bounded domains containing the origin (see [10], [33], [1]). We also mention the papers
[6], [17] and the references therein for discussing inequalities with multipolar singularities.
There has been also an intensive research for singular potentials involving the distance to the
boundary (e.g. [8], [9]).

However, Hardy inequalities with one singular potential, in which the singularity lies on
the boundary have been less investigated. This paper is mainly devoted to analyze this issue.
To be more precise, throughout the paper, we consider Ω to be a subset of RN with the origin
x = 0 placed on its boundary ∂Ω, where the singularity is located. We then define µ(Ω) as
the best constant in the inequality

∫

Ω
|∇u|2dx ≥ µ(Ω)

∫

Ω

u2

|x|2dx, ∀ u ∈ H1
0 (Ω), (1.5)

i.e.

µ(Ω) := inf
{

∫

Ω
|∇u|2dx

/

∫

Ω
u2/|x|2dx, u ∈ H1

0 (Ω)
}

.

Of course, in view of (eq167), µ(Ω) ≥ (N − 2)2/4. The authors in [28] showed that the strict
inequality µ(Ω) > (N − 2)2/4 holds true when Ω is a bounded domain of class C2. Actually,
the value µ(Ω) depends on the geometric properties of the boundary ∂Ω at the singularity.
The first explicit case has been given for Ω = R

N
+ , where RN

+ is the half-space of RN in which
the condition xN > 0 holds. More precisely, for any N ≥ 1, Filippas, Tertikas and Tidblom
proved in [20] the new Hardy inequality:

∫

RN
+

|∇u|2dx ≥ N2

4

∫

RN
+

u2

|x|2 dx ∀ u ∈ H1
0 (R

N
+ ). (1.6)

Moreover, they proved the constant N2/4 to be optimal (cf. Corollary 2.4, pp. 12, [20]) i.e.
µ(RN

+ ) = N2/4.

As a consequence of this result, mainly by the invariance under dilatations, it holds that
µ(Ω) = N2/4 for any domain Ω of class C2 with the support in the half-space RN

+ . Moreover,
if Ω is a bounded domain contained in the half-space, the following improved Hardy-Poincaré
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holds for any u ∈ H1
0 (Ω) (cf. [28]):
∫

Ω
|∇u|2dx− N2

4

∫

Ω

u2

|x|2 dx ≥ λ(D)

|diam(Ω)|2
∫

Ω
u2dx, (1.7)

where λ1(Ω) is the first eigenvalue of the Laplacian in the unit ball in 2-d.

Another interesting situation appears in non-smooth domains Ω, when the boundary de-
velops corners or cusps at the singularity. The most relevant example of such a domain is
represented by a cone with the vertex at the origin x = 0. The question of studying the exact
value of µ(Ω) in cones has been full-filled in 2-d case. More precisely, if Cγ is the conical sector
with the slot γ ∈ (0, 2π), then (cf. [13])

µ(Cγ) =
π2

γ2
.

By our knowledge, for higher dimensions N ≥ 3, the value µ(Ω) is only known when the cone
Ω coincides with the half-space R

N
+ .

In this paper, the aim we focus on is two folded.

Roughly speaking, in the first part, we improve some results in [28] addressing Hardy-
Poincaré inequalities in smooth domains. Besides, we complete rigorous proofs of several
results stated in [28]. In the second part, the new issue addressed is related to optimal Hardy
inequalities in conical domains in dimensions N ≥ 3.

Part of the results in this paper were first announced in [15]. Soon after that, the preprint
[28] has been submitted for publication while this extended version of the paper was being
prepared. Because [28] yields some similar results, we thus present here in a detailed manner
the most novel aspects of the note [15] not addressed in [28].

Let us now resume the content of the paper and the main results we obtain. In Section 2
we show Hardy-Poincaré inequalities in bounded smooth domains completing and extending
some results in [28]. We mainly refer to Theorems 2.1, 2.2, 2.3. These results turn out to
be closely related to the ellipticity of Ω at the origin, but also to the global geometry of Ω.
When Ω is not elliptic at the origin, a weaker Hardy inequality holds (cf. Theorem 2.4) and
the continuous dependence of the Hardy constant in cones is required in the proof. This last
result is rigorously shown in Section 3, Theorem 3.1. Besides, in Section 3 we prove lower and
upper bounds for the optimal constant µ(Ω), when Ω is a cone in dimensions N ≥ 3, with
the vertex in x = 0. In particular, the asymptotic value of µ(Ω) is shown when the slot of
the cone tends to zero (see Remark 3.1). We point out that all the sections contain at least
a small introduction at the beginning. In Section 4 we conclude with some comments.

2. Inequalities in smooth domains

As we said above, the value of the optimal constant µ(Ω) depends on the various geometric
properties of Ω. In this section we assume Ω to be a Lipschitz domain with smooth boundary
around the origin. Then ∂Ω is an (N − 1)-Riemannian submanifold of RN and assume that
α1, α2, ..., αN−1 are the principal curvatures of ∂Ω at 0. Then, up to a rotation (cf. [5], [23]),
the boundary near the origin can be written as

xN = h(x′) =
N−1
∑

i=1

αix
2
i + o(|x′|2) as |x′| → 0, (2.1)
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where x′ = (x1, ..., xN−1, 0). It is well-known that the principal curvatures are the eigenvalues
of the 2nd fundamental form of the surface ∂Ω (cf. [21]). If we choose

γ < min{αi : 1 ≤ i ≤ N}, (2.2)

then xN > γ|x′|2 in Ω for any (xN , x
′) ∈ R

N very close to origin. Such points belong to the
paraboloid Pγ defined by

Pγ = {x = (x′, xN ) ∈ R
N | xN > γ|x′|2}. (2.3)

Due to the considerations above, we distinguish the following four main situations.

C1. The elliptic case: There exists γ > 0 such that Ω ⊂ Pγ . In other words, Ω lies in the
corresponding elliptic paraboloid Pγ (see Figure 1, top left).

C2. The cylindrical case: Ω ⊂ P0, where P0 = R
N
+ . (see Figure 1, top right).

Remark 2.1. In cases C1 and C2, Ω lies in R
N
+ (see Figure 1, top). From this point

of view they may be analyzed together and the results that are true in C2 are also valid
in C1. However, we analyze them separately because we present two independent tools to
treat each of them.

C3. The locally elliptic case: In this case, Ω does not lie in R
N
+ , but this happens near the

origin. More precisely, we suppose the existence of γlocal ≥ 0 such that Ω ⊂ Pγlocal near
the origin. Away from the origin we suppose that there exists γ < 0 such that Ω ⊂ Pγ

(see Figure 1, bottom left).
C4. The hyperbolic case: This corresponds to the situation when Ω has a hyperbolic

geometry near the origin x = 0. Therefore, we suppose that Ω ⊂ Pγ for some negative
γ < 0. (see Figure 1, bottom right).

-

6

C1: The elliptic case γ ≥ 0

Ω

xN = 0

x′ = 0

Pγ
xN = γ|x′|2

0
-

6

C2: The cylindrical case γ = 0

Ω

xN = 0

x′ = 0

0

-

6

Pγ xN = γ|x′|2

C3: The locally elliptic case γloc ≥ 0

Ω

0 xN = 0

x′ = 0

Pγloc
xN = γloc|x′|2

-

6

Pγ
0

xN = γ|x′|2

C4: The hyperbolic case γ < 0

Ω

xN = 0

x′ = 0

Figure 1.
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In the sequel we need the following technical lemma whose proof is given at the end of the
section.

Lemma 2.1. Let Ω ⊂ Pγ be a domain fulfilling one of the conditions C1 −C4 in Figure 1,
for some constant γ ∈ R. Given N ≥ 2 and v ∈ H1

0 (Ω), for any constant C ∈ R, the function
u defined by

u(x) =
v(x)

(xN − γ|x′|2) |x|
C . (2.4)

fulfills the following identity:
∫

Ω
|∇v|2dx =

∫

Ω
(xN − γ|x′|2)2|x|−2C |∇u|2dx+ (CN − C2)

∫

Ω

v2

|x|2 dx

+ 2γ

∫

Ω

(

(N − 1)|x|2 − C|x′|2
)

(xN − γ|x′|2)|x|−2C−2u2dx. (2.5)

2.1. Proof of main results. Next, we consider Ω to be a domain which satisfies the case
C1 in Figure 1 (top, left). The main result in this case consists in an improvement of the
Hardy-Poincaré inequality (1.7) shown in [28]. The proof is based on Lemma 2.1. More
precisely, we have

Theorem 2.1. Let N ≥ 3. Assume that Ω satisfies the condition C1. Then, for all v ∈ H1
0 (Ω)

there exists a positive constant C(Ω, γ) such that
∫

Ω
|∇v|2dx− N2

4

∫

Ω

v2

|x|2 dx ≥ C(Ω, γ)

∫

Ω

v2

|x|dx. (2.6)

When N = 2, the following weaker inequality holds
∫

Ω
|∇v|2dx ≥ N2

4

∫

Ω

v2

|x|2 dx. (2.7)

Proof of Theorem 2.1. We put C = N/2 in the identity (2.5) of Lemma 2.1. Taking into
account that

max
C∈R

{

CN − C2
}

=
{

CN − C2
}

∣

∣

∣

C=N/2
=
N2

4
,

we obtain
∫

Ω
|∇v|2dx ≥ N2

4

∫

Ω

v2

|x|2 dx+2γ

∫

Ω

(

(N − 1)|x|2 − N

2
|x′|2

)

(xN − γ|x′|2)|x|−N−2u2dx (2.8)

Using that

(N − 1)|x|2 − N

2
|x′|2 ≥ N − 2

2
|x|2,

we get
∫

Ω
|∇v|2dx ≥ N2

4

∫

Ω

v2

|x|2 dx+ γ(N − 2)

∫

Ω

v2(x)

xN − γ|x′|2 dx. (2.9)

We split the last term in two parts as follows:
∫

Ω

v2

xN − γ|x′|2dx =

∫

{x∈Ω, |x′|≤1/γ}

v2

xN − γ|x′|2 dx+

∫

{x∈Ω, |x′|≥1/γ}

v2

xN − γ|x′|2 dx := I1 + I2
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In the first term, using that |x′| ≤ 1/γ implies xN − γ|x′|2 ≤ 2|x|, we obtain

I1 ≥
1

2

∫

{|x′|≤1/γ}

v2

|x|dx.

Using the notation RΩ = supx∈Ω |x| we have xN − γ|x′|2 ≤ RΩ + γR2
Ω. Thus, for the second

term we obtain

I2 ≥
1

RΩ + γR2
Ω

∫

{|x′|≥1/γ}
v2dx ≥ 1

γ(RΩ + γR2
Ω)

∫

{|x′|≥1/γ}

v2

|x|dx

Combining these two lower bounds we get

I1 + I2 ≥ min
{1

2
,

1

γ(RΩ + γR2
Ω)

}

∫

Ω

v2

|x|dx,

and this, together with (2.9) yields (2.6). For N = 2, (2.7) holds easily from (2.9). �

Lemma 2.1 does not provide sufficient information for γ = 0. However, using spherical
harmonics decomposition, we can extend and improve the result of Theorem 2.1 to the case
γ ≥ 0 as follows.

Theorem 2.2. Let N ≥ 2, and Ω ⊂ R
N be such that the condition C2 is satisfied in Figure

1 (top, right). If L is a positive number such that L > supx∈Ω |x|, then for any v ∈ H1
0 (Ω),

∫

Ω
|∇v|2dx ≥ N2

4

∫

Ω

v2

|x|2 dx+
1

4

∫

Ω

v2

|x|2 log2(L/|x|)
dx, (2.10)

The following lemma will be necessary in the proof of Theorem 2.2.

Lemma 2.2. Let L > R > 0. Then
∫ R

0
(w′(r))2rdr ≥ 1

4

∫ R

0

w2

r2 log2(L/r)
rdr, ∀ w ∈ H1

0 (0, R). (2.11)

The proof of Lemma 2.2 is given at the end of the section.

Proof of Theorem 2.2. Firstly, let us set R = RΩ := supx∈Ω |x|. such that Ω ⊂ B+
R where B+

R
is the half ball of radius R

B+
R := {x ∈ R

N , |x| ≤ R, xN ≥ 0}.
We consider also the lower half ball of radius R,

B−
R := {x ∈ R

N , |x| ≤ R, xN ≤ 0}.

The proof follows the idea of decomposition in spherical harmonics (see [33]). By a density
argument we can consider v ∈ C1

0 (B
+
R ). Building the odd extension

u(x) = u(x1, x2, ..., xN ) :=

{

v(x1, x2, ..., xN ), x ∈ B+
R ,

−v(x1, x2, ...,−xN ), x ∈ B−
R ,

(2.12)

we obtain u ∈ C1
0 (BR) and moreover,

∫

B+

R

|∇v|2dx =
1

2

∫

BR

|∇u|2dx, (2.13)
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∫

B+

R

v2

|x|2 dx =
1

2

∫

BR

u2

|x|2 dx. (2.14)

Next we note that
∫

SN−1

u(r, σ)dσ = 0, ∀ r ∈ [0, 1].

Consider the expansion of u in spherical harmonics

u(x) = u(r, σ) =

∞
∑

k=0

uk(r)fk(σ). (2.15)

Here (fk)k≥0 is an ortonormal basis of L2(SN−1) constituted by the eigenvectors of the spher-
ical Laplacian ∆SN−1 with the corresponding eigenvalues ck = k(N + k − 2), k ≥ 0. Here
SN−1 is the unit sphere with (N − 1)-dimensional Hausdorff measure NωN , where ωN is the
Lebesgue measure of the unit ball. It is well-known that f0 is a constant. Integrating (2.15)
on SN−1 we get

u0(r) =

∫

SN−1

u(r, σ)f0(σ)dσ = f0(σ)

∫

SN−1

u(r, σ)dσ = 0,

Therefore

u(x) = u(r, σ) =

∞
∑

k=1

uk(r)fk(σ). (2.16)

and by Plancherel identity we have
∫

BR

u2dx = NωN

∞
∑

k=1

∫ R

0
|uk(r)|2rN−1dr. (2.17)

Using the representation of the Laplace operator in spherical coordinates

∆ = −∂2r −
N − 1

r
∂ru− 1

r2
∆SN−1 ,

we get
∫

BR

|∇u|2dx = NωN

∞
∑

k=1

∫ R

0

[

|u′

k|2 + ck
u2k(r)

r2

]

rN−1dr. (2.18)

Let us denote wk(r) = uk(r)r
N−2

2 and CN := (N − 2)2/4. Then by (2.18) we have
∫

BR

|∇u|2dx− N2

4

∫

BR

u2

|x|2 dx = NωN

∞
∑

k=1

∫ R

0

[

|u′

k|2 − CN
u2k
r2

]

rN−1dr+

+NωN

∞
∑

k=1

(

ck − (N − 1)
)

∫ R

0

u2k
r2
rN−1dr

≥ NωN

∞
∑

k=1

∫ R

0

[

|u′

k|2 − CN
u2k
r2

]

rN−1dr

= NωN

∞
∑

k=1

∫ R

0
|w′

k(r)|2rdr (2.19)
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Hence, by (2.19) and Lemma 2.2 we have
∫

BR

|∇u|2dx− N2

4

∫

BR

u2

|x|2 dx ≥ NωN

4

∞
∑

k=1

∫ R

0

w2
k(r)

r2 log2(L/r)
rdr

=
NωN

4

∞
∑

k=1

∫ R

0

u2k(r)

r2 log2(L/r)
rN−1dr. (2.20)

On the other hand

NωN

∞
∑

k=1

∫ R

0

u2k(r)

(r2 log2(L/r)
rN−1dr =

∫

BR

u2

|x|2 log2(L/|x|)
dx. (2.21)

By (2.20), (2.21) and undoing the variables, the proof is completed. �

Theorem 2.3. Let N ≥ 2 and Ω be a domain satisfying the case C3 as in Figure 1 (bottom,
left). Then, for any v ∈ H1

0 (Ω), there exists a constant C(Ω) such that

C(Ω)

∫

Ω
v2dx+

∫

Ω
|∇v|2dx ≥ N2

4

∫

Ω

v2

|x|2 dx+
1

4

∫

Ω

v2

|x|2 log2(L/|x|)
dx, (2.22)

where L > supx∈Ω |x|. Moreover, (2.22) is optimal in the sense that the term corresponding

to the L2-norm on the left hand side term cannot be disregarded.

Sketch of the proof of Theorem 2.3: We apply a standard cut-off argument so that
the function v can be split as v = v1+v2 where v1 lies near the singularity and v2 is supported
away from it. In the neighborhood of x = 0, we can apply the improved inequality of Theorem
2.2 corresponding to v1. Outside the origin there are no singularities so that the potential
1/|x|2 that appears in the inequality, is bounded by a constant depending only on Ω and the
profile of the cut-off function. This fact makes the quantity

∫

v22/|x|2dx to be bounded from
above, up to a constant, by

∫

v22dx. There is also an intermediate zone that we have to deal
with, and more precisely where the profile of the cut-off functions has the gradient different
by zero. In that part, it suffices to show that the cross term

∫

∇v1 · ∇v2 is bounded from
below, up to a constant, by

∫

v2dx. Gluing these, the proof of (2.22) ends. We skip all the
computations of the proof but for more details of a cut-off technique see e.g. [33], pp. 111.

Then, the necessity of the term in L2-norm on the left hand side of (2.22) is a consequence
of Proposition 2.1.

In the sequel we consider a domain Ω ⊂ R
N as in Figure 1 (bottom, right). The result we

obtain is stated as follows.

Theorem 2.4. Let N ≥ 2 and assume that Ω satifies the condition C4 as in Figure 1 (bottom,
right). For any ε > 0, ε << 1, there exists a constant C(Ω, ε) such that the following inequality
holds:

C(Ω, ε)

∫

Ω
v2dx+

∫

Ω
|∇v|2dx ≥

(N2

4
− ε

)

∫

Ω

v2

|x|2 dx, ∀ v ∈ H1
0 (Ω). (2.23)

Moreover, (2.23) is optimal in the sense that the term in L2-norm of the left hand side term
cannot be disregarded.

Remark 2.2. Theorem 2.4 is stated also in [28]. The authors in [28] omit to show the
continuous dependence of the Hardy constant in cones which plays a crucial role in the proof
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of this theorem. To make the things clear, we give a rigorous proof of this last result in Section
3.

Sketch of the proof of Theorem 2.4. The proof is based on local approximations of Ω
around the origin, by conical sectors. We consider sectors that approximate the hyperplane
γ = 0 from below. In this analysis we use Hardy inequalities in cones and the continuous
dependence of the Hardy constant, more precisely, Corollary 3.1 in Section 3 below. This
allows improving Hardy inequalities near the origin. Cut-off arguments allow to glue Hardy
inequalities derived near the origin with terms in L2-norm, provided that the potential 1/|x|2
is bounded far from the singularity x = 0. Basically, this proves (2.23). For further details of
a cut-off technique we refer to [33], pp. 111.

The necessity of the term in L2-norm on the left hand side of (2.23) is a consequence of
Proposition 2.1 stated below.

Proposition 2.1. There exist smooth bounded open sets Ω ⊂ R
N
+ , N ≥ 2, satisfying either

C3 or C4 and such that

µ(Ω) <
N2

4
. (2.24)

Proof of Proposition 2.1. From the characterization of the first eigenvalue one can show the
strict anti-monotonicity

D1 ⊂⊂ D2 ⇒ λ(D1) > λ(D2) (2.25)

Next we take a cone C strictly larger than R
N
+ . From (2.25) and (3.1) we obtain

µ(C) < µ(RN
+ ) =

N2

4
.

Therefore, there exists u ∈ C∞
0 (C) such that

∫

C |∇u|2dx
∫

C u
2/|x|2dx <

N2

4
.

Denote K := suppu. Then K ⊂⊂ C and dist(K,∂C) > 0. Hence, we can build an open set Ω
satisfying either C3 or C4, such that K ⊂ Ω ⊂ C. Hence, u ∈ C∞

0 (Ω) and we get that

µ(Ω) ≤
∫

C |∇u|2dx
∫

C |u|2/|x|2dx
<
N2

4
.

The proof is completed. �

2.2. Proofs of useful Lemmas.

Lemma 2.3. Let N ≥ 2 and Ω ⊂ R
N satisfying one of the conditions C1−C4. If v ∈ H1

0 (Ω)
then

lim
x→∂Pγ

v2(x)

xN − γ|x′|2 = 0. (2.26)

Proof of Lemma 2.3. Extending v with 0 outside Ω we get v(x′, γ|x′|2) = 0. Then

0 <
v2(x)

xN − γ|x′|2 ≤
∫ xN

γ|x′|2

∣

∣

∣

∂v

∂yN
(x′, yN )

∣

∣

∣

2
dyn
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which converges to 0 when xN → γ|x′|2. This is due to the properties of Lebesque integral
and the fact that ∂v

∂yN
(x′, ·) belongs to L2(γ|x′|2, xN ). �

Proof of Lemma 2.1. Firstly

∇v = (xN − γ|x′|2)|x|−C∇u+ u∇[(xN − γ|x′|2)|x|−C ], (2.27)

∇[(xN − γ|x′|2)|x|−C ] =

N−1
∑

i=1

[−2γxi|x|−C − C(xN − γ|x′|2)|x|−C−2xi]ei+

+ [|x|−C − CxN(xN − γ|x′|2)|x|−C−2]eN ,

where {ei}i=1,N is canonical basis of RN . Then

|∇[(xN − γ|x′|2)|x|−C ]|2 = (1 + 4γ2|x′|2)|x|−2C + (C2 − 2C)(xN − γ|x′|2)2|x|−2C−2+

+ 2γC|x′|2(xN − γ|x′|2)|x|−2C−2 (2.28)

and

div
{

(xN − γ|x′|2)|x|−C∇[(xN − γ|x′|2)|x|−C ]
}

= (2C2 − CN − 2C)(xN − γ|x′|2)2|x|−2C−2 + (1 + 4γ2|x′|2)|x|−2C

− 2[γ(N − 1)|x|2 − 2γC|x′|2](xN − γ|x′|2)|x|−2C−2. (2.29)

Using the formulas from above and integrating by parts we obtain
∫

Ω
|∇v|2dx =

∫

Ω
|∇u|2(xN − γ|x′|2)2|x|−2Cdx+

∫

Ω
|∇[(xN − γ|x′|2)|x|−C ]|2u2dx+

+ 2

∫

Ω
(xN − γ|x′|2)|x|−C∇[(xN − γ|x′|2)|x|−C ]u∇udx

=

∫

Ω
|∇u|2(xN − γ|x′|2)2|x|−2Cdx+

∫

Ω
|∇[(xN − γ|x′|2)|x|−C ]|2u2dx

+

∫

∂Ω
u2(xN − γ|x′|2)|x|−C∇[(xN − γ|x′|2)|x|−C ] · νdσ−

−
∫

Ω
div

{

(xN − γ|x′|2)|x|−C∇[(xN − γ|x′|2)|x|−C ]
}

u2dx. (2.30)

Estimating the expression of the gradient in (2.28) we get

|∇[(xN − γ|x′|2)|x|−C ]|2 ≤ C(γ,Ω)|x|−2C , (2.31)

where C(γ,Ω) is a suitable positive constant. Therefore, from (2.31) we have
∣

∣

∣
u2(xN − γ|x′|2)|x|−C∇[(xN − γ|x′|2)|x|−C ]

∣

∣

∣
≤ C

v2(x)

xN − γ|x′|2 , (2.32)

for some constant C. According to Remark 2.3 and (2.32) the boundary term of (2.30)
vanishes and we obtain the new identity

∫

Ω
|∇v|2dx =

∫

Ω
|∇u|2(xN − γ|x′|2)2|x|−2C +

∫

Ω
|∇[(xN − γ|x′|2)|x|−C ]|2u2dx−

−
∫

Ω
div

{

(xN − γ|x′|2)|x|−C∇[(xN − γ|x′|2)|x|−C ]
}

u2dx. (2.33)
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By (2.28), (2.29) and (2.33) we have the identity (2.5). With this the proof of Lemma 2.1
ends. �

Proof of Lemma 2.2. With the change of variables w(r) = v(r) log1/2(L/r) we have

|w′(r)|2 = 1

4r2
log−1(L/r)v2 + v2r log(L/r)−

1

r
vvr.

Therefore, due to the zero boundary conditions, we obtain
∫ R

0
|w′(r)|2rdr =

1

4

∫ R

0

w2

r2 log2(L/r)
rdr +

∫ R

0
v2r log(L/r)rdr −

∫ R

0
vvrdr

=
1

4

∫ R

0

w2

r2 log2(L/r)
rdr +

∫ R

0
v2r log(L/r)rdr

≥ 1

4

∫ R

0

w2

r2 log2(L/r)
rdr.

and Lemma 2.2 holds true. �

3. Inequalities in cones

Firstly, let us consider a Lipschitz connected cone C ⊂ R
N \ {0} with the vertex at zero.

Let D ⊂ SN−1 be the Lipschitz domain such that

C = {(r, ω) | r ∈ (0,∞), ω ∈ D}
Let µ(C) be the best constant in the Hardy inequality. Then (cf. [29])

µ(C) = (N − 2)2

4
+ λ1(D) (3.1)

where λ1(D) is the Dirichlet principal eigenvalue of the spherical Laplacian −∆SN−1 on D.
In 2-d it is well-known that (e.g. [12])

λ1(γ) := λ1(0, γ) = π2/γ2,

where γ is the slot of the conical sector Cγ = {(r, ω) | r ∈ (0,∞), ω ∈ (0, γ)} (see Figure
2 below). In higher dimensions N ≥ 3, by our knowledge, λ1(D) is well-known only in the

- -

6

Cγ

x1

x2

γ
0
��������*

Figure 2. The 2-d conical sector with the aperture γ.
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case where D is the semi-sphere SN−1
+ mapped in the upper half space R

N
+ . More precise,

λ1(S
N−1
+ ) = N − 1. The half space R

N
+ corresponds to the conical sector of slot γ = π/2 (see

Figure 3 below).

The aim of this section is mainly devoted to find lower bounds for λ1(D) in higher dimen-
sions N ≥ 3. In that sense, the definition of a cone in polar coordinates will be used.

3.1. The N − d case, N ≥ 3. For 0 < γ < π we define the N -dimensional cone, with slot γ,
denoted by Cγ (Figure 2), consisting in all x = (x1, x2, ..., xN ) ∈ R

N such that, in spherical
coordinates (cf. [30], pp. 293),

Cγ :



























x1 = r sin θ1 sin θ2 . . . sin θN−2 cosN−1

x2 = r sin θ1 sin θ2 . . . sin θN−2 sinN−1
...
xN−1 = r sin θ1 sin θ2
xN = r cos θ1

(3.2)

with r > 0 and






0 < θ1 ≤ γ,
0 ≤ θi ≤ π, for 2 ≤ i ≤ N − 2,
0 ≤ θN−1 ≤ 2π.

(3.3)

- -

6

�
�

�
�

�
�	

Cγ

x1

x2

x3

γ

x

θ2

r

0
�
�
�
�
�
�
�

PPPP

hhhhs
s














�

J
J

J
J

J
J
J]

Figure 3. The cone with the slot γ

For simplicity we denote by λ1(γ) := λ1(Dγ) the first Dirichlet eigenvalue of the spherical
Laplacian on Dγ := Cγ ∩ SN−1. Then we have

µ(Cγ) =
(N − 2)2

4
+ λ1(γ) (3.4)

3.2. Main results.

Theorem 3.1. Assume that N ≥ 3.

(a). If 0 < γ ≤ π
2 then

λ1(γ) ≥
(N − 1)π2

4γ2
.
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(b). For any ε > 0, ε << 1, there exists δ = δ(ε) > 0 such that for all π
2 ≤ γ ≤ π

2 + δ

λ1(γ) > N − 1− ε.

Corolary 3.1 (The continuous dependance of the Hardy constant).

lim
γ→π/2

µ(Cγ) = µ(Cπ/2) =
N2

4
. (3.5)

Theorem 3.2. Assume γ ∈ (0, π). Then it holds
(sin γ

γ

)N−2(B1

γ

)2
≤ λ1(γ) ≤

( γ

sin γ

)N−2(B1

γ

)2
, (3.6)

where B1 is the first positive zero of the Bessel function JN−3

2

, of fractional order (N − 3)/2.

Remark 3.1 (Asymptotic behavior). From Theorem 3.2 above we get the asymptotic formula

lim
γ→0

λ1(γ)γ
2

B2
1

= 1.

3.3. Preliminaries. Let us consider u ∈ C∞
c (Cγ). Then, in polar coordinates we have

u(r, θ1, θ2, . . . , θN−3, θN−2) ∈ C∞((0,∞) × (0, γ) × (0, π) × . . .× (0, π) × (0, 2π)), (3.7)

vanishing in the neighborhoods of r = ∞ and θ1 = γ.

The representation of the gradient in polar coordinates is given by

|∇u|2 = |ur|2 +
u2θ1
r2

+
u2θ2

r2 sin2 θ1
+

u2θ3
r2 sin2 θ1 sin

2 θ2
+

+ . . .+
u2θN−1

r2 sin2 θ1 sin
2 θ2 . . . sin

2 θN−2
. (3.8)

In other words,

|∇u|2 = |ur|2 +
u2θ1
r2

+ positive terms.

The determinant of the Jacobian of the transformation has the form

J(r, θ1, θ2 . . . , θN−2) = rN−1 sinN−2 θ1 sin
N−3 θ2 . . . sin θN−2.

To simplify the notations, we define the integral in the variables θ2, . . . , θN−2 as
∫

:=

∫ π

0
. . .

∫ π

0

∫ 2π

0
sinN−3 θ2 . . . sin θN−2dθ2 . . . dθN−2dθN−1.

For a fixed σ ∈ SN−1 ∩ Cγ the radial function r 7→ u(·, σ) satisfies the well-known Hardy
inequality

∫ ∞

0
u2rr

N−1dr ≥
(N − 2

2

)2
∫ ∞

0

u2

r2
rN−1dr,

and therefore
∫ ∞

0

∫ γ

0

∫

u2rr
N−1 sinN−2 θ1dθ1dr ≥

(N − 2

2

)2
∫ ∞

0

∫ γ

0

∫

u2

r2
rN−1 sinN−2 θ1dθ1dr. (3.9)
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From above, due to the lack of the boundary conditions in the variables θ2, . . . , θN−2 we get
that λ1(γ) is the optimal constant in the weighted inequality

∫ ∞

0

∫ γ

0

∫

u2θ1
r2
rN−1 sinN−2 θ1dθ1dr ≥ λ1(γ)

∫ ∞

0

∫ γ

0

∫

u2

r2
rN−1 sinN−2 θ1dθ1dr. (3.10)

More precisely, λ1(γ) may be characterized by

λ1(γ) = inf
{u∈H,u 6=0}

∫ γ
0 u

2
θ1
sinN−2 θ1dθ1

∫ γ
0 u

2 sinN−2 θ1dθ1
, (3.11)

where H is the completion of the space

{u ∈ C∞[0, γ) | u vanishes in a neighborgood of γ}
in the norm

||u||2H =

∫ γ

0
u2θ1 sin

N−2 θ1dθ1. (3.12)

Indeed, if an = an(θ) is an approximating sequence in (3.11) then the sequence

un := u1(r)an(θ1)u2(θ2) . . . uN−2(θN−2),

where u1 is smooth and vanishes in the neighborhood of r = ∞, minimizes also λ1(γ).

3.4. Proofs of Theorems.

Proof of Theorem 3.1(a). Without losing the generality, we are going to consider u as in (3.7).
Next we propose the change of variables

v(r, θ1, θ2, . . . , θN−2) := u(r, θ1, θ2, . . . , θN−2)/ cos(
π

2γ
θ1).

For simplicity, we write u(r) or u(θ1) when referring to the radial variable respectively at the
angular part θ1. Thus, integrating by parts we get the following identity:
∫ γ

0
u2θ1(θ1) sin

N−2 θ1dθ1 =

∫ γ

0
v2θ1(θ1) cos

2(
π

2γ
θ1) sin

N−2 θ1dθ1 +
π2

4γ2

∫ γ

0
u2(θ1) sin

N−2 θ1dθ1

+ (N − 2)
π

2γ

∫ γ

0
v2(θ1) sin(

π

2γ
θ1) cos(

π

2γ
θ1) cos θ1 sin

N−3 θ1dθ1.

(3.13)

Using the identity (3.13) and the characterization of λ1(γ) stated in (3.11), it is enough to
show that

cos(
π

2γ
θ1) sin(

π

2γ
θ1) cos θ1 ≥

π

2γ
cos2(

π

2γ
θ1) sin θ1, ∀ θ1 ∈ [0, γ].

Obviously, this is true for θ1 = {0, γ}. Dividing by π
2γ θ1 cos

2( π
2γ θ1) cos θ1 it remains to prove

that
tan( π

2γ θ1)
π
2γ θ1

≥ tan θ1
θ1

, ∀ θ1 ∈ (0, γ).

Because π/2γ > 1, the last inequality is true due to the increasing monotonicity of the
function θ1 7→ tan θ1/θ1 in the interval (0, π/2). This ends the proof. �
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Proof of Theorem 3.1(b). In the sequel we will use the notations

γ = π/2 + δ and γ := π/2 + δ/2,

where δ > 0. It suffices to prove that

Proposition 3.1. For any ε > 0, ε << 1, there exists δ = δ(ε) > 0, such that
∫ γ(ε)

0
u2θ1(θ1) sin

N−2 θ1dθ1 ≥ (N − 1− ε)

∫ γ(ε)

0
u2(θ1) sin

N−2 θ1dθ1, (3.14)

for all u ∈ H.

Next we prove Proposition 3.1. Denote

v(θ1) := u(θ1)/ cos(
π

2γ
θ1),

and similar to (3.13) we obtain
∫ γ

0
u2θ1(θ1) sin

N−2θ1dθ1 =

∫ γ

0
v2θ1(θ1) cos

2(
π

2γ
θ1) sin

N−2 θ1dθ1 +
π2

4γ2

∫ γ

0
u2(θ1) sin

N−2 θ1dθ1

+ (N − 2)
π

2γ

∫ γ

0
v2(θ1) sin(

π

2γ
θ1) cos(

π

2γ
θ1) cos θ1 sin

N−3 θ1dθ1. (3.15)

Then
∫ γ

0
u2θ1(θ1) sin

N−2 θ1dθ1 ≥
π2

4γ2

∫ γ

0
u2(θ1) sin

N−2 θ1dθ1

+ (N − 2)
π

2γ

∫ γ

0
v2(θ1) sin(

π

2γ
θ1) cos(

π

2γ
θ1) cos θ1 sin

N−3 θ1dθ1

:= A+B. (3.16)

Let ε > 0, ε << 1 to be fixed. In order to compute B, we split it in two parts as

B = (N − 2)
π

2γ

∫ π/2−ε

0
. . .+ (N − 2)

π

2γ

∫ γ

π/2−ε
. . . := B1 +B2.

where Next we concentrate on B1.

Firstly, there exists δ = δ(ε) > 0, such that (cf. Lemma 3.2)

sin(
π

2γ(ε)
θ1) cos θ1 ≥ (1− ε) cos(

π

2γ(ε)
θ1) sin θ1, ∀ 0 ≤ θ1 ≤

π

2
− ε. (3.17)

Using this and undoing the variables we reach to

B1 ≥ (N − 2)
π

2γ(ε)
(1− ε)

∫ π/2−ε

0
u2(θ1) sin

N−2 θ1dθ1

= (N − 2)
π

2γ(ε)
(1− ε)

∫ γ(ε)

0
u2(θ1) sin

N−2 θ1dθ1 −B11, (3.18)

where

B11 = (N − 2)
π

2γ(ε)
(1− ε)

∫ γ(ε)

π/2−ε
u2(θ1) sin

N−2 θ1dθ1,
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and thus

|B11| ≤ C1

∫ γ(ε)

π/2−ε
u2(θ1)dθ1 (3.19)

for some positive constant C1 independent of ε. Undoing the variables we have

B2 = (N − 2)
π

2γ(ε)

∫ γ(ε)

π/2−ε
u2(θ1)

( cos θ1
cos( π

2γ(ε)θ1)

)

sin(
π

2γ(ε)
θ1) sin

N−3 θ1dθ1.

Again, there exists δ = δ(ε) > 0 and a constant C independent of ε, such that (cf. Lemma
3.3)

∣

∣

∣

cos θ1
cos( π

2γ(ε)θ1)

∣

∣

∣
< C, ∀ 0 ≤ θ1 ≤ γ(ε),

and reconsidering the constant C we obtain

|B2| ≤ C

∫ γ(ε)

π/2−ε
u2(θ1)dθ1 (3.20)

From (3.19) and (3.20) we deduce

|B11|+ |B2| ≤ C

∫ γ(ε)

π/2−ε
u2(θ1)dθ1 (3.21)

On the other hand, from Leibnitz-Newton formula there exists τ = τ(ε) ∈ (π/2 − ε, γ(ε))
such that

∫ γ(ε)

π/2−ε
u2(θ1)dθ1 = (γ(ε) + ε− π/2)u2(τ(ε)) = (δ(ε)/2 + ε)u2(τ(ε)). (3.22)

Applying Holder inequality we find

u2(τ(ε)) =
∣

∣

∣

∫ γ(ε)

τ(ε)
uθ1(θ1)dθ1

∣

∣

∣

2
≤ C

∫ γ(ε)

τ(ε)
u2θ1(θ1)dθ1 ≤ C1

∫ γ(ε)

0
u2θ1(θ1) sin

N−2 θ1dθ1,

(3.23)

where C, C1 are some positive constants independent of ε. From (3.21), (3.23) and (3.22) we
deduce

|B11|+ |B2| ≤ C(δ(ε) + ε)

∫ γ(ε)

0
u2θ1(θ1) sin

N−2 θ1dθ1. (3.24)

Hence, according to (3.16) we get

(

1− C(δ(ε) + ε)
)

∫ γ(ε)

0
u2θ1(θ1) sin

N−2 θ1dθ1 ≥

≥
( π2

4γ2(ε)
+ (N − 2)

π

2γ(ε)
(1− ε)

)

∫ γ(ε)

0
u2(θ1) sin

N−2 θ1dθ1. (3.25)

In other words
∫ γ

0
u2θ1(θ1) sin

N−2 θ1dθ1 ≥
π2

4γ2(ε) + (N − 2) π
2γ(ε) (1− ε)

1− C(δ(ε) + ε)

∫ γ

0
u2(θ1) sin

N−2 θ1dθ1. (3.26)
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Due to the fact that

lim
δց0

π2

4γ2 + (N − 2) π
2γ (1− ε)

1− C(δ + ε)
=
N − 1− (N − 2)ε

1−Cε
,

we may reconsider δ = δ(ε) > 0 from above such that

π2

4γ2(ε)
+ (N − 2) π

2γ(ε) (1− ε)

1− C(δ(ε) + ε)
>
N − 1− (N − 2)ε

1− Cε
− ε

2
.

Now we can choose ε > 0 small enough such that

N − 1− (N − 2)ε

1− Cε
≥ N − 1− ε

2
,

and for each δ = δ(ε) from above, we have

π2

4γ2(ε)
+ (N − 2) π

2γ(ε) (1− ε)

1− C(δ(ε) + ε)
=

N − 1

1−Cε
> N − 1− ε.

We end up the proof of the second part of Theorem 3.1. �

Proof of Theorem 3.2. with γ ∈ (0, π). Next, the aim is to show upper and lower bounds for
the value λ1(γ) in (3.11). Due to inequalities

sin γ

γ
t ≤ sin t ≤ t, ∀ t ∈ (0, γ), γ ∈ (0, π), (3.27)

it suffices to determine the value of

λ1⋆(γ) := inf
{u∈H,u 6=0}

∫ γ
0 u

2
t t

N−2dt
∫ γ
0 u

2tN−2dt
, (3.28)

which is well defined in H since
∫ γ

0
u2t t

N−2dt <∞ iff

∫ γ

0
ut sin

N−2 tdt <∞,

H being defined by the norm in (3.12). By Proposition 3.2, it holds that λ1⋆(γ) > 0. Due to
the compact embedding (see Proposition 3.3)

H →֒ L2([0, γ], tN−2dt),

λ1⋆(γ) is attained by a non-trivial function φ1. Then one can prove that λ⋆1(γ) satisfies the
variational problem: there exists φ1 ∈ H such that

∫ γ

0
φ1t vtt

N−2dt = λ⋆1(γ)

∫ γ

0
φ1vtN−2dt, ∀ v ∈ H. (3.29)

Next we note that any u ∈ H exhibits a hidden weak Neumann boundary condition at the
origin t = 0:

lim
ε→0

1

ε

∫ ε

0
utt

N−2dt = 0. (3.30)

Indeed, we have
∣

∣

∣

1

ε

∫ ε

0
utt

N−2dt
∣

∣

∣
≤ 1

ε

(

∫ ε

0
(ut)

2tN−2dt
)1/2(

∫ ε

0
tN−2dt

)1/2
= ε(N−3)/2

(

∫ ε

0
utt

N−2dt
)1/2

(3.31)
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which converges to 0 when ε tends to 0. This allows to make integrations by parts and rewrite
(3.29) as

∫ γ

0
−(φ1t t

N−2)tvdt = λ⋆1(γ)

∫ γ

0
φ1vtN−2dt, ∀ v ∈ H. (3.32)

Therefore, λ1⋆(γ) is the first eigenvalue of the degenerate Sturm-Liouville problem

{

−(utt
N−2)t = λutN−2, t ∈ (0, γ),

limt→0 utt
N−2 = 0, u(γ) = 0,

(3.33)

with the corresponding eigenvector φ1.

In the sequel we determine explicitly the value of λ1⋆(γ).

With the change of variables v = utN−2, the problem (3.33) reduces to the following Bessel
equation with boundary constraint

{

vtt + (2−N)vtt +
(

λ+ N−2
t2

)

v = 0, t ∈ (0, γ),

v(γ) = 0,
(3.34)

3.4.1. Bessel functions. If n is positive integer then, the first Bessel function Jn of order n
has the expression

Jn(x) =
xn

2nn!

(

1− x2

2 · (2n + 2)
+

x4

2 · 4 · (2n + 2) · (2n + 4)
− . . .

)

(3.35)

and Jn behaves like xn when x > 0 is small. If n is a negative integer, by definition yields

J−n(x) = (−1)nJn(x).

If n is not an integer then

Jn(x) =
xn

2nΓ(n+ 1)

(

1− x2

2 · (2n + 2)
+

x4

2 · 4 · (2n+ 2) · (2n+ 4)
− . . .

)

,

where Γ denotes the Gamma-function. When n is an integer it is necessary to recall the
so-called Weber’s function, i.e.

Yn(x) = Jn(x)

∫

dx

xJ2
n(x)

,

which behaves like 1/xn when x > 0 is small. Next, we consider the Bessel equation

ytt − (2α − 1)
yt
t
+

(

β2τ2t2τ−2 +
α2 − n2τ2

t2

)

y = 0, (3.36)

Due to [7], pp. 117, the general solution of (3.36) is given by

y = tα{AJn(βtτ ) +BYn(βt
τ )},

y = tα{AJn(βtτ ) +BJ−n(βt
τ )},

where A,B are constants, according as n is non-negative integer or not.

Once λ 6= 0 is an eigenvalue for (3.33) then λ is also an eigenvalue in (3.34). The general

solution of (3.34) is a particular case of (3.36) for α = (N − 1)/2, τ = 1, β =
√
λ, n =

(N − 3)/2, i.e.,

v(t) = t
N−1

2 {AJN−3

2

(
√
λt) +BYN−3

2

(
√
λt)},
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or

v(t) = t
N−1

2 {AJN−3

2

(
√
λt) +BJ−N−3

2

(
√
λt)}.

We show that it must be B = 0, in which case it simplifies the expression of v i.e.

v(t) = At
N−1

2 JN−3

2

(
√
λt). (3.37)

Indeed, if N = 3 then, reconsidering the constants, it is trivial that v is as in (3.37). Assume
N ≥ 4 and B 6= 0. Using the behavior of Jn and Yn at zero we get that

v(t) ∼ AC1t
N−1 +BC2t,

where C1 = C1(λ), C2 = C2(λ) are non-trivial constants depending on λ. Consequently, up
to a constant,

u(t) ∼ 1 + Ct3−N

with C 6= 0. Since N ≥ 4, this last formula yields to
∫ γ

0
u2(t)dt = ∞,

which contradicts the fact that u ∈ H. Hence, the assumption is false and B = 0 for any
N ≥ 4.

Imposing the condition v(γ) = 0 in the simplified expresion (3.37), we obtain
√
λ = Bn,

where {Bn}n are the positive zero’s of the Bessel function JN−3

2

. In particular we obtain

λ1⋆(γ) = B2
1/γ

2.

Using this, the relations (3.11), (3.28) and the inequality (3.27) we obtain the conclusion of
Theorem 3.2. �

3.5. Proofs of useful results.

Proposition 3.2. For any v ∈ H we have
∫ γ

0
v2t t

N−2dt ≥ 1

γ

(N − 2

2

)2
∫ γ

0
v2tN−3dt. (3.38)

Proof of Proposition (3.2). Of course, we have
∫ γ

0
v2t t

N−2dt ≥ 1

γ

∫ γ

0
v2t t

N−1dt,

and applying the Hardy inequality in N -d we complete the proof of Proposition (3.2). �

Proposition 3.3. The embedding

H →֒ L2([0, γ], tN−2dt)

is compact.

Proof of Proposition 3.3. The key point is played by Proposition 3.2.

Next we consider a sequence (un)n ⇀ 0 in H and suffices to prove its strong convergence in
L2([0, γ], tN−2dt) i.e. un → 0 in L2([0, γ], tN−2dt). By weak convergence, {un}n is bounded
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in H1
0 ([0, γ], t

N−2dt), let’s say by a constant C. Accordingly to Proposition 3.2 we have as
well

∫ γ

0
u2nt

N−3dt ≤ C, ∀n ∈ N. (3.39)

Given ε > 0 we split the L2-norm by distinguish that concentrated in B(0, ε) and in its
exterior:

||un||2L2([0,γ],tN−2dt) =

∫ 2ε

0
|un|2tN−2dt+

∫ γ

2ε
|un|2tN−2dt := I1ε,n + I2ε,n. (3.40)

Let us also consider the partition of unity of un,

un = unϕ+ (1− ϕ)un := w1,n +w2,n,

where ϕ is a regular function such that

ϕ(t) =

{

1, t ≤ ε,
0, t ≥ 2ε,

(3.41)

Obviously, supp(w1,n) ⊂ (0, 2ε), supp(w2,n) ⊂ (ε, γ). Firstly, from (3.39) we have

I1ε,n ≤ 2ε

∫ 2ε

0
|un|2tN−3dt ≤ 2ε

∫ γ

0
|un|2tN−3dt

(3.42)

Secondly, let us notice that

w2,n ⇀ 0 in H1
0 ([0, γ], t

N−2dt). (3.43)

For this, it suffices to prove (ψ,w2,n)H1
0
([0,γ],tN−2dt) → 0 for all ψ ∈ C∞

c . We evaluate,

(ψ,w2,n)H1
0
([0,γ],tN−2dt) =

∫ γ

0
ψt((1− ϕ)un)tt

N−2dt = −
∫ γ

0
(ψtt

N−2)t(1− ϕ)undt

which converges to 0 when n → ∞. This happens because weak convergence in H involves
weak convergence in L2([0, γ], tN−3dt) (by Proposition (3.2)). Now we observe that the sup-
port of w2,n lies far from zero and therefore the norm of w2,n in H is equivalent to the
norm of w2,n in H1

0 (ε, γ). But H1
0 (ε, γ) is compact embedded in L2(ε, γ), and in particular

in L2([0, γ], tN−3dt). We obtain that w2,n → 0 in L2([0, γ], tN−3dt). Hence, we can choose
n large enough such that I2ε,n < ε. From here and (3.42), we conclude that un converges

strongly to 0 in L2([0, γ], tN−2dt). �

Lemma 3.1. Let us consider a < 1. Then, the application

(0,
π

2
) � t→ tan at

tan t
∈ (0,∞)

is decreasing.

Proof of Lemma 3.1. Indeed, if we consider f(t) = tan at
tan t we obtain

f ′(t) =
at

cos2 at sin2 t

(sin 2t

2t
− sin 2at

2at

)

.

It follows that f ′ < 0 due to the decreasing behavior of the function x 7→ sinx
x on (0, π).

With this, we complete the proof. �
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Lemma 3.2. For any ε > 0, ε << 1, there exists δ = δ(ε) > 0 such that

sin(
π

2γ(ε)
θ1) cos θ1 ≥ (1− ε) cos(

π

2γ(ε)
θ1) sin θ1, ∀ 0 ≤ θ1 ≤

π

2
− ε. (3.44)

Proof of Lemma 3.2. Let us put formally γ = π/2 + δ with δ > 0. Then (3.44) becomes

sin(
π

π + 2δ(ε)
θ1) cos θ1 ≥ (1− ε) cos(

π

π + 2δ(ε)
θ1) sin θ1,

or
tan(

π

π + 2δ(ε)
θ1) ≥ (1− ε) tan θ1, ∀ 0 ≤ θ1 ≤ π/2− ε,

or equivalent to
tan( π

π+2δ(ε)θ1)

tan θ1
≥ (1− ε), ∀ 0 ≤ θ1 ≤ π/2− ε. (3.45)

Now, let us show the validity of (3.45). Because

lim
δց0

tan
(

π
π+2δ

(

π
2 − ε

)

)

tan(π2 − ε)
= 1,

we can choose δ = δ(ε) > 0 such that

tan
(

π
π+2δ(ε)

(

π
2 − ε

)

)

tan(π2 − ε)
≥ (1− ε).

By this inequality and Lemma 3.1 it is easy to obtain (3.45). �

Lemma 3.3. Let 0 < ε << 1. There exists δ = δ(ε) > 0 and a constant C, such that
∣

∣

∣

cos θ1
cos( π

2γ(ε)θ1)

∣

∣

∣
< C, ∀ 0 ≤ θ1 ≤ γ(ε), (3.46)

Proof of Lemma 3.3. Let us put θ1 = π/2 + δ(ε)t′′ with t′′ ∈ (0, 1/2). Then
∣

∣

∣

cos θ1
cos( π

2γ(ε)θ1)

∣

∣

∣
=

∣

∣

∣

sin δ(ε)t′′

sin
(

πδ(ε)
π+2δ(ε)(1− t′′)

)

∣

∣

∣
→ t′′

1− t′′
, (3.47)

when δ(ε) → 0, ∀ t′′ ∈ (0, 1/2). But

sup
t′′∈(0,1/2)

t′′

1− t′′
= 1,

and this yields to the conclusion of Lemma. �

4. Further comments and open problems

4.1. Efficiency of the methods and sharp reminder terms. As we mentioned in The-
orem 2.1, the inequality we obtained involves a reminder term of order

∫

v2/|x|dx in the
lower bound. The proof uses a change of variable adapted to the boundary near the sin-
gular point. Comparing Theorems 2.1 and 2.2, we see that the results improve when using
spherical harmonics decomposition. More precisely, the inequality stated in Theorem 2.2 ad-
mits an optimal reminder term of order

∫

v2/(|x|2 log2(1/|x|))dx. Thus, spherical harmonics
decomposition yields better results.
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4.2. Inequalities in cones. In 2-d we have given a complete picture of the sharp Hardy
inequality. In the multi-dimensional case, N ≥ 3, we proved several qualitative inequalities
but optimality results are still to be proved. To be more precise, in convex cones we proved
that the constant is at least (N − 2)2/4 + (N − 1)π2/4γ2, γ being the slot of the cone (see
Subsection 3.1). This result shows that the best constant blows-up when γ tends to 0. For
concave cones we have obtained less information: we have only shown that the constant varies
continuously with respect to the slot γ nearby γ = π/2. For any cone with the slot γ ∈ (0, π)
we have proved that the best constant is at least (sin γ/γ)N−2B2

1/γ
2, where x1 is the first

positive zero of the Bessel function J(N−3)/2. To our knowledge, explicit formulas for the
optimal constant are still to be proved.

4.3. Weak Hardy inequalities with L2-reminder terms. In the context of smooth do-
mains, for certain geometries, we have improved the Hardy constant from (N−2)2/4 to N4/4.
To do this, we had to add a L2-reminder term in the upper bound of the inequality. This extra
term in L2-norm cannot be disregarded as shown in Proposition 2.1. Thus, the inequalities
that we obtain are sharp. However, the problem on the possible existence of domains Ω sat-
isfying C3 such that µ(Ω) = N2/4 is open. In the case where Ω has an hyperbolic geometry
at the origin, as ε tends to 0, the constant C(Ω, ε) is expected to blow-up (see Theorem 2.4).
This class of generalized Hardy inequalities with lower order reminder terms is of application
in various contexts. For instance, the Hardy inequalities play a crucial role when studying
the controllability of wave equations with quadratic singular potentials. In that setting, one
can get rid of the L2-reminder terms, using compactness-uniqueness arguments (see [14]).
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[27] J.M. Lévy-Leblond, Electron capture by polar molecules, Phys. Rev. 153 (1967), no. 1, 1-4.
[28] M. F. Mouhamed and R. Musina, Hardy-Poincaré inequalities with boundary singularities,
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