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ON WEYL CALCULUS IN INFINITELY MANY VARIABLES

INGRID BELTITA AND DANIEL BELTITA

ABSTRACT. We outline an abstract approach to the pseudo-differential Weyl
calculus for operators in function spaces in infinitely many variables. Our ear-
lier approach to the Weyl calculus for Lie group representations is extended
to the case of representations associated with infinite-dimensional coadjoint
orbits. We illustrate the approach by the case of infinite-dimensional Heisen-
berg groups. The classical Weyl-Hérmander calculus is recovered for the
Schrédinger representations of the finite-dimensional Heisenberg groups.

1. INTRODUCTION

The pseudo-differential Weyl calculus which takes into account a magnetic field
on R™ was recently developed in a series of papers 1nclud1ng ﬂm
[MP10], and [IMP10]. We have shown ([BB09a], [BB09b|, [BB10a], [BB10d|) that
a representation theoretic approach to that calculus can lead to a number of im-
provements such as an extension to the situation of magnetic fields on any nilpotent
Lie group instead of the abelian group (R™, +) and, more importantly, establishing
the relationship to the Weyl quantization discussed for instance in [Ca07]. The
latter point was settled by recovering the magnetic calculus as the Weyl quanti-
zation for a finite-dimensional coadjoint orbit of a Lie group which is in general
infinite-dimensional.

In the present paper we wish to point out that this representation theoretic
approach can also be applied in the case of certain infinite-dimensional coadjoint
orbits. As a by-product of this method, we provide a generalized version for the
pseudo-differential calculus developed in [AD96] and [AD98] for the differential op-

erators of infinite-dimensional analysis (see e.g., [Kuo75), [Be86], [DE9]], or [Bg9g)).
2. AN ABSTRACT FRAMEWORK FOR THE WEYL CALCULUS

In this section we develop a version of the localized Weyl calculus of [BB09a]
and |[BB10d|, which is general enough for dealing with Weyl quantizations of some
infinite-dimensional coadjoint orbits.

Setting 2.1. Let M be a locally convex Lie group with Lie algebra L(M) = m
and smooth exponential map exp,,;: m — M (see [Ne(f]), and 7: M — B(Y) a
continuous unitary representation on the complex Hilbert space ). We shall think of
the dual space m* as a locally convex space with respect to the weak™-topology. Let
UCy(m*) be the commutative unital C*-algebra of uniformly continuous bounded
functions on the locally convex space m* and for every pu € UCy(m*)* define the
function
pim—C, A(X) = (p,e0),
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where either of the duality pairings m* x m — R and UCp(m*)* x UC,(m*) — C is
denoted by (-, ). Assume the setting defined by the following data:

e a locally convex real vector space = and a Borel measurable map 6: = — m,

e alocally convex space I' < UC,(m*)* with continuous inclusion map, where
UC,(m*)* is endowed with the weak*-topology,

e a locally convex space V= ~ — ) with continuous inclusion map,

subject to the following conditions:
(1) The linear mapping
FE:F—)UCb(E), ILLHZZOH
is well defined and injective. Let us denote Qz := F=(I') — UC,(E) and
endow it with the topology which makes the Fourier transform
.7:52 I' — QE

into a linear toplogical isomorphism. Note that there also exists the linear
toplogical isomorphism (F%)~1: I'* — Q%.

(2) We have the well-defined continuous sesquilinear functional

yE,oo X yE,oo — QEu (¢7¢) = (ﬂ—(expM(e()))(b | 1/’)

Definition 2.2. In this framework, the quasi-localized Weyl calculus for m along 0
is the linear map Op: I'* — L(yg_roo,?;oo) defined by

(Op(a)e | ¥) = ((F2)™!(a), (m(expp (9(-)9 | ) (2.1)

€0t €Q=

for a € I'* and ¢, € V=, o, where ?;OO denotes the space of antilinear continuous
functionals on Yz . O

Remark 2.3. In the setting of Definition [Z2] let us assume that the linear func-
tional (F%)~!(a) € Q% is defined by a complex Borel measure on Z denoted in the
same way. For arbitrary ¢,v¢ € Y= o, the function (w(exp,,(6(+)))¢ | ¥) is uni-
formly bounded on Z, hence it is integrable with respect to the measure (Fz)~*(a)
and equation (2)) takes the form

(Op(a)¢ | ¥) = /(W(eXpM(9(~)))¢ | )d(F2) ™ (a) (2.2)

which is very similar to the definition of the Weyl-Pedersen calculus for irreducible
representations of finite-dimensional nilpotent Lie groups with the locally convex
space Z in the role of a predual of the coadjoint orbit under consideration (see for
instance [BB09b] and [BB10g]).

Moreover, for arbitrary ¢, € Y we have ||(m(exp,(0(:)))¢ | ¥)]leo < |2l - |20l
hence by 2) we get |(Op’ (a)¢ | ¥)| < [|(F2)~" (a)l|-[|¢]l- ¢ Thus Op(a) € BQY)
and ||Op(a)|| < [[(F2)"(a)||. Here ||(F%)~*(a)| denotes the norm of the measure
(Fz)~1(a) viewed as an element of the dual Banach space UCy,(Z)*. O

Remark 2.4. Assume the setting of Definition 2.2 again. We note that, due to the
continuous inclusion map I' — UC,(m*)*, every function f € UCy(m*) gives rise to
a functional a; € I'*, ay(y) = (v, f) for every v € I.

Furthermore, let us assume that the function f € UCy(m*) is the Fourier trans-
form of a Radon measure 1 € M;(Z), in the sense that f(-) = [0 du(X).
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Then it is straightforward to check that 7% (u) = ay, hence one can use Remark [2.3]
to see that Op(ay) = [ m(expy,(6(-)))dp and Op(ay) € B(Y). O

Preduals for coadjoint orbits. The following notion recovers the magnetic pre-
duals of [BB09a] as very special cases.

Definition 2.5. Let g be a nilpotent locally convex Lie algebra and pick any
coadjoint orbit O C g* of the corresponding Lie group G = (g, *) defined by the
Baker-Campbell-Hausdorff multiplication *. A predual for O is any pair (Z,0),
where = is a locally convex real vector space and §: Z — g is a continuous linear
map such that 8*|p: O — Z* is injective. If = is a closed linear subspace of g
and @ is the inclusion map = < g, then we say simply that = is a predual for the

coadjoint orbit O. O

The following statement provides a useful criterion for proving that condition ()
in Definition is satisfied in the situation of Fréchet preduals (see for instance
Sect. 7 in Ch. II of [Sch66]). Here M(-) stands for the space of complex Radon
measures on some topological space.

Proposition 2.6. Let g be a nilpotent locally convex Lie algebra with the Lie group
G = (g,%). If (£,0) is a predual for the coadjoint orbit O C g* such that = is
barreled, then the linear mapping Fz: Mi(O) = UCK(E), p— o 6 is well defined
and injective.

Proof. See [BB10f]. O

Flat coadjoint orbits. We now introduce some terminology that claims its origins
in the results of [MWT73|] on representations of finite-dimensional nilpotent Lie
groups.

Definition 2.7. Let g be a nilpotent locally convex Lie algebra with the corre-
sponding Lie group G = (g, *), and denote by 3 the center of g. We shall say that
a coadjoint orbit O (< g*) is flat if the coadjoint isotropy algebra at some point
&o € O satisfies the condition g¢, = 3. O

Proposition 2.8. Assume that g is a nilpotent locally convex Lie algebra with the
Lie group G = (g,%), and denote by 3 the center of g. If dimj = 1, the coadjoint
orbit O is flat, and & € O satisfies the condition &l|; # 0, then Ker&y is a predual
for O and the mapping Ker&y ~ O, X — (Ad5X)E& is a diffeomorphism.

Proof. See [BBI0f]. O

Weyl calculus on flat coadjoint orbits.

Setting 2.9. Until the end of this section we assume the following setting:

e g is a nilpotent locally convex Lie algebra with the Lie group G = (g, *);
the topological vector space underlying g is barreled (for instance, g is a
Fréchet-Lie algebra);

the center 3 of g satisfies the condition dimj = 1;

the coadjoint orbit O (— g*) is flat, and & € O satisfies &|; # 0;

m: G — B(Y) is an irreducible unitary representation such that for every
X € 3 we have 7(X) = '(€0X)id,,.
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In addition we shall denote = := Ker &y. This is a closed hyperplane in g, hence it
is in turn a barreled space (see Sect. 7 in Ch. IT of [Sch66]).

We have the linear isomorphism g/3 ~ Z, so Z is also a nilpotent Lie algebra.
Let %, be the corresponding Baker-Campbell-Hausdorff multiplication. We also
need the mapping s: ExXE =3, s(X,Y)=X*Y — X . Y. O

The following notion is inspired by [Ma07, Def. 2].

Definition 2.10. For arbitrary Radon measures i, pz € My (E) we define their
twisted convolution product py x¢, o € My (E) as the push-forward of the measure

60X (11 @ p2) (X1, Xa) € My (E % E)
under the multiplication map Z x 2 — Z, (X1, X2) — X1 %, Xo. [l

Theorem 2.11. Let us assume that we have a locally convex space I' such that there
exists the continuous inclusion map I' — M(O). Then the following assertions
hold:

(1) The linear mapping T' — UCH(E), p > fi|z is well defined and injective, and
gives rise to the topological linear isomorphism F=: T’ — Q= (— UC,(E)).
(2) If a1,a2 € T* and (F5)"(a;) € Q2 NM(E) for j = 1,2, then

Op(a1)Op(az) = 7((F2) ™ (a1) *¢, (F2) ™ (az2)).
Proof. See [BB10f]. O

3. THE SPECIAL CASE OF INFINITE-DIMENSIONAL HEISENBERG GROUPS
Infinite-dimensional Heisenberg groups.

Definition 3.1. Let V be a real Hilbert space endowed with a symmetric injective
operator A € B(V).

The Heisenberg algebra associated with the pair (V, A) is hj(V,4) =V +V +R
with the Lie bracket [($1,y1,t1), (Ig,yg,tg)] = (0,0, (AIl | yg) - (AIQ | yl)) This
is a nilpotent Lie algebra. The corresponding Lie group H(V, A) = (h(V, A), *) is
the Heisenberg group associated with (V, A), with the multiplication given by

(z1,y1,t1) * (22,92, t2) = (21 + @2, y1 + Y2, t1 + t2 + ((Az1 | y2) — (Aza | ¥1))/2)
whenever (z1,y1,t1), (x2,y2,t2) € H(V, A). O

Example 3.2. If H(V,A) =V + V + R is a Heisenberg algebra and & € h(V, A)*
as in Definition Bl then it is easy to see that = :=V x V x {0} is a predual for the
coadjoint orbit of &g. O

Remark 3.3. Let LieGr denote the category of infinite-dimensional Lie groups
modeled on locally convex spaces (see [Ne06]) and denote by QuadrHilb the cate-
gory whose objects are the pairs (V, A) where V is a real Hilbert space and A € B(V)
is a symmetric, nonnegative, injective operator. The morphisms between two ob-
jects (W1, A1) and (Vs, Ag) in QuadrHilb, are defined as the continuous linear oper-
ators T': Vi — Vs satisfying the condition T* A>T = A;. (Equivalently, T' becomes
an isometry if V; is endowed with the continuous inner product (z,y) — (Az | y)y,
for j =1,2.)

Then we have a natural functor H: QuadrHilb — LieGr such that the im-
age of any object (V, A) in QuadrHilb is the corresponding Heisenberg group
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H(V, A) constructed in Definition Bl For every morphism T: (V1, A1) — (Va, As)
in QuadrHilb as above, we have the corresponding morphism

H(T) H(VlvAl) — H(V27A2)7 ($7y7t) = (TJJ,Ty,t)
in LieGr. (I

Gaussian measures and Schrodinger representations. Let V_ be a real Hil-
bert space with the scalar product denoted by (- | -)—. For every vector a € V_ and
every symmetric, nonnegative, injective, trace-class operator K on V_ there exists
a unique probability Borel measure v on V_ such that

(Vz € V) / ie1)- oy (3)) = eilale)-—3 (Kalo)-
V_
(see for instance [Bg98, Th. 2.3.1]). We also have

a= /yd”y(y) and Kz = /(3: |y)— - (y — a)dy(y) for all z € V_|

where the integrals are weakly convergent, and ~ is called the Gaussian measure
with the mean a and the variance K.

Let us assume that the Gaussian measure «y is centered, that is, a = 0. Denote
V, := Ran K and Vy := Ran K'/2 endowed with the scalar products (K | Ky), :=
(x| y)- and (K'2x | KY%y)o := (z | y)_, respectively, for all z,y € V_, which
turn the linear bijections K: V_ — V; and K'/2: V_ — V), into isometries. We
thus get the real Hilbert spaces

Vi—=Vy—=V_

where the inclusion maps are Hilbert-Schmidt operators, since K''/2 € B(V_) is so.

Also, the scalar product of Vy extends to a duality pairing (- | -)o: V— x V4 — R.
We also recall that for every x € V. the translated measure dy(—x + -) is abso-

lutely continuous with respect to dv(-) and we have the Cameron-Martin formula

dy(= ) = pe()dy()  with py() = elIPem3 el
(This actually holds true for every = € Vy; see for instance [Bg98, Cor. 2.4.3].)

Definition 3.4. Let (V4, A) be an object in the category QuadrHilb such that
A: Vi — V. is a nonnegative, symmetric, injective, trace-class operator. Denote
the scalar product of V4 by (z,y) — (x | y)+ and let Vy and V_ be the completions
of Yy with respect to the scalar products (z,y) + (z | y)o := (AY/? | A/?y) and
(x,y) — (x| y)— = (Azx | Ay), respectively. Then the operator A has a unique
extension to a nonnegative, symmetric, injective, trace-class operator K € B(V_)
such that the above setting is recovered (see for instance [Be86, Ch. 1, §1]), hence
we get the centered Gaussian measure v on V_ with the variance K.

On the other hand, we can construct the Heisenberg group H(V,, A). The
Schradinger representation m: H(Vy, A) — B(L?(V_,7)) is defined by

(2, y, )¢ = py () /2Tt g (g )

whenever (r,y,t) € H(Vy,A) and ¢ € L*(V_,v). This is a continuous unitary
irreducible representation of the Heisenberg group H(V., A); see [H6b06, Th. 5.2.9
and 5.2.10]. O
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Remark 3.5. We note that more general Schrodinger representations of infinite-
dimensional Heisenberg groups are described in [NeOQ, Prop. I1.4.6] by using cocy-
cles and reproducing kernel Hilbert spaces. O

Remark 3.6. One way to see that the representation 7: H(V,, A) — B(L?(V_,~))
of Definition B-4lis irreducible is the following For every integer n > 1 let V,, 4 denote
the spectral space for A corresponding to the interval [1/n,00). That is, V, 1 is
spanned by the eigenvectors of A corresponding to eigenvalues > 1/n. Since A is a
compact operator, it follows that dim V,, + < co. We have

Vip SV Co-C VS0
n>1
and |J Vp+ is a dense subspace of Vi. Let us denote by A, the restriction of
n>1
A to V4. Then H(V, 4+, Ay) is a finite-dimensional Heisenberg group, hence it is
well known that its Schrédinger representation mp, : H(V,, 4, An) = B(L*(Vi,—, 1))
is irreducible, where 7, is the Gaussian measure on the finite-dimensional space
Vn,— obtained out of the pair (V4 , A,) by the construction outlined at the very
beginning of Definition B4l Note that

H(Vl,-i-aAl) < H(V2,+7A2) c---C U H(Vn,-i-aAn) = H(Voo,-i-vAOO) < H(V-HA)

n>1

and H(Vs +, Aco) is a dense subgroup of H(V,, A), hence the Schrédinger represen-
tation m: H(Vy, A) — B(L*(V_,7)) is irreducible if and only if so is its restriction
7T|H(V00,+ 7Aso)

On the other hand, if we denote by 1,, the function identically equal to 1 on the
orthogonal complement V41 + © V, 4, then it is straightforward to check that the
operator

L2(Vn,777n) — L2(Vn+1,777n+1)a f=fel,

is unitary and intertwines the representations m,, and m,4+;. We can thus make the
sequence of representations {7, }»>1 into an inductive system of irreducible unitary

representations and then their inductive limit 7|y , 4y = ind m, is irreducible
» TR0 n— o0

(see for instance [KS77]). As noted above, this implies that the Schrodinger repre-
sentation 7: H(V;, A) — B(L?*(V-,~)) of Definition B4l is irreducible. O

The infinite-dimensional pseudo-differential calculus of [AD96] and [AD9§| can
be recovered as a quasi-localized Weyl calculus for the Schrodinger representations
introduced in Definition B4 above. Compare for instance [AD98|, Prop. 3.7].
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