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Abstract

In [6] for c > 0 we defined truncated variation, TV c
µ , of Brownian

motion with drift, Wt = Bt+µt, t ≥ 0, where (Bt) is a standard Brownian
motion. In this article we define two related quantities - upward truncated
variation

UTV
c
µ [a, b] = sup

n

sup
a≤t1<s1<...<tn<sn≤b

n∑

i=1

max {Wsi −Wti − c, 0}

and, analogously, downward truncated variation

DTV
c
µ [a, b] = sup

n

sup
a≤t1<s1<...<tn<sn≤b

n∑

i=1

max {Wti −Wsi − c, 0} .

We prove that exponential moments of the above quantities are finite (in
opposite to the regular variation, corresponding to c = 0, which is infinite
almost surely). We present estimates of the expected value of UTV c

µ up
to universal constants.

As an application we give some estimates of the maximal possible
gain from trading a financial asset in the presence of flat commission
(proportional to the value of the transaction) when the dynamics of the
prices of the asset follows a geometric Browniam motion process. In the
presented estimates upward truncated variation appears naturally.

1 Introduction

Let (Bt, t ≥ 0) be a standard Brownian motion, and Wt = Bt+µt be a Brownian
motion with drift µ.
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In [6] truncated variation at the level c > 0 of Brownian motion with drift
µ on the interval [a, b] was defined as

TV c
µ [a, b] := sup

n
sup

a≤t1≤···≤tn≤b

n−1
∑

i=1

max
{∣

∣Wti+1 −Wti

∣

∣− c, 0
}

.

(Technical remark: for a > b we set TV c
µ [a, b] = 0.)

There were also proved estimates of ETV c
µ [0, T ] up to universal constants.

Using similar techniques as in [6] we will prove existence of finite exponential
moments of TV c

µ [0, T ] , E exp
(

αTV c
µ [0, T ]

)

, for any α, T > 0.
Further we will consider two related quantities

• upward truncated variation, defined as

UTV c
µ [a, b] := sup

n
sup

a≤t1<s1<···<tn<sn≤b

n
∑

i=1

max {Wsi −Wti − c, 0}

• and, analogously, downward truncated variation, defined as

DTV c
µ [a, b] := sup

n
sup

a≤t1<s1<···<tn<sn≤b

n
∑

i=1

max {Wti −Wsi − c, 0} .

It is easy to see that all three above defined quantities have the following
properties, which we state only for the truncated variation

• shift invariance property in distributions:

L
(

TV c
µ [a, b]

)

= L
(

TV c
µ [a + ∆, b + ∆]

)

• superadditivity property: for any numbers a ≤ a1 < a2 < · · · < an ≤ b

TV c
µ [a, b] ≥

n−1
∑

i=1

TV c
µ [ai, ai+1] .

It is also easy to see that the following relations hold

TV c
µ [0, T ] ≥ UTV c

µ [0, T ] , (1)

TV c
µ [0, T ] ≥ DTV c

µ [0, T ] , (2)

TV c
µ [0, T ] ≤ UTV c

µ [0, T ] + DTV c
µ [0, T ] ,

UTV c
µ [0, T ] = DTV c

−µ [0, T ] . (3)

By (3) all estimates proved for upward truncated variation have analogs for
downward truncated variation.

Analogously as in [6] we will prove some estimates of EUTV c
µ [0, T ] (and

thus for EDTV c
µ [0, T ]) up to universal constants. Unfortunatelly, the presented

estimates involve expected values of some other related variables.
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Remark 1.1. In order to shorten the proofs we did not put much stress on
obtaining the best possible constants in the presented estimates.

Remark 1.2. K. Oleszkiewicz pointed out that it would be also interesting to
have estimates for higher moments of the defined quantities. However, the au-
thor presumes that there are other methods than these used in this paper needed
to obtain such estimates.

Remark 1.3. A. N. Chuprunov pointed to the author that it would be also
interesting to have estimates of quadratic truncated variation, which one may
define as

QTV c
µ [a, b] := sup

n
sup

a≤t1≤···≤tn≤b

n−1
∑

i=1

max
{

∣

∣Wti+1 −Wti

∣

∣

2
− c2, 0

}

.

Remark 1.4. Similar concept of truncation (or shirinking) of random variables
on Hilbert spaces investigated Z. Jurek in series of his papers beginning with [2],
[3], which now evolved in the theory of selfdecomposable distriutions (see e.g.
[4]).

2 Existence of exponential moments of truncated

variation

Let us start with the existence of finite exponential moments of TV c
µ [0, T ] . To

prove this let us define

Tc = inf

{

t ≥ 0 : sup
0≤s≤t

Ws ≥ Wt + c

}

,

further let T sup
c be the last instant when the maximum of Wt on [0, Tc] is at-

tained, and let T inf
c ≤ T sup

c be such that WT inf
c

= inf0≤s≤T sup
c

Ws.
Let us fix α > 0 and let δ > 0 be such a small number that

1 −E exp

(

α sup
0≤t≤T

Wt + αc

)

P (Tc < δ) > 0.

By definition of Tc and T inf
c we have WT inf

c
> −c and WT sup

c
−WT inf

c
− c ≤

WT sup
c

. Now, by Lemma 1, Lemma 2 in [6] and independence of Wt−WTc
, t ≥ Tc,
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and Tc (strong Markov property of Brownian motion) for any M > 0 we have

E exp
(

αTV c
µ [0, T ] ∧M

)

≤ E exp
(

αWT sup
c

+ αc + αTV c
µ [Tc, T ] ∧M

)

≤ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T ] ∧M ;Tc < δ

]

+ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T ] ∧M ;Tc ≥ δ

]

≤ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T + Tc] ∧M ;Tc < δ

]

+ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T + Tc − δ] ∧M ;Tc ≥ δ

]

≤ E exp

(

α sup
0≤t≤T

Wt + αc

)

E exp
(

αTV c
µ [0, T ] ∧M

)

P (Tc < δ)

+ E exp

(

α sup
0≤t≤T

Wt + αc

)

E exp
(

αTV c
µ [0, T − δ] ∧M

)

P (Tc ≥ δ) .

From the above we have

E exp
(

αTV c
µ [0, T ] ∧M

)

≤
E exp

(

α sup0≤t≤T Wt + αc
)

P (Tc ≥ δ)

1 −E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc < δ)
E exp

(

αTV c
µ [0, T − δ] ∧M

)

.

Similarly

E exp
(

αTV c
µ [0, T − δ] ∧M

)

≤
E exp

(

α sup0≤t≤T Wt + αc
)

P (Tc ≥ δ)

1 −E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc < δ)
E exp

(

αTV c
µ [0, T − 2δ] ∧M

)

.

Iterating and putting together the above inequalities we finally obtain

E exp
(

αTV c
µ [0, T ] ∧M

)

≤

(

E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc ≥ δ)

1 −E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc < δ)

)⌈T/δ⌉

.

Letting M → ∞ we get E exp
(

αTV c
µ [0, T ]

)

< +∞.
By (1) and (2) we obtain the finiteness of exponential moments of UTV c

µ [0, T ]
and DTV c

µ [0, T ] as well.

3 Estimates of expected value of upward and

downward truncated variation

3.1 Preparatory lemmas

In order to obtain estimates of EUTV c
µ [0, T ] (and analogously EDTV c

µ [0, T ])
we will use similar techniques as in [6]. Due to typographical reasons let us
introduce notation max {x, 0} =: (x)+.

We will need the following analogon of Lemma 2 from [6]:
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Lemma 3.1. We have the following identity

UTV c
µ [0, T ] = sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + UTV c

µ [Tc, T ] . (4)

Proof. Let 0 ≤ t1 < s1 < t2 < s2... < tn < sn ≤ T be numbers from the interval
[0, T ] .

We will prove that

n
∑

i=1

(Wsi −Wti − c)+ ≤ sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + UTV c
µ [Tc, T ] . (5)

Let n0 be the greatest number such that sn0 < Tc and let us assume that n0 < n
and tn0+1 < Tc.

Let us consider several cases.

• Wtn0+1 ≥ WTc
. In this case

(

Wsn0+1 −Wtn0+1 − c
)

+
≤
(

Wsn0+1 −WTc
− c
)

+
.

and

n
∑

i=1

(Wsi −Wti − c)+ ≤

n0
∑

i=1

(Wsi −Wti − c)+ +
(

Wsn0+1 −WTc
− c
)

+

+

n
∑

i=n0+2

(Wsi −Wti − c)+ . (6)

• Wtn0+1 < WTc
and Wsn0+1 ≤ WT sup

c
. In this case tn0+1 < T sup

c (since for
T sup
c < t < Tc, Wt > WTc

) so
(

Wsn0+1 −Wtn0+1 − c
)

+
≤
(

WT sup
c

−Wtn0+1 − c
)

+

and

n
∑

i=1

(Wsi −Wti − c)+ ≤

n0
∑

i=1

(Wsi −Wti − c)+ +
(

WT sup
c

−Wtn0+1 − c
)

+

+

n
∑

i=n0+2

(Wsi −Wti − c)+ . (7)

• Wtn0+1 < WTc
and Wsn0+1 > WT sup

c
= WTc

+ c. In this case

(

Wsn0+1 −Wtn0+1 − c
)

+
= Wsn0+1 −Wtn0+1 − c

= WT sup
c

−Wtn0+1 − c + Wsn0+1 −WT sup
c

= WT sup
c

−Wtn0+1 − c + Wsn0+1 −WTc
− c

=
(

WT sup
c

−Wtn0+1 − c
)

+
+
(

Wsn0+1 −WTc
− c
)

+
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and

n
∑

i=1

(Wsi −Wti − c)+ ≤

n0
∑

i=1

(Wsi −Wti − c)+ +
(

WT sup
c

−Wtn0+1 − c
)

+

+
(

Wsn0+1 −WTc
− c
)

+
+

n
∑

i=n0+2

(Wsi −Wti − c)+ .

(8)

Thus for tn0+1 < Tc inequality (6), (7) or (8) holds and we may assume,
adding in the case tn0+1 < Tc new terms in the partition and renaming the old
ones, that

0 ≤ t1 < s1 < ... < tn0 < sn0 ≤ Tc,

Tc ≤ tn0+1 < sn0+1 < ... < tn < sn ≤ T.

In order to prove (5) without loss of generality we may assume that for
any 1 ≤ i ≤ n0, (Wsi −Wti − c)+ > 0 (otherwise we may omit the summand
(Wsi −Wti − c)+). From definition of Tc we have that for any 1 ≤ i ≤ n0 − 1,
Wsi −Wti+1 < c, so

(Wsi −Wti − c)+ +
(

Wsi+1 −Wti+1 − c
)

+

= Wsi −Wti − c + Wsi+1 −Wti+1 − c

= Wsi+1 −Wti − c +
(

Wsi −Wti+1 − c
)

< Wsi+1 −Wti − c.

Iterating the above inequality, we obtain

n0
∑

i=1

(Wsi −Wti − c)+ ≤ Wsn0
−Wt1 − c ≤ sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ .

This, together with the obvious inequality

n
∑

i=n0+1

(Wsi −Wti − c)+ ≤ UTV c
µ [Tc, T ]

proves (5). Taking supremum over all partitions 0 ≤ t1 < s1 < t2 < s2 < ... <
tn < sn ≤ T we finally get

UTV c
µ [0, T ] ≤ sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + UTV c

µ [Tc, T ] .

Since the opposite inequality is obvious, we finally get (4).

Let us now define some auxiliary variables. Let T
(0)
c ≡ 0 and let T

(i)
c , i =

1, 2, ... be defined recursively as

T (i)
c = inf

{

t > T (i−1)
c : sup

T
(i−1)
c ≤s≤t

Ws ≥ Wt + c

}

.
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(notice that T
(1)
c = Tc). We define a new variable

UTV c
µ (T ) :=

∞
∑

i=1

e−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+ .

We have the following

Lemma 3.2. The variables UTV c
µ [0, T ] and UTV c

µ (T ) are related by the fol-
lowing relations

UTV c
µ [0, T ] ≤ eUTV c

µ (T ) (9)

UTV c
µ [0, T ] �

1 − e−1

2
UTV c

µ (T ) (10)

where the first relation holds almost surely and the second holds in the sense of

stochastic domination i.e. for every y ≥ 0, P
(

UTV c
µ [0, T ] ≥ y

)

≥ P
(

1−e−1

2 UTV c
µ (T ) ≥ y

)

.

Proof. By the previous lemma, we have

UTV c
µ [0, T ] = sup

0≤t<s≤T
(1)
c ∧T

(Ws −Wt − c)+ + UTV c
µ

[

T (1)
c , T

]

= sup
0≤t<s≤T

(1)
c ∧T

(Ws −Wt − c)+ + sup
T

(1)
c ≤t<s≤T

(2)
c ∧T

(Ws −Wt − c)+

+UTV c
µ

[

T (2)
c , T

]

= ... =
∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧T

(Ws −Wt − c)+ . (11)

From (11) we almost immediately get (9)

UTV c
µ [0, T ] =

∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧T

(Ws −Wt − c)+

≤
∞
∑

i=1

e1−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

= eUTV c
µ (T ) .

In order to prove the second relation let i0 ≥ 1 be the greatest indice such that

T
(i0−1)
c < T and let us consider the term

A = sup
T

(i0−1)
c ≤t<s≤T

(i0)
c ∧

(

T
(i0−1)
c +T

)

(Ws −Wt − c)+ .

If i0 = 1 then A = sup
0≤t<s≤T

(1)
c ∧T

(Ws −Wt − c, 0)+ , otherwise A is indepen-

dent from B = sup
0≤t<s≤T

(1)
c ∧T

(Ws −Wt − c, 0)+ but has the same distribu-

tion as B.
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By (11) we have

UTV c
µ [0, T ] =

∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧T

(Ws −Wt − c)+ (12)

=

i0−1
∑

i=1

sup
T

(i−1)
c ≤t<s≤T

(i)
c

(Ws −Wt − c)+

+ sup
T

(i0−1)
c ≤t<s≤T

(Ws −Wt − c)+ .

In both cases (i0 = 1 and i0 > 1) 2UTV c
µ [0, T ] stochastically dominates the

sum

S1 =

i0
∑

i=1

e−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+ .

(
∑i0−1

i=1 sup
T

(i−1)
c ≤t<s≤T

(i)
c

(Ws −Wt − c)+ dominates the first i0 − 1 terms in

the above sum and B, which appears in the sum (12) dominates A.) Similarly,

define ik recursively as the greatest integer such that T
(ik−1)
c < T

(ik−1)
c +T and

Sk =

ik
∑

i=ik−1+1

exp

(

−
T

(i−1)
c − T

(ik−1)
c

T

)

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+ .

Sk is independent from S1, ..., Sk−1, moreover it has the same distribution as S1

and

UTV c
µ (T ) =

∞
∑

k=1

e−T
(ik−1)
c /TSk.

By definition of ik, T
(ik)
c ≥ T

(ik−1)
c + T, thus we have T

(ik)
c ≥ (k − 1)T. Now,

since 2UTV c
µ [0, T ] � Sk, k = 1, 2, ..., we have that

2

1 − e−1
UTV c

µ [0, T ] =

∞
∑

k=1

e−(k−1)2UTV c
µ [0, T ]

�
∞
∑

k=1

e−T
(ik−1)
c /T 2UTV c

µ [0, T ]

�

∞
∑

k=1

e−T
(ik−1)
c /TSk = UTV c

µ (T ) .

which proves (10).

Next, let us state a refinement of Lemma 3 from [6]:

Lemma 3.3. For any µ and c > 0

P

(

Tc <
1

3
ETc

)

≤
7

9
.
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Proof. The proof follows exactly as in [6], since one can show that for any real
µ

(ETc)
2

ET 2
c

=
1

2

(

e2µc − 1 − 2µc
)2

e4µc − 6e2µcµc + e2µc + 2µ2c2 − 2
≥

1

2

and, by the Paley-Zygmund inequality we obtain

P

(

Tc ≥
1

3
ETc

)

≥

(

1 −
1

3

)2
(ETc)

2

ET 2
c

≥
4

9

1

2
=

2

9

and

P

(

Tc <
1

3
ETc

)

= 1 − P

(

Tc ≥
1

3
ETc

)

≤
7

9
.

3.2 Estimates for long and short time intervals

Now we are ready to prove estimates of expected value of UTV c
µ [0, T ] for long

and short time intervals (T ≥ 1
3ETc and T < 1

3ETc respectively). We have

Theorem 3.4. For any T ≥ 1
3ETc we have

0.3
T

ETc
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ ≤ EUTV c

µ [0, T ]

≤ 27
T

ETc
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ .

Proof. By Lemma 3.1 and independence of Wt − WTc
, t ≥ Tc, and Tc (strong

Markov property of Brownian motion) we calculate

EUTV c
µ [0, T ] = E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ + EUTV c

µ [Tc ∧ T, T ]

≤ E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + E

[

UTV c
µ [Tc, T ] ;Tc <

1

3
ETc

]

+E

[

UTV c
µ [Tc, T ] ;

1

3
ETc ≤ Tc ≤ T

]

≤ E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + E

[

UTV c
µ [Tc, T + Tc] ;Tc <

1

3
ETc

]

+E

[

UTV c
µ

[

Tc, T + Tc −
1

3
ETc

]

;
1

3
ETc ≤ Tc ≤ T

]

≤ E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + EUTV c
µ [0, T ]P

(

Tc <
1

3
ETc

)

+EUTV c
µ

[

0, T −
1

3
ETc

]

P

(

Tc ≥
1

3
ETc

)

.
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Now, by the above inequality and Lemma 3.3

EUTV c
µ [0, T ] ≤

E sup0≤t<s≤Tc∧T (Ws −Wt − c)+
P
(

Tc ≥
1
3ETc

) + EUTV c
µ

[

0, T −
1

3
ETc

]

≤
9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + EUTV c

µ

[

0, T −
1

3
ETc

]

.

Similarly

EUTV c
µ

[

0, T −
1

3
ETc

]

≤
9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)++EUTV c

µ

[

0, T −
2

3
ETc

]

.

Iterating and putting together the above inequalities we obtain the estimate
from above

EUTV c
µ [0, T ] ≤

⌈

T
1
3ETc

⌉

9

2
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+

≤

(

3T

ETc
+ 1

)

9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+

≤
6T

ETc

9

2
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+

≤ 27
T

ETc
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ .

The estimate from below is obtained from Lemma 3.2 (see also the comment
after the calculation):

EUTV c
µ [0, T ] ≥

1 − e−1

2
EUTV c

µ (T ) ≥ 0.3EUTV c
µ (T )

= 0.3
∞
∑

i=1

Ee−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

= 0.3

∞
∑

i=1

Ee−T (i−1)
c

/TE sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

= 0.3

(

∞
∑

i=1

(

Ee−T (1)
c

/T
)i−1

)

E sup
0≤t≤s≤Tc∧T

(Ws −Wt − c)+

= 0.3
1

1 −Ee−T
(1)
c /T

E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

≥ 0.3
1

1 −E
(

1 − T
(1)
c /T

)E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

= 0.3
T

ETc
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ .
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In the above calculations we used consecutively: independence of T
(i−1)
c and

Ws −W
T

(i−1)
c

, s ≥ T
(i−1)
c , equality of distributions of every term

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

for i = 1, 2, ..., definition of T
(i−1)
c , which implies the equality

Ee−T (i−1)
c

/T =
(

Ee−T (1)
c

/T
)i−1

and finally we used the inequality ex ≥ 1 + x.

The estimates in Theorem 3.4 involve expected value of the variable

sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

distribution of which, as far as author knows, is not known, but it may be
simulated numerically. We also have

Corollary 3.5. For any T ≥ 1
3ETc we have

3
T

ETc
E sup

0≤t≤s≤ 1
3ETc

(Ws −Wt − c)+ ≤ EUTV c
µ [0, T ]

≤ 27
T

ETc
E sup

0≤t≤s≤Tc

(Ws −Wt − c)+ .(13)

Proof. The estimate from above is a straighforward consequence of Theorem
3.4 and the estimate from below is obtained immediately by the superadditivity
property

EUTV c
µ [0, T ] ≥

⌊3T/ETc⌋
∑

i=1

EUTV c
µ

[

i− 1

3
ETc,

i

3
ETc

]

≥ ⌊3T/ETc⌋EUTV c
µ

[

0,
1

3
ETc

]

≥ 3
T

ETc
E sup

0≤t≤s≤ 1
3ETc

(Ws −Wt − c)+ .

Remark 3.6. Using results of of Hadjiliadis and Vecer [1] we are able to calcu-
late exactly the estimate from above appearing in (13). Using the notation from
[1], for z > 0 we have

P

(

sup
0≤t≤s≤Tc

(Ws −Wt − c)+ ≥ z

)

= P

(

sup
0≤t≤s≤Tc

(Ws −Wt) ≥ z + c

)

= P (T (c, z + c) = T2 (z + c))
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and by Theorem 2.1 from [1], for y > c we have

P

(

sup
0≤t≤s≤Tc

(Ws −Wt) ≥ y

)

=
e2µc − 2µc− 1

e2µc + e−2µc − 2
exp

(

−
2µ

e2µc − 1
(y − c)

)

.

Hence

E sup
0≤t≤s≤Tc

(Ws −Wt − c)+ =

∫ ∞

c

P

(

sup
0≤t≤s≤Tc

(Ws −Wt) ≥ y

)

dy

=
e2µc − 2µc− 1

e2µc + e−2µc − 2

∫ ∞

c

exp

(

−
2µ

e2µc − 1
(y − c)

)

dy

=
e2µc − 2µc− 1

e2µc + e−2µc − 2

e2µc − 1

2µ
.

Estimates of EUTV c
µ [0, T ] for short time intervals (T < 1

2ETc) are the
subject of the next theorem.

Theorem 3.7. For any T < 1
3ETc we have

E sup
0≤t≤s≤T

(Ws −Wt − c)+ ≤ EUTV c
µ [0, T ]

≤ 5E sup
0≤t≤s≤T

(Ws −Wt − c)+ .

Proof. Applying Lemma 3.1 and independence of Wt −WTc
, t ≥ Tc, and Tc we

again calculate

EUTV c
µ [0, T ] ≤ E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ + EUTV c

µ [Tc ∧ T, T ]

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + E
[

UTV c
µ [Tc, T ] ;Tc < T

]

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + EUTV c
µ [0, T ]P

(

Tc <
1

3
ETc

)

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + EUTV c
µ [0, T ]

7

9
.

Thus we got

EUTV c
µ [0, T ] ≤

9

2
E sup

0≤t≤s≤T
(Ws −Wt − c)+ .

The estimate from above is self-evident

EUTV c
µ [0, T ] ≥ E sup

0≤t≤s≤T
(Ws −Wt − c)+ .
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Remark 3.8. In order to calculate the quantity E sup0≤t≤s≤T (Ws −Wt − c)+
for T ≤ 1

3ETc, which appears in Corollary 3.5 and in Theorem 3.7, one may
use results of [5]. Let

GD̄ (y) = 2eµy

{

L +
∞
∑

n=1

θn sin θn
θ2n + µ2y2 + µy

(

1 − exp

(

−
θ2nT

2y2
−

µ2T

2

))

}

,

where θn are positive solutions of the eigenvalue condition tan θn = − θn
µy ,

L =















0, 0 < y < − 1
µ ;

3
2

(

1 − e−µ2T/2
)

, y = − 1
µ ;

2η sinh η
η2−µ2y2−µy

(

1 − exp
(

η2T
2y2 − µ2T

2

))

, y > − 1
µ ;

and η is the unique positive solution of tanh η = − η
µy . In the notation used in

[5] for z > 0 we have

P

(

sup
0≤t≤s≤T

(Ws −Wt − c)+ ≥ z

)

= P

(

sup
0≤t≤s≤T

(Ws −Wt) ≥ z + c

)

= P
(

D̄ (T ;−µ, 1) ≥ z + c
)

= GD̄ (z + c)

and thus

E sup
0≤t≤s≤T

(Ws −Wt − c)+ =

∫ ∞

0

GD̄ (z + c) dz =

∫ ∞

c

GD̄ (z) dz.

However, the above formula is very numerically unstable and it seems not to be
a straightforward task to obtain using it good numerical or analytical estimates
of expected value of the variable sup0≤t≤s≤T (Ws −Wt − c)+ .

4 Example of application

As it was mentioned earlier, upward truncated variation appears naturally in the
expression for the least upper bound for the rate of return from any trading
of a financial asset, dynamics of which follows geometric Brownian motion, in
the presence of flat commission. Similar result was proved in [6] for truncated
variation, however, truncated variation is not the least upper bound.

Indeed, similarly as in [6], let us assume that the dynamics of the prices Pt

of some financial asset (e.g. stock) is the following Pt = exp (µt + σBt). We
are interested in the maximal possible profit coming from trading this single
instrument during time interval [0, T ] . We buy the instrument at the moments
0 ≤ t1 < ... < tn < T and sell it at the moments s1 < ... < sn ≤ T, such that
t1 < s1 < t2 < s2 < ... < tn < sn, in order to obtain the maximal possible
profit. Furthermore we assume that for every transaction we have to pay a flat
commission and γ is the ratio of the transaction value paid for the commission.
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The maximal possible rate of return from our strategy reads as (cf. [6])

sup
n

sup
0≤t1<s1<...<tn<sn≤T

Ps1

Pt1

1 − γ

1 + γ
...
Psn

Ptn

1 − γ

1 + γ
− 1.

Let Mn be the set of all partitions

π = {0 ≤ t1 < s1 < ... < tn < sn ≤ T } .

To see that exp
(

σUTV
c/σ
µ/σ [0, T ]

)

− 1 with c = ln 1+γ
1−γ is the least upper bound

for maximal possible rate of return let us substitute

sup
n

sup
Mn

n
∏

i=1

{

Psi

Pti

1 − γ

1 + γ

}

= sup
n

sup
Mn

n
∏

i=1

{

exp (µsi + σBsi)

exp (µti + σBti)
e−c

}

= sup
n

sup
Mn

exp

(

σ
n
∑

i=1

{(µ

σ
si + Bsi

)

−
(µ

σ
ti + Bti

)

−
c

σ

}

)

= exp

(

σ sup
n

sup
Mn

n
∑

i=1

{(µ

σ
si + Bsi

)

−
(µ

σ
ti + Bti

)

−
c

σ

}

)

= exp
(

σUTV
c/σ
µ/σ [0, T ]

)

.

This gives the claimed bound.
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