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ON WEYL CALCULUS IN INFINITELY MANY VARIABLES

INGRID BELTIŢĂ AND DANIEL BELTIŢĂ

Abstract. We outline an abstract approach to the pseudo-differential Weyl
calculus for operators in function spaces in infinitely many variables. Our ear-
lier approach to the Weyl calculus for Lie group representations is extended
to the case of representations associated with infinite-dimensional coadjoint
orbits. We illustrate the approach by the case of infinite-dimensional Heisen-
berg groups. The classical Weyl-Hörmander calculus is recovered for the
Schrödinger representations of the finite-dimensional Heisenberg groups.

1. Introduction

The pseudo-differential Weyl calculus which takes into account a magnetic field
on Rn was recently developed in a series of papers including [MP04], [IMP07],
[MP10], and [IMP10]. We have shown ([BB09a], [BB09b], [BB10a], [BB10d]) that
a representation theoretic approach to that calculus can lead to a number of im-
provements such as an extension to the situation of magnetic fields on any nilpotent
Lie group instead of the abelian group (Rn,+) and, more importantly, establishing
the relationship to the Weyl quantization discussed for instance in [Ca07]. The
latter point was settled by recovering the magnetic calculus as the Weyl quanti-
zation for a finite-dimensional coadjoint orbit of a Lie group which is in general
infinite-dimensional.

In the present paper we wish to point out that this representation theoretic
approach can also be applied in the case of certain infinite-dimensional coadjoint
orbits. As a by-product of this method, we provide a generalized version for the
pseudo-differential calculus developed in [AD96] and [AD98] for the differential op-
erators of infinite-dimensional analysis (see e.g., [Kuo75], [Be86], [DF91], or [Bg98]).

2. An abstract framework for the Weyl calculus

In this section we develop a version of the localized Weyl calculus of [BB09a]
and [BB10d], which is general enough for dealing with Weyl quantizations of some
infinite-dimensional coadjoint orbits.

Setting 2.1. Let M be a locally convex Lie group with Lie algebra L(M) = m

and smooth exponential map expM : m → M (see [Ne06]), and π : M → B(Y) a
continuous unitary representation on the complex Hilbert space Y. We shall think of
the dual space m∗ as a locally convex space with respect to the weak∗-topology. Let
UCb(m

∗) be the commutative unital C∗-algebra of uniformly continuous bounded
functions on the locally convex space m∗ and for every µ ∈ UCb(m

∗)∗ define the
function

µ̂ : m → C, µ̂(X) = 〈µ, ei〈·,X〉〉,
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where either of the duality pairings m∗ × m → R and UCb(m
∗)∗ × UCb(m

∗) → C is
denoted by 〈·, ·〉. Assume the setting defined by the following data:

• a locally convex real vector space Ξ and a Borel measurable map θ : Ξ → m,
• a locally convex space Γ →֒ UCb(m

∗)∗ with continuous inclusion map, where
UCb(m

∗)∗ is endowed with the weak∗-topology,
• a locally convex space YΞ,∞ →֒ Y with continuous inclusion map,

subject to the following conditions:

(1) The linear mapping

FΞ : Γ → UCb(Ξ), µ 7→ µ̂ ◦ θ

is well defined and injective. Let us denote QΞ := FΞ(Γ) →֒ UCb(Ξ) and
endow it with the topology which makes the Fourier transform

FΞ : Γ → QΞ

into a linear toplogical isomorphism. Note that there also exists the linear
toplogical isomorphism (F∗

Ξ)
−1 : Γ∗ → Q∗

Ξ.
(2) We have the well-defined continuous sesquilinear functional

YΞ,∞ × YΞ,∞ → QΞ, (φ, ψ) 7→ (π(expM (θ(·)))φ | ψ).

Definition 2.2. In this framework, the quasi-localized Weyl calculus for π along θ

is the linear map Op: Γ∗ → L(YΞ,∞,Y
∗

Ξ,∞) defined by

(Op(a)φ | ψ) = 〈(F∗
Ξ)

−1(a)︸ ︷︷ ︸
∈Q∗

Ξ

, (π(expM (θ(·)))φ | ψ)︸ ︷︷ ︸
∈QΞ

〉 (2.1)

for a ∈ Γ∗ and φ, ψ ∈ YΞ,∞, where Y
∗

Ξ,∞ denotes the space of antilinear continuous
functionals on YΞ,∞. �

Remark 2.3. In the setting of Definition 2.2, let us assume that the linear func-
tional (F∗

Ξ)
−1(a) ∈ Q∗

Ξ is defined by a complex Borel measure on Ξ denoted in the
same way. For arbitrary φ, ψ ∈ YΞ,∞, the function (π(expM (θ(·)))φ | ψ) is uni-
formly bounded on Ξ, hence it is integrable with respect to the measure (F∗

Ξ)
−1(a)

and equation (2.1) takes the form

(Op(a)φ | ψ) =

∫

Ξ

(π(expM (θ(·)))φ | ψ)d(F∗
Ξ)

−1(a) (2.2)

which is very similar to the definition of the Weyl-Pedersen calculus for irreducible
representations of finite-dimensional nilpotent Lie groups with the locally convex
space Ξ in the role of a predual of the coadjoint orbit under consideration (see for
instance [BB09b] and [BB10g]).

Moreover, for arbitrary φ, ψ ∈ Y we have ‖(π(expM (θ(·)))φ | ψ)‖∞ ≤ ‖φ‖ · ‖ψ‖,

hence by (2.2) we get |(Opθ(a)φ | ψ)| ≤ ‖(F∗
Ξ)

−1(a)‖·‖φ‖·‖ψ‖. Thus Op(a) ∈ B(Y)
and ‖Op(a)‖ ≤ ‖(F∗

Ξ)
−1(a)‖. Here ‖(F∗

Ξ)
−1(a)‖ denotes the norm of the measure

(F∗
Ξ)

−1(a) viewed as an element of the dual Banach space UCb(Ξ)
∗. �

Remark 2.4. Assume the setting of Definition 2.2 again. We note that, due to the
continuous inclusion map Γ →֒ UCb(m

∗)∗, every function f ∈ UCb(m
∗) gives rise to

a functional af ∈ Γ∗, af (γ) = 〈γ, f〉 for every γ ∈ Γ.
Furthermore, let us assume that the function f ∈ UCb(m

∗) is the Fourier trans-
form of a Radon measure µ ∈ Mt(Ξ), in the sense that f(·) =

∫
Ξ

ei〈·,θ(X)〉dµ(X).
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Then it is straightforward to check that F∗
Ξ(µ) = af , hence one can use Remark 2.3

to see that Op(af ) =
∫
Ξ

π(expM (θ(·)))dµ and Op(af ) ∈ B(Y). �

Preduals for coadjoint orbits. The following notion recovers the magnetic pre-
duals of [BB09a] as very special cases.

Definition 2.5. Let g be a nilpotent locally convex Lie algebra and pick any
coadjoint orbit O ⊆ g∗ of the corresponding Lie group G = (g, ∗) defined by the
Baker-Campbell-Hausdorff multiplication ∗. A predual for O is any pair (Ξ, θ),
where Ξ is a locally convex real vector space and θ : Ξ → g is a continuous linear
map such that θ∗|O : O → Ξ∗ is injective. If Ξ is a closed linear subspace of g
and θ is the inclusion map Ξ →֒ g, then we say simply that Ξ is a predual for the
coadjoint orbit O. �

The following statement provides a useful criterion for proving that condition (1)
in Definition 2.2 is satisfied in the situation of Fréchet preduals (see for instance
Sect. 7 in Ch. II of [Sch66]). Here Mt(·) stands for the space of complex Radon
measures on some topological space.

Proposition 2.6. Let g be a nilpotent locally convex Lie algebra with the Lie group
G = (g, ∗). If (Ξ, θ) is a predual for the coadjoint orbit O ⊆ g∗ such that Ξ is
barreled, then the linear mapping FΞ : Mt(O) → UCb(Ξ), µ 7→ µ̂ ◦ θ is well defined
and injective.

Proof. See [BB10f]. �

Flat coadjoint orbits. We now introduce some terminology that claims its origins
in the results of [MW73] on representations of finite-dimensional nilpotent Lie
groups.

Definition 2.7. Let g be a nilpotent locally convex Lie algebra with the corre-
sponding Lie group G = (g, ∗), and denote by z the center of g. We shall say that
a coadjoint orbit O (→֒ g∗) is flat if the coadjoint isotropy algebra at some point
ξ0 ∈ O satisfies the condition gξ0 = z. �

Proposition 2.8. Assume that g is a nilpotent locally convex Lie algebra with the
Lie group G = (g, ∗), and denote by z the center of g. If dim z = 1, the coadjoint
orbit O is flat, and ξ0 ∈ O satisfies the condition ξ0|z 6≡ 0, then Ker ξ0 is a predual
for O and the mapping Ker ξ0 ≃ O, X 7→ (Ad∗

GX)ξ0 is a diffeomorphism.

Proof. See [BB10f]. �

Weyl calculus on flat coadjoint orbits.

Setting 2.9. Until the end of this section we assume the following setting:

• g is a nilpotent locally convex Lie algebra with the Lie group G = (g, ∗);
• the topological vector space underlying g is barreled (for instance, g is a
Fréchet-Lie algebra);

• the center z of g satisfies the condition dim z = 1;
• the coadjoint orbit O (→֒ g∗) is flat, and ξ0 ∈ O satisfies ξ0|z 6≡ 0;
• π : G → B(Y) is an irreducible unitary representation such that for every
X ∈ z we have π(X) = ei〈ξ0,X〉idY .
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In addition we shall denote Ξ := Ker ξ0. This is a closed hyperplane in g, hence it
is in turn a barreled space (see Sect. 7 in Ch. II of [Sch66]).

We have the linear isomorphism g/z ≃ Ξ, so Ξ is also a nilpotent Lie algebra.
Let ∗e be the corresponding Baker-Campbell-Hausdorff multiplication. We also
need the mapping s : Ξ× Ξ → z, s(X,Y ) = X ∗ Y −X ∗e Y . �

The following notion is inspired by [Ma07, Def. 2].

Definition 2.10. For arbitrary Radon measures µ1, µ2 ∈ Mt(Ξ) we define their
twisted convolution product µ1 ∗ξ0 µ2 ∈ Mt(Ξ) as the push-forward of the measure

ei〈ξ0,s(X1,X2)〉d(µ1 ⊗ µ2)(X1, X2) ∈ Mt(Ξ× Ξ)

under the multiplication map Ξ× Ξ → Ξ, (X1, X2) 7→ X1 ∗e X2. �

Theorem 2.11. Let us assume that we have a locally convex space Γ such that there
exists the continuous inclusion map Γ →֒ Mt(O). Then the following assertions
hold:

(1) The linear mapping Γ → UCb(Ξ), µ 7→ µ̂|Ξ is well defined and injective, and
gives rise to the topological linear isomorphism FΞ : Γ → QΞ (→֒ UCb(Ξ)).

(2) If a1, a2 ∈ Γ∗ and (F∗
Ξ)

−1(aj) ∈ Q∗
Ξ ∩Mt(Ξ) for j = 1, 2, then

Op(a1)Op(a2) = π((F∗
Ξ)

−1(a1) ∗ξ0 (F
∗
Ξ)

−1(a2)).

Proof. See [BB10f]. �

3. The special case of infinite-dimensional Heisenberg groups

Infinite-dimensional Heisenberg groups.

Definition 3.1. Let V be a real Hilbert space endowed with a symmetric injective
operator A ∈ B(V).

The Heisenberg algebra associated with the pair (V , A) is h(V , A) = V ∔ V ∔ R

with the Lie bracket [(x1, y1, t1), (x2, y2, t2)] = (0, 0, (Ax1 | y2)− (Ax2 | y1)). This
is a nilpotent Lie algebra. The corresponding Lie group H(V , A) = (h(V , A), ∗) is
the Heisenberg group associated with (V , A), with the multiplication given by

(x1, y1, t1) ∗ (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + ((Ax1 | y2)− (Ax2 | y1))/2)

whenever (x1, y1, t1), (x2, y2, t2) ∈ H(V , A). �

Example 3.2. If h(V , A) = V ∔ V ∔ R is a Heisenberg algebra and ξ0 ∈ h(V , A)∗

as in Definition 3.1, then it is easy to see that Ξ := V ×V ×{0} is a predual for the
coadjoint orbit of ξ0. �

Remark 3.3. Let LieGr denote the category of infinite-dimensional Lie groups
modeled on locally convex spaces (see [Ne06]) and denote by QuadrHilb the cate-
gory whose objects are the pairs (V , A) where V is a real Hilbert space and A ∈ B(V)
is a symmetric, nonnegative, injective operator. The morphisms between two ob-
jects (V1, A1) and (V2, A2) inQuadrHilb, are defined as the continuous linear oper-
ators T : V1 → V2 satisfying the condition T ∗A2T = A1. (Equivalently, T becomes
an isometry if Vj is endowed with the continuous inner product (x, y) 7→ (Ax | y)Vj

for j = 1, 2.)
Then we have a natural functor H : QuadrHilb → LieGr such that the im-

age of any object (V , A) in QuadrHilb is the corresponding Heisenberg group
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H(V , A) constructed in Definition 3.1. For every morphism T : (V1, A1) → (V2, A2)
in QuadrHilb as above, we have the corresponding morphism

H(T ) : H(V1, A1) → H(V2, A2), (x, y, t) 7→ (Tx, T y, t)

in LieGr. �

Gaussian measures and Schrödinger representations. Let V− be a real Hil-
bert space with the scalar product denoted by (· | ·)−. For every vector a ∈ V− and
every symmetric, nonnegative, injective, trace-class operator K on V− there exists
a unique probability Borel measure γ on V− such that

(∀x ∈ V−)

∫

V−

ei(x|y)−dγ(y) = ei(a|x)−− 1
2
(Kx|x)−

(see for instance [Bg98, Th. 2.3.1]). We also have

a =

∫

V−

ydγ(y) and Kx =

∫

V−

(x | y)− · (y − a)dγ(y) for all x ∈ V−,

where the integrals are weakly convergent, and γ is called the Gaussian measure
with the mean a and the variance K.

Let us assume that the Gaussian measure γ is centered, that is, a = 0. Denote
V+ := RanK and V0 := RanK1/2 endowed with the scalar products (Kx | Ky)+ :=
(x | y)− and (K1/2x | K1/2y)0 := (x | y)−, respectively, for all x, y ∈ V−, which
turn the linear bijections K : V− → V+ and K1/2 : V− → V0 into isometries. We
thus get the real Hilbert spaces

V+ →֒ V0 →֒ V−

where the inclusion maps are Hilbert-Schmidt operators, since K1/2 ∈ B(V−) is so.
Also, the scalar product of V0 extends to a duality pairing (· | ·)0 : V− × V+ → R.

We also recall that for every x ∈ V+ the translated measure dγ(−x+ ·) is abso-
lutely continuous with respect to dγ(·) and we have the Cameron-Martin formula

dγ(−x+ ·) = ρx(·)dγ(·) with ρx(·) = e(·|x)0−
1
2
(x|x)0.

(This actually holds true for every x ∈ V0; see for instance [Bg98, Cor. 2.4.3].)

Definition 3.4. Let (V+, A) be an object in the category QuadrHilb such that
A : V+ → V+ is a nonnegative, symmetric, injective, trace-class operator. Denote
the scalar product of V+ by (x, y) 7→ (x | y)+ and let V0 and V− be the completions
of V+ with respect to the scalar products (x, y) 7→ (x | y)0 := (A1/2 | A1/2y) and
(x, y) 7→ (x | y)− := (Ax | Ay), respectively. Then the operator A has a unique
extension to a nonnegative, symmetric, injective, trace-class operator K ∈ B(V−)
such that the above setting is recovered (see for instance [Be86, Ch. 1, §1]), hence
we get the centered Gaussian measure γ on V− with the variance K.

On the other hand, we can construct the Heisenberg group H(V+, A). The
Schrödinger representation π : H(V+, A) → B(L2(V−, γ)) is defined by

π(x, y, t)φ = ρx(·)
1/2ei(t+(·|y)0+

1
2
(x|y)0)φ(−x+ ·)

whenever (x, y, t) ∈ H(V+, A) and φ ∈ L2(V−, γ). This is a continuous unitary
irreducible representation of the Heisenberg group H(V+, A); see [Höb06, Th. 5.2.9
and 5.2.10]. �
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Remark 3.5. We note that more general Schrödinger representations of infinite-
dimensional Heisenberg groups are described in [Ne00, Prop. II.4.6] by using cocy-
cles and reproducing kernel Hilbert spaces. �

Remark 3.6. One way to see that the representation π : H(V+, A) → B(L2(V−, γ))
of Definition 3.4 is irreducible is the following For every integer n ≥ 1 let Vn,+ denote
the spectral space for A corresponding to the interval [1/n,∞). That is, Vn,+ is
spanned by the eigenvectors of A corresponding to eigenvalues ≥ 1/n. Since A is a
compact operator, it follows that dimVn,+ <∞. We have

V1,+ ⊆ V2,+ ⊆ · · · ⊆
⋃

n≥1

Vn,+ ⊆ V+

and
⋃
n≥1

Vn,+ is a dense subspace of V+. Let us denote by An the restriction of

A to Vn,+. Then H(Vn,+, An) is a finite-dimensional Heisenberg group, hence it is
well known that its Schrödinger representation πn : H(Vn,+, An) → B(L2(Vn,−, γn))
is irreducible, where γn is the Gaussian measure on the finite-dimensional space
Vn,− obtained out of the pair (V+,n, An) by the construction outlined at the very
beginning of Definition 3.4. Note that

H(V1,+, A1) ⊆ H(V2,+, A2) ⊆ · · · ⊆
⋃

n≥1

H(Vn,+, An) =: H(V∞,+, A∞) ⊆ H(V+, A)

and H(V∞,+, A∞) is a dense subgroup of H(V+, A), hence the Schrödinger represen-
tation π : H(V+, A) → B(L2(V−, γ)) is irreducible if and only if so is its restriction
π|H(V∞,+,A∞).

On the other hand, if we denote by 1n the function identically equal to 1 on the
orthogonal complement Vn+1,+ ⊖Vn,+, then it is straightforward to check that the
operator

L2(Vn,−, γn) → L2(Vn+1,−, γn+1), f 7→ f ⊗ 1n

is unitary and intertwines the representations πn and πn+1. We can thus make the
sequence of representations {πn}n≥1 into an inductive system of irreducible unitary
representations and then their inductive limit π|H(V∞,+,A∞) = ind

n→∞
πn is irreducible

(see for instance [KS77]). As noted above, this implies that the Schrödinger repre-
sentation π : H(V+, A) → B(L2(V−, γ)) of Definition 3.4 is irreducible. �

The infinite-dimensional pseudo-differential calculus of [AD96] and [AD98] can
be recovered as a quasi-localized Weyl calculus for the Schrödinger representations
introduced in Definition 3.4 above. Compare for instance [AD98, Prop. 3.7].
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Ψ∗-Algebras and Generalized Hörmander Classes. PhD Thesis, Johannes Gutenberg-
Universität im Mainz, 2006.
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