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On Asymptotic Power Utility-Based
Pricing and Hedging
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Abstract

Kramkov and Sîrbu [24, 25] have shown that first-order approximations of power
utility-based prices and hedging strategies can be computed by solving a mean-variance
hedging problem under a specific equivalent martingale measure and relative to a suit-
able numeraire. In order to avoid the introduction of an additional state variable neces-
sitated by the change of numeraire, we propose an alternative representation in terms of
the original numeraire. More specifically, we characterizethe relevant quantities using
semimartingale characteristics similarly as inČerný and Kallsen [4] for mean-variance
hedging.

Key words: Utility-based pricing and hedging, incomplete markets, mean-variance
hedging, numeraire, semimartingale characteristics

1 Introduction

In incomplete markets, derivative prices cannot generallybe based on perfect replication.
A number of alternatives have been suggested in the literature, relying e.g. on superreplica-
tion, mean-variance hedging, calibration of parametric families, utility-based concepts, or
ad-hoc approaches. This paper focuses on utility indifference prices as studied by [12] and
many others. They make sense for over-the-counter trades ofa fixed quantity of contingent
claims. Suppose that a client approaches a potential sellerin order to buyq European-style
contingent claims maturing atT . The seller is supposed to be a utility maximizer with given
preference structure. She will enter into the contract onlyif her maximal expected utility
is increased by the trade. The utility indifference price isthe lowest acceptable premium
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for the seller. If the trade is made, the seller’s optimal position in the underlyings changes
due to the presence of the option. This adjustment in the optimal portfolio process is called
utility-based hedging strategy for the claim. Both the utility indifference price and the cor-
responding utility-based hedging strategy are typically hard to compute even if relatively
simple incomplete market models are considered. A reasonable way out for practical pur-
poses is to consider approximations for smallq, i.e. the limiting structure for small numbers
of contingent claims. Extending earlier work on the limiting price, [24, 25] show that first
order approximations of the utility indifference price andthe utility-based hedging strategy
can be expressed in terms of a Galtchouk-Kunita-Watanabe (GKW) decomposition of the
claim after changing both the numeraire and the underlying probability measure. Similar
results for exponential utility are obtained by [26, 2, 20],cf. also [18]. In this case no
numeraire change occurs. We focus on power-type utility functions in this paper, which
constitute the most popular and tractable ones on the positive real line. In particular, we
work in the setup of [24, 25].

In order to compute the first-order approximation to utility-based pricing and hedging,
one may proceed in two steps. Firstly, the pure investment problem in absence of the claim
is solved. Its solution provides the numeraire and measure changes for the subsequent
GKW decomposition. In a second step the GKW decomposition itself is computed, which
corresponds to solving a mean-variance hedging problem foran option on a stock which
follows a martingale. Both steps are in principle feasible e.g. for exponential Lévy processes
or, more generally, many affine stochastic volatility models which have been studied in
the empirical literature. However, the change of numerairein this approach leads to an
extra state variable, which e.g. in the integral transform approach of [13, 3] leads to high-
dimensional integrals.

The present paper aims at reformulating the asymptotic results in an alternative form
which does not involve a numeraire change. This reduces the computational complexity in
concrete models. The representation of the asymptotic results in [24, 25] is inspired by a
similar representation of the solution to mean-variance hedging problems by [11]. In [11]
a measure and numeraire change reduce the mean-variance hedging problem for arbitrary
price processes to the simpler martingale case of [9]. The solution to the latter is easily
expressed in terms of a GKW decomposition.

An alternative characterization of the mean-variance hedging problem is derived in [4].
Its representation of the solution is closer in spirit to [31], and it does not require a numeraire
change. Roughly speaking, the present paper replaces the [11]-type representation of the
solution to the implied mean-variance hedging problem by the alternative formulation of [4].
Consequently, our representation of the first-order approximation to utility-based hedging
and pricing in Theorem 4.4 resembles the solution to a mean-variance hedging problem
as well. However, this is true only on a formal level. Rigorously, the involved numeraire
change may not be compatible with the set of admissible trading strategies. Nevertheless,
the formulas from [4] still characterize the objects of interest.

The remainder of the paper is organized as follows. After briefly reviewing the general
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theory of power utility-based pricing and hedging in Section 2, we introduce the asymptotic
results of Kramkov and Sîrbu [24, 25]. Subsequently, we develop our alternative represen-
tation in Section 4. Finally, the appendix summarizes some notions and results concerning
semimartingale calculus for the convenience of the reader.

Unexplained notation is generally used as in the monograph of Jacod and Shiryaev [16].
In particular, for a semimartingaleX, we denote byL(X) the predictableX-integrable
processes and byϕ • X the stochastic integral ofϕ ∈ L(X) with respect toX. We write
E (X) for the stochastic exponential of a semimartingaleX and denote byL (Z) := 1

Z−

• Z

thestochastic logarithmof a semimartingaleZ satisfyingZ,Z− 6= 0. For semimartingales
X andY , 〈X, Y 〉 represents the predictable compensator of[X, Y ], provided that the latter
is a special semimartingale (cf. [15, page 37]). Finally, wewrite c−1 for theMoore-Penrose
pseudoinverseof a matrix or matrix-valued processc (cf. [1]) and denote byEd the identity
matrix onR

d.

2 Utility-based pricing and hedging

Our mathematical framework for a frictionless market modelis as follows. Fix a terminal
timeT > 0 and a filtered probability space(Ω,F , (Ft)t∈[0,T ], P ) in the sense of [16, I.1.2].
For ease of exposition, we assume thatFT = F andF0 = {∅,Ω}, i.e. allF0-measurable
random variables are almost surely constant.

We consider a securities market which consists ofd + 1 assets, a bond andd stocks.
As is common in Mathematical Finance, we work indiscountedterms. That means we
suppose that the bond has constant value1 and denote byS = (S1, . . . , Sd) thediscounted
price processof thed stocks in terms of multiples of the bond. The processS is assumed
to be anR

d-valued semimartingale. Self-financingtrading strategiesare described byRd-
valued predictable stochastic processesϕ = (ϕ1, . . . , ϕd), whereϕit denotes the number
of shares of securityi held at timet. In this financial model, we consider an investor
whose preferences are modelled by apower utility functionu(x) = x1−p/(1 − p) for some
p ∈ R+\{0, 1}. Given an initial endowmentv > 0, the investor solves thepure investment
problem

U(v) := sup
ϕ∈Θ(v)

E(u(v + ϕ • ST )), (2.1)

where the setΘ(v) of admissible strategiesfor initial endowmentv is given by

Θ(v) := {ϕ ∈ L(S) : v + ϕ • S ≥ 0}.

To ensure that the optimization problem (2.1) is well-posed, we make the following two
standard assumptions.

Assumption 2.1 There exists anequivalent local martingale measure, i.e. a probability
measureQ ∼ P such thatS is a localQ-martingale.
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Assumption 2.2 The maximal expected utility in the pure investment problem(2.1) is fi-
nite, i.e.U(v) <∞.

In view of [23, Theorem 2.2], Assumptions 2.1 and 2.2 imply that the supremum in (2.1)
is attained for some strategŷϕ ∈ Θ(v) with strictly positive wealth processv + ϕ̂ • S. By
Assumption 2.1 and [16, I.2.27],v + ϕ̂ • S− is strictly positive as well and we can write

v + ϕ̂ • S = vE (−ã • S)

for theoptimal number of shares per unit of wealth

−ã := ϕ̂/(v + ϕ̂ • S−),

which is independent of the initial endowmentv for power utility. Finally, [23, Theorem
2.2] also establishes the existence of adual minimizer, i.e. a strictly positive supermartingale
Ŷ with ŶT = E (−ã • S)−pT such that(v+ϕ • S)Ŷ is a supermartingale for allϕ ∈ Θ(v) and
(v + ϕ̂ • S)Ŷ is a true martingale. Alternatively, one can represent thisobject in terms of
theopportunity processL := L0E (K) := E (−ã • S)pŶ of the power utility maximization
problem (cf. [4, 27, 28] for motivation and more details).

Remark 2.3 The optimal strategŷϕ as well as the joint characteristics of the assets and the
opportunity processL satisfy a semimartingaleBellman equation(cf. [29, Theorem 3.2]).
In concrete models, this sometimes allows to determineϕ̂ andL by making an appropriate
ansatz, cf. e.g. [27, Chapter 4].

In addition to the traded securities, we now also consider a nontraded European contin-
gent claim with maturityT and payment functionH, which is aFT -measurable random
variable. Following [24, 25], we assume thatH can be superhedged by some admissible
strategy.

Assumption 2.4 |H| ≤ w + ϕ • ST for somew ∈ (0,∞) andϕ ∈ Θ(w).

If the investor sellsq units ofH at time0, her terminal wealth should be sufficiently
large to cover the payment−qH due at timeT . This leads to the following definition (cf.
[14, 8] for more details).

Definition 2.5 A trading strategyϕ ∈ Θ(v) is calledmaximal, if the terminal valuev +ϕ •

ST of its wealth process cannot be dominated by that of any otherstrategy inΘ(v). An
arbitrary strategyϕ is calledacceptable, if its wealth process can be written as

v + ϕ • S = v′ + ϕ′
• S − (v′′ + ϕ′′

• S),

wherev′ + ϕ′
• S ≥ 0, andv′′ + ϕ′′

• S ≥ 0 for v′, v′′ ∈ R+ andϕ′, ϕ′′ ∈ L(S) and, in
addition,ϕ′′ is maximal. Forv ∈ (0,∞) andq ∈ R we denote by

Θq(v) := {ϕ ∈ L(S) : ϕ is acceptable,v + ϕ • ST − qH ≥ 0},

the set of acceptable strategies whose terminal value dominatesqH.
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Remark 2.6 Given Assumption 2.1, we haveΘ(v) = Θ0(v) by [8, Theorem 5.7] combined
with [17, Lemma 3.1 and Proposition 3.1] .

Let an initial endowment ofv ∈ (0,∞) be given. If the investor sells a number ofq
units ofH for a price ofx ∈ R each, her initial position consists ofv + qx in cash as
well as−q units of the contingent claimH. HenceΘq(v + qx) represents the natural set
of admissible trading strategies for utility functions defined onR+. The maximal expected
utility the investor can achieve by dynamic trading in the market is then given by

U q(v + qx) := sup
ϕ∈Θq(v+qx)

E(u(v + qx+ ϕ • ST − qH)).

Definition 2.7 Fix q ∈ R. A numberπq ∈ R is calledutility indifference priceof H if

U q(v + qπq) = U(v). (2.2)

Existence of indifference prices does not hold in general for power utility. However,
a unique indifference priceπq always exists if the numberq of contingent claims sold is
sufficiently small or conversely, if the initial endowmentv is sufficiently large.

Lemma 2.8 Suppose Assumptions 2.1, 2.2 and 2.4 hold. Then a unique indifference price
exists for sufficiently smallq. More specifically,(2.2)has a unique solutionπq if q < v

2w
, re-

spectively ifq < v
w

andH ≥ 0, wherew denotes the initial endowment of the superhedging
strategy forH from Assumption 2.4.

PROOF. First notice thatgqv : x 7→ U q(v+ qx) is concave and strictly increasing on its effec-
tive domain. By [23, Theorem 2.1],gqv(x) ≤ U(v+qx+qw) <∞ for all x ∈ R. ForH ≥ 0

andq < v
w

we havegqv(x) > −∞ for x > w − v
q
. In particular,gqv is continuous and strictly

increasing on(w − v
q
,∞) and in particular on[0, w] by [30, Theorem 10.1]. ByH ≥ 0 we

havegqv(0) ≤ U(v). Moreover, Assumption 2.4 impliesgqv(w) ≥ U(v). Hence there exists
a unique solutionπq ∈ [0, w] to gqv(x) = U(v). Similarly, for generalH andq < v

2w
, the

functiongqv is finite, continuous and strictly increasing on an open set containing[−w,w].
Moreover,gqv(−w) ≤ U(v) andgqv(w) ≥ U(v). Hence there exists a uniqueπq ∈ (−w,w)

such thatgqv(π
q) = U(v). This proves the assertion. �

We now turn to optimal trading strategies for random endowment. Their existence has
been established by [7] resp. [14] in the bounded resp. general case.

Theorem 2.9 Fix q ∈ R satisfying the conditions of Lemma 2.8 and suppose Assumptions
2.1, 2.2 and 2.4 are satisfied. Then there existsϕq ∈ Θq(v + qπq) such that

E(u(v + qπq + ϕq • ST − qH)) = U q(v + qπq).

Moreover, the corresponding optimal value processv + qπq + ϕq • S is unique.
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PROOF. This follows from [14, Theorem 2 and Corollary 1], because the proof of Lemma
2.8 shows that(v + qπq, q) belongs to the interior of{(x, r) ∈ R

2 : Θr(x) 6= ∅}. �

Without contingent claims, the investor will trade according to the strategŷϕ, whereas
she will invest intoϕq if she sellsq units ofH for πq each. Hence the difference between
both strategies represents the action the investors needs to take in order to compensate for
the risk of sellingq units ofH. This motivates the following

Definition 2.10 The trading strategyϕq − ϕ̂ is calledutility-based hedging strategy.

3 The asymptotic results of Kramkov and Sîrbu

We now give a brief exposition of some of the deep results of [24, 25] concerning the exis-
tence and characterization of first-order approximations of utility-based prices and hedging
strategies in the following sense.

Definition 3.1 Real numbersπ0 andπ′ are calledmarginal utility-based priceresp.risk
premiumper option sold if

πq = π0 + qπ′ + o(q2)

for q → 0, whereπq is well-defined for sufficiently smallq by Lemma 2.8. A trading
strategyϕ′ ∈ L(S) is calledmarginal utility-based hedging strategy, if there existsv′ ∈ R

such that

lim
q→0

(v + qπq + ϕq • ST ) − (v + ϕ̂ • ST ) − q(v′ + ϕ′
• ST )

q
= 0

in P -probability and(v′ + ϕ′
• S)Ŷ is a martingale for the dual minimizer̂Y of the pure

investment problem.

Remark 3.2 [24, Theorems A.1, 8 and 4] show that for power utility functions, a trading
strategyϕ′ is a marginal utility-based hedging strategy in the sense ofDefinition 3.1 if and
only if it is a marginal hedging strategy in the sense of [25, Definition 2].

The asymptotic results of [24, 25] are derived subject to twotechnical assumptions.

Assumption 3.3 The following process isσ-bounded:

S$ :=

(
1

E (−ã • S)
,

S

E (−ã • S)

)
.

The reader is referred to [24] for more details onσ-bounded processes as well as for suffi-
cient conditions that ensure the validity of this assumption.
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SinceE (−ã • S)Ŷ is a martingale with terminal valueE (−ã • S)1−p
T , we can define an

equivalent probability measureQ$ ∼ P via

dQ$

dP
:=

E (−ã • S)1−p
T

C0
, C0 := E(E (−ã • S)1−p

T ).

Let H 2
0 (Q$) be the space of square-integrableQ$-martingales starting at0 and set

M
2
$ :=

{
M ∈ H

2
0 (Q$) : M = ϕ • S$ for someϕ ∈ L(S$)

}
.

Assumption 3.4 There exists a constantw$ ≥ 0 and a processM$ ∈ M 2
$ , such that

|H$| ≤ w$ +M$
T

for

H$ :=
H

E (−ã • S)T
.

Remark 3.5 By [24, Remark 1], Assumption 3.4 implies that Assumption 2.4 holds. In
particular, indifference prices and utility-based hedging strategies exist for sufficiently small
q if Assumptions 2.1, 2.2 and 3.4 are satisfied.

In the proof of [25, Lemma 1] it is shown that the process

V $
t := EQ$

(
H$|Ft

)
, t ∈ [0, T ]

is a square-integrableQ$-martingale. Hence it admits a decomposition

V $ = EQ$

(
H$
)

+ ξ • S$ +N$ =
1

C0
E
(
E (−ã • S)−pT H

)
+ ξ • S$ +N$, (3.1)

whereξ • S$ ∈ M 2
$ andN$ is an element of the orthogonal complement ofM 2

$ in H 2
0 (Q$).

Note that this decomposition coincides with the classicalGaltchouk-Kunita-Watanabede-
composition, ifS$ itself is a square-integrable martingale. The following theorem is a
reformulation of the results of [24, 25] applied to power utility.

Theorem 3.6 Suppose Assumptions 2.1, 2.2, 3.3 and 3.4 hold. Then the marginal utility-
based priceπ0 and the risk premiumπ′ exist and are given by

π0 =
1

C0
E(E (−ã • S)−pT H), π′ =

p

2v
EQ$((N$

T )2).

A marginal-utility-based hedging strategyφ′ is given in feedback form as

φ′ = (ã, Ed + ãS⊤
−)ξ −

(
π0 + φ′

• S−

)
ã,

with ξ from (3.1).

7



PROOF. The first two assertions follow immediately from [24, Theorems A.1, 8 and 4]
adapted to the present notation. For the third, [25, Theorem2] and [24, Theorems A.1, 8
and 4] yield

lim
q→0

(v + qπq + ϕq • ST ) − (v + ϕ̂ • ST ) − qE (−ã • S)T (π0 + ξ • S$
T )

q
= 0. (3.2)

because the processX ′
T (x) from [25, Equation (23)] coincides withE (−ã • S) for power

utility. Set
ξ0 := π0 + ξ • S$ − ξ⊤S$ = π0 + ξ • S$

− − ξ⊤S$
−.

Then we have(ξ0, ξ2, . . . , ξd+1) ∈ L((E (−ã • S), S)) and

π0 + (ξ0, ξ2, . . . , ξd+1) • (E (−ã • S), S) = E (−ã • S)(π0 + ξ • S$) (3.3)

by [10, Proposition 2.1]. The predictable setsDn := {|ã| ≤ n, |S−| ≤ n, |(ξ0, ξ)| ≤ n}

increase toΩ × R+, the predictable process(ã, Ed + ãS⊤
−)ξ1Dn

is bounded and we have

((ã, Ed + ãS⊤
−)ξ1Dn

) • S

= ((E (−ã • S)−ξ
⊤S$

−ã + (ξ2, . . . , ξd+1))1Dn
) • S

= ((ξ0, ξ2, . . . , ξd+1)1Dn
) • (E (−ã • S), S) + (E (−ã • S)−(π0 + ξ • S$

−)1Dn
) • (ã • S)

= 1Dn
• ((ξ0, ξ2, . . . , ξd+1) • (E (−ã • S), S) + (E (−ã • S)−(π0 + ξ • S$

−)) • (ã • S)).

By [17, Lemma 2.2] and (3.3) this implies(ã, Ed + ãS⊤
−)ξ ∈ L(S) as well as

π0+((ã, Ed+ãS
⊤
−)ξ) • S = E (−ã • S)(π0+ξ • S$)+(E (−ã • S)−(π0+ξ • S$

−)) • (ã • S).

HenceE (−ã • S)(π0 + ξ • S$) solves the stochastic differential equation

G = π0 + ((ã, Ed + ãS⊤
−)ξ) • S −G−

• (ã • S). (3.4)

By [15, (6.8)] this solution is unique. Since we have shown(ã, Ed + ãS⊤
−)ξ ∈ L(S) above,

it follows as in the proof of [4, Lemma 4.9] thatφ′ is well-defined.π0 + φ′
• S also solves

(3.4), hence we obtain

E (−ã • S)(π0 + ξ • S$) = π0 + φ′
• S,

which combined with (3.2) yields the third assertion. �

Remark 3.7 If the dual minimizer̂Y is a martingale and hence – up to the constantC0 – the
density process of theq-optimal martingale measureQ0 with respect toP , the generalized
Bayes formula yieldsV $

t = EQ0
(H|Ft)/E (−ã • S)t. In particular, the marginal utility-

based price of the claimH is given by its expectationπ0 = EQ0
(H) underQ0 in this case.
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The computation of the optimal strategŷϕ and the corresponding dual minimizerŶ in
the pure investment problem 2.1 has been extensively studied in the literature. In particu-
lar, these objects have been determined explicitly in a variety of Markovian models using
stochastic control theory resp. martingale methods. GivenE (−ã • S), the computation of
π0 can then be dealt with using integral transform methods or variants of the Feynman-Kac
formula. Consequently, we suppose in the remainder of this section that̂ϕ andπ0 are known
and focus on how to obtainπ′ andϕ′.

As reviewed above, [24, 25] show thatϕ′ andπ′ can be obtained by calculating the
generalized Galtchouk-Kunita-Watanabe decomposition (3.1). SinceS$ is generally only
a Q$-supermartingale rather than a martingale, this is typically very difficult. If how-
ever,S$ happens to be a square-integrableQ$-martingale, (3.1) coincides with the classical
Galtchouk-Kunita-Watanabe decomposition. By [9], this shows thatξ represents the mean-
variance optimal hedging strategy for the claimH hedged withS$ under the measureQ$ and
EQ$((N$

T )2) is given by the corresponding minimal expected squared hedging error in this
case. Moreover,ξ andEQ$((N$

T )2) can then be characterized in terms of semimartingale
characteristics.

Assumption 3.8 S$ is a square-integrableQ$-martingale.

Remark 3.9 In applications, Assumption 3.8 is typically equivalent toAssumption 3.3, cf.
[27, Chapter 6] for more details.

Lemma 3.10 Suppose Assumptions 2.1, 2.2, 3.3, 3.4 and 3.8 hold. Denote by c̃(S
$,V $)$ the

modified secondQ$-characteristic of(S$, V $) with respect to someA ∈ A
+
loc (cf. Appendix

A). Then

ξ = (c̃S
$$)−1c̃S

$,V $$, (3.5)

EQ$((N$
T )2) = EQ$

(
(c̃V

$$ − (c̃S
$,V $$)⊤(c̃S

$$)−1c̃S
$,V $$) • AT

)
.

PROOF. SinceS$ is a square integrableQ$-martingale by Assumption 3.8, the claim follows
from [4, Theorems 4.10 and 4.12] applied to the martingale case. �

The key to using Lemma 3.10 in concrete models is the computation of the joint char-
acteristics ofS$ andV $. In principle, this problem can be tackled using PDE methodsas in
[6] or by applying the Laplace transform approach of [13] as in [19]. However, the change
of numeraire in this direct approach introduces an additional state variable, which makes
the ensuing numerics considerably more involved. This can be avoided by the alternative
approach put forward in the next section.

4 An alternative representation

Subject to Assumption 3.8 we can define a probability measurePe ∼ P via

dPe

dP
:=

E (−ã • S)−1−p
T

C1

, C1 := E(E (−ã • S)−1−p
T ).
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Remark 4.1 If we write the density process ofPe w.r.t.P asLeE (−ã • S)−1−p/C1 for a
semimartingaleLe > 0 with LeT = 1, the localP -characteristics ofKe := L (Le) andS
satisfy ∫

{|x|>1}

(1 + x2)(1 − ã⊤x1)
−1−pF (S,Ke)(dx) <∞, (4.1)

and solve

0 = bK
e

+ (1 + p)ã⊤bS + (1 + p)ã⊤cS,K
e

+
(p+ 1)(p+ 2)

2
ã⊤cS ã

+

∫ (
(1 + x2)(1 − ã⊤x1)

−1−p − 1 − h2(x2) − (1 + p)ã⊤h1(x1)
)
F (S,Ke)(dx),

(4.2)

relative to some truncation function(h1, h2) onR
d×R by [17, Lemma 3.1] and Propositions

A.2, A.3 . Conversely, if a strictly positive semimartingaleLe = Le0 E (Ke) satisfiesLeT = 1

and (4.1), (4.2), thenLeE (−ã • S)−1−p/C1 is aσ-martingale and the density process ofPe

if it is a true martingale. In concrete models, this often allows to determineLe by making
an appropriate parametric ansatz forKe (cf. [27, Chapter 6]).

The measuresPe andQ$ are linked as follows.

Lemma 4.2 Suppose Assumptions 2.1, 2.2 and 3.8 hold. Then the process

L$
t := E

Pe

(
E (−ã • S)2

T

E (−ã • S)2
t

∣∣∣∣Ft

)
, 0 ≤ t ≤ T,

satisfiesL$
T = 1 and the density process ofQ$ with respect toPe is given by

E
Pe

(
dQ$

dPe

∣∣∣∣Ft

)
=
C1

C0
L$
tE (−ã • S)2

t =
L$
tE (−ã • S)2

t

L$
0

.

In particular,L$, L$
− > 0 and the stochastic logarithmK$ := L (L$) is well-defined.

PROOF. The first part of the assertion is trivial, whereas the second follows from dQ$

dPe
=

C1

C0
E (−ã • S)2

T . SinceE (−ã • S), E (−ã • S)− > 0, [16, I.2.27] yieldsL$, L$
− > 0 and

hence the third part of the assertion by [16, II.8.3]. �

Remark 4.3 L$ is linked to the opportunity processL of the pure investment problem and
the processLe from Remark 4.1 via

L$
0E (K$) = L$ =

L

Le
=

L0E (K)

Le0 E (Ke)
,

by the generalized Bayes’ formula,LT = LeT = 1 and because the processesLE (−ã •

S)1−p andLeE (−ã • S)−1−p are martingales. In view of Yor’s formula, this implies

K$ = K −Ke − 〈Kc − (Ke)c, (Ke)c〉 −
∑

s≤·

(∆Ks − ∆Kes )∆Kes
1 + ∆Kes

, (4.3)

which allows to deriveK$ and its characteristics fromK (which is determined by the pure
investment problem) andKe (compare Remark 4.1 above).
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Set

Vt := E (−ã • S)tV
$
t =

E(E (−ã • S)−pT H|Ft)

LtE (−ã • S)−pt
, 0 ≤ t ≤ T,

denote by 




bSe

bV e

bK
$e


 ,




cSe cS,V e cS,K
$e

cV,Se cV e cV,K
$e

cK
$,Se cK

$,V e cK
$e


 , F (S,V,K$)e, A




Pe-differential characteristics of the semimartingale(S, V,K$) and define

c̃S⋆ :=
1

1 + ∆AK$

(
cSe +

∫
(1 + x3)x1x

⊤
1 F

(S,V,K$)e(dx)

)
,

c̃S,V ⋆ :=
1

1 + ∆AK$

(
cS,V e +

∫
(1 + x3)x1x2F

(S,V,K$)e(dx)

)
,

c̃V ⋆ :=
1

1 + ∆AK$

(
cV e +

∫
(1 + x3)x

2
2F

(S,V,K$)e(dx)

)
,

whereK$ = K$
0 + AK

$

+ MK$

denotes an arbitraryPe-semimartingale decomposition
of K$. We then have the following representation of the marginal utility-based hedging
strategyϕ′ and the risk premiumπ′ in terms of semimartingale characteristics, which is the
main result of this paper.

Theorem 4.4 Suppose Assumptions 2.1, 2.2, 3.3, 3.4 and 3.8 hold. Thenc̃S⋆, c̃S,V ⋆, c̃V ⋆ are
well-defined,ϕ′ given in feedback form as

ϕ′ = (c̃S⋆)−1c̃S,V ⋆ −
(
π0 + ϕ′

• S− − V−
)
ã

is a marginal utility-based hedging strategy and the corresponding risk premium is

π′ =
pC1

2vC0

E
Pe

(( (
c̃V ⋆ − (c̃S,V ⋆)⊤(c̃S⋆)−1c̃S,V ⋆

)
L$
)

• AT

)
.

PROOF. An application of Propositions A.2 and A.3 yields thePe-differential character-
istics of (S, V, E (−ã • S),L (C1

C0
L$E (−ã • S)2)). SinceC1

C0
L$E (−ã • S)2 is the density

process ofQ$ with respect toPe, theQ$-characteristics of(S, V, E (−ã • S)) can now
be obtained with Proposition A.4. Another application of Proposition A.3 then allows to
compute theQ$-characteristics of(S$, V $).

SinceS$ ∈ H 2(Q$) by Assumption 3.8 andV $ ∈ H 2(Q$) by the proof of [25, Lemma
1], the modified second characteristicsc̃V

$$, c̃S
$,V $$ andc̃S

$$ exist and are given by

c̃S
$$ =

1 + ∆AK
$

E (−ã • S)2
−

(
ã⊤c̃S⋆ã ã⊤c̃S⋆R⊤

Rc̃S⋆ã Rc̃S⋆R⊤

)
, (4.4)

c̃S
$,V $$ =

1 + ∆AK
$

E (−ã • S)2
−

(
ã⊤

R

)(
c̃S,V ⋆ + c̃S⋆ãV−

)
, (4.5)

c̃V
$$ =

1 + ∆AK
$

E (−ã • S)2
−

(
c̃V ⋆ + 2V−ã

⊤c̃S,V ⋆ + V 2
−ã

⊤c̃S⋆ã
)
, (4.6)
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for R := Ed + S−ã
⊤. In particular it follows that̃cV ⋆, c̃S,V ⋆ and c̃S⋆ are well defined. By

the definition ofξ in Equation (3.5) and [1, Theorem 9.1.6] we have

c̃S
$$ξ = c̃S

$,V $$.

In view of Equations (4.5) and (4.4), this yields

(
ã⊤c̃S⋆ã ã⊤c̃S⋆R⊤

Rc̃S⋆ã Rc̃S⋆R⊤

)
ξ =

(
ã⊤

R

)(
c̃S,V ⋆ + c̃S⋆ãV−

)
,

or equivalently, decomposed into the first and lastd components,

ã⊤c̃S⋆(ã, R⊤)ξ = ã⊤(c̃S,V ⋆ + c̃S⋆ãV−) (4.7)

and
Rc̃S⋆(ã, R⊤)ξ = R(c̃S,V ⋆ + c̃S⋆ãV−). (4.8)

By multiplying both sides of (4.7) withS− from the left and subtracting the result from
(4.8), this leads to

c̃S⋆(ã, R⊤)ξ = c̃S,V ⋆ + c̃S⋆ãV−, (4.9)

sinceR− S−ã
⊤ = Ed. By Theorem 3.6,

φ′ = (ã, R⊤)ξ − (π0 + φ′
• S−)ã

defines a marginal utility-based hedging strategy. Let

ψ′ := φ′ − ((c̃S⋆)−1c̃S,V ⋆ − (π0 + φ′
• S− − V−)ã) = (ã, R⊤)ξ − (c̃S⋆)−1c̃S,V ⋆ − V−ã.

Then it follows from the definition ofψ′ and (4.9) that

c̃S⋆ψ′ = c̃S,V ⋆ + c̃S⋆V−ã− c̃S,V ⋆ − c̃S⋆V−ã = 0,

becausẽcS⋆(c̃S⋆)−1c̃S,V ⋆ = c̃S,V ⋆ by [1, Theorem 9.1.6]. In particular,(ψ′)⊤c̃S⋆ψ′ = 0.
SinceL$/L$

0 = E (K$) > 0 and hence∆K$ > −1 by [16, I.4.61], this implies

(ψ′)⊤c̃Sψ′ = 0. (4.10)

For n ∈ N, define the predictable setsDn := {|ψ′| ≤ n}. By Proposition A.2 and (4.10),
we havẽcψ

′1Dn
•S = 0 and hencecψ

′1Dn
•S = 0 andF ψ′1Dn

•S = 0. Together with Proposition
A.4, this implies that the local characteristics ofψ′1Dn

• S under the equivalent local mar-
tingale measureQ from Assumption 2.1 vanish by [17, Lemma 3.1]. Henceψ′1Dn

• S = 0

and it follows from [17, Lemma 2.2] thatψ′ ∈ L(S) with ψ′
• S = 0. Taking into account

the definition ofψ′, this shows

φ′
• S = ((c̃S⋆)−1c̃S,V ⋆ − (π0 − V−)ã) • S − (φ′

• S−) • (ã • S),

12



i.e.φ′
• S solves the feedback equation

G = ((c̃S⋆)−1c̃S,V ⋆ − (π0 − V−)ã) • S −G−
• (ã • S). (4.11)

Sinceψ′ ∈ L(S) andL(S) is a vector space, it follows that(c̃S⋆)−1c̃S,V ⋆ ∈ L(S), too.
As in the proof of [4, Lemma 4.9], this in turn yields thatϕ′ is well-defined and inL(S).
Apparently,ϕ′

• S also solves (4.11) and, since the solution is unique by [15, (6.8)], we
obtainϕ′

• S = φ′
• S. Thereforeϕ′ is a marginal utility-based hedging strategy.

We now turn to the risk premiumπ′. First notice that by [1, Theorem 9.1.6],

C$ := c̃V
$$ − (c̃S

$,V $$)⊤ξ = c̃V
$$ − (c̃S

$,V $$)⊤(c̃S
$$)−1c̃S

$,V $$ ≥ 0,

Ce := c̃V ⋆ − (c̃S,V ⋆)⊤(c̃S⋆)−1c̃S,V ⋆ ≥ 0.

HenceC$
• A is an increasing predictable process and by Lemmas 3.10 and A.5,

EQ$((N$
T )2) = EQ$(C$

• AT )

=
C1

C0

E
Pe

(
L$
−E (−ã • S)2

−C
$

• AT
)

=
C1

C0

E
Pe

(
L$
−E (−ã • S)2

−
• (〈V $, V $〉Q

$

T − 〈V $, ξ • S$〉Q
$

T )
)
.

Since we have shownφ′
• S = ϕ′

• S above, [10, Proposition 2.1] and the proof of Theorem
3.6 yieldξ • S$ = (ϕ′0, ϕ′) • S$ for ϕ′0 := π0 + ϕ′

• S − ϕ′S. Hence

EQ$((N$
T )2) =

C1

C0

E
Pe

(
L$
−E (−ã • S)2

−
•

(
〈V $, V $〉Q

$

T − 〈V $, (ϕ′0, ϕ′) • S$〉Q
$

T

))

=
C1

C0

E
Pe

(
L$
−E (−ã • S)2

−

(
c̃V

$$ − (c̃S
$,V $$)⊤(ϕ′0, ϕ′)

)
• AT

)
.

After insertingc̃V
$$, c̃S

$,V $$ from (4.6) resp. (4.5) and the definition of(ϕ′0, ϕ′), this leads
to

EQ$((N$
T )2) =

C1

C0

E
Pe

((
1 + ∆AK

$
)
L$
−C

e
• AT

)
. (4.12)

Now notice that the definition of the stochastic exponentialand [16, I.4.36] imply

L$ =
(
1 + ∆AK

$

+ ∆MK$
)
L$
−.

By [16, I.4.49] the process∆MK$
• (L$

−C
e

• A) is a local martingale. If(Tn)n∈N denotes
a localizing sequence, this yields

E
Pe

(L$Ce • AT∧Tn
) = E

Pe

((
1 + ∆AK

$

+ ∆MK$
)
L$
−C

e
• AT∧Tn

)

= EPe
((

1 + ∆AK
$
)
L$
−C

e
• AT∧Tn

)
,

and hence
E
Pe

(L$Ce • AT ) = E
Pe

((
1 + ∆AK

$
)
L$
−C

e
• AT

)
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by monotone convergence. Combining this with (4.12), we obtain

EQ$((N$
T )2) =

C1

C0
EPe(

(
c̃V ⋆ − (c̃S,V ⋆)⊤(c̃S⋆)−1c̃S,V ⋆

)
L$

• AT ).

In view of Theorem 3.6 this completes the proof. �

Remarks.

1. The arguments used to showϕ′
• S = φ′

• S in the proof of Theorem 4.4 also yield
that one obtains a marginal utility-based hedging strategy, if thepure hedge coefficient
(c̃S⋆)−1c̃S,V ⋆ is replaced by any other solutionζ of c̃S⋆ζ = c̃S,V ⋆.

2. An inspection of the proof of Theorem 4.4 shows that the formulas forϕ′ andπ′

are independent of the specific semimartingale decomposition ofK$ that is used. In
particular, the not necessarily predictable term1 + ∆AK

$e disappears in the formula
for ϕ′ by [1, Theorem 3.9]. If the semimartingaleK$ is Pe-special, one can choose
thecanonicaldecomposition [16, II.2.38]. By [16, II.2.29], this yields

∆AK
$

= ∆A

∫
xFK$e(dx).

If additionallyK$ has no fixed times of discontinuity, [16, II.2.9] shows thatA can
be chosen to be continuous such that∆AK

$

= 0.

3. For continuousS, our feedback representation ofϕ′ coincides with [25, Theorem
3], because the modified second characteristic is invariantwith respect to equivalent
changes of measure for continuous processes.

In view of [4, Theorems 4.10 and 4.12], Theorem 4.4 states that the first-order approx-
imations forϕq andπq canessentiallybe computed by solving the mean-variance hedging
problem for the claimH under the (non-martingale) measurePe relative to the original
numeraire. However, this assertion only holds trueliterally if the dual minimizerŶ is a
martingale and if the optimal strategŷϕ in the pure investment problem isadmissiblein the
sense of [4, Corollary 2.5], i.e. if̂ϕ • ST ∈ L2(Pe) and(ϕ̂ • S)ZQ is aPe-martingale
for any absolutely continuous signedσ-martingale measureQ with density processZQ and
dQ

dPe
∈ L2(Pe).

More precisely, in this case the strategy−ã1]]τ,T ]]E (−ã1]]τ,T ]]
• S)− is efficienton the

stochastic interval]]τ, T ]] in the sense of [4, Section 3.1] andã is the correspondingadjust-
ment processin the sense of [4, Definition 3.8]. By [4, Corollary 3.4] thisin turn implies
thatL$ is theopportunity processin the sense of [4, Definition 3.3]. Hence it follows along
the lines of [4, Lemma 3.15] that theopportunity neutral measureP ⋆ with density process

ZP⋆ :=
L$

L$
0E (AK$)
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exists. By [4, Lemma 3.17 and Theorem 4.10],c̃S⋆, c̃V ⋆, c̃S,V ⋆ indeed coincide with the
corresponding modified second characteristics of(S, V,K) underP ⋆. Hence [4, Theorems
4.10 and 4.12] yield that subject to the probability measurePe, ϕ′ represents the variance-
optimal hedging strategy forH whereas the minimal expected squared hedging error of
H is given by the2C0v/(pC1)-fold of π′. Moreover,Vt = EQ0

(H|Ft) and in particular
the marginal utility-based priceπ0 = EQ0

(H) are given as conditional expectations under
thevariance-optimal martingale measureQ0 with respect toPe, which coincides with the
q-optimal martingale measure with respect toP .

However, let us emphasize that it is easier to apply Theorem 4.4 than to solve the corre-
sponding mean-variance hedging problem, because admissibility of a given candidate strat-
egy is typically hard to verify even in concrete models (cf. e.g. [5]).

Whereas the representations in Theorem 4.4 allow for a nice economic interpretation,
it is often more convenient for applications to formulate them in terms ofP - rather than
Pe-characteristics. This is done in the following

Lemma 4.5 Suppose the prerequisites of Theorem 4.4 hold. Then we have

c̃S⋆ =
1

1 + ∆AK$

(
cS +

∫ (
(1 + x3)(1 − ã⊤x1)

−1−px1x
⊤
1

)
F (S,V,K)(dx)

)
,

c̃S,V ⋆ =
1

1 + ∆AK$

(
cS,V +

∫ (
(1 + x3)(1 − ã⊤x1)

−1−px1x2

)
F (S,V,K)(dx)

)
,

c̃V ⋆ =
1

1 + ∆AK$

(
cV +

∫ (
(1 + x3)(1 − ã⊤x1)

−1−px2
2

)
F (S,V,K)(dx)

)
.

Moreover, the semimartingaleK$ isPe-special if and only if
∫ T

0

∫

{|x|>1}

(
|x3 − x4|(1 − ã⊤x1)

−1−p
)
F

(S,V,K,Ke)
t (dx)dAt <∞,

and in this case we have

∆AK
$

= ∆A

∫ (
(x3 − x4)(1 − ã⊤x1)

−1−p
)
F (S,V,K,Ke)(dx). (4.13)

PROOF. By Remark 4.2, the density process ofPe with respect toP can be written as
E (Ke)E (−ã • S)−1−p. Now defineNe := L (E (Ke)E (−ã • S)−1−p). Then a straight-
forward computation using [16, I.4.36] shows∆Ne = (1 + ∆Ke−)(1 − ã⊤∆S−)−1−p − 1.
Moreover, Equation (4.3) implies∆K$ = (∆K − ∆Ke)/(1 + ∆Ke). Hence

F (S,V,K$,Ne)(G) =

∫
1G

(
x1, x2,

x3 − x4

1 + x4
, (1 + x4)(1 − ã⊤x1)

1−p − 1

)
F (S,V,K,Ke)(dx),

for all G ∈ Bd+3 with 0 /∈ G, and Proposition A.4 showscS,V e = cS,V as well as

F (S,V,K$)e(G) =

∫ (
1G

(
x1, x2,

x3 − x4

1 + x4

)
(1 + x4)(1 − ã⊤x1)

−1−p

)
F (S,V,K,Ke)(dx),

(4.14)
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for all G ∈ Bd+2 with 0 /∈ G. The first three assertions now follow by insertion. The last
assertion is a direct consequence of (4.14) and [16, II.2.29]. �

In view of Theorem 4.4 and Lemma 4.5 one can therefore proceedas follows in order to
determine first-order approximations of the indifference price and the utility-based hedging
strategy of a claimH:

1. Solve the pure investment problem, i.e. determine the optimal strategyϕ̂ and the
corresponding dual minimizer̂Y . This also yields the optimal number−ã = ϕ̂/(v +

ϕ̂ • S)− of shares per unit of wealth and the opportunity processL = L0E (K) =

Ŷ E (−ã • S)p.

2. ComputeVt = E(ŶTH|Ft)/Ŷt, which yields the marginal utility-based priceπ0 =

V0, and determine the joint local characteristics ofS, V andK.

3. Solve the linear system̃cS⋆ψ′ = c̃S,V ⋆ pointwise for any(ω, t) to obtain a marginal
utility-based hedging strategyϕ′ in feedback form asϕ′ = ψ′ +(π0 +ϕ′

• S−−V−)ã.

4. ComputeKe from the drift condition (4.2) and use it to calculate the risk premiumπ′

as

π′ =
p

2vC0

∫ T

0

EP

(((
c̃V ⋆t − (c̃S,V ⋆t )⊤(c̃S⋆t )−1c̃S,V ⋆t

)
E (K)tE (−ã • S)−1−p

t

))
dAt

via (4.13).

The above program is carried out for Lévy processes and affinestochastic volatility models
in [27], leading to formulas of the same complexity as for mean-variance hedging in [19,
22].

A Appendix

In this appendix we summarize some basic notions regarding semimartingale characteristics
(cf. [16] for more details). In addition, we state and prove an auxiliary result which is used
in the proof of Theorem 4.4.

To anyR
d-valued semimartingaleX there is associated a triplet(B,C, ν) of character-

istics, whereB resp.C denoteRd- resp.Rd×d-valued predictable processes andν a random
measure onR+ × R

d (cf. [16, II.2.6]). The first characteristicB depends on atruncation
functionh : R

d → R
d such ash(x) = x1{|x|≤1}. Instead of the characteristics themselves,

we typically use the following notion.

Definition A.1 LetX be anR
d-valued semimartingale with characteristics(B,C, ν) rela-

tive to some truncation functionh on R
d. In view of [16, II.2.9], there exist a predictable
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processA ∈ A
+
loc, anR

d-valued predictable processb, anR
d×d-valued predictable process

c and a transition kernelF from (Ω × R+,P) into (Rd,Bd) such that

Bt = b • At, Ct = c • At, ν([0, t] ×G) = F (G) • At for t ∈ [0, T ], G ∈ B
d,

where we implicitly assume that(b, c, F ) is a good version in the sense that the values ofc

are non-negative symmetric matrices,Fs({0}) = 0 and
∫

(1 ∧ |x|2)Fs(dx) < ∞. We call
(b, c, F, A) local characteristicsof X.

If (b, c, F, A) denote local characteristics of some semimartingaleX, we write

c̃ := c+

∫
xx⊤F (dx),

and call̃c themodified second characteristicofX provided that the integral exists. This no-
tion is motivated by the fact that〈X,X〉 = c̃ • A by [16, I.4.52] if the corresponding integral
is finite. We write(bX , cX , FX, A) andc̃X for the differential characteristics and the mod-
ified second characteristic of a semimartingaleX. Likewise, the joint local characteristics
of two semimartingalesX, Y are denoted by

(b(X,Y ), c(X,Y ), F (X,Y ), A) =

((
bX

bY

)
,

(
cX cX,Y

cY,X cY

)
, F (X,Y ), A

)

and

c̃(X,Y ) =

(
c̃X c̃X,Y

c̃Y,X c̃Y

)
,

if the modified second characteristic of(X, Y ) exists. The characteristics of a semimartin-
galeX under some other measureQ$ are denoted by(bX$, cX$, FX$, A). The following
rules are used repeatedly in the proofs of this paper.

Proposition A.2 (Stochastic integration) Let X be anRd-valued semimartingale with lo-
cal characteristics(bX , cX , FX, A) and H anR

n×d-valued predictable process withHj· ∈

L(X) for j = 1, . . . , n. Then local characteristics of theRn-valued integral process
H • X := (Hj·

• X)j=1,...,n are given by(bH•X , cH
•X , FH•X , A), where

bH
•X

t = Htb
X
t +

∫
(h̃(Htx) −Hth(x))F

X
t (dx),

cH
•X

t = Htc
X
t H

⊤
t ,

FH•X
t (G) =

∫
1G(Htx)F

X
t (dx) ∀G ∈ B

n with 0 /∈ G.

Hereh̃ : R
n → R

n denotes the truncation function which is used onR
n.

PROOF. [21, Lemma 3]. �
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Proposition A.3 (C2-function) Let X be anRd-valued semimartingale with local charac-
teristics(bX , cX , FX , A). Suppose thatf : U → R

n is twice continuously differentiable on
some open subsetU ⊂ R

d such thatX,X− areU-valued. Then theRn-valued semimartin-
galef(X) has local characteristics(bf(X), cf(X), F f(X), A), where

b
f(X),i
t =

d∑

k=1

∂kf
i(Xt−)bX,kt +

1

2

d∑

k,l=1

∂klf
i(Xt−)cX,klt

+

∫ (
h̃i(f(Xt− + x) − f(Xt−)) −

d∑

k=1

∂kf
i(Xt−)hk(x)

)
FX
t (dx),

c
f(X),ij
t =

d∑

k,l=1

∂kf
i(Xt−)cX,klt ∂lf

j(Xt−),

F
f(X)
t (G) =

∫
1G(f(Xt− + x) − f(Xt−))FX

t (dx) ∀G ∈ B
n with 0 /∈ G.

Here,∂k etc. denote partial derivatives and̃h again the truncation function onRn.

PROOF. Follows immediately from [10, Corollary A.6]. �

Let P ⋆ loc
∼ P be a probability measure with density processZ. SinceP ⋆ loc

∼ P , the
processesZ, Z− are strictly positive by [16, I.2.27]. Hence thestochastic logarithmN :=

L (Z) = 1
Z−

• Z is a well-defined semimartingale. For anR
d-valued semimartingaleX we

now have the following result, which relates the localP ⋆-characteristics of(X,N) to the
local characteristics of(X,N) underP .

Proposition A.4 (Equivalent change of measure)LocalP ⋆-characteristics of the process
(X,N) are given by(b(X,N)⋆, c(X,N)⋆, F (X,N)⋆, A), where

b(X,N)⋆ = b(X,N) + c(X,N),N +

∫
h(x)xd+1F

(X,N)(dx),

c(X,N)⋆ = c(X,N),

F (X,N)⋆ =

∫
1G(x)(1 + xd+1)F

(X,N)(dx) ∀G ∈ B
d+1 with 0 /∈ G.

PROOF. [17, Lemma 5.1]. �

The following observation is needed in the proof of Theorem 4.4.

Lemma A.5 Let Q
loc
≪ P with density processZ. Then for any increasing, predictable

processA withA0 = 0 we have

EQ(AT ) = EP (Z−
• AT ).
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PROOF. SinceZ is aP -martingale andA is predictable and of finite variation,A • Z is
a localP -martingale by [16, I.3.10 and I.4.34]. If(Tn)n∈N denotes a localizing sequence,
A • ZT∧Tn

is a martingale starting at0. By [16, III.3.4 and I.4.49], this implies

EQ(AT∧Tn
) = EP (ZT∧Tn

AT∧Tn
)

= EP (Z−
• AT∧Tn

+ A • ZT∧Tn
)

= EP (Z−
• AT∧Tn

).

Hence monotone convergence yieldsEQ(AT ) = EP (Z−
• AT ) as claimed. �
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