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1. Introduction

Let X be a smooth complex projective surface, and let Mµ(c), with c ∈ H•(X,Q), be

the moduli space of slope stable locally free coherent OX-modules, having Chern character

c. One can obtain a compactification of Mµ(c) by taking closure in the Gieseker-Maruyama

moduli space space Mss(c), formed by S-equivalence classes of Gieseker-semistable coher-

ent OX-modules. On the other hand, by the so-called Hitchin-Kobayashi correspondence

[9], Mµ(c) may be regarded as a moduli space of bundles carrying a Hermitian-Yang-Mills

metric; as such, it admits a differential-geometric compactification, called the Uhlenbeck-

Donaldson compactification N(c), which is obtained by adding to Mµ(c) points correspond-

ing to “ideal” (degenerated) Hermitian-Yang-Mills bundles. In a 1993 paper [8], Jun Li

showed that N(c) may be given a structure of scheme over C, and constructed a morphism

Mss(c) → N(c), which on Mµ(c) restricts to an isomorphism. With that scheme struc-

ture, N(c) may be regarded as a sort of moduli space of slope semistable sheaves, under an

identification which is somehow stronger than S-equivalence [7].

In this paper we consider pairs formed by a bundle on a smooth polarized projective

surface, together with a framing. A notion of stability exists for such objects, and one

can construct corresponding moduli spaces [5, 6]. The main result of this paper is the

construction of an Uhlenbeck-Donaldson compactification for the slope-stable part of this

moduli space. This is accomplished by following rather closely the construction of the

Uhlenbeck-Donaldson compactification of the moduli space of (unframed) vector bundles,

as done, e.g., in [7]. A first key ingredient is, as always, a boundedness result for the family

Sµss(c) of semistable framed sheaves on X (Proposition 3.1) with Chern character c. After

introducing an appropriate Quot scheme, this family is realized as a locally closed subset

Rµss(c) in the Quot scheme, and a suitable semiample line bundle on Rµss(c) is picked out.

The moduli scheme Mss(c) cannot be defined as a geometric quotient, hence it is defined

in an ad hoc way, cf. Definition 4.4. The Jordan-Hölder filtration allows one to introduce a

set-theoretic stratification in the space Sµss(c).

Let X be a smooth projective surface, D a divisor on X satisfying some numerical con-

ditions, and F a rank r vector bundle on D, which is semistable or satisfies a slightly more

general stability condition. The following property was proved in [1]: given a torsion-free

rank r sheaf E on X and an isomorphism φ : E|D → F , one can choose a polarization H in

X and a stability condition for framed sheaves in such a way that the pair (E , φ) is stable in
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Huybrechts-Lehn’s sense. Moreover, the choice of the polarization and that of the stability

condition only depend on the pair (D,F) and on the Chern character of E . This means that

the moduli space of such pairs embeds into a moduli space of stable pairs, and therefore

we can restrict the Uhlenbeck-Donaldson compactification to it. Via the Hitchin-Kobayashi

correspondence, this allows one to look at Mµss(c) as a quasi-projective scheme structure

on the moduli space of ideal instantons. For framed moduli spaces, a quasi-projective

Uhlenbeck-Donaldson type compactification has been previously known only in the case of

P2. It was constructed by Nakajima in [12] by completely different techniques, using ADHM

construction and hyperkähler quotients.

Acknowledgments. This paper was mostly written during the first and third authors’

stays at Université de Lille I. They acknowledge the financial support and the warm hospi-

tality. The authors also thank D. E. Diaconescu and D. Huybrechts for discussions.

2. A Quot scheme for framed sheaves

Let X be a smooth d-dimensional projective variety over an algebraically closed field k

of characteristic zero, H an ample class on it, F a coherent sheaf on X, c ∈ K(X)
num

a numerical K-theory class, Pc the corresponding Hilbert polynomial. We shall consider

pairs (E , [φ]), where E is a coherent sheaf on X with Hilbert polynomial PE = Pc, and

[φ] ∈ P(Hom(E ,F)) is the proportionality class of nonzero sheaf morphism φ : E → F . We

call each such pair (E , [φ]) a framed sheaf. Later on, to simplify notation, we shall write a

framed sheaf as (E , φ). A homomorphism between two framed sheaves (E1, [φ1]), (E2, [φ2]) is

a sheaf homomorphism f : E1 → E2 such that φ2f = λφ1 for some λ ∈ k. An isomorphism

is an invertible homomorphism. At some stage, when we consider (semi)stability of framed

sheaves, also the choice of a polynomial δ will come into play.

Let V be a vector space of dimension Pc(m) for some m≫ 0, let H = V ⊗OX(−m), and

let Quot(H, Pc) be the Quot scheme parametrizing the coherent quotients of H with Hilbert

polynomial Pc. On Quot(H, Pc)×X there is a universal quotient Q̃, and a morphism

OQuot(H,Pc) ⊠H
g̃
→ Q̃

Let P = P[Hom(V,H0(X,F(m)))]∗; a point [a] ∈ P induces a morphism a : H → F , defined

up to a constant factor.
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Let Quot(H, Pc,F) be the closed subscheme of Quot(H, Pc) × P formed by the pairs

([g], [a]) such that there is a morphism φ : G → F for which the diagram

H
g

//

a
��

@

@

@

@

@

@

@

@

G

φ

��

F

commutes. Obviously, such φ is uniquely determined by a. We denote by Q the restriction

to Quot(H, Pc,F)×X of the pullback of Q̃ to Quot(H, Pc)× P×X. There is a morphism

Φ: Q → p∗F , defined locally over the base, where p : Quot(H, Pc,F)×X → X is the natural

projection. In some sense, (Q,Φ) is a locally defined universal pair (see Proposition 2.3).

Definition 2.1. A family of framed sheaves on X parametrized by a scheme S is a sheaf G

on S ×X, flat over S, with a collection Ψ of sections Ψα of pr1∗Hom(G, pr∗2F) defined on

the elements Uα of some open covering (Uα) of S such that Ψα|Uα∩Uβ
= (pr∗1fαβ)Ψβ|Uα∩Uβ

for some fαβ ∈ Γ(Uα ∩Uβ ,O∗
S). Two collections Ψ, Ψ′ are equivalent if their union is again

a collection with the same property.

Two families (E ,Φ), (G,Ψ) of framed sheaves over the same base scheme S are called lo-

cally isomorphic over S if there is a collection of isomorphisms hα : (E ,Φ)−→∼ (G,Ψ) defined

over the elements Uα of some open covering (Uα) of S such that hα|Uα∩Uβ
= (pr∗1fαβ)hβ|Uα∩Uβ

for some fαβ ∈ Γ(Uα ∩ Uβ ,O
∗
S).

Definition 2.2. Let (E , [φ]) be a framed sheaf on X. A pair (G, [ψ]) is a quotient of (E , [φ])

if G is a quotient of E , and the diagram

E //

φ ��
?

?

?

?

?

?

?

?

G

ψ

��

F

commutes modulo a scalar factor.

If (E , [φ]) is a framed sheaf on X, a family of framed quotients of (E , [φ]) is a family of

framed sheaves (G,Ψ) with a sheaf epimorphism g : pr∗2 E → G such that the diagram

pr∗2 E
g

//

pr∗2 φ ##G

G

G

G

G

G

G

G

G

G

Ψα

��

pr∗2F
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commutes over Uα for each α up to a factor of the form pr∗1fα for some fα ∈ Γ(Uα,O∗
S).

The universality property of the Quot scheme implies the following result.

Proposition 2.3. Let (G,Ψ) be a family of framed quotients of H, parametrized by a scheme

S. Assume that the Hilbert polynomial of Gs =: G ⊗ k(s) is Pc for any s ∈ S. Then there is

a morphism f : S → Quot(H, Pc,F) (unique up to a unique isomorphism) such that (G,Ψ)

is locally isomorphic to (f × id)∗(Q,Φ) over S.

The action of SL(V ) on V induces well-defined actions on Quot(H, Pc) and P which are

compatible, so that one has an action of SL(V ) on Y := Quot(H, Pc,F). The moduli space

of semistable framed sheaves is constructed as the GIT quotient of Y by this action of

SL(V ).

3. A family of µ-semistable framed sheaves on a surface

From now on we assume that

(i) X is a surface (i.e. d = 2),

(ii) F is a OD-module, where D ⊂ X is a fixed big and nef curve,

(iii) degPc(m) = 2.

Besides, we fix a polynomial

δ(m) = δ1m+ δ0 ∈ Q[m] with δ1 > 0.

For an arbitrary framed sheaf (E, α : E → F) of rank rkE > 0, denote

deg(E, α) := degE − ε(α)δ1 , µ(E, α) := deg(E, α)/ rkE,

where degE := c1(E) · H and where we set ε(α) := 1 if α 6= 0, respectively, ε(α) := 0

otherwise. Recall that a framed sheaf (E, α : E → F) ∈ Y is called µ-(semi)stable with

respect to δ1 in the sense of Huybrechts-Lehn [5, Def. 1.8] if kerα is torsion-free, and for all

framed subsheaves (E ′, α′) of (E, α), where 0 ≤ rk(E ′) ≤ rkE and α′ : E ′ →֒ E
α
→ F is the

induced framing, one has rkE ′ · deg(E, α)− rkE · deg(E ′, α′) >
(≥)

0. (If rkE ′ > 0, then the

latter inequality can be written as µ(E ′, α′) <
(≤)

µ(E, α).)

We shall need a boundedness result. Denote by Sµss(c, δ) the family of all framed sheaves

(E, α) of class c on X that are µ-semistable with respect to δ1 (shortly: µ-semistable).
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Proposition 3.1. The family Sµss(c, δ) is bounded.

Proof. The sheaves E from the pairs (E, α) ∈ Sµss(c, δ) may have torsion. We use the

following trick of Huybrechts–Lehn (Remark 1.9 and Lemma 2.5 from [5]) in order to replace

them by torsion free ones. Let F̂ be any locally free sheaf with a surjection φ : F̂ → F and

Ê = E ×F F̂ . Then Ê is torsion free, and there is an exact triple 0 → K → Ê → E → 0,

where K = ker φ. Thus if we fix F̂ and φ, then PÊ = Pc + PK does not depend on (E, α).

Let now F̂ be any nonzero subsheaf of Ê. Then rk F̂ > 0, as Ê is torsion free. We have

an exact triple 0 → KF → F̂ → F → 0, where F = φ(F̂ ) and KF = ker(φ|F̂ ). By the

µ-semistability of (E, α), we have deg(F ) ≤ rkF · (µ(E) + δ1). Hence

µ(F̂ ) =
degF + degKF

rk F̂
≤

rkF · (µc + δ1) + rkKF · µmax(K)

rk F̂
,

where µmax stands for the slope of the maximal destabilizing subsheaf.

This shows that µmax(Ê) is uniformly bounded as (E, α) runs over Sµss(c, δ). Hence by

a theorem of Le Potier-Simpson [7, Thm. 3.3.1], there exist constants C0, C1, C2 and an

(Ê, φ)-regular sequence of two hyperplane sections H1, H2 ∈ |OX(H)| such that h0(Ê) ≤

C0, h
0(Ê|H1

) ≤ C1, h
0(Ê|H1∩H2

) ≤ C2. Now apply Kleiman’s boundedness criterion [7,

Thm. 1.7.8] to obtain the boundedness of the family of the sheaves Ê associated to the

pairs (E, α) from Sµss(c, δ). The boundedness of the family of the pairs (E, α) themselves

then follows by the same argument as in the proof of Lemma 2.5 in [5].

�

By Proposition 3.1 and semicontinuity we can fix a sufficiently large number m such that

for each pair (E, α) in Sµss(c, δ) the sheaf E is m-regular. We define now Rµss(c, δ) as the

locally closed subscheme of the scheme

Y := Quot(H, Pc,F),

with H = V ⊗OX(−m) and dim V = Pc(m), formed by the pairs ([g : H → E], [a : H → F ])

such that (E, α) ∈ Sµss(c, δ), is µ-semistable with respect to δ1, where the framing α is

defined by the relation a = α ◦ g, and g induces an isomorphism V → H0(E(m)).

3.1. Choosing a semiample sheaf L(n1, n2) on Rµss(c, δ). For any framed sheaf (E, α)

on X we set

P(E,α)(l) := PE(l)− ε(α)δ(l)
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Take a sheaf (E, α) ∈ Sµss(c, δ). We then have a surjective quotient morphism V ⊗

OX(−m) → E. Since the family of subsheaves E ′ of E generated by all subspaces V ′

of V is bounded, the set N(E,α) of their Hilbert polynomials PE′ is finite. Hence, since the

scheme Sµss(c, δ) is noetherian, the set

NX(c, δ) :=
⋃

(E,α)∈Sµss(c,δ)

N(E,α)

is finite.

Now for each polynomial B ∈ NX(c, δ), where B = PE′, for E ′ a subsheaf of some framed

sheaf (E, α) ∈ Sµss(c, δ), defined by a subspace V ′ of V , together with the induced framing

α′, we denote

GB(l) := dimV

(
1 + ε(α′)

δ(m)

P(E′,α′)(m)

)
P(E′,α′)(l)− dimV ′

(
1 +

δ(m)

P(E,α)(m)

)
P(E,α)(l).

Since the set {GB|B ∈ NX(c, δ)} is finite, there exists a rational number ℓ0 such that for

any ℓ′ ≥ ℓ0 the implication

(1) GB(ℓ
′) > 0 ⇒ GB(l) is positive for l ≫ 0

is true for all B ∈ NX(c, δ).

Fix an integer k > 0 big enough so that

H1(X,E(m− k)) = 0, (E, α) ∈ Sµss(c, δ).

Consider the linear series |kH| and its dense open subset |kH|∗ = {C ∈ |kH|
∣∣ C is a smooth

curve}. For any (E, α) ∈ Sµss(c, δ) and any curve C ∈ |kH|∗ we have a Hilbert polynomial

Pc|C(l) := PE|C(l) = PE(l)− PE(l − k) = Pc(l)− Pc(l − k).

Take (E, α) ∈ Sµss(c, δ) and consider the rational functions

AX(l) := P(E,α)(l)
δ(m)

P(E,α)(m)
− δ(l) ∈ Q(l),

(2) AC(l) := P(E|C ,α|C)(l)
δC

P(E|C ,α|C)(m)
− δC ∈ Q(l),

where, as before, δ(l) := δ1l + δ0 and where we set δC := aδ1. Next, let

Pc(l) = p2l
2 + p1l + p0, pi ∈ Q.
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The equality

(3) AX(l) = AC(l̃),

considered as an equation on l̃, in view of (6) and (2) yields

(4) l̃ = L(l) :=
1

2p2

((
1 +

AX(l)

aδ1

)(
p2(2m+ k) + p1 − δ1

)
− p1 + δ1

)
−

1

2
k

For an arbitrary curve C ∈ |kH|∗ set

HC := VC ⊗OC(−m), dimVC := Pc(m)− Pc(m− k),

Pc|C(l) := Pc(l)− Pc(l − k) = k(p2(2l + k) + p1)

and consider the Quot scheme YC := Quot(HC , Pc|C). For any point (E, α) ∈ Y and any

C ⊂ |kH|∗ consider the framed sheaf (E|C, α|C). The family of subsheaves E ′
C of E|C

generated by all subspaces W ′ of W is bounded, so that the set N(E|C ,α|C) of polynomials

PE′

C
is finite. Hence, since the scheme Sµss(c, δ) is noetherian, the set NC(c|C , δC) :=⋃

(E,α)∈Sµss(c,δ)

N(E|C ,α|C) is finite. Respectively, the set

N (c|C, δC) :=
⋃

C∈|kH|∗

NC(c|C , δC)

is also finite.

Now for each polynomial B ∈ N (c|C, δC), where B = PE′

C
, E ′

C a subsheaf of a sheaf

(E|C , α|C) for some framed sheaf (E, α) ∈ Sµss(c, δ), defined by a subspace W ′ of W ,

together with the induced framing α′
C , we denote

G̃B(l) := dimW ·

(
P(E′|C ,α′|C)(l) + ε(α′|C)

δ(m)

P(E|C ,α|C)(m)

)

− dimW ′ ·

(
1 +

δC(m)

P(E|C ,α|C)(m)

)
P(E|C ,α|C)(l).

Since the set {G̃B|B ∈ N (c|C, δC)} is finite, there exists a rational number ℓ0C such that

for any ℓ′ ≥ ℓ0C the implication

(5) G̃B(ℓ
′) > 0 ⇒ G̃B(l) is positive for l ≫ 0

is true for all B ∈ N (c|C , δC).
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Now choose a number ℓX ≥ ℓ0 such that L(ℓX) ≥ ℓ0C , where ℓ0C was defined before

formula (5) and L(l) was defined earlier in (4). Set

ℓC := L(ℓX)

By (3) we have

(6) AX(ℓX) = AC(ℓC), ℓX ≥ ℓ0, ℓC ≥ ℓ0C .

Let

L(n1, n2) =
[
pr∗1 λQ̃(u1)

⊗n1 ⊗ pr∗2OP(n2)
]
|Rµss(c,δ)

where we set

(7)
n1

n2
:= AX(ℓX) = δ(m)

Pc(ℓX)

Pc(m)
− δ(ℓX)

and where λQ̃(u1) is the determinant line bundle on Quot(H, Pc) according to Huybrechts-

Lehn’s notation [7].

Now one has the following analogue of theorems of Mehta and Ramanathan [10, 11].

Theorem 3.2. Let (E, α) ∈ Sµss(c, δ) be a µ-semistable framed sheaf of positive rank. Then

for all sufficiently big k, and for a generic curve C ∈ |kH|, the framed sheaf (E|C , α|C) is

µ-semistable on C with respect to δC.

Proof. See [15]. �

Proposition 3.3. For ν ≫ 0 the line bundle L(n1, n2)
ν on Rµss is generated by its SL(V )-

invariant sections.

Proof. Let S be a scheme parametrizing a flat family (E, αE) of µ-semistable framed sheaves

(E, α : E → F) on X with Chern character c = (r,A, c2). Let C ∈ |kH| be a general curve

and k ≫ 0. Then C is smooth and transversal to D, and the restriction of (E, αE) to S×C

yields a family (E , αE) of framed sheaves (EC , αC : EC → i∗F) on C, where i : C → X is

the inclusion. We may assume that the general element in this family is µ-semistable (by

“general” we mean that the property holds true for all closed points in a nonempty open

subset). Let MC := Mss(c|C, δC) be the moduli space of framed sheaves on C with Mukai

vector c|C = i∗c that are semistable with respect to δC . Note that, since C is a curve,

semistability coincides with µ-semistability. By Theorem 3.2 a rational map S 99K MC is

defined.
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For any w ∈ K(X), let w|C = i∗w ∈ K(C) be its restriction. The class c|C is uniquely

determined by its rank and by A|C. Let m′ be a large positive integer, P ′ := Pc|C , let VC be

a vector space of dimension P ′(m′), let H′ := VC⊗OC(−m′) and let QC ⊂ QuotC(H
′, P ′) be

the closed subset of quotients with determinant A|C , together with the universal quotient

OQC
⊠ H′ → E ′. Furthermore, let PC = P

(
Hom(VC , H

0(C, i∗F(m′)))∗
)
, so that a point

[a] ∈ PC corresponds to a morphism a : H′ → i∗F . Consider the closed subscheme YC =

Quot(H′, P ′, i∗F) of QC × PC with projections QC
p1
←− YC

p2
−→ PC , defined similarly to the

scheme Y above. Clearly, the group SL(VC) acts on YC . Denote degC = C ·H , and consider

the line bundle

L′
0(n1, n2k) := p∗1λE ′(u0(c|C))

n1 degC ⊗ p∗2OPC
(n2k)

on YC. If m′ is sufficiently large the following results hold (see [5]).

Lemma 3.4. Given a point ([g : H′ → EC ], [a : H′ → i∗F ]) ∈ YC, the following assertions

are equivalent:

(1) (EC , [a]) is a semistable pair and VC → H0(EC(m
′)) is an isomorphism.

(2) ([g], [a]) is a semistable point in YC for the action of SL(VC) with respect to the

canonical linearization of L′
0(n1, n2k).

(3) There is an integer ν and an SL(VC)-invariant section σ of L′
0(n1, n2k)

ν such that

σ([g], [a]) 6= 0.

Jordan-Hölder filtrations for semistable framed sheaves were introduced in [5], Proposition

1.13, and the ensuing notion of S-equivalence was given there in Definition 1.14. In Section

4.2 we shall also use the notion of a µ-Jordan-Hölder filtration of a framed sheaf (E, α). It

is constructed in the same way, but the associated graded object is not necessarily unique:

two graded objects may differ by subsheaves supported in codimension ≥ 2. To avoid this

difficulty, we shall only consider saturated µ-Jordan-Hölder filtrations, in which every term

is a maximal proper µ-semistable framed subsheaf of the next term. We call (E, α) µ-

polystable if E has a filtration 0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E such that: (i) it is split, that

is the natural map from E to the associated graded object
n⊕
i=1

Ei/Ei−1 is an isomorphism,

and (ii) the filtration . . . ⊂ (Ei, α|Ei
) ⊂ (Ei+1, α|Ei+1

) ⊂ . . . is a saturated µ-Jordan-Hölder

filtration of (E , α).

Lemma 3.5. Two points ([gj : H′ → EjC ], [aj : H′ → i∗F ]), j = 1, 2 are separated by an

SL(VC)-invariant section in some tensor power of L′
0(n1, n2k) if and only if either both are
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semistable points but the corresponding framed sheaves (E1C , α1C) and (E2C , α2C) are not

S-equivalent, or one of them is semistable but the other is not.

Consider now the exact sequence

(8) 0→ E⊗
(
OS ⊠OX(−k)

)
→ E→ E → 0.

Assume that m′ is big enough so that, not only the results in Lemmas 3.4 and 3.5 hold, but

one also has:

Es is m′-regular for all s ∈ S.

Then p∗(E(m′)) is a locally free OS-module of rank P ′(m′), where E(m′) = E ⊗OS⊠OC(m′)

and p : S × C → S is the projection. Let S̃ := P(Isom(VC ⊗ OS, p∗(E(m
′)))∨), π : S̃ → S

the associated projective frame bundle and πC : S̃ × C → S × C the induced projection.

On S̃ × C there is a universal quotient g : O
S̃
⊠H′

։ π∗
CE ⊗ OπC(1) and a system ΨE of

locally defined framings π∗
CE ⊗ OπC(1)

π∗

CαE⊗id
−−−−−→ π∗

C(OS ⊠ i∗F) ⊗ OπC (1) which induce by

Proposition 2.3 a SL(P ′(m′))-invariant morphism

fE : S̃ → YC .

By analogy with [7, Prop. 8.2.3] and using the relations (6) and (7) we obtain the isomor-

phism of line bundles

(9) f∗EL
′
0(n1, n2k) ∼= π∗L(n1, n2)

⊗k.

Now set S = Rµss(c, δ). The group SL(V ) acts on S, hence also on S̃. Thus we have an

action of SL(V ) × SL(VC) on S̃ and by construction the morphism fE is SL(V ) × SL(VC)-

invariant. Take an arbitrary SL(VC)-invariant section σ of L′
0(n1, n2k)

⊗ν . Then f∗Eσ is a

SL(V ) × SL(VC)-invariant section. Therefore, since π is a principal PSL(VC)-bundle, this

section descends to a SL(V )-invariant section of the line bundle L(n1, n2)
⊗νk. We thus

obtain a monomorphism

(10) sE : H0(YC,L
′
0(n1, n2k)

⊗ν)SL(VC) → H0(S,L(n1, n2)
⊗νk)SL(V ).

By analogy with [7, Lemma 8.2.4], and using [7, Prop. 3.1-3.3], we obtain the following

lemma.

Lemma 3.6. 1. If s ∈ Rµss(c, δ) is a point such that (i∗Es, i
∗αs : i

∗Es → i∗F) is semistable

with respect to δC, there is a SL(V )-invariant section σ̄ ∈ H0(Rµss(c, δ),L(n1, n2)
⊗νk)SL(V )

such that σ̄(s) 6= 0.
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2. If s1 and s2 are the two points in Rµss(c, δ) such that i∗Es1 and i∗Es2 are both semistable

but not S-equivalent, or one of them is semistable and the other is not, then for some ν there

are SL(V )-invariant sections of L(n1, n2)
⊗νk that separate s1 and s2.

Proposition 3.3 now follows from the first assertion of Lemma 3.6. �

4. The Uhlenbeck-Donaldson compactification for framed sheaves

4.1. Construction of Mµss(c, δ). By Proposition 3.3, the sheaf L(n1, n2)
ν is generated

by its invariant sections. Thus we can find a finite-dimensional subspace W ⊂ Wν :=

H0(Rµss,L(n1, n2)
ν)SL(V ) that generates L(n1, n2)

ν . Let φW : Rµss(c, δ) → P(W ) be the

induced SL(Pc(m))-invariant morphism.

Proposition 4.1. MW := φW (Rµss(c, δ)) is a projective scheme.

The proof of this Proposition goes as in [7, Prop. 8.2.5], by using the following Lemma,

which generalizes a classical result by Langton.

Lemma 4.2. Let (R,m) be a discrete valuation ring with residue field k and quotient field

K and let X be a smooth projective variety over k. Let E be an R-flat family of framed

sheaves on X such that EK = K ⊗R E is a µ-semistable framed sheaf. Then there is a

subsheaf F ⊂ E such that FK = EK and Fk is µ-semistable.

By using Proposition 4.1, and proceeding as in [7], Proposition 8.2.6, we can prove the

following result.

Proposition 4.3. There is an integer N > 0 such that
⊕

l≥0WlN is a finitely generated

graded ring.

We can eventually define the Uhlenbeck-Donaldson compactification.

Definition 4.4. Let N be a positive integer as in the above proposition. Then Mµss =

Mµss(c, δ) is defined by

Mµss = Proj

(
⊕

k≥0

H0(Rµss(c, δ),L(n1, n2)
kN)SL(P (m))

)
.

It is equiped with a natural morphism π : Rµss(c, δ) → Mµss and is called the moduli space

of µ-semistable framed sheaves.
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Now we will explain, in which sense Mµss is the moduli space of µ-semistable framed

sheaves. In fact, though Mµss is not in general a categorial quotient of Rµss, still Mµss has

the following universal property. Let Mµss denote the functor which associates to S the

set of isomorphism classes of S-flat families of µ-semistable framed sheaves of class c on

X. Then one easily constructs a natural transformation of functorsMµss → Hom(−,Mµss)

with the property that for any S-flat family F = (E, αE) of µ-semistable framed sheaves

from Sµss(c, δ) and classifying morphism ΦF : S → Mµss the pullback of OMµss(1) via ΦF

is isomorphic to (λE(u1)
⊗n1 ⊗ pr∗OP(n2))

N :

(11) Φ∗
F
OMµss(1) ∼= (λE(u1)

⊗n1 ⊗ pr∗OP(n2))
N ,

where pr : S → P is a natural morphism defined by the framing αE. The triple (Mµss,

OMµss(1), N) is characterized by this property in a unique way, up to a unique isomorphism

and up to replacing (OMµss(1), N) by some multiple (OMµss(d), dN). In particular, the

construction of Mµss does not depend on the choice of the integer m.

Let M =M(c,F) denote the moduli space of semistable framed sheaves (E, α : E → F)

on X with ch(E) = c. It co-represents the moduli functor M =M(c,F) which associates

to a scheme T the set of all classes of T -flat families of framed sheaves (E, α : E → F) with

ch(E) = c modulo isomorphisms, defined locally over the base (see [7]). As every semistable

framed sheaf is µ-semistable, this implies:

Theorem 4.5. The morphism of functorsM→Mµss induces a morphism of modui spaces

γ :M →Mµss such that γ∗O(1) ∼= (λE(u1)
⊗n1 ⊗ pr∗OP(n2))

N .

Let now Mµ-stable, Mµ-poly be the open subsets of M corresponding to µ-stable, resp. µ-

polystable pairs (E, α) with E locally free. We are assuming that Mµ-stable is nonempty. We

shall see (Theorem 4.6) that the restriction Mµ-poly γ
−−→ Mµss is injective. Actually, when

restricted to Mµ-stable, this map is an embedding, so that by taking the closure of γ(Mµ-stable)

in Mµss, we obtain a compactification of Mµ-stable. By analogy with the nonframed case, we

will call it the Uhlenbeck-Donaldson compactification of Mµ-stable.

With the reference to the notation introduced in the beginning of Section 3, we set

Sµss(c, δ)∗ := {(E, α) ∈ Sµss(c, δ) | E is locally free at all points of D

and α induces an isomorphism E|D ≃ F},

Rµss(c, δ)∗ := {([g : H → E], [α ◦ g]) ∈ Rµss(c, δ) |(E, α) ∈ Sµss(c, δ)∗},
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Mµss(c, δ)∗ := π(Rµss(c, δ)∗) , M∗ := γ−1(Mµss(c, δ)∗).

Note that these are open subsets of Sµss(c, δ), Rµss(c, δ), Mµss(c, δ) and M , respectively,

and that Mµ-poly ⊂M∗.

We proceed now to a more detailed study of the morphism γ :M∗ →Mµss(c, δ)∗.

4.2. Description of the morphism γ : M∗
→ Mµss(c, δ)∗. Let (E, α) ∈ Sµss(c, δ)∗.

Consider the graded framed sheaf grµ(E, α) = (grµE, grµα) associated to a saturated µ-

Jordan-Hölder filtration of (E, α). It is µ-polystable as a framed sheaf. Remark that,

applying the definition of µ-semistability to E(−D) = kerα ⊂ E, we conclude that δ1 ≤

r degD. Moreover, in the case of equality, (E(−D), 0) ⊂ (E, α) is the upper level of the

Jordan–Hölder filtration with torsion quotient. Under our hypotheses, this is the only

possible torsion in the graded object associated to the Jordan–Hölder filtration. To eliminate

it, we impose, from now on, the additional hypothesis: δ1 < r degD.

By taking the double dual we get a µ-polystable locally free framed sheaf (grµE)∨∨. The

function lE : X → N∪{0} : x 7→ length
(
(grµE)∨∨/grµE

)
x

can be considered as an element

in the symmetric product Sl(X \D) with l = c2(E)− c2((grµE)∨∨). Both (grµE)∨∨ and lE

are well-defined invariants of (E, α), i.e., they do not depend on the choice of the saturated

µ-Jordan-Hölder filtration of (E, α).

Theorem 4.6. Assume that δ1 < r degD. The framed sheaves (E1, α1), (E2, α2) ∈ Sµss(c, δ)∗

define the same closed point in Mµss(c, δ)∗ if and only if

(grµE1)
∨∨ = (grµE2)

∨∨ and lE1
= lE2

.

Proof. The proof goes along the same lines as that of [7, Theorem 8.2.11]. We start with

the “if” part. Take any framed sheaf (E, α) ∈ Sµss(c, δ)∗ and consider the graded framed

sheaf grµ(E, α) obtained from some saturated µ-Jordan-Hölder filtration of (E, α). Then

one can naturally construct a flat family (E,A) of framed sheaves over A1 such that

i) (Et, αt) ∼= (E, α) for all 0 6= t ∈ A1 , and

ii) (E0, α0) ∼= grµ(E, α).

The classifying morphism Φµ : A1 → Mµss(c, δ)∗ factors into the composition Φµ : A1 Φ
→

M∗ γ
→ Mµss(c, δ)∗, where Φ is the classifying morphism. By i) Φ(A1) is a point, hence also

[(E, α)] := Φµ(E, α) = Φµ(A
1) is a point, and by ii) we have [(E, α)] = [grµ(E, α)]. It

follows that it is enough to consider µ-polystable framed sheaves from Sµss(c, δ)∗.
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Thus, let (E, α) be a µ-polystable framed sheaf from Sµss(c, δ)∗. Then E := E∨∨ is

µ-polystable and locally free, and there is an exact sequence

0→ E
can
−−→ E

ǫ
−→ T → 0

where T is a torsion sheaf with l(T ) = lE. Furthermore, E is locally free along the framing

curve D by the definition of Sµss(c, δ)∗, hence there exists a morphism αD : E|D → F such

that the framing α : E → F decomposes as

(12) α : E
⊗OD−−−→ E|D ∼= E|D

αD−−→ F .

Take another µ-polystable framed sheaf (E ′, α′) from Sµss(c, δ)∗ such that (E ′)∨∨ = E and

lE = lE′. The framing α′ : E ′ → F decomposes in a similar way as above:

(13) α′ : E ′ ⊗OD−−−→ E ′|D ∼= E|D
αD−−→ F .

Consider the morphism ψ : Quot(E , l)→ SlX : [E
ǫ
։ T ] 7→ lEǫ

, where Eǫ := ker ǫ, and set

Y := ψ−1(lE).

There is a universal exact triple

0→ E→ OY ⊠ E → T→ 0

of families on X parametrized by Y , where T = OY ⊠ k(lE). Let p1 : Y × X → Y be the

projection onto the first factor and set W := Isom(V ⊗OY , p1∗(E ⊗OY ⊠OX(m)))
pW→ Y and

EW := (pW × idX)∗E. For any w ∈ W we have a tautological epimorphism gw : H → Ew :=

EW |{w} ×X By the universal property of Rµss(c, δ)∗ there is a well defined morphism

ΦW : W → Rµss(c, δ)∗

w 7→ (gw, z) , where

z = [H
gw
→ Ew

⊗OD−→ Ew|D ∼= E|D
αD−→ F ] .

Here z does not depend on w ∈ W , so that

im(ΦW ) ⊂ pr−1(z),
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where pr : Rµss(c, δ)∗ → P is the projection. We thus have a commutative diagram

W

pW

��

ΦW
// pr−1(z) �

�

// Rµss(c, δ)∗

π

��

Y
ΦY

// Mµss(c, δ)∗,

where

ΦY : Y → Mµss(c, δ)∗(14)

y 7→ [(Ey = E|{y} ×X,αy : Ey
⊗OD−→ Ey|D ∼= E|D

αD−→ F)](15)

is the classifying morphism. From this diagram and formula (11) it follows that

(16) (ΦY ◦ pW )∗OMµss(c,δ)∗(1) ∼= (λE(u1)
⊗n1 ⊗ pr∗OP(n2))

N ,

One shows that the right hand side of (16) is trivial. In fact, since ψ(Y ) = lE is a point, it

follows from the computations in [7, Example 8.2.1] that λE(u1) = OY , hence λEW
(u1) =

OW . On the other hand, the above diagram shows that Φ∗
W pr∗OP(1) = OW . Whence (16)

yields

(17) (ΦY ◦ pW )∗OMµss(c,δ)∗(1) ∼= OW .

Note that Y is irreducible and projective (see, e.g., [3]) and pw : W → Y is a projective

bundle; hence W is also an irreducible projective scheme. It follows now from (17) that

y = ΦY (Y ) is a point. In particular, (14) shows that y = [(E, αE)] = [(E, αE′)] which

proves the “if” part of the theorem.

The proof of the “only if” part goes as in [7, Theorem 8.2.11]. In particular, this requires

a version of the restriction theorem 3.2 for stable framed sheaves [15]. �

From this theorem we obtain a set-theoretic stratification of the Uhlenbeck-Donaldson

compactification.

Corollary 4.7. Let c = (r,Q, c2) and Mµ-poly(r,Q, c2, δ)
∗ ⊂ Mµss(c, δ)∗ denote the subset

corresponding to µ-polystable locally free sheaves. Assume, as before, that δ1 < r degD. One

has the following set-theoretic stratification:

Mµss(c, δ)∗ =
∐

l≥0

Mµ-poly(r,Q, c2 − l, δ)
∗ × Sl(X \D).
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5. Concluding remarks

Let X be a smooth projective surface, and let D be a big and nef irreducible divisor in X.

Let ED be a locally free sheaf on D such that there exists a real number A0, 0 ≤ A0 <
1
r
D2

with the following property: for any locally free subsheaf F ⊂ ED of constant positive rank,

one has 1
rkF

deg c1(F) ≤
1

rkED
deg c1(ED) + A0. Considering ED as a sheaf on X, we say

that a framed sheaf (E, α : E → ED) is (D,ED)-framed if (E, α) satisfies the condition of

the definition of Sµss(c, δ)∗, that is E is locally free along D and α|D is an isomorphism

between E|D and ED. It was shown in [1] that for any c ∈ H∗(X,Q) there exists an ample

divisor H on X and a real number δ > 0 such that all the (D,ED)-framed sheaves E on X

with Chern character ch(E) = c are (H, δ)-stable. As a consequence, one has a moduli space

for (D,ED)-framed sheaves on X, which embeds as an open subset into the moduli space

of stable pairs. These moduli spaces have been quite extensively studied in connection with

instanton counting and Nekrasov partition functions (see [14, 2, 4] among others).

Let us in particular consider the open subset formed by locally free (D,ED)-framed

sheaves on X. By restricting the previous construction to this open subset we construct

a Uhlenbeck-Donaldson partial compactification for it (we call this “partial” because the

moduli space of slope semistable framed bundles is not projective in general in this case).

This generalizes the construction done by Nakajima, using ADHM data, when X is the

complex projective plane. An extension to a general projective surface was hinted at in [13]

but was not carried out.
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