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Abstract

We study the limiting behavior of a random dynamic system driven by a

stochastic chain. Our main interest is in the chains that are not necessarily er-

godic but rather decomposable into ergodic classes. To investigate the conditions

under which the ergodic classes of a model can be identified, we introduce and

study an ℓ1-approximation and infinite flow graph of the model. We show that

the ℓ1-approximations of random chains preserve certain limiting behavior. Using

the ℓ1-approximations, we show how the connectivity of the infinite flow graph is

related to the structure of the ergodic groups of the model. Our main result of this

paper provides conditions under which the ergodicity groups of the model can be

identified by considering the connected components in the infinite flow graph. We

provide two applications of our main result to random networks, namely broadcast

over time-varying networks and networks with random link failure.

1 Introduction

The dynamic systems driven by stochastic matrices have found its use in many problems
in decentralized communication [5, 8, 24, 3], decentralized control [15, 22, 26], distributed
optimization [33, 34, 25, 20, 16], and information diffusion in social networks [14, 1]. In
many of these applications, the ergodicity plays a central role in ensuring that the local
“agent” information diffuses eventually over the entire network of agents. The conditions
under which the ergodicity happens has been subject of some recent studies [29, 30].
However, there are no studies that investigate the limiting behavior of the dynamics
driven by time-varying chains when the ergodicity does not happen. Such studies are
important for understanding the group formation in both deterministic and random
time-varying networks, such as multiple-leaders/multiple-followers networked systems.

The main objective of this paper is to investigate the limiting behavior of the linear
dynamics driven by random independent chains of stochastic matrices in the absence
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of ergodicity. Our goal is to study the conditions under which the ergodic groups are
formed and to characterize these groups. To do so, we introduce an ℓ1-approximation
and the infinite flow graph of a random model, and we study the properties of these
objects. Using the established properties, we extend the main result of the previous
work in [31] to a broader class of independent random models. We then proceed to show
that for certain random models, although the ergodicity might not happen, the dynamics
of the model still converges almost surely and partial ergodicity happens almost surely.
In other words, under certain conditions, ergodic groups are formed and we characterize
these groups through the connected components of the infinite flow graph. We then
apply the results to a broadcast-gossip algorithm over time-changing networks and to
networks with link failures.

The work in this paper is related to the literature on ergodicity of random models.
A discussion on the ergodicity of deterministic (forward and backward) chains can be
found in [28]. The earliest occurrence of the study of random models dates back to
the work of Rosenblatt [27], where the algebraic and topological structure of the set
of stochastic matrices is employed to investigate the limiting behavior of the product
of independent identically distributed (i.i.d.) random matrices. Later, in [17, 18, 10],
such a product is studied extensively under a more general assumption of stationarity,
and a necessary and sufficient condition for the ergodicity is developed. In [7, 29] the
class of i.i.d. random models with almost sure positive diagonal entries were studied. In
particular, in [29] is has been showed that such a random model is ergodic if and only
if its expected chain is ergodic. Later, this result has been extended to the stationary
ergodic models in [30].

Unlike the work on i.i.d. models or stationary processes studied in [27, 17, 18, 12,
29, 30], the focus of the work in this paper is on independent random models. The work
is a continuation of our work in [31], where we showed that for a class of independent
random models the ergodicity is is equivalent to the connectivity of the infinite flow
graph, a graph which can be derived from the random model or its expected model.
Furthermore, unlike the studies that provide conditions for ergodicity of deterministic
or random chains, such as [9, 33, 15, 6, 12, 29, 30, 31], the work presented in this
paper considers the limiting behavior of deterministic and random models that are not
necessarily ergodic.

The main contribution of this work lies in the following:
(1) The establishment of conditions on random models under which the ergodicity classes
are fully characterized. This result not only implies that certain random models almost
always converge, but also provides the structure of the limiting matrix. The structure
is revealed through the connectivity topology of the infinite flow graph of the model.
Although the model is not ergodic, the ergodicity happens locally for groups of indices,
which are characterized as the vertices in the same connected component of the infinite
flow graph (Theorem 6).
(2) The introduction and study of a class of perturbations (ℓ1-approximations) of chains
that preserve ergodicity classes, as seen is Section 3 (Lemma 2).
(3) The introduction of a class M2 random models whose ergodicity can be characterized
through the infinite flow property (Theorem 4). This class encircles many of the known
ergodic deterministic and random models, as discussed in Section 4.
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The structure of this paper is as follows: in Section 2, we discuss the problem of our
interest, introduce some terminology and motivate our work by considering the limiting
behavior of the gossip protocol extended to time-varying graphs. Motivated by this
example, we establish some notions for the limiting behavior of the model. In Section 3,
we define and investigate ℓ1-approximations of random models which play an important
role in the later development. In Section 4, we extend the infinite flow theorem [31]
to a larger class of random models. In Section 5, we introduce and study an infinite
flow graph of a model. Using this graph, together with the results of Sections 3 and 4,
we establish our main result that characterizes the ergodic classes of certain random
models. In Section 6, we demonstrate the use of our results on two different random
network models.
Notation and Basic Terminology. We view all vectors as columns. For a vector x,
we write xi to denote its ith entry, and we write x ≥ 0 (x > 0) to denote that all its
entries are nonnegative (positive). We use xT to denote the transpose of a vector x. For
a vector x ∈ R

m, we use ‖x‖p = (
∑m

i=1 |xi|
p)1/p for p ≥ 1 and ‖x‖ when p = 2. For

a matrix A, we write ‖A‖p to denote the matrix norm induced by ‖ · ‖p vector norm.
We use ei to denote the vector with the ith entry equal to 1 and all other entries equal
to 0. We write e to denote the vector with all entries equal to 1. We write {x(k)} to
denote a sequence x(0), x(1), . . . of some elements, and we write {x(k)}k≥t to denote
the truncated sequence x(t), x(t + 1), . . . for t > 0. We say that a sequence of scalars,
vectors, or matrices is an ℓ1-sequence if the sequence generated by each entry of the
corresponding object is absolutely summable.

For a given set C and a subset S of C, we write S ⊂ C when S is a proper subset
of C. A set S ⊂ C with S 6= ∅ is a nontrivial subset of C. We use [m] for the integer
set {1, . . . , m}. We let S̄ denote the complement of a given set S ⊆ [m] with respect to
[m].

We denote the identity matrix by I. For a finite collection A1, . . . , Aτ of square
matrices, we write A = diag(A1, . . . , Aτ ) to denote the block diagonal matrix with rth
diagonal block being Ar for 1 ≤ r ≤ τ . For a matrix W , we write Wij to denote its
(i, j)th entry, W i to denote its ith column vector, and W T to denote its transpose. For
an m × m matrix W , we let

∑

i<j Wij =
∑m−1

i=1

∑m
j=i+1Wij. For such a matrix and a

nontrivial subset S ⊂ [m], we define WS ,
∑

i∈S,j∈S̄(Wij + Wji). A vector v ∈ R
m is

stochastic if v ≥ 0 and
∑m

i=1 vi = 1. A matrix W is stochastic when all its rows are
stochastic, and it is doubly stochastic when both W and W T are stochastic. We let Sm

denote the set of m×m stochastic matrices. We refer to a sequence {W (k)} of matrices
as model or chain interchangeably.

We write E[X ] to denote the expected value of a random variable X . For an event
A , we use Pr (A ) to denote its probability. If Pr (A ) = 1, we say that the event A

happens almost surely. We often abbreviate “almost surely” by a.s.

2 Problem Formulation and Motivation

In this section, we formulate the problem of our interest, introduce some notions and
provide an example that motivates the further development.
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2.1 Problem Description

We consider the dynamics of a linear system driven by a random stochastic chain, i.e.,

x(k + 1) = W (k)x(k) for k ≥ t0. (1)

where W (k) ∈ S
m for all k, the time t0 is an initial time and x(t0) ∈ R

m is an initial state
of the system. It is well known that when the matrix sequence {W (k)} is ergodic, the
dynamics in (1) is convergent almost surely for any initial time t0 and any initial state
x(t0). Furthermore, the limiting value of each coordinate xi(k) is the same, which is
often referred to as consensus, agreement, or synchronization. In this case, the sequence
{W (k)} has a single ergodic class, the class [m] consisting of all coordinate indices
{1, . . . , m}.

A natural question arises: what happens if {W (k)} is not ergodic? In particular,
what can we say about the limiting dynamics of the coordinates xi(t)? Can we determine
the ergodicity classes based on the properties of the matrices W (k)? Our motivation in
this paper is to answer these questions. To do this, we formalize the probabilistic model
for the matrices {W (k)} and introduce some terminology.

Let (Ω,F ,Pr (·)) be a probability space and letW : Ω → Π∞
i=0S

m be a random matrix
process such that Wij(k) is a Borel-measurable function for all i, j ∈ [m] and k ≥ 0. We
call such a process a random chain or a random model. We often denote such a process
by its coordinate process representation {W (k)}. If matrices W (k) are independent, we
say that the model is independent and, in addition, if W (k)s are identically distributed
we say that {W (k)} an independent identically distributed (i.i.d.) random model.

Given a random model {W (k)}, a starting time t0 and a starting point x(t0) ∈
R

m, our goal is to investigate the limiting behavior of random dynamic system (1)
and, in particular, to characterize the ergodicity classes of the model {W (k)}. In the
development, we consider some generalizations of the notions of ergodicity.

2.2 Terminology

A deterministic chain {A(k)} can be viewed as a special independent random chain by
setting Ω = {ω}, F = {{ω}, ∅}, Pr ({ω}) = 1 and W (k)(ω) = A(k). Then, the dynamic
system in Eq. (1) is deterministic and we have the following definition.

Definition 1. A chain {A(k)} is ergodic chain or ergodic model if limk→∞(xi(k) −
xj(k)) = 0 for any i, j ∈ [m], any starting time t0 ≥ 0 and any starting point x(t0) ∈ R

m.
We say that the chain admits consensus if the above assertion is true for t0 = 0. A
random model {W (k)} is ergodic (admits consensus) if the event E (C) happens almost
surely.

To justify Definition 1 for a random model, note that we can speak about subsets E
and C of Ω on which the ergodicity and consensus happen, respectively. These sets are
given by

E = ∩∞
t0=0

(

∩m
ℓ=1{ω | lim

k→∞
(xi(k)− xj(k)) = 0 for all i, j ∈ [m], x(t0) = eℓ}

)

,
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C = ∩m
ℓ=1{ω | lim

k→∞
(xi(k)− xj(k)) = 0 for all i, j ∈ [m], x(0) = eℓ}.

The scalars xi(k)−xj(k) are random variables since W (k) are Borel-measurable. Thus, E
and C are events (for the discussion on why it suffice to consider only x(0) = eℓ see [31]).

The ergodicity of a random chain {W (k)} is closely related to the limiting behavior
of the product of the matrices W (0),W (1), . . .. To see this, we let Φ(t, s) = W (t −
1) · · ·W (s) for t > s. Now, if in Definition 1, we set x(t0) = eℓ for ℓ ∈ [m], then
we conclude that for an ergodic chain {W (k)}, the ith column of Φ(t, t0), i.e. Φ

i(t, t0),
converges almost surely to a vector that is co-linear with the vector e. Therefore, the
ergodicity of a chain implies the almost sure convergence of all the columns of Φ(t, t0)
to a vector co-linear with e for any starting time t0, or in other words limt→∞ Φ(t, t0) =
eφ(t0)

T almost surely for a random vector φ(t0) ∈ R
m. Note that in this case φ(t0)

is a stochastic vector almost surely by the stochasticity of the matrices W (k). Due to
the finite dimensionality of the space, the converse of the above statement is also true.
Therefore, a chain is ergodic if and only if limt→∞Φ(t, t0) = eφ(t0)

T almost surely for a
random stochastic vector φ(t0) for all t0 ≥ 0.

In [31, 32], we have shown that the ergodicity of certain models is closely related to
the infinite flow property, as defined below.

Definition 2. (Infinite Flow Property) A deterministic chain {A(k)} has the infinite
flow property if

∑∞
k=0AS(k) = ∞ for any nonempty S ⊂ [m]. A random model {W (k)}

has the infinite flow property if the model has infinite flow property almost surely.

As in the case of consensus and ergodicity events, the subset of Ω over which the
infinite flow happens is an event since Wij(k)s are Borel-measurable. We denote this
event by F .

In our further development, we also use some additional properties of random mod-
els such as a weak feedback property and a common steady state in expectation, as
introduced in [31]. For convenience, we provide them in the following definition.

Definition 3. Let {W (k)} be a random model. We say that the model has:

(a) Weak feedback property if it there exists γ > 0 such that
E
[

W i(k)TW j(k)
]

≥ γ(E[Wij(k)] + E[Wji(k)]) for all k ≥ 0 and i 6= j, i, j ∈ [m].

(b) A common steady state π in expectation if πT
E[W (k)] = πT for all k ≥ 0.

Apparently, any random model with Wii(k) ≥ γ > 0 almost surely for all k ≥ 0 and
i ∈ [m] has weak feedback property. Also i.i.d. models with almost sure positive diagonal
entries have weak feedback property, as shown in [31]. As another example, consider the
homogeneous deterministic chain {A(k)} defined by A(k) = 1

m−1
(eeT − I) for all k ≥ 0.

It can be seen that this model has weak feedback property with γ = m−2
2(m−1)

.
As an example of a model with a common steady state π in expectation, one can

consider any i.i.d. random model {W (k)}. Another example are the models where W (k)
is doubly stochastic almost surely for any k, for which we have π = 1

m
e.

With a random model, we associate an infinite flow graph. We define the infinite flow
graph to be an undirected simple graph, i.e., a graph with no self-loops and multiple
edges, and with links that have sufficient information flow.
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Definition 4. (Infinite Flow Graph) For a random model {W (k)}, the infinite flow
graph of the model is the simple undirected graph G∞ = ([m], E∞), where {i, j} ∈ E∞ if
and only if

∑∞
k=0(Wij(k) +Wji(k)) = ∞ almost surely.

The infinite flow graph has been (silently) used in [33] mainly to establish the er-
godicity of a certain deterministic chains. Here, however, we make use of this graph to
establish ergodicity classes for a class of independent random chains. In particular, as
we will see in the later sections, the infinite flow graph and its connected components
play important role in identifying the ergodicity classes of the model. In the sequel, a
connected component of a graph will always be maximal with respect to the set inclusion,
i.e., it will be the largest connected component that is not properly contained in any
other connected component.

2.3 Infinite Flow Graph and Gossip Algorithm on Time-Varying

Network

To illustrate the use of the infinite flow graph in determining the ergodicity classes of a
random model, we consider a gossip algorithm over a time-varying network, as discussed
in [31, 32] to extend the original gossip algorithm [4, 5]. We revisit this algorithm briefly
and provide some background results. We then investigate the algorithm for the case
when the convergence does not occur to a common vector, but rather a group of agents’
values converge to a common vector that may be different for different groups of agents.

We next provide the infinite flow theorem from [31] (see also [32]), which we use in
the further development.

Theorem 1. (Infinite Flow Theorem) Let the random model {W (k)} be independent,
and have a common steady state π > 0 in expectation and weak feedback property. Then,
the following conditions are equivalent:

(a) The model is ergodic.

(b) The model has infinite flow property.

(c) The expected model has infinite flow property.

(d) The expected model is ergodic.

Note that Theorem 1 applies to a deterministic model {A(k)} that has a common
steady state π (i.e., πTA(k) = πT ) and has the weak feedback property. In view of this
observation and the infinite flow theorem we have the following corollary.

Corollary 1. Let {W (k)} be a random model. Suppose that πTW (k) = πT almost surely
for a vector π > 0 and all k ≥ 0. Also, suppose that W i(k)TW j(k) ≥ γ(Wij(k)+Wji(k))
almost surely for some γ > 0 and for all k ≥ 0 and i, j ∈ [m] with i 6= j. Then, the
infinite flow and the ergodicity events coincide almost surely, i.e., E = F almost surely.

6



Now, we focus on the random gossip algorithm over time-varying network. Suppose
that we have the set [m] of m agents, and each agent i ∈ [m] has a scalar value xi(0) at
time t = 0. We also have a sequence {P (k)} of matrices such that

∑

i<j Pij(k) = 1 for
all k. At any time instance k > 0, the value Pij(k) is the probability that link {i, j} is
activated (independent of the link realizations in other time instances). When the link
{i, j} is activated at time k, agents i and j exchange their values and, then, update as
follows:

xℓ(k) =
1

2
(xi(k − 1) + xj(k − 1)) for ℓ = i, j,

while the other agents do not update, i.e., xℓ(k) = xℓ(k − 1) for ℓ 6= i, j.
In our dynamic system form, we have an independent random model {W (k)}, where

W (k) = I −
1

2
(ei − ej)(ei − ej)

T with probability Pij(k). (2)

By looking at the connected components of the infinite flow graph of the gossip
model, we can characterize the ergodicity classes of the dynamics x(t). Specifically, let
G∞ be the infinite flow graph of the gossip model. Let S1, . . . , Sτ ⊂ [m] be the connected
components of G∞, where τ ≥ 1 is the number of the components. We have the following
result.

Lemma 1. Consider the time-varying gossip algorithm given by (2). Then, for any
initial vector x(0) ∈ R

m, the dynamics {x(t)} converges almost surely. Furthermore, we
have limt→∞(xi(t)− xj(t)) = 0 almost surely for i, j ∈ Sr and r ∈ [τ ].

Proof. Let mr = |Sr| be the number of vertices in the connected component Sr of
G∞. Without loss of generality assume that the vertices are ordered such that S1 =
{1, . . . , a1}, S2 = {a1 + 1, . . . , a2}, . . . , Sτ = {aτ−1 + 1, . . . , aτ} where mr = ar − ar−1

and a0 = 0 < a1 < a2 < · · · < aτ−1 < aτ = m. By the Borel-Cantelli lemma [11],
page 46, and finiteness of the dimension of the space, for almost all ω ∈ Ω there exists
N(ω) < ∞ such that no communication link {i, j} will appear between two different
components Sα and Sβ for α 6= β and α, β ∈ [τ ] for any time k ≥ N(ω). Therefore,
for almost all ω ∈ Ω, the chain {W (k)}(ω) can be written in the form W (k)(ω) =
diag(W (1)(k)(ω), . . . ,W (τ)(k)(ω)) for k ≥ N(ω) where W (r)(k)(ω) aremr×mr stochastic
matrices. From the dynamics system perspective, this means that after a while (after
time N(ω)), the dynamics {x(t)} driven by {W (k)} can be decoupled into τ disjoint
dynamics systems {x(r)}, where {x(r)} is a dynamic evolving in R

mr and it is governed
by {W (r)(k)(ω)}. Also, based on the Borel-Cantelli lemma [11], the deterministic models
{W (r)(k)(ω)}k≥N(ω) have infinite flow property for r ∈ [τ ]. Now, note that for each r ∈ [τ ]

the deterministic model {W (r)(k)(ω)}k≥N(ω) is doubly stochastic and W
(r)
ii (k) ≥ 1

2
for all

i ∈ [m] and k ≥ 0. Therefore by Corollary 1, those individual chains are ergodic almost
surely. Hence, starting from any initial point x(0) ∈ R

m, we have x(t0) = Φ(t0, 0)x(0).
From this point, the mr coordinates of x(k) belonging to Sr, will evolve by the chain
{W (r)(k)}. Since each chain {W (r)(k)} is ergodic, it follows that limk→∞(xi(k)−xj(k)) =
0 for i, j ∈ Sr and r ∈ [τ ]. Note that although the time N(ω) is a random (stopping)
time, the sets Sr are deterministic. Q.E.D.
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Basically, Lemma 1 states that for any starting point x(0) ∈ R
m, any two agents

in the same connected component of G∞ will eventually consent. From the algebraic
point of view, the preceding assertion means that the matrix Φ(t, 0) = W (t) · · ·W (0)
converges almost surely to a random matrix Ψ(0) with the property that the ith and
jth row of Ψ(0) are the same vectors if i, j ∈ Sr for some r ∈ [τ ]. Observe that the same
argument holds for any starting time t0 ≥ 0. The choice of starting time zero was not
crucial.

Our goal in the upcoming sections is to provide results similar to Lemma 1 but for
a class of random models larger than the gossip model in (2).

2.4 Mutual Ergodicity and Weak Ergodicity

In order to define the ergodicity classes of a model, we introduce the following notions.

Definition 5. Let {A(k)} be a deterministic chain, and let {x(k)} in (1) be driven by
the chain A(k). We say that:

(a) Two indices i, j ∈ [m] are mutually weakly ergodic indices if limk→∞(xi(k)−xj(k)) =
0 for any initial time t0 ≥ 0 and initial point x(t0) ∈ R

m. We write i ↔A j when
the indices i and j are mutually weakly ergodic indices for the chain {A(k)}.

(b) The index i ∈ [m] is an ergodic index for the chain {A(k)} if the limit limk→∞ xi(k)
exists for any starting time t0 ≥ 0 and any initial point x(t0) ∈ R

m. When each
index i ∈ [m] is ergodic index, we say the chain is partially-ergodic.

(c) Two indices i, j ∈ [m] are mutually ergodic indices if i and j are ergodic indices and
i ⇔A j for any initial time t0 ≥ 0 and initial point x(t0) ∈ R

m. We write i ⇔A j

when the indices i and j are mutually ergodic for the chain {A(k)}.

The relation ↔A is induced by a chain {A(k)} and it defines an equivalence relation
on [m]. Hence, one can consider the equivalency classes of such a relation. We refer to
the classes of this equivalence relation as ergodicity classes and to the partitioning of
[m] induced by such an equivalence relation as the ergodicity pattern of the model.

Definition 5 extends naturally to a randommodel. Specifically, if any of the properties
in Definition 5 holds almost surely for a random model {W (k)}, we say that the model
{W (k)} has the corresponding property. In the further development, when unambiguous,
we will omit the explicit dependency of the relation ↔ and ⇔ on the underlying chain.

For a random model {W (k)}, the set of realizations over which i ↔ j (or i ⇔ j) is
a measurable set; hence, an event. Since such events are tail events for an independent
random model {W (k)}, each of these events happens with either probability zero or
one. Hence, for a random independent model, we say i ↔ j (or i ⇔ j) if Pr (i ↔ j) = 1
(or Pr (i ⇔ j) = 1). Conversely, we say i 6↔ j (or i 6⇔ j), if Pr (i ↔ j) = 0 (or
Pr (i ⇔ j) = 0). Thus, the ergodicity pattern of an independent random model is well-
defined.

Now, let us discuss two examples to illustrate Definition 5.
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Example 1. By Definition 5 and the ergodicity definition (Definition 1), a chain is
ergodic if and only if its ergodicity class is a singleton or, equivalently, its ergodicity
pattern is {[m]}.

Example 2. For the time-varying gossip algorithm in Eq. (2), we proved that if i and
j belong to the same connected component of the infinite flow graph G∞ of the gossip
model {W (k)}, then i ⇔W j. We prove in Section 5 that this statement holds for any
random model satisfying the conditions of the infinite flow theorem (Theorem 1).

3 Approximation of chains

Two random models may have the same ergodic properties while the dynamics of two
chains might be completely different. For example, all the ergodic chains have the same
ergodic properties, and yet, their dynamics can be quite different. Next, we specify what
we mean by “the same ergodic properties” for two chains.

Definition 6. Two chains {W (k)} and {U(k)} have the same ergodic properties if there
exists a bijection θ : [m] → [m] between the indices of {W (k)} and {U(k)} such that:

(a) i ↔W j if and only if θ(i) ↔U θ(j), and

(b) i is an ergodic index for {W (k)} if and only if θ(i) is an ergodic index for {U(k)}.

Note that if θ is a bijection of Definition 6 for two chains, then the indices of one
of the chains can be permuted according to the bijection θ, so that the bijection θ can
always be taken as identity. We assume that this is the case for the rest of the paper.

3.1 ℓ1-Approximation

Our aim in this section is to prove that if two chains do not “differ much”, then they
have the same ergodic properties. In the above statement, by “not differ much”, we
mean that the two chains are ℓ1-approximation of each other as defined below.

Definition 7. A deterministic chain {B(k)} is an ℓ1-approximation of a chain {A(k)}
if {A(k)−B(k)} is an ℓ1-sequence, i.e.,

∑∞
k=0 |Aij(k)−Bij(k)| < ∞ for all i, j ∈ [m].

Definition 7 extends to random chains by requiring that ℓ1-approximation is almost
sure, i.e., a random chain {U(k)} is an ℓ1-approximation of a random chain {W (k)} if
∑∞

k=0 |Wij(k)− Uij(k)| < ∞ almost surely for all i, j ∈ [m].
We have several side remarks about Definition 7. First, we note that the ℓ1-approximation

is an equivalence relation. This is because the set of all absolutely summable sequences
in R is a vector space over R. The second remark is that, for two independent ran-
dom models {W (k)} and {U(k)} that are adapted to the same sigma-field, we have
∑∞

k=0 |Wij(k) − Uij(k)| < ∞ for all i, j ∈ [m] with either probability zero or one,
due to Kolmogorov’s 0-1 law ([11], page 61). The third remark is about an alter-
native formulation of ℓ1-approximation. Since the matrices have finite dimension, if
∑∞

k=0 |Aij(k) − Bij(k)| < ∞ for all i, j ∈ [m], then an equivalent characterization of
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{B(k)} being ℓ1-approximation of {A(k)} is that
∑∞

k=0 ‖A(k) − B(k)‖p < ∞ for any
p ≥ 1.

We now discuss some examples of ℓ1-approximation.

Example 3. Consider two random models {W (k)} and {U(k)} that differ only in finitely
many coordinate maps, i.e., W (k) = U(k) for all k ≥ t and some t ≥ 0. Since any entry
of each random matrix W (k) and U(k) is bounded in the interval [0, 1], it follows that
∑∞

k=0 |Wij(k)− Uij(k)| ≤ t. Hence, the two models are ℓ1-approximation of each other.
We use such an approximation in the proof of Theorem 6.

For another example of ℓ1-approximation, consider the time-varying gossip model,
as discussed in Section 2.

Example 4. Let {W (k)} be the chain of the gossip model in Eq. (2) with the infinite
flow graph G∞. Assume that the connected components of G∞ are S1, . . . , Sτ . Now,
define the approximate gossip model {U(k)} to be

U(k) =

{

W (k) if link {i, j} is activated at time k with i, j ∈ Sr for some r,

I otherwise.
(3)

In this case, by the definition of the infinite flow graph we have
∑∞

k=0 |Wij(k)−Uij(k)| <
∞ almost surely for all i and j that do not belong to the same connected component of
G∞. Basically, in the approximate gossip model, we cut the links between the agents that
belong to different connected components of G∞. In this way, we have an approximate
dynamic consisting of τ decoupled dynamics (one per connected component of G∞).
At the same time, the original and the approximate dynamics have the same ergodic
properties. This will be seen for a more general case in forthcoming Lemma 2.

Now, we present the main result of this section. The result shows that if two chains
are ℓ1-approximations of each other, then their ergodic properties are identical. Such a
result might be helpful in determining the ergodic properties of a chain that may not be
easily dealt with directly, but it may admit a suitable l1-approximation.

Lemma 2. (Approximation lemma) Let a deterministic chain {B(k)} is an ℓ1-approximation
of a deterministic chain {A(k)}. Then, {A(k)} and {B(k)} have the same ergodic prop-
erties.

Proof. Since {B(k)} is an ℓ1-approximation of {A(k)}, for any given ǫ > 0, there exists
integer Nǫ ≥ 0 such that

∑∞
k=Nǫ

‖A(k)− B(k)‖∞ < ǫ.
Suppose that i ↔B j. For the given x(0) ∈ [0, 1]m, let {x(k)} be the sequence

generated by matrices {A(k)} and the dynamics defined in Eq. (1). Also, let {z(k)}k≥Nǫ

be the dynamics driven by {B(k)} started at time Nǫ by vector z(Nǫ) = x(Nǫ) as defined
in Eq. (1). For any k, we have:

x(k) = A(k − 1)x(k − 1) = (A(k − 1)−B(k − 1))x(k − 1) +B(k − 1)x(k − 1).

But |xi(k)| ≤ 1 for any k ≥ Nǫ. Thus, we have

‖x(k)− B(k − 1)x(k − 1)‖∞ ≤ ‖A(k − 1)− B(k − 1)‖∞. (4)
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Therefore, ‖x(Nǫ + 1)− B(Nǫ)x(Nǫ)‖∞ ≤ ‖A(Nǫ)− B(Nǫ)‖∞. Since z(Nǫ) = x(Nǫ), it
follows ‖x(Nǫ + 1)− z(Nǫ + 1)‖∞ ≤ ‖A(Nǫ)−B(Nǫ)‖∞. We now proceed by induction
and we assume that ‖x(k)−z(k)‖∞ ≤

∑k−1
t=Nǫ

‖A(k)−B(k)‖∞ for k > Nǫ. Using Eq. (4)
and triangle inequality, we have

‖x(k + 1)− z(k + 1)‖∞ = ‖A(k)x(k)− B(k)z(k)‖∞

= ‖(A(k)− B(k))x(k) +B(k)(x(k)− z(k))‖∞

= ‖(A(k)− B(k))x(k)‖∞ + ‖B(k)(x(k)− z(k))‖∞

≤ ‖(A(k)− B(k))‖∞‖x(k)‖∞ + ‖B(k)‖∞‖(x(k)− z(k))‖∞.

Now, by the induction assumption and the relation ‖B(k)‖∞ ≤ 1, which holds since
B(k) is a stochastic, it follows that

‖x(k + 1)− z(k + 1)‖∞ ≤
k

∑

t=Nǫ

‖A(k)− B(k)‖∞ ≤
∞
∑

t=Nǫ

‖A(k)−B(k)‖∞ ≤ ǫ. (5)

Therefore, |xi(k)−zi(k)| ≤ ǫ and |zj(k)−xj(k)| ≤ ǫ and hence, by the triangle inequality
|(xi(k) − xj(k)) + (zi(k) − zj(k))| ≤ 2ǫ for any k ≥ Nǫ. But i ↔B j and, hence,
limk→∞(zi(k)− zj(k)) = 0 and we have

lim sup
k→∞

|xi(k)− xj(k)| ≤ 2ǫ.

The preceding inequality holds for any ǫ > 0 and any starting time t0 for {B(k)},
implying that i ↔A j.

Using the same argument, and based on inequality (5), one can deduce that if i is
ergodic index for {B(k)}, then it is also ergodic index for {A(k)}. Since ℓ1-approximation
is symmetric with respect to the chains, the result follows. Q.E.D.

An immediate consequence of ℓ1-approximation lemma is the following result.

Corollary 2. The class of ergodic deterministic chains is closed under ℓ1-approximations
and hence, the class of ergodic random models is closed under ℓ1-approximations.

3.2 Infinite Flow Graph and Mutual Ergodicity

We now explore the relation between mutual weak ergodicity and the infinite flow graph.
More specifically, we consider a random model {W (k)} and its infinite flow graph G∞ =
([m], E∞), as given in Definition 4. We show that if indices i and j are mutually weakly
ergodic, then i and j belong to the same connected component of G∞. This result is
general as it applies to any random model. We establish it for arbitrary deterministic
chain.

Lemma 3. Let {A(k)} be a deterministic chain. Then, i ↔A j implies that i and j

belong to the same connected component of the infinite flow graph of {A(k)}.

11



Proof. To arrive at a contradiction, suppose that i and j belong to two different con-
nected components S, T ⊂ [m] of G∞. Therefore, T ⊂ S̄ implying that S̄ is not
empty. Also, since S is a (maximal) connected component of G∞, it follows that
∑∞

k=0AS(k) < ∞. Without loss of generality, we can assume that S = {1, . . . , i∗}
for some i∗ < m. Then, consider the chain {B(k)} as defined below:

Bij(k) =















Aij(k) if i 6= j and i, j ∈ S or i, j ∈ S̄,

0 if i 6= j and i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S,

Aii(k) +
∑

ℓ∈S̄ Aiℓ(k) if i = j ∈ S,

Aii(k) +
∑

ℓ∈S Aiℓ(k) if i = j ∈ S̄.

(6)

The above approximation simply sets the cross terms between S and S̄ to zero and adds
the corresponding values to the diagonal entries to maintain the stochasticity of the
matrix. Therefore, we have new stochastic chain B(k) given by

B(k) =

[

B1(k) 0
0 B2(k)

]

,

where B1(k) and B2(k) are respectively i∗× i∗ and (m− i∗)× (m− i∗) matrices for all k.
Note that by the assumption

∑∞
k=0AS(k) < ∞, the chain {B(k)} is an ℓ1-approximation

of {A(k)}. Now, let ui∗ be the vector which has the first i∗ coordinates equal to one and
the rest equal to zero, i.e., ui∗ =

∑i∗

ℓ=1 ei∗ . Then B(k)ui∗ = ui∗ for any k ≥ 0 and hence,
i 6↔B j. By Approximation Lemma (Lemma 2), we have i 6↔A j and the result follows.
Q.E.D.

Lemma 3 shows that the ergodic components of a random model {W (k)} are subsets
of the connected components of the infinite flow graph of the model. Therefore, if the
model is ergodic, then the infinite flow graph of the model is connected which proves the
necessity of the infinite flow property for the ergodicity of a model. Thus, as a special
consequence of Lemma 2, we obtain Theorem 1 in [31].

The converse result of Lemma 3 is not true. For example, let

A(k) =

[

0 1
1 0

]

for all k ≥ 0.

In this case, the infinite flow graph is connected while the model is not ergodic. In the
resulting dynamics, the agents 1 and 2 keep swapping their initial values x1(0) and x2(0).

4 Ergodicity in class M2

In this section, we show that the infinite flow property is sufficient for ergodicity of a
class of random models. Assume that {W (k)} is an independent random chain with
common steady state distribution π in expectation. Let x(0) ∈ R

m and let {x(k)} be
the resulting dynamic governed by {W (k)}. In [31] (Theorem 5), it was shown that for
any independent random model {W (k)} and any starting point x(0) ∈ R

m, we almost
surely have

∞
∑

k=0

∑

i<j

H̄ij(k)(xi(k)− xj(k))
2 < ∞,
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where H̄(k) = E
[

W T (k)diag(π)W (k)
]

. This result have played a crucial role when prov-
ing that, for certain independent models with common steady state π > 0 in expectation,
the infinite flow is both necessary and sufficient for ergodicity. We will show in Theo-
rem 3 that the infinite flow property is in fact necessary and sufficient for the ergodicity
of the models {W (k)} such that

∑∞
k=0

∑

i<j E
[

W T (k)W (k)
]

ij
E[(xi(k)− xj(k))

2] < ∞.

We refer to such models as class M2-models and we formally introduce this class, as
follows.

Definition 8. The class M2 of random models is the set of all independent random
models {W (k)} such that for the dynamic system (1) we have for any t0 ≥ 0 and
x(t0) ∈ R

m,

∞
∑

k=t0

∑

i<j

Hij(k)E
[

(xi(k)− xj(k))
2
]

< ∞, (7)

where H(k) = E
[

W T (k)W (k)
]

.

If a model has a common steady state π > 0 in expectation, then πminE
[

W T (k)W (k)
]

≤
E
[

W T (k)diag(π)W (k)
]

, where πmin = mini∈[m] πi. Therefore, any model with a com-
mon steady state π > 0 belongs to class M2. The following result shows that any
ℓ1-approximation of such models also belongs to class M2.

Lemma 4. Let {W (k)} be an independent random model with a common steady state
π > 0 in expectation. Let an independent random model {U(k)} be an ℓ1-approximation
of {W (k)}. Then {U(k)} ∈ M2.

The proof of Lemma 4 can be found in the appendix.
Next, we show that the infinite flow property is sufficient for any model in class M2

model with weak feedback property. We establish this by using the following intermedi-
ate result whose proof is provided in the appendix.

Theorem 2. Let {A(k)} be a deterministic chain with infinite flow property, and let
z(k) = A(k − 1)z(k − 1) for k ≥ 1 and z(0) = eℓ for any ℓ ∈ [m]. Assume that
limk→∞(zmax(k)− zmin(k)) > 0. Then,

∞
∑

k=0

∑

i<j

(Aij(k) + Aji(k))(zi(k)− zj(k))
2 = ∞.

By using Theorem 2, we establish the following result showing that the infinite flow
property is necessary and sufficient for the ergodicity of class M2-models.

Theorem 3. Let {W (k)} be a class M2 model with weak feedback property. Then, the
infinite flow property is both necessary and sufficient for the ergodicity of the model.

Proof. The necessity of the infinite flow property follows by Lemma 3. For the converse,
assume that the model has the infinite flow property. Note that by the definition of an
M2-model, for any x(0) ∈ R

m,

∞
∑

k=0

∑

i<j

Hij(k)E
[

(xi(k)− xj(k))
2
]

< ∞,
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whereH(k) = E
[

W T (k)W (k)
]

. Due to the feedback property, we have E
[

W i(k)TW j(k)
]

≥
γE[Wij(k) +Wji(k)] for some γ > 0. Therefore, using the independency of the model
and the relation Hij(k) = E

[

W i(k)TW j(k)
]

, for any x(0) ∈ R
m we obtain

∞
∑

k=0

∑

i<j

E
[

(Wij(k) +Wji(k))(xi(k)− xj(k))
2
]

= E

[

∞
∑

k=0

∑

i<j

(Wij(k) +Wji(k))(xi(k)− xj(k))
2

]

< ∞,

where the equality holds by (Wij(k) +Wji(k))(k)(xi(k)−xj(k))
2 ≥ 0 and the monotone

convergence theorem [13], page 50. As a result, for any x(0),

∞
∑

k=0

∑

i<j

(Wij(k) +Wji(k))(k)(xi(k)− xj(k))
2 < ∞ almost surely.

Since the model is assumed to have the infinite flow property, by Theorem 2 we have
limk→∞(xmax(k)− xmin(k)) = 0 almost surely for x(0) = eℓ with ℓ ∈ [m], implying that
the system reaches consensus almost surely. Since

∑∞
k=t

∑

i<j Hij(k)E[(xi(k)− xj(k))
2] <

∞ for any starting time t ≥ 0, by the same argument it follows that the model is ergodic.
Q.E.D.

Using Theorem 2, we can extend the Infinite Flow Theorem 1 as follows.

Theorem 4. The Infinite Flow Theorem 1 holds for any random model {W (k)} in class
M2 with weak-feedback property.

Proof. By Theorem 3, (d) implies (a). The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) is true
for any independent random model as proven in [31]. Q.E.D.

As an example of a model in the class M2 that does not have a common steady state,
consider the class of deterministic chains {A(k)} that satisfy a bounded-connectivity
condition and have a uniform lower-bound on positive entries, as discussed in [33, 15,
19, 20, 21]. In these models, the sequence d(x(k)) = maxi∈[m] xi(k) − minj∈[m] xj(k) is
(sub)geometric and, thus, it is absolutely summable. Furthermore,Hij(k) = [AT (k)A(k)]ij ≤
m. This and |xi(k)−xj(k)| ≤ d(x(k)) for all i, j ∈ [m] imply

∑∞
k=0

∑

i<j[A
T (k)A(k)]ij(xi(k)−

xj(k))
2 < ∞, i.e., the defining property of M2-class in Eq. (7) holds.

5 Infinite Flow Graph

So far, we have been focused on the infinite flow property of independent chains and
showed that for a class of random models, infinite flow property and ergodicity are
equivalent. We next study models with a common steady state π > 0 in expectation
and weak-feedback property that do not have infinite flow property. Our goal is to
investigate the limiting behavior of such models and, in particular, to characterize their
ergodicity classes.
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Let {W (k)} be a random model with common steady state π > 0 in expectation.
Let G∞ be the infinite flow graph of the model as in Definition 4. In Section 2.3, we
showed that on extended gossip algorithm, the connected components of this graph are
closely related to the limiting behavior of the model. We aim to show that the same
results hold for any independent random model with a common steady state π > 0 in
expectation and weak feedback property.

Suppose that G∞ has τ ≥ 1 connected components. Let S1, . . . , Sτ ⊂ [m] be the
sets of vertices of each connected component of G∞. Let S1 = {1, . . . , a1}, S2 = {a1 +
1, . . . , a2}, . . . , Sτ = {aτ−1 + 1, . . . , aτ = m} for 1 ≤ a1 ≤ . . . ≤ aτ = m, and let
mr = |Sr| = ar − ar−1 be the number of vertices in the rth component, where a0 = 0.

Using the connected components of the infinite flow graph of {W (k)}, we define the
diagonal approximation {W̃ (k)} of {W (k)}, as follows.

Definition 9. (Diagonal approximation) For 1 ≤ r ≤ τ , define the random model
{W (r)(k)} in R

mr as follows: for i, j ∈ [mr],

W
(r)
ij (k) =

{

W(i+ar−1)(i+ar−1)(k) +
∑

ℓ∈S̄r
W(i+ar−1)ℓ(k) if j = i,

W(i+ar−1)(j+ar−1)(k) if j 6= i.
(8)

The diagonal approximation of the model {W (k)} is the model {W̃ (k)} defined by

W̃ (k) = diag(W (1)(k), . . . ,W (τ)(k)) =











W (1)(k) 0 · · · 0
0 W (2)(k) · · · 0
...

...
. . .

...
0 0 . . . W (τ)(k)











. (9)

Basically, in the diagonal approximation, we are decoupling the components of our
dynamics that have weak interactions with each other.

In fact, the diagonal approximation of a given model is an ℓ1-approximation of the
model.

Lemma 5. Let {W (k)} be an independent model and {W̃ (k)} be its diagonal approx-
imation. Then, {W̃ (k)} is an ℓ1-approximation of {W (k)}. Furthermore, the models
{W (r)(k)}, r = 1, . . . , τ defined in Eq. (8) have infinite flow property.

The proof of Lemma 5 is presented in the Appendix.
In Lemma 3, we showed that if i and j are mutually weakly ergodic then i and j

belong to the same connected component of G∞. In Lemma 1, we showed that for the
generalized gossip algorithm, i and j are mutually ergodic if i and j belong to the same
connected component of the infinite flow graph of the model. Hence, in this particular
case, i and j are mutually ergodic if and only if i and j belong to the same connected
component of G∞. The following theorem shows that the same result holds for any
random model satisfying the conditions of the Infinite Flow Theorem 1.

Theorem 5. Let {W (k)} be an independent model with a common steady state π > 0
in expectation and with weak feedback property. Then i ⇔ j if and only if i and j are in
the same connected component of the infinite flow graph G∞ of the model.
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Proof. The “if” part follows from Lemma 3 and the fact that mutual ergodicity implies
mutual weak ergodicity. To show the “only if” part, we use two ℓ1-approximations
successively. We proceed through the following steps to prove this result. First, in order
to have the weak-feedback property, we construct an ℓ1-approximation of the diagonal
approximation for the original model {W (k)} and we prove that the resulting chain has
weak-feedback property. Then, using the developed tools in the preceding sections, we
prove the statement.

Let G∞ be the infinite flow graph of {W (k)} and suppose it has τ connected com-
ponents. Let S1, . . . , Sτ be the vertex sets corresponding to the connected compo-
nents of G∞. Let πmin = mini∈[m] πi > 0. Consider the diagonal approximation

{W̃ (k)} of {W (k)} with W̃ (r)(k) defined as in Eq. (8) for r ∈ [τ ]. Let M(k) =

E

[

maxi,j∈[m] |W̃ij(k)−Wij(k)|
]

. Since {W̃ (k)} is an ℓ1-approximation of {W (k)}, we

have
∑∞

k=0M(k) < ∞. Therefore limk→∞M(k) = 0. Thus, there exists N ≥ 0 such
that M(k) ≤ πmin

8m
for any k ≥ N .

Let J (r) = π(r)e(mr)T where π(r) = (πar−1+1, . . . , πar), which is a sub-vector of π having
the coordinates πi with i ∈ Sr. Let U(k) = I for k < N and for k ≥ N ,

U (r)(k) = (1− d(k))W̃ (r)(k) + d(k)J (r),

where d(k) = 4m
πmin

M(k) for k ≥ 0. Since M(k) ≤ πmin

8m
for k ≥ N , we have d(k) ∈ [0, 1

2
].

Since a convex combination of stochastic matrices is a stochastic matrix, it follows
that each U (r)(k) is stochastic. Note that

∑∞
k=0M(k) < ∞ implies

∑∞
k=0 d(k) <

∞ and hence, the model {U (r)(k)}k≥N is an ℓ1-approximation of {W̃ (r)(k)}k≥N . But
since, the entries of each matrix are in the [0, 1] interval, changing finitely many ma-
trices in a chain cannot change infinite flow properties. Therefore, {U (r)(k)} is an ℓ1-
approximation of {W̃ (r)(k)} and the model {U(k)} with matrices defined by U(k) =
diag(U (1)(k), . . . , U (τ)(k)), k ≥ 0 is an ℓ1-approximation of {W̃ (k)}. By Lemma 5,
{W̃ (k)} is an ℓ1-approximation of the original model {W (k)} and therefore, {U(k)} is
an ℓ1-approximation of {W (k)}.

For k < N , U(k) = I which has weak-feedback property with constant 1. So, let us
fix k ≥ N and show weak feedback property for U(k). Let r ∈ [τ ] be arbitrary and for
simplicity of notation, let Q = U (r)(k). For i, j ∈ [mr] recall that their corresponding
indices in [m] are given by ir = i+ ar − 1, jr = j + ar − 1. Also, recall that W s denotes
the sth column vector of a matrix W . Using this, for any i, j ∈ [mr] with i 6= j we have:

QiTQj =
(

(1− d(k))W̃ (r)ir(k) + d(k)π(r)
)T (

(1− d(k))W̃ (r)jr(k) + d(k)π(r)
)

(10)

≥ (1− d(k))2(W̃ (r)ir(k))T W̃ (r)jr(k) + (1− d(k))d(k)π(r)T (W̃ (r)ir(k) + W̃ (r)jr(k)).

Now, based on the definition of π(r), we have:

π(r)T W̃ (r)ir(k) = πTW ir(k) + πT (W̃ ir(k)−W ir(k)) ≥ πTW i(k)−max
i′j′

|W̃i′j′(k)−Wi′j′(k)|,

which holds due to the stochasticity of π. Therefore,

E

[

π(r)T W̃ (r)ir(k)
]

≥ πi −M(k),
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which follows from π being a common steady state in expectation of {W (k)}. Similarly,

we have E

[

π(r)T W̃ (r)jr(k)
]

≥ πj − M(k). Taking the expectation of the both sides in

Eq. (10) and using the preceding inequalities, we obtain

E
[

QiTQj
]

≥ (1− d(k))2E
[

(W̃ ir(k))T W̃ jr(k)
]

+ (1− d(k))d(k)(πi + πj − 2M(k))

≥ (1− d(k))2E
[

(W̃ ir(k))T W̃ jr(k)
]

+ (1− d(k))d(k)
πi + πj

2
, (11)

which holds by M(k) ≤ πmin

8m
≤ πi

4
for any i ∈ [m] and k ≥ N .

Since W̃ℓir(k) ≥ Wℓir(k)−maxij |W̃ij(k)−Wij(k)| for all ℓ ∈ [m], we have

E

[

(W̃ ir(k))T W̃ jr(k)
]

≥ E
[

(W ir(k))TW jr(k)
]

− 2mM(k).

Therefore, using the above inequality in Eq. (11), we have:

E
[

QiTQj
]

≥ (1− d(k))2E
[

(W ir(k))TW jr(k)
]

− (1− d(k))22mM(k) + (1− d(k))d(k)
πi + πj

2
.

But 0 ≤ 4m
πmin

M(k) = d(k) ≤ 1 and hence,

2mM(k) = d(k)
πmin

2
≤ d(k)

πi + πj

4
.

By combining the preceding two relations and using (1− d(k))2 ≤ (1− d(k)), we have

E
[

QiTQj
]

≥ (1− d(k))2E
[

(W ir(k))TW jr(k)
]

+ (1− d(k))d(k)
πi + πj

4

≥ (1− d(k))2γE[Wirjr(k) +Wjrir(k)] + (1− d(k))d(k)
πi + πj

4
, (12)

where the last inequality follows by weak feedback property of {W (k)}.
Since ir, jr ∈ Sr and ir 6= jr, by the construction of W̃ (k), we have W̃irjr(k) =

Wirjr(k). Hence, E[Qij +Qji] = (1−d(k))(E[Wirjr(k)]+E[Wjrir(k)])+ d(k)(πi+πj). By
combining this with Eq. (12), we have

E
[

QiTQj
]

≥ (1− d(k))γ (E[Qij +Qji]− d(k)(πi + πj)) + (1− d(k))d(k)
πi + πj

4

= (1− d(k))γE[Qij +Qji] + (1− d(k))d(k)

(

−γ +
1

4

)

(πi + πj).

Without loss of generality, we assume γ ≤ 1
4
(otherwise, we can replace γ by 1

4
). Thus,

E
[

QiTQj
]

≥
γ

2
E[Qij +Qji] ,

which follows from d(k) ≤ 1
2
. Note that we defined Q = U (r)(k) where r ∈ [τ ] and k ≥ N

was arbitrary. Hence, each of the decoupled random models {U (r)(k)} has weak-feedback
property with feedback constant γ

2
.
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Let x(0) ∈ R
m and {x(k)} be the chain resulted from {U(k)} and dynamic system (1).

By Theorem 4, it follows that {U(k)} ∈ M2. Hence,
∑∞

k=0

∑

i<j Lij(k)E[(xi(k)− xj(k))
2] <

∞ almost surely, where L(k) = E
[

UT (k)U(k)
]

. Hence, for any r ∈ [τ ],

∞
∑

k=0

∑

i<j

i,j∈Sr

Lij(k)E
[

(xi(k)− xj(k))
2
]

< ∞.

Due to the diagonal structure of U(k), we have:

(a) x(k) = (x(1)(k), · · · , x(τ)(k)), where x
(r)
i (0) = xir(0), so {x(r)(k)} are the sequences

of random vectors in R
mr driven by the individual chains {U (r)(k)}.

(b) For i, j ∈ [mr] and r ∈ [τ ],

Lirjr(k) = E





∑

ℓ∈[m]

πℓUℓir(k)Uℓjr(k)



 = E

[

∑

ℓ∈Sr

πℓU
(r)
ℓir

(k)U
(r)
ℓjr

(k)

]

= E





∑

ℓ̄∈[mr ]

π
(r)

ℓ̄
U

(r)

ℓ̄i
(k)U

(r)

ℓ̄j
(k)



 . (13)

Therefore, by the above observations, the random dynamics in R
m induced by {U(k)} ∈

M2, decomposes into τ random dynamics in R
m1 , . . . ,Rmτ induced by {U (1)(k)}, . . . , {U (τ)(k)}

all of which belong to class M2. Also, each model {W̃ (r)(k)} has the infinite flow prop-
erty and hence, their ℓ1-approximations have the infinite flow property. Also, we showed
that each random model {W̃ (r)(k)} has weak feedback property. Hence, by Theorem 2,
{U (r)(k)} is ergodic chain for any r ∈ [τ ] which implies i ⇔ j for any i, j ∈ Sr. Since,
U(k) = diag(U (1)(k), . . . , U (τ)(k)), hence, i ⇔ j in {U(k)}. Therefore, by Approxima-
tion Lemma 2, i ⇔ j in the original chain {W (k)} if and only if i ⇔ j in {U(k)} which
is true if and only if i, j ∈ Sr for some r ∈ [τ ]. Q.E.D.

By the above result, we have the following characterization of the ergodicity classes.

Theorem 6. (Extended Infinite Flow Theorem) Let {W (k)} be any ℓ1-approximation of
an independent random model with common steady state π > 0 in expectation and weak
feedback property. Let G∞ be the infinite flow graph of {W (k)} and Ḡ∞ be the infinite
flow graph of the expected model {W̄ (k)}, where W̄ (k) = E[W (k)]. Then, the following
statements are equivalent:

(a) i ⇔W j.

(b) i ⇔W̄ j.

(c) i and j belong to the same connected component of Ḡ∞.

(d) i and j belong to the same connected component of G∞.

By Theorem 5 and Theorem 6 it follows that, any dynamics driven by a random
model satisfying the assumptions of the Extended Infinite Flow theorem (Theorem 6),
converges almost surely. In general, this consequence does not happen if any assumption
of the theorem is violated, as seen in the following examples.
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Example 5. Let the matrices W (k) be given by

W (k) =





1 0 0
u1(k) u2(k) u3(k)
0 0 1



 ,

where u(k) = (u1(k), u2(k), u3(k))
T are i.i.d. random vectors distributed uniformly in

the probability simplex of R
3. Then, starting from a point x(0) = (0, 1

2
, 1)T , the dy-

namics never converges. Note that this model has infinite flow property and satisfies all
assumptions of Theorem 6 except for the assumption π > 0.

Example 6. Consider the random permutation model. Specifically, let W (k) be the i.i.d.
model with W (k) randomly and uniformly chosen from the set of permutation matrices
in R

m. Starting from any initial point, this model just permutes the coordinates of the
initial point. Therefore, the dynamic is not converging for any x(0) that lies outside the
subspace spanned by the vector e. The model has the infinite flow property and has the
common steady state π = 1

m
e in expectation. However, the model does not have weak

feedback property, since E
[

W i(k)TW j(k)
]

= 0 for i 6= j while E[Wij(k)] +E[Wji(k)] > 0.

6 Applications

Here, we consider some applications of the Infinite Flow Theorem 1 and its extended
variant to ergodicity classes in Theorem 6. First, we visit the broadcast-gossip model
over time-changing networks and we derive a necessary and sufficient condition for the
ergodicity of the model. Then, we consider the effect of a link failure process on random
networks and provide an infinite flow type condition for the ergodicity.

6.1 Broadcast Gossip Algorithm on Time-Changing Networks

Broadcast gossip algorithm has been presented and analyzed in [2, 3]. As in the case
of gossip algorithm, the broadcast gossip algorithm has been proposed for consensus
over a static network. Here, we propose broadcast gossip algorithm over time-changing
networks and provide a necessary and sufficient condition for ergodicity.

Suppose that we have a sequence of simple undirected graphs (networks) {G(k)} on
[m], where G(k) = ([m], E(k)), so that G(k) represents the topology of the network at
time k. The sequence {G(k)} is assumed to be deterministic. Suppose that at time k,
agent i ∈ [m] wakes up with probability 1

m
(independently of earlier choices and other

agents) and broadcasts its value to its neighboring agents Ni(k) = {j ∈ [m] | {i, j} ∈
E(k)}. At this time, each agent j ∈ Ni(k) updates its estimate as follows:

xj(k + 1) = γ(k)xi(k) + (1− γ(k))xj(k),

where γ(k) ∈ (0, γ] is a mixing parameter of the system at time k and γ ∈ (0, 1). The
other agents keep their values unchanged, i.e., xj(k+1) = xj(k) for j 6∈ Ni(k). Therefore,
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in this case the vector x(k) of agents’ estimates xi(k) evolves in time according to (1)
where

W (k) = I − γ(k)
∑

j∈Ni(k)

ej(ej − ei)
T with probability 1

m
. (14)

Let G∞
b be the infinite flow graph of the broadcast gossip model, and suppose that

this graph has τ connected components, namely S1, . . . , Sτ . Using Theorem 6, we have
the following result.

Lemma 6. In time-varying broadcast gossip model of (14), any two agents are in the
same ergodicity class if and only if they belong to the same connected component of G∞

b .
In particular, the model is ergodic if and only if G∞

r is connected,

Proof. In view of Theorem 6, it suffices to show that the broadcast gossip model in (14)
has a common steady state π > 0 in expectation and weak feedback property. Since each
node (agent) is chosen uniformly at each time instance and the graph G(k) is undirected,
the (random) entries Wij(k) and Wji(k) have the same distribution. Therefore, the
expected matrix E[W (k)] is a doubly stochastic matrix for any time k ≥ 0. Also, due
to the condition γ(k) ≤ γ < 1, we have Wii(k) ≥ 1 − α(k) ≥ γ for all i ∈ [m] and all
k ≥ 0. If a model is such that Wii(k) ≥ γ > 0 for all i and k, then the model has weak
feedback property with γ

m
, as implied by Lemma 7 in [31]. Q.E.D.

As a matter of fact, we can provide a characterization of the connected components Sr

for the infinite flow graphG∞
b . By Theorem 6, the model and its expected model have the

same connected components. Therefore, it suffices to determine the infinite flow graph
Ḡ∞

b of the expected model. A link {i, j} is in the edge-set of the graph Ḡ∞
b if and only

if
∑∞

k=0 (E[Wij(k)] + E[Wji(k)]) = ∞. By (14), we have E[Wij(k)] =
1
m
γ(k) if j ∈ N(k)

and otherwise E[Wij(k)] = 0. Thus, {i, j} ∈ Ḡ∞
b if and only if

∑

k:{i,j}∈E(k) γ(k) = ∞.

Two instances of the time-varying broadcast gossip algorithm that might be of prac-
tical interest are: (1) The case where the underlying sequence of graphs is not time-
changing, i.e., G(k) = G for all k ≥ 0. Then, the random model is ergodic if and only
if G is connected and

∑∞
k=0 γ(k) = ∞. (2) The case where the sequence γ(k) is also

bounded below i.e., γ(k) ∈ [γb, γ] with 0 < γb ≤ γ < 1. Then, the model is ergodic if
and only if in the sequence {G(k)} infinitely many edges exist between S and S̄ for any
nonempty S ⊂ [m].

6.2 Link Failure Models

Suppose that we are given a random model {W (k)} ⊂ S
m and a matrix sequence

{F (k)} ⊂ S
m such that Fij = 0 or Fij = 1 for all i, j. Thus, {F (k)} is a binary

matrix sequence, which we refer to as a failure process. We define the link-failure model
as the random model {U(k)} given by

U(k) = W (k) · (eeT − F (k)) + diag([W (k) · F (k)]e), (15)

where “·” denotes the element-wise product of two matrices. To give a motivation for
this definition, suppose that we have a random model {W (k)} and suppose that each
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entry Wij(k) is set to zero, or in other words fails, whenever Fij(k) = 1. In this way,
F (k) induces a failure pattern on W (k). The term W (k) · (eeT − F (k)) in Eq. (15)
reflects this effect. Therefore, W (k) · (eeT − F (k)) misses some of the entries of W (k).
This lack is compensated by introducing the feedback term which is equal to the sum
of the failed links, i.e., the term diag([W (k) · F (k)]e). This can be viewed as adding
∑

j 6=i[W (k) · F (k)]ij to the self-feedback term of the agent i at time k (which is Wii(k))
in order to maintain the stochasticity of the resulting matrices.

By the above discussion, the stochasticity of the link-failure model {U(k)} follows.
Here, we should highlight the fact that the failure process is the binary matrix process
{F (k)} while the link-failure model {U(k)} is a stochastic matrix process derived from
a random model {W (k)} and the underlying link-failure process {F (k)}.

Now, let us define models with feedback property. The random model {W (k)}
has feedback property if there is γ > 0 such that E[Wii(k)Wij(k) +Wjj(k)Wji(k)] ≥
γE[Wij(k) +Wji(k)] for any k ≥ 0 and i, j ∈ [m] with i 6= j. In general, this property
is stronger than weak feedback property, as proved in [31]. However, as seen in [31], the
class of models with feedback property contains i.i.d. models with almost sure positive
diagonal entries.

Our next goal is to study the effect of the uniform link failure process {F (k)} on
independent random models with common steady state π > 0 in expectation and with
feedback property.

Definition 10. A uniform link-failure process is the link-failure process {F (k)} that
satisfies the following conditions:

(a) The random variables {Fij(k) | i, j ∈ [m], i 6= j} are binary i.i.d. for any fixed
k ≥ 0.

(b) The failure process {F (k)} is an independent process in time.

Note that the i.i.d. condition in Definition 10 is assumed for a fixed time. Therefore,
the uniform link-failure model can have a time-dependent distribution but for any given
time the distribution of the link-failure should be identical across the different edges.

Lemma 7. Let {W (k)} be an independent model with common steady state π > 0 in
expectation and feedback property. Let {F (k)} be a uniform-link failure process that
is independent of {W (k)}. Then, the failure model {U(k)} is ergodic if and only if
∑∞

k=0(1− pk)WS(k) = ∞ for all nonempty S ⊂ [m], where pk = Pr(Fij(k) = 1).

Proof. By the definition of the failure model {U(k)} in (15), since both random processes
{W (k)} and {F (k)} are independent, the failure model {U(k)} is also independent.
Then, for i 6= j and for any k ≥ 0, we have

E[Uij(k)] = E[Wij(k)(1− Fij(k))] = (1− pk)E[Wij(k)] ,

where the last equality holds sinceWij(k) and Fij(k) are independent, and E[Fij(k)] = pk.
The matrix U(k) is stochastic, so 1 − E

[

Uii(k)

]

=
∑

j 6=i E[Uij(k)]. By the preceding
relation, we have

∑

j 6=i E[Uij(k)] = (1 − pk)
∑

j 6=i E[Wij(k)], which by stochasticity of
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W (k) implies
∑

j 6=i E[Uij(k)] = (1− pk)(1− E[Wii(k)]). Therefore, E[Uii(k)] = pk + (1−
pk)E[Wii(k)], or in matrix notation:

E[U(k)] = pkI + (1− pk)E[W (k)] . (16)

But since π is a common steady state of {E[W (k)]}, it follows that πT
E[U(k)] = pkπ

T +
(1− pk)π

T = πT . Hence, the model {U(k)} has the same common steady state π > 0 in
expectation as the original model {W (k)}.

We next show that the failure model has feedback property. By the definition of
U(k), we have Uii(k) ≥ Wii(k) for all i ∈ [m] and k ≥ 0. Hence, E[Uii(k)Uij(k)] ≥
E[Wii(k)Uij(k)]. Since {F (k)} and {W (k)} are independent, we have

E[Wii(k)Uij(k)] = E[E[Wii(k)Uij(k) | Fij(k) = 0]] = E[E[Wii(k)Wij(k) | Fij(k) = 0]]

= (1− pk)E[Wii(k)Wij(k)] .

A similar relation holds for E[Ujj(k)Uji(k)]. By the feedback property of {W (k)}, we
have

E[Uii(k)Uij(k) + Ujj(k)Uji(k)] ≥ (1− pk)γE[Wij(k) +Wji(k)] = γE[Uij(k) + Uji(k)] ,

where the last equality follows from Eq. (16) and γ > 0 is the feedback constant for
{W (k)}. Thus, the failure model {U(k)} has feedback property with constant γ. Hence,
the model satisfies the assumptions of Infinite Flow Theorem 1. By this theorem, the
model {U(k)} is ergodic if and only if

∑∞
k=0 E[US(k)] = ∞ for any nontrivial S ⊂ [m].

By Eq. (16) we have E[US(k)] = (1 − pk)E[WS(k)]. Hence, the failure model {U(k)} is
ergodic if and only if

∑∞
k=0(1− pk)E[WS(k)] = ∞ for any nontrivial S ⊂ [m]. Q.E.D.

When the failure probabilities pk are uniformly bounded away from one, i.e., pk ≤ p̄

for all k and some p̄ < 1, we have that
∑∞

k=0(1 − pk)E[WS(k)] = ∞ if and only if
∑∞

k=0 E[WS(k)] = ∞. Thus, when the failure probabilities pk are uniformly bounded
away from one, by Lemma 7 we have: the failure model {U(k)} is ergodic if and only if
the original model {W (k)} is ergodic.

.1 Proof of Lemma 4

Proof. Define the function V (x) =
∑m

i=1 πi(xi − πTx)2. Also, let D = diag(π), H(k) =
E
[

UT (k)U(k)
]

and L(k) = E
[

W T (k)DW (k)
]

for k ≥ 0. Let x(0) ∈ [0, 1]m and {x(k)}
be the dynamics resulted from chain {U(k)}. Then we have:

E[V (x(k + 1))|x(k)] = E
[

xT (k + 1)(D − ππT )x(k + 1)|x(k)
]

(17)

= E
[

(W (k)x(k) + y(k))T (D − ππT )(W (k)x(k) + y(k))|x(k)
]

≤ E[V (W (k)x(k))|x(k)] + 2E
[

x(k + 1)T (D − ππT )y(k)|x(k)
]

,

where y(k) = (U(k) − W (k))x(k) and the last inequality follows by positive semidef-
initeness of D − ππT . Based on Theorem 4 in [31], we have E[V (W (k)x(k))|x(k)] ≤
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V (x(k))−
∑

i<j Lij(k)(xi(k)− xj(k))
2. Thus:

E[V (x(k + 1))|x(k)] ≤ V (x(k))−
∑

i<j

Lij(k)(xi(k)− xj(k))
2

+ 2E
[

x(k + 1)T (D − ππT )y(k)|x(k)
]

, (18)

On the other hand, since U(k)s are stochastic, x(k) ∈ [0, 1]m. Hence, ‖y(k)‖∞ ≤
‖W (k) − U(k)‖∞ and thus we have −‖W (k) − U(k)‖∞ ≤ yi(k) ≤ ‖W (k) − U(k)‖∞.
Therefore, since the summation of the absolute value of the ith row of D − ππT is
πi(2 − πi) ≤ 1, we have ‖(D − ππT )y(k)‖∞ ≤ ‖W (k) − U(k)‖∞ and hence, because
x(k + 1) ∈ [0, 1]m, x(k + 1)T (D − ππT )y(k) ≤ m‖W (k)− U(k)‖∞. But since, U(k) and
W (k) are independent of x(k), from the above discussion and Eq. (17) and Eq. (18), it
follows that

E[V (x(k + 1))|x(k)] ≤ V (x(k))−
∑

i<j

Lij(k)(xi(k)− xj(k))
2 + 2mE[‖W (k)− U(k)‖∞] .

(19)

But {U(k)} is an ℓ1-approximation of {W (k)}, and hence
∑∞

k=0 E[‖W (k)− U(k)‖∞] <
∞. Therefore, by the Robbins-Siegmund theorem ([23] page 164),

∑∞
k=0

∑

i<j Lij(k)(xi(k)−

xj(k))
2 < ∞ almost surely.

The last step is to show that the difference between the two sums
∑∞

k=0

∑

i<j Lij(k)(xi(k)−

xj(k))
2 and

∑∞
k=0

∑

i<j Hij(k)(xi(k)−xj(k))
2 is finite. Since |Wℓi(k)−Uℓi(k)| ≤ ‖W (k)−

U(k)‖∞ for any i, ℓ ∈ [m] and based on the definition of H(k), we have

πminHij(k) ≤
m
∑

ℓ=1

E[πℓUℓi(k)Uℓj(k)]

=

m
∑

ℓ=1

E[πℓ(Wℓi(k) + [W (k)− U(k)]ℓi)(Wℓj(k) + [W (k)− U(k)]ℓj)]

= Lij(k) +
m
∑

ℓ=1

E[πℓUℓi(k)[W (k)− U(k)]ℓj ] +
m
∑

ℓ=1

E[πℓ[W (k)− U(k)]ℓiUℓj(k)]

≤ Lij(k) + E

[

‖U(k)−W (k)‖∞

m
∑

ℓ=1

πℓ(Uℓi(k) + Uℓj(k))

]

≤ Lij(k) + E[‖U(k)−W (k)‖∞] ,

where πmin = mini∈[m] πi > 0 and the last inequality follows from the fact that U(k) is a
stochastic matrix and π is a stochastic vector. Therefore,

πmin

∞
∑

k=0

∑

i<j

Hij(k)(xi(k)− xj(k))
2

≤
∞
∑

k=0

∑

i<j

Lij(k)(xi(k)− xj(k))
2 +

∞
∑

k=0

∑

i<j

E[‖U(k)−W (k)‖∞] (xi(k)− xj(k))
2

≤
∞
∑

k=0

∑

i<j

Lij(k)(xi(k)− xj(k))
2 +m2

∞
∑

k=0

E[‖U(k)−W (k)‖∞] ,
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where the last inequality holds since (xi(k)−xj(k))
2 ≤ 1. But again, since

∑∞
k=0 E[‖U(k)−W (k)‖∞] <

∞, and we have shown that
∑∞

k=0

∑

i<j Lij(k)(xi(k)−xj(k))
2 < ∞ almost surely, hence,

∑∞
k=0

∑

i<j Hij(k)(xi(k)− xj(k))
2 < ∞ almost surely. Q.E.D.

.2 Proof of Theorem 2

Proof. Let dk = zmax(k)− zmin(k) and d∞ = limk→∞(zmax(k)− zmin(k)) > 0. For t ≥ 0,
let σ (which is a function of t) be a permutation on [m] such that zσ1

(t) ≤ · · · ≤ zσm
(t).

Since the matrices {A(k)} are stochastic, the sequence {d(k)} is non-increasing and
hence,

dt = zσm
(t)− zσ1

(t) =

m−1
∑

i=1

(zσi+1
(t)− zσi

(t)) ≥ d∞.

Therefore, there exists an index i∗ such that zσi∗+1
(t)− zσi∗

(t) ≥ 1
m−1

d∞. Let S = {σi |

i ≤ i∗}, so that dS(t) ≥
1

m−1
d∞. Now, let t′ = argmins>t

∑s−1
k=t AS(k) ≥

1
3
dS(t). Then,

by Lemma 1 in [31], for k ∈ [t, t′], we have dS(k) ≥ dS(t) − 2dt
∑t′

k=tAS(k) ≥
1
3
dS(t).

Since dS(t) ≥
1

m−1
d∞, we have dS(s) ≥

1
3(m−1)

d∞. Therefore,

t′−1
∑

k=t

∑

i<j

(Aij(k) + Aji(k))(zi(k)− zj(k))
2 ≥

t′−1
∑

k=t

∑

i∈S,j∈S̄

(Aij(k) + Aji(k))(zi(k)− zj(k))
2

≥
t′−1
∑

k=t

∑

i∈S,j∈S̄

(Aij(k) + Aji(k))d
2
S(k) =

t′−1
∑

k=t

d2S(k)
∑

i∈S,j∈S̄

(Aij(k) + Aji(k)),

(20)

where the last inequality holds since (zj(k) − zi(k)) ≥ dS(k) for i ∈ S and j ∈ S̄. Also
note that by the definition AS(k) =

∑

i∈S,j∈S̄(Aij(k) + Aji(k)). Therefore, we have

t′−1
∑

k=t

∑

i<j

(Aij(k) + Aji(k))(zi(k)− zj(k))
2 ≥

t′−1
∑

k=t

AS(k) d
2
S(k)

≥

(

1

3(m− 1)
d∞

)2 t′−1
∑

k=t

AS(k) ≥

(

1

3(m− 1)
d∞

)3

=
1

27(m− 1)3
d3∞. (21)

The preceding argument holds for arbitrary t ≥ 0. Hence, by letting t0 = 0 and recur-
sively defining ts = t′s−1 for s > 0, we have

∞
∑

k=0

∑

i<j

(Aij(k) + Aji(k))(zi(k)− zj(k))
2

=
∞
∑

s=0

ts+1−1
∑

k=ts

∑

i<j

(Aij(k) + Aji(k))(zi(k)− zj(k))
2

≥
∞
∑

s=0

1

27(m− 1)3
d3∞ = ∞,
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where the last inequality follows from Eqs. (20) and (21). Q.E.D.

.3 Proof of Lemma 5

Proof. First we show that W̃ (k) is a stochastic matrix for any k ≥ 0. To do this, in
view of the diagonal structure of the matrix W̃ (k) (Eq. (8)), it suffices to show that
W (r)(k) is stochastic for 1 ≤ r ≤ τ . Note that based on the definition of W (r)(k), we
have W (r)(k) ≥ 0. Also for any i ∈ [mr], we have:

mr
∑

j=1

W
(r)
ij (k) = W

(r)
ii (k) +

∑

j 6=i,j∈[mr]

W
(r)
ij (k)

= W(i+ar−1)(i+ar−1)(k) +
∑

ℓ∈S̄v

W(i+ar−1)ℓ(k) +
∑

ℓ 6=i+ar−1,ℓ∈Sr

W(i+ar−1)ℓ(k)

=
m
∑

ℓ=1

W(i+ar)ℓ(k) = 1. (22)

Now, let i ∈ Sr for 1 ≤ r ≤ τ . Then, for any j 6= i, we have two cases:

(i) If j ∈ Sr, by the definition of W̃ (k), we have Wij(k) = W̃ij(k) and hence, |Wij(k)−
W̃ij(k)| = 0.

(ii) If j 6∈ Sr, we have W̃ij(k) = 0 and hence, |Wij(k)− W̃ij(k)| = Wij(k).

Finally, for j = i, we have W̃ii(k) = Wii(k) +
∑

j 6∈Sr
Wij(k). Hence, |Wij(k)− W̃ij(k)| =

∑

j 6∈Sr
Wij(k). Therefore, we have:

m
∑

j=1

|Wij(k)− W̃ij(k)| = 2
∑

j 6∈Sr

Wij(k).

By summing up over all i ∈ Sr, we have:

∑

i∈Sr

m
∑

j=1

|Wij(k)− W̃ij(k)| = 2
∑

i∈Sr

∑

j 6∈Sr

Wij(k) ≤ 2WSr
(k).

Again, by summing up the two sides of the preceding inequality for r = 1, . . . , τ , we
have:

τ
∑

r=1

∑

i∈Sr

m
∑

j=1

|Wij(k)− W̃ij(k)| ≤ 2

τ
∑

r=1

WSr
(k).

But
∑τ

r=1

∑

i∈Sr

∑m
j=1 |Wij(k) − W̃ij(k)| =

∑

i,j∈[m] |Wij(k) − W̃ij(k)|. Also note that
S1, . . . , Sτ are the sets of vertices of each connected components of G∞ and hence, we
obtain

∑∞
k=0

∑τ
r=1WSr

(k) < ∞ almost surely. Therefore, by combining the above facts:

∞
∑

k=0

m
∑

i,j∈[m]

|Wij(k)− W̃ij(k)| < ∞ a.s.
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This proves that {W̃ (k)} is in fact an ℓ1-approximation of {W (k)}. To prove that
{W (r)(k)} has infinite flow property, let V ⊂ Sr. Then since Sr is the set of vertices of
one of the connected components of G∞, there exists an edge {i, j} ∈ E∞ where i ∈ V

and j ∈ V̄ . But based on the definition of W (r)(k), for ir = i− ar−1 and jr = j − ar−1,

we have W
(r)
irjr(k) +W

(r)
jrir(k) = Wij(k) +Wji(k). Since {i, j} ∈ E∞, it follows

∞
∑

k=0

(W
(r)
irjr

(k) +W
(r)
jrir

(k)) =
∞
∑

k=0

(Wij +Wji) = ∞.

Therefore, the infinite graph of {W (r)(k)} is connected and, hence, {W (r)(k)} has infinite
flow property. Q.E.D.
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[19] A. Nedić and A. Ozdaglar, On the rate of convergence of distributed subgradient
methods for multi-agent optimization, Proceedings of IEEE CDC, 2007, pp. 4711–
4716.

[20] , Distributed subgradient methods for multi-agent optimization, IEEE Trans-
actions on Automatic Control 54 (2009), no. 1, 48–61.

[21] , Asynchronous consensus with delays, Journal of Global Optimization 47

(2010), no. 3, 437–456.

[22] R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with
switching topology and time-delays, IEEE Transactions on Automatic Control 49
(2004), no. 9, 1520–1533.

[23] Alexander S. Poznyak, Advanced mathematical tools for automatic control engi-
neers: Stochastic techniques, Elsevier, 2009.

[24] P. Frasca R. Carli, F. Fagnani and S. Zampieri, Gossip consensus algorithms via
quantized communication, Automatica 46 (2010), no. 1, 70–80.
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