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Abstract

Kramkov and Sirbu_[24, 25] have shown that first-order apipnaxions of power
utility-based prices and hedging strategies can be cordjiytsolving a mean-variance
hedging problem under a specific equivalent martingale oreasnd relative to a suit-
able numeraire. In order to avoid the introduction of an toldal state variable neces-
sitated by the change of numeraire, we propose an alteenapresentation in terms of
the original numeraire. More specifically, we charactetirmrelevant quantities using
semimartingale characteristics similarly asiarny and Kallser [4] for mean-variance
hedging.

Key words: Utility-based pricing and hedging, incompletarkets, mean-variance
hedging, numeraire, semimartingale characteristics

1 Introduction

In incomplete markets, derivative prices cannot genelaypased on perfect replication.
A number of alternatives have been suggested in the literatelying e.g. on superreplica-
tion, mean-variance hedging, calibration of parametnilfi@s, utility-based concepts, or
ad-hoc approaches. This paper focuses on utility indiffeeeprices as studied by [12] and
many others. They make sense for over-the-counter trade$ixad quantity of contingent
claims. Suppose that a client approaches a potential selbeder to buyy European-style
contingent claims maturing dt. The seller is supposed to be a utility maximizer with given
preference structure. She will enter into the contract @nher maximal expected utility
is increased by the trade. The utility indifference pricéhis lowest acceptable premium
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for the seller. If the trade is made, the seller’'s optimalifias in the underlyings changes
due to the presence of the option. This adjustment in thengbiportfolio process is called
utility-based hedging strategy for the claim. Both theitytiindifference price and the cor-
responding utility-based hedging strategy are typicalydhto compute even if relatively
simple incomplete market models are considered. A reasemaly out for practical pur-
poses is to consider approximations for smalle. the limiting structure for small numbers
of contingent claims. Extending earlier work on the limgtiprice, [24, 25] show that first
order approximations of the utility indifference price ahe utility-based hedging strategy
can be expressed in terms of a Galtchouk-Kunita-Watanak®{Glecomposition of the
claim after changing both the numeraire and the underlynofpgbility measure. Similar
results for exponential utility are obtained hy [26, 2, 26, also [18]. In this case no
numeraire change occurs. We focus on power-type utilitgtions in this paper, which
constitute the most popular and tractable ones on the pes#al line. In particular, we
work in the setup of [24, 25].

In order to compute the first-order approximation to utilitgsed pricing and hedging,
one may proceed in two steps. Firstly, the pure investmenttlem in absence of the claim
is solved. Its solution provides the numeraire and meashaages for the subsequent
GKW decomposition. In a second step the GKW decompositsmifits computed, which
corresponds to solving a mean-variance hedging problerarfayption on a stock which
follows a martingale. Both steps are in principle feasibie for exponential Lévy processes
or, more generally, many affine stochastic volatility maedehich have been studied in
the empirical literature. However, the change of numerairthis approach leads to an
extra state variable, which e.g. in the integral transfoppraach of|[13, 13] leads to high-
dimensional integrals.

The present paper aims at reformulating the asymptotidtsesuan alternative form
which does not involve a numeraire change. This reducesaimggtational complexity in
concrete models. The representation of the asymptotidtsasuf24,/25] is inspired by a
similar representation of the solution to mean-varianaigiheg problems by [11]. In [11]
a measure and numeraire change reduce the mean-variargiaghptbblem for arbitrary
price processes to the simpler martingale case of [9]. Theisno to the latter is easily
expressed in terms of a GKW decomposition.

An alternative characterization of the mean-variance imgpgroblem is derived in [4].
Its representation of the solution is closer in spirit to][2Ihd it does not require a numeraire
change. Roughly speaking, the present paper replaces 1h&y/fe representation of the
solution to the implied mean-variance hedging problem leyalkernative formulation of [4].
Consequently, our representation of the first-order appration to utility-based hedging
and pricing in Theorermn 4.4 resembles the solution to a meaance hedging problem
as well. However, this is true only on a formal level. Rigasiyithe involved numeraire
change may not be compatible with the set of admissiblerigasiirategies. Nevertheless,
the formulas fromi[4] still characterize the objects of netd.

The remainder of the paper is organized as follows. Aftesflyrireviewing the general



theory of power utility-based pricing and hedging in Secy we introduce the asymptotic
results of Kramkov and Sirbu [24,25]. Subsequently, we libgveur alternative represen-
tation in Section 4. Finally, the appendix summarizes soot®ns and results concerning
semimartingale calculus for the convenience of the reader.

Unexplained notation is generally used as in the monograpaand and Shiryaev [16].
In particular, for a semimartingal®&, we denote byL(X) the predictableX-integrable
processes and by « X the stochastic integral @f € L(X) with respect taX. We write
&(X) for the stochastic exponential of a semimartinggland denote by?' (Z) := - « Z
the stochastic logarithnof a semimartingale’ satisfyingZ, Z_ # 0. For semimartingales
X andY, (X, Y') represents the predictable compensatdXoft’], provided that the latter
is a special semimartingale (cf. [15, page 37]). Finallywvie ¢~* for the Moore-Penrose
pseudoinversef a matrix or matrix-valued procesgcf. [1]) and denote by, the identity
matrix onRR<,

2 Utility-based pricing and hedging

Our mathematical framework for a frictionless market maddels follows. Fix a terminal
timeT > 0 and a filtered probability spa¢€, .7, (#,)cjo,11, P) in the sense of [16, 1.1.2].
For ease of exposition, we assume thgt = .% and.%, = {2, Q}, i.e. all #,-measurable
random variables are almost surely constant.

We consider a securities market which consistg ef 1 assets, a bond anéistocks.
As is common in Mathematical Finance, we workdiscountedterms. That means we
suppose that the bond has constant valaad denote by = (S, ..., S%) thediscounted
price proces®f the d stocks in terms of multiples of the bond. The procfss assumed
to be anR?-valued semimartingale. Self-financitgding strategiesare described bR¢-
valued predictable stochastic processes- (!, ..., ¢%), wherey! denotes the number
of shares of security held at timet¢. In this financial model, we consider an investor
whose preferences are modelled byaaver utility functionu(z) = z'=?/(1 — p) for some
p € Ry \{0,1}. Given an initial endowment > 0, the investor solves theure investment
problem

U(v) ;== sup E(u(v+ ¢+ S7)), (2.1)
©€O(v)

where the se®(v) of admissible strategiefor initial endowment is given by
O) :={p e L(S):v+p+S >0}

To ensure that the optimization problem (2.1) is well-poseeimake the following two
standard assumptions.

Assumption 2.1 There exists arequivalent local martingale measuree. a probability
measure) ~ P such thatS is a localQ)-martingale.



Assumption 2.2 The maximal expected utility in the pure investment prob(@d) is fi-
nite, i.e.U(v) < oc.

In view of [23, Theorem 2.2], Assumptions 2.1 2.2 imphtttne supremum in(2.1)
is attained for some strategy € ©(v) with strictly positive wealth process+ ¢ « S. By
Assumption 2.l and [16, 1.2.27},+ ¢ « S_ is strictly positive as well and we can write

v+ peS=vE(—a-S)
for the optimal number of shares per unit of wealth
—a:=p/(v+5-5.),

which is independent of the initial endowmenfor power utility. Finally, [23, Theorem
2.2] also establishes the existence dii@l minimizeri.e. a strictly positive supermartingale
Y with Y = &(—a + S);* such thatv+¢ « S)Y is a supermartingale for ali € ©(v) and
(v+@- S)}Af is a true martingale. Alternatively, one can representabject in terms of
the opportunity process, := Ly&(K) := &(—a * S)p? of the power utility maximization
problem (cf. [4, 217, 28] for motivation and more details).

Remark 2.3 The optimal strategy as well as the joint characteristics of the assets and the
opportunity procesd, satisfy a semimartingalBellman equatiorfcf. [29, Theorem 3.2]).

In concrete models, this sometimes allows to determgia@d L. by making an appropriate
ansatz, cf. e.gl [27, Chapter 4].

In addition to the traded securities, we now also considerrdraded European contin-
gent claim with maturityl” and payment functiot?, which is a.#,-measurable random
variable. Following![24, 25], we assume thdtcan be superhedged by some admissible
strategy.

Assumption 2.4 |H| < w + ¢ « Sy for somew € (0,00) andp € O(w).

If the investor sells; units of H at time0, her terminal wealth should be sufficiently
large to cover the paymentqH due at timel'. This leads to the following definition (cf.
[14,/8] for more details).

Definition 2.5 A trading strategy € O(v) is calledmaximal if the terminal value) + ¢ *
St of its wealth process cannot be dominated by that of any attrategy in©(v). An
arbitrary strategy is calledacceptableif its wealth process can be written as

Ve S =0 oS~ (W 4" S),

wherev’ + ¢’ « S > 0, andv” + ¢” « S > 0 for v/, 0" € Ry andy’,¢" € L(S) and, in
addition,¢” is maximal. Fow € (0, 00) andg € R we denote by

©1(v) :={p € L(S) : pis acceptabley + ¢ « Sp — ¢H > 0},

the set of acceptable strategies whose terminal value cGaes/ .
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Remark 2.6 Given Assumptiof2]1, we ha(v) = ©°(v) by [&, Theorem 5.7] combined
with [17, Lemma 3.1 and Proposition 3.1] .

Let an initial endowment of € (0, c0) be given. If the investor sells a number @of
units of H for a price ofz € R each, her initial position consists of+ ¢z in cash as
well as —q units of the contingent claini/. Hence©?(v + gx) represents the natural set
of admissible trading strategies for utility functions defil onR, . The maximal expected
utility the investor can achieve by dynamic trading in the'kedis then given by

Ullv+qx):= sup FEu(v+qgr+¢*Sr—qH)).
p€O(v+qx)

Definition 2.7 Fix ¢ € R. A numberr? € R is calledutility indifference priceof H if
Ul(v + qr?) = U(v). (2.2)

Existence of indifference prices does not hold in generapfawver utility. However,
a unique indifference price? always exists if the number of contingent claims sold is
sufficiently small or conversely, if the initial endowmenis sufficiently large.

Lemma 2.8 Suppose Assumptions]Z.1,12.2 2.4 hold. Then a uniquteiedice price
exists for sufficiently smajl. More specifically(2.2) has a unique solution? if ¢ < 5=, re-
spectively ity < = and H > 0, wherew denotes the initial endowment of the superhedging
strategy forH from Assumptioh 214.

PROOF First notice thay? : « — U?(v+ qx) is concave and strictly increasing on its effec-
tive domain. Byl[23, Theorem 2.1J¢(z) < U(v+qr+qw) < coforallz € R. ForH > 0
andq < > we havegi(z) > —oo forz > w — <. In particular,g} is continuous and strictly
increasing orfw — o oo) and in particular onf0, w] by [30, Theorem 10.1]. By > 0 we
haveg?(0) < U(v). Moreover, Assumption 2.4 implieg(w) > U(v). Hence there exists
a unique solutiomr? € [0, w] to gi(z) = U(v). Similarly, for generallf andq < 3=, the
function ¢¢ is finite, continuous and strictly increasing on an open sataining|—w, w].
Moreover,g!(—w) < U(v) andg?(w) > U(v). Hence there exists a uniqué € (—w, w)
such thay!(n?) = U(v). This proves the assertion. O

We now turn to optimal trading strategies for random endomtm@&heir existence has
been established by [7] resp. [14] in the bounded resp. geoase.

Theorem 2.9 Fix ¢ € R satisfying the conditions of Lemmal2.8 and suppose Assomspti
21,22 and 24 are satisfied. Then there exists ©4(v + ¢n?) such that

E(u(v+qr? 4 ¢ Sp —qH)) = U%(v + qr?).

Moreover, the corresponding optimal value process qn? 4+ ¢? « S is unique.



PrROOF This follows from [14, Theorem 2 and Corollary 1], because proof of Lemma
[2.8 shows thatv + ¢, q) belongs to the interior of (z,r) € R? : ©"(z) # o}, O

Without contingent claims, the investor will trade accaglio the strategy, whereas
she will invest intoy? if she sellsg units of H for 7¢ each. Hence the difference between
both strategies represents the action the investors neddke in order to compensate for
the risk of sellingy units of H. This motivates the following

Definition 2.10 The trading strategy? — ¢ is calledutility-based hedging strategy

3 The asymptotic results of Kramkov and Sirbu

We now give a brief exposition of some of the deep results 4f %] concerning the exis-
tence and characterization of first-order approximatidngibty-based prices and hedging
strategies in the following sense.

Definition 3.1 Real numbers® and#’ are calledmarginal utility-based priceresp.risk
premiumper option sold if
7l = 1%+ g’ + o(q?)

for ¢ — 0, wheren? is well-defined for sufficiently smaly by LemmaZ.B. A trading
strategyy’ € L(S) is calledmarginal utility-based hedging strategy there exista’ € R
such that

hm(U+q7fq+éﬂq'ST)—(U+@'5T)—CI(U/+S0/'5T)
q—0 q

=0

in P-probability and(v’ + ¢’ « S)}Af is a martingale for the dual minimizéf of the pure
investment problem.

Remark 3.2 [24, Theorems A.1, 8 and 4] show that for power utility fuocis, a trading
strategyy’ is a marginal utility-based hedging strategy in the sendaafinition[3.1 if and
only if it is a marginal hedging strategy in the sense of [26fibition 2].

The asymptotic results of [24, |25] are derived subject toteahinical assumptions.

Assumption 3.3 The following process is-bounded

= sy s

The reader is referred to [24] for more detailsmibounded processes as well as for suffi-
cient conditions that ensure the validity of this assummptio




Since&(—a + S)Y is a martingale with terminal valug(—a « 5)477, we can define an
equivalent probability measurg® ~ P via

dQ®  &(=a-8); "
ar = C, ’

Co:= E(&(=a+9)i™).

Let 222(Q%) be the space of square-integrafl&martingales starting #and set
MG = {M € AZ(Q¥): M = o+ S® for somep € L(S*)}.
Assumption 3.4 There exists a constant > 0 and a process/® ¢ .#2, such that
\H®| < w® 4+ ME

for

Remark 3.5 By [24, Remark 1], Assumption_3.4 implies that Assumpfiodi Bolds. In
particular, indifference prices and utility-based hedggtrategies exist for sufficiently small
q if Assumption$ 211, 2]2 arid 3.4 are satisfied.

In the proof of [25, Lemma 1] it is shown that the process
VP = FEgs (HYF), te[0,T)
is a square-integrabt@®-martingale. Hence it admits a decomposition

1 ~ _
VS = Egs (HY) + ¢+ 5%+ N® = ok (E(—a«S)7PH) + &S+ N, (3.1)

where¢ « S% € M andN*® is an element of the orthogonal complementAf in H(QP).
Note that this decomposition coincides with the classigaltchouk-Kunita-Watanabee-
composition, ifS% itself is a square-integrable martingale. The followingdtem is a
reformulation of the results of [24, 25] applied to powelityti

Theorem 3.6 Suppose Assumptions 2.1,12.2] 3.3 3.4 hold. Then themalnglity-
based pricer’ and the risk premium’ exist and are given by

1 ~ e r_ P
"= GEE(=a ST H). w = L Eg((NF)),

A marginal-utility-based hedging strategyis given in feedback form as
¢ = (a,Eq+ash)é — (7% + ¢+ S_)a,

with £ from (3.1).



PROOF The first two assertions follow immediately from [24, Thems A.1, 8 and 4]
adapted to the present notation. For the third, [25, Thed&fand [24, Theorems A.1, 8
and 4] yield

lim (v—i—qﬂq—l—goq'ST)—(U+$°ST)—qéa(—'d°S)T(7r0+§°S%)
q—0 q

—0. (32

because the process,(z) from [25, Equation (23)] coincides witf(—a « .S) for power
utility. Set
=m0 4o 8% —¢T8% =70 4088 —¢Ts8,

Then we havec®, ¢2,... ¢t e L((&(—a - S),S)) and
w4 (€062 €M) < (8(=a+ 5),8) = E(—a+ S)(n’ + €+ 5%) (3.3)

by [10, Proposition 2.1]. The predictable séts := {[a| < n,|S_| < n,|(£%¢)| < n}
increase td2 x R, the predictable proce$8, £, + aS')¢1p, is bounded and we have

(@, Eq+aSl)élp, ) S

= ((E(=a+8)_"S%a+(€2,... 6" )1p, )+ S

= (%€, N1p,) « (E(=a+5),8) + (&(=a= ) (7" + £+ 5%)1p,) = (@ S)
= 1p, * ((€°,€%,...,¢") = (6(=a = 9),9) + (E(=a = S)_(x" + £+ 5%)) = (@~ 9)).

By [17, Lemma 2.2] and(313) this impli€&, £, + aST )¢ € L(S) as well as

70 +((@, Ea+aS1)E) « S = &(—a+ S)(n"+& + S¥)+(&(—a = 8)_(n"+£ = S%)) « (@+ 9).

Hence&(—a « S)(7° + ¢ « S*) solves the stochastic differential equation
G=n"+(@FE;+aS )¢)+S—G_+(a+S9). (3.4)

By [15, (6.8)] this solution is unique. Since we have shdwnt,; + aST)¢ € L(S) above,
it follows as in the proof ofi [4, Lemma 4.9] that is well-defined.7® + ¢’ « S also solves
(3.4), hence we obtain

E(~a+S)(r" +&+ S =a"+¢ -5,
which combined with[(3]2) yields the third assertion. O

Remark 3.7 If the dual minimize® is a martingale and hence — up to the constant the
density process of thgoptimal martingale measur@, with respect taP, the generalized
Bayes formula yield$/* = E,, (H|.%,)/&(—a * S);. In particular, the marginal utility-
based price of the clai is given by its expectation® = Ey, (H) underq)y in this case.



The computation of the optimal strategyand the corresponding dual minimizerin
the pure investment probleim .1 has been extensively stuiithe literature. In particu-
lar, these objects have been determined explicitly in eetaef Markovian models using
stochastic control theory resp. martingale methods. Giena « S), the computation of
7% can then be dealt with using integral transform methods dants of the Feynman-Kac
formula. Consequently, we suppose in the remainder of guen thatp and=® are known
and focus on how to obtairf andy’.

As reviewed above/ [24, 25] show that and 7’ can be obtained by calculating the
generalized Galtchouk-Kunita-Watanabe decompositiah) (3SinceS?® is generally only
a @Q®-supermartingale rather than a martingale, this is tyjyicary difficult. If how-
ever,S® happens to be a square-integrafemartingale,[[311) coincides with the classical
Galtchouk-Kunita-Watanabe decomposition. By [9], thiewsh that represents the mean-
variance optimal hedging strategy for the claifhedged withs® under the measurg® and
EQ$((N§;)2) is given by the corresponding minimal expected squaredihgdgror in this
case. Moreover and Es((N5)?) can then be characterized in terms of semimartingale
characteristics.

Assumption 3.8 S* is a square-integrabl@®-martingale.

Remark 3.9 In applications, Assumptidn 3.8 is typically equivalenftssumptioi 3.3, cf.
[27, Chapter 6] for more details.

Lemma 3.10 Suppose Assumptions]Z.1,]2.Z] B3} 3.4[and 3.8 hold. Depaté’t™)s the
modified secon@®-characteristic of(S%, V%) with respect to somd € <7 (cf. Appendix
[A). Then

€= (5S$$)_155$’V$$ (3.5)
Es((N£)?) = s (&% — (V) T(@%) 7165 V™%) « ar ).

PROOF. SinceS? is a square integrabi@®-martingale by Assumptidn 3.8, the claim follows
from [4, Theorems 4.10 and 4.12] applied to the martingase ca O

The key to using Lemmia_3.1L0 in concrete models is the comipuataf the joint char-
acteristics ofs® andV®. In principle, this problem can be tackled using PDE metrasdis
[6] or by applying the Laplace transform approachlof [13]raflid]. However, the change
of numeraire in this direct approach introduces an addiligtate variable, which makes
the ensuing numerics considerably more involved. This aaavwided by the alternative
approach put forward in the next section.

4 An alternative representation

Subject to Assumptiadn 3.8 we can define a probability meaBfre- P via

APE _E(=a+ ST i
= G . = E(E(=a+8)7' ).




Remark 4.1 If we write the density process @€ w.r.t. P asL¢&(—a « S)~'?/C, for a
semimartingale.€ > 0 with LS = 1, the local P-characteristics of(€ := Z(L€) andS
satisfy

/ (1+ 22)(1 — @ 21) ' PFEED (dg) < oo, (4.1)
{lz|>1}

and solve
1 2
0= b5 4 (14 p)a" b + (1 + p)a’ K© +%5T056
T / (L4 a2)(1=aTwy) "7 = 1= hy(wa) — (L+p)a' hi(z1)) FEKO) (dr),

(4.2)
relative to some truncation functigh,, 7,) onR¢ xR by [17, Lemma 3.1] and Propositions
[A2,[A3. Conversely, if a strictly positive semimartingdl€ = L§& (K<) satisfied.S = 1
and [41),[(4R), theh€&(—a « S)~1~7/C, is ac-martingale and the density process6t

if it is a true martingale. In concrete models, this oftemat to determind € by making
an appropriate parametric ansatz fof (cf. [27, Chapter 6]).

The measure®€ and@?® are linked as follows.

Lemma 4.2 Suppose Assumptionsid.1,]2.2 3.8 hold. Then the process

L (6as)
Lt = Bpe (m

satisfies.s, = 1 and the density process @f with respect taP€ is given by

B (d@$ Li¢(—a- S)}
dp€ L

Jt)a OStSTa

O" —

In particular, L*, L* > 0 and the stochastic logarithi¥® := .#(L?) is well-defined.

PROOF The first part of the assertion is trivial, whereas the sddofiows from d]‘j =
G &(—a - 9)7. Sinced(—a+ S),&(—a + S)- > 0, [16, 1.2.27] yieldsL?, L* > 0 and
hence the third part of the assertion by [16, 11.8.3]. O

Remark 4.3 L% is linked to the opportunity procegsof the pure investment problem and

the proces<.© from Remark 4.1 via

L Li6(K)

L€ LES(KE)

by the generalized Bayes’ formuld; = LS = 1 and because the processe$(—a *

S)l=PandL¢&(—a + S)~'~P are martingales. In view of Yor's formula, this implies

(AK, — AKS)AKS
1+ AKE ’

L& (K®%) = L =

K$ :K—Kg— <Kc—(K€)c,(K€)C> _Z

s<-

4.3)

which allows to deriveX® and its characteristics frofii (which is determined by the pure
investment problem) anA™© (compare Remark 4.1 above).
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Set

~ E(&(—a-+S)PH|.Z
V= &(—a-8)V = (<‘L~% th 0<t<T,
Lt(/)@<_a ® S)t P
denote by
o€ S€ SVE CS,K$€
Ve |, | cvse  ve  vikSe ’ F(S,V7K$)€’ A
bK$€ CK$,S€ CK$,V€ CK$€

P<-differential characteristics of the semimartingateV, K*) and define

1
o= Taae ( v fas %)xwfﬂsy’ﬁﬁ(d@) |
- 1
GV = T L AL <CS’V€ + /(1 +x3)x1x2F(S’V’K$)€(dx)> :
Vs 1
ovro= T AAR (CV€ + /(1 + xg)ng(s’v’K$)€(dx)) ,

where K* = K + AK® 4 M&* denotes an arbitrary’€-semimartingale decomposition
of K®. We then have the following representation of the margitititysbased hedging
strategy,y’ and the risk premium’ in terms of semimartingale characteristics, which is the
main result of this paper.

Theorem 4.4 Suppose AssumptionsiZ.1.]2.2] B.3} 3.4[and 3.8 hold. dte#"*, ¢* are
well-definedy’ given in feedback form as

SO/ — (ES*)—IES,V* o (ﬂ'O 4 80/ - v_) a

is a marginal utility-based hedging strategy and the cqgoesding risk premium is

T = %EP€<( (EV* . (6S,V*)T(6S*)—16$,V*) L$) . AT)
PROOF. An application of Propositioris A.2 aid A.3 yields ti&-differential character-
istics of (S, V,&(—a « ), (G L*¢(—a + 5)%)). Sinceg L¥¢(—a + 5)* is the density
process ofQ® with respect toP*, the @®-characteristics of S, V, &(—a « S)) can now
be obtained with Propositidn A.4. Another application obpusitionfA.3 then allows to
compute the)®-characteristics ofS®, V).

Sinces® € #72(Q%) by Assumptio 318 antl® € #%(Q*%) by the proof of [25, Lemma
1], the modified second characteristiés®, &5*V*$ and&>"® exist and are given by

14 AAK® /gTasxy gTaS*RT
6S$$ - +~72 “ fjs ’fl' “ fjs RT 9 (44)
E(—a+9S5)2 \Rt°*a R R
$ ~
~58 V33 L+ AAR (aTN gy s
) — ’ _ 4.5
¢ -9 \ R (V4 eav), (4.5)
1+ AAK? _ e
y%::ggiggw%muJéw+WJﬁw, (4.6)
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for R := E;+ S_a'. In particular it follows thag"*, ¢>V* and¢®* are well defined. By
the definition of¢ in Equation[(3.5) and [1, Theorem 9.1.6] we have

5s$$£ — Vs
In view of Equations[(4]5) and (4.4), this yields

a'éa a'&RT A\ 5ve  agem
(Ras*a RéS*RT>§: (R) (27 ¢ eravs),

or equivalently, decomposed into the first and thsbmponents,
a' & @ RNHE=a' (V4 e¥av.) (4.7)

and
R&%(a, R")¢ = R(&¥V* +&*aV.). (4.8)

By multiplying both sides of((417) wittt_ from the left and subtracting the result from
(4.8), this leads to
& (@, RNE =&V + & av., (4.9)

sinceR — S_a' = E,;. By Theoreni 3.5,
¢'=(@RNE~(r"+¢ S )a
defines a marginal utility-based hedging strategy. Let
W= = (@) TV — (1 4+ ¢+ S = Vo)a) = (@, RT)¢ — (&)1 — Vi,
Then it follows from the definition of)’ and [4.9) that
ErY = EVE LB G SV _E Y G =0,

because®*(c5*)~1e%V* = &5V* by [1, Theorem 9.1.6]. In particulafy’)"é%*y' = 0.
Sincel?/L} = &(K®) > 0 and henceAK*® > —1 by [16, 1.4.61], this implies

(W) &y = 0. (4.10)

Forn € N, define the predictable sei, := {|¢’| < n}. By Proposition A.2 and (4.10),
we haver''r*S = ( and hence?''»»*% = 0 and F'¥"'»»*5 = (0. Together with Proposition
[A.4], this implies that the local characteristicsidf ,_ + S under the equivalent local mar-
tingale measuré® from Assumption 2J1 vanish by [17, Lemma 3.1]. Hencép, S =0
and it follows from [17, Lemma 2.2] that’ € L(.S) with ¢’ « S = 0. Taking into account
the definition ofy’, this shows

¢S = () — (" = Vo)a) . S~ (¢ 8-) - (@ 5),
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i.e.¢’ « S solves the feedback equation
G= ()& — (2" =V)a)« S—G_«(a+9). (4.11)

Sincey’ € L(S) and L(S) is a vector space, it follows thgt>*)~1¢%"* ¢ L(9), too.
As in the proof of [4, Lemma 4.9], this in turn yields thatis well-defined and in_(S).
Apparently,’ « S also solves[(4.11) and, since the solution is unique_by [BR)], we
obtainy’ « S = ¢’ « S. Thereforey’ is a marginal utility-based hedging strategy.

We now turn to the risk premium’. First notice that by [1, Theorem 9.1.6],

o8 .— V' _ (5s$,v$$)T€ _ GV (5s$,v$$)T(5s$$)—1és$7v$$ >0,

C€ 1= &* — (SVHT(E5) 165V > 0.
HenceC® « A is an increasing predictable process and by Lenimas 3.10 &nd A
Eqs((N7)?) = Eqs(C® » Ar)
= —~Epe (L*&(—a+ S)2C%« A7)

— ZtBpe (L88(=a+ 82 - (V5 V9 — (V8,6 $99)).
Since we have showi « S = ' « S above,|[10, Proposition 2.1] and the proof of Theorem
B8 yield¢ « S% = (¢, ) « S¥for 0 := 70 4 ¢’ « S — ©'S. Hence

~ Go
e

Egs((N§)?) = Z-Bpe (LE8(=a = 8)2 + (V3 VHF — (V. (¢",¢) - 5T ) )

Epe (L?éa(—zi . 5)2 (6V$$ _ (65$7v$$)T(¢/0’¢/)> . AT) .

After insertingc"”*$, 5*V™$ from (@.8) resp.[{4]5) and the definition @f", '), this leads

to
C $
$\2y 1 K $ ~E .
EQ$((NT) ) = _COEP€ <<1 + AA ) L>C AT> . (4.12)

Now notice that the definition of the stochastic exponeratial [16, 1.4.36] imply
L8 = (1 +AAKS 4 AMK$) L8

By [16, 1.4.49] the procesA M X" « (L C€ « A) is a local martingale. IfT},),cy denotes
a localizing sequence, this yields

Epe(L3CS + Apur,) = Epe ((14+ A4 + AMS*) 150+ Agyg, )
= Epe ((1 + AAK$> L8 C*. AT/\Tn> )

and hence
Epe(L3C® + A7) = Epe ((1+ AA%°) 150+ A7)
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by monotone convergence. Combining this with (#.12), weiobt

C ~V* ~S Vx ~Sx\—1~5.V*
Egs((N})?) = ?;EP€((CV — (&) T(@) 1SV LY - Ag).

In view of Theoreni 36 this completes the proof. O

Remarks.

1. The arguments used to shgi- S = ¢’ « S in the proof of Theorerh 414 also yield
that one obtains a marginal utility-based hedging straiétye pure hedge coefficient
(°*)~1&%V* is replaced by any other solutigrof ¢°*¢ = ¢5V*.

2. An inspection of the proof of Theoreim 4.4 shows that thenfdas fory’ and 7/
are independent of the specific semimartingale decompasifiK® that is used. In
particular, the not necessarily predictable tarm A AX*€ disappears in the formula
for ¢ by [1, Theorem 3.9]. If the semimartingal€® is P€-special, one can choose
thecanonicaldecomposition [16, 11.2.38]. By [16, 11.2.29], this yields

AAR = AA / 2 FE€(da).

If additionally K® has no fixed times of discontinuity, [16, 11.2.9] shows thatan
be chosen to be continuous such that®* = 0.

3. ForcontinuoussS, our feedback representation of coincides with [[25, Theorem
3], because the modified second characteristic is invawahtrespect to equivalent
changes of measure for continuous processes.

In view of [4, Theorems 4.10 and 4.12], Theorem 4.4 statetsthieefirst-order approx-
imations forp? andn? canessentiallype computed by solving the mean-variance hedging
problem for the claim/ under the (non-martingale) measur& relative to the original
numeraire. However, this assertion only holds tliterally if the dual minimizerY is a
martingale and if the optimal strate@yin the pure investment problemasimissiblen the
sense of\[4, Corollary 2.5], i.e. if « Sy € L*(P€) and($ * S)Z% is a P€-martingale
for any absolutely continuous signeemartingale measur@ with density procesg® and
49 € 1*(PF).

More precisely, in this case the strategyil}, & (—aly,p ¢ S)- is efficienton the
stochastic intervdlr, T'] in the sense of [4, Section 3.1] ands the correspondingdjust-
ment procest the sense of [4, Definition 3.8]. By![4, Corollary 3.4] thisturn implies
that L® is theopportunity procesi the sense of [4, Definition 3.3]. Hence it follows along
the lines of [4, Lemma 3.15] that trggportunity neutral measurB* with density process

Px — L$
Ly (ARF)
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exists. By [4, Lemma 3.17 and Theorem 4.187:, ¢V*, &"* indeed coincide with the
corresponding modified second characteristic&¥, K') underP*. Hence|[4, Theorems
4.10 and 4.12] yield that subject to the probability meadtife,’ represents the variance-
optimal hedging strategy fol whereas the minimal expected squared hedging error of
H is given by the2Cyv/(pC,)-fold of 7. Moreover,V;, = Eq, (H|.%;) and in particular
the marginal utility-based price” = Eq,(H) are given as conditional expectations under
the variance-optimal martingale measuég, with respect taP<, which coincides with the
g-optimal martingale measure with respeciio

However, let us emphasize that it is easier to apply Thebrdrthén to solve the corre-
sponding mean-variance hedging problem, because adihigsiba given candidate strat-
egy is typically hard to verify even in concrete models (cf. ¢5]).

Whereas the representations in Theofem 4.4 allow for a micaa@mic interpretation,
it is often more convenient for applications to formulaterthin terms ofP- rather than
P*-characteristics. This is done in the following

Lemma 4.5 Suppose the prerequisites of Theofenh 4.4 hold. Then we have

= Hﬁ <CS+ / (14 ) (1 = @ 20) " Paya] ) SV <d:c>)’
1
V= L AL <CS’V+/((1+9:3)(1—5Tx1)_1_”x1932) F(S’V’K)(dx)>>
1 ~
& = m <CV+/ ((].—|—l'3)(]- _aTxl)_l_px2) FEVE (dl’)) :

Moreover, the semimartingalg® is P€-special if and only if

T
€\
/ / (lzs — 24l (1 = @Tay) 71 P) BV (dr)d A, < oo,
||>1}
and in this case we have

AARY — A4 / (23 — 2a) (1 — @ a0) "1 77) FSVEES) (), (4.13)

PROOF. By Remark4.R, the density process Bf with respect toP can be written as
E(K€)&(—a + S)~17P. Now defineN€ := Z(&(K€)&(—a + S)~'7F). Then a straight-
forward computation using [16, 1.4.36] showsVE = (1 + AK®€)(1 —a'AS_)~1P — 1.
Moreover, Equatior (413) implie& K* = (AK — AK®)/(1 + AK€). Hence

PErNG) = [ 1 (x o2, B (1 ) (1= ) 1) FVIRS) (o)
Ty

forall G € %3 with 0 ¢ G, and Proposition’Al4 shows"V€ = ¢%" as well as

FEvRSe) - | <1c (w o ) (14 )1 - ~>) FEVIIS) (d),
4
(4.14)
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forall G € %7 with 0 ¢ G. The first three assertions now follow by insertion. The last
assertion is a direct consequence_of (4.14) and [16, 11}2.29 O

In view of Theoreni 44 and Lemrha 4.5 one can therefore proagéallows in order to
determine first-order approximations of the indifferendegand the utility-based hedging
strategy of a claint{:

1. Solve the pure investment problem, i.e. determine thengptstrategyy and the
corresponding dual minimizé&f. This also yields the optimal numbefz = ¢/(v +
p + S)_ of shares per unit of wealth and the opportunity prockss L,&(K) =
YE(—as S)P.

2. ComputeV;, = E(}A/TH|%)/}AQ, which yields the marginal utility-based prie@ =
Vo, and determine the joint local characteristicsSod” and K.

3. Solve the linear systeat*y’ = ¢>V* pointwise for any(w, ) to obtain a marginal
utility-based hedging strategy in feedback form ag’ = ¢/ + (7% + ¢’ « S_ —V_)a.

4. Computek from the drift condition[(4.2) and use it to calculate thé psemiums’

as
= %pco /0 "B (((@V* - (557V*)T(5f*)—lef’v*) E(K)&(—a » S);H)) dA,
via (4.13).

The above program is carried out for Lévy processes and affcodastic volatility models
in [27], leading to formulas of the same complexity as for megariance hedging in [19,
22].

A Appendix

In this appendix we summarize some basic notions regareéimignsartingale characteristics
(cf. [1€] for more details). In addition, we state and proweaaxiliary result which is used
in the proof of Theoremn 414.

To anyR“-valued semimartingal& there is associated a tripleB, C, v) of character-
istics whereB resp.C denoteR?- resp.R¥*?-valued predictable processes and random
measure oR, x R? (cf. [16, 11.2.6]). The first characteristi® depends on &uncation
function’ : R* — R such asi(z) = z1y,<1;. Instead of the characteristics themselves,
we typically use the following notion.

Definition A.1 Let X be anR?-valued semimartingale with characterist{d$, C, v) rela-
tive to some truncation functioh on R%. In view of [16, 11.2.9], there exist a predictable
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processd ¢ <7, anR?-valued predictable procegsanR**¢-valued predictable process

loc?

c and a transition kerndl from (Q x R, , £2) into (R?, %) such that
Bt:b'At, Ct:C'At, I/([O,t]XG):F(G)°At fortE[O,T], GE%d,

where we implicitly assume thék, ¢, F') is a good version in the sense that the values of
are non-negative symmetric matricé({0}) = 0 and [ (1 A |z|*) F(dz) < oo. We call
(b, ¢, F, A) local characteristicof X.

If (b, c, F', A) denote local characteristics of some semimartinggleve write
¢ =c+ /meF(dx),

and callc themodified second characteristi¢ X provided that the integral exists. This no-
tion is motivated by the fact thaf, X) = ¢ »+ A by [16, 1.4.52] if the corresponding integral

is finite. We write(bX, X, FX, A) andéX for the differential characteristics and the mod-
ified second characteristic of a semimarting&le Likewise, the joint local characteristics

of two semimartingaleX’, Y are denoted by

XY) (XY XY b Y XY
(b( ’ )70( ’ )7F( ’ )714): ((by)’<cY’X Y)?F( ’ ),A)

c

~X  =X)Y
gxy)y _ (¢ ¢
—\xyrx v />

and

C C

if the modified second characteristic ©f, Y) exists. The characteristics of a semimartin-
gale X under some other measuf are denoted byb*® c*% FX3 A). The following
rules are used repeatedly in the proofs of this paper.

Proposition A.2 (Stochastic integration) Let X be anR?-valued semimartingale with lo-
cal characteristicgv™X, ¢*, X, A) and H anR™*“-valued predictable process with’* €
L(X) for j = 1,...,n. Then local characteristics of thR"-valued integral process

=l1,..,

oi** = Hb* +/(%(Ht$) — Hyh()) F* (d),
Cf{.X = HtcithTv

FEY(G) = / lo(Hyx)FX (dr) VG € 2" with0 ¢ G.

Hereh : R® — R” denotes the truncation function which is usedin

PROOF [21, Lemma 3]. O
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Proposition A.3 (C2-function) Let X be anR?-valued semimartingale with local charac-
teristics (b, ¢X, F'X, A). Suppose thaf : U — R" is twice continuously differentiable on
some open subsét ¢ R? such thatX,X_ are U-valued. Then th&"-valued semimartin-
gale f(X) has local characteristicgh’ ), /() FF(X)A), where

b{(X),i _ Zakf Xt ka+ Zaklf Xt )Xkl

kll

+ / (ﬁ%f(Xt_ ) - f(X)) - Zakf%Xt_)hk(x)) F¥ (d),
k=1

d
T = ST o ()M (X ),

k=1

FY@q) = / lo(f(Xe +2) — (X)) FX(dz) VG e #" with0 ¢ G.

Here, 0, etc. denote partial derivatives arifdagain the truncation function oR™.

PROOF Follows immediately from [10, Corollary A.6]. U

Let P* < P be a probability measure with density proceéss Since P* ~ P, the
processesZ Z_ are strictly positive by [16, 1.2.27]. Hence t&chastic logarithmV :=
L (7) = 2+ « Z is awell-defined semimartingale. For B-valued semimartingal& we
now have the following result, which relates the lo¢dtcharacteristics of X, N) to the
local characteristics afX, N) underP.

Proposition A.4 (Equivalent change of measure)Local P*-characteristics of the process
(X, N) are given by(bX:N)* (XN (XN A) ‘where

pXNx — p(XN) | (XN)N /h( )2 FOON) (d),

cON)x . ((XN)
FXN)» / la(2)(1 + 240 FEN (dz) VG € B with0 ¢ G.
PROOEF [17, Lemma 5.1]. U
The following observation is needed in the proof of Theored 4

loc . . . . .
LemmaA.5 Let Q < P with density procesg. Then for any increasing, predictable
processA with A, = 0 we have

EQ(AT) = EP(Z_ M AT)
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PROOF SinceZ is a P-martingale and4 is predictable and of finite variationd « 7 is
a local P-martingale by|[16, 1.3.10 and 1.4.34]. (f7},)..cn denotes a localizing sequence,
A« Zr,r, IS @ martingale starting &t By [16, I11.3.4 and 1.4.49], this implies

Eq(Arnt,) = Ep(Zrat, Arat,)
= EP<Z— ¢ AT/\Tn + A M ZT/\Tn)
= EP(Z_ ® AT/\Tn>

Hence monotone convergence yieldg(Ar) = Ep(Z_ « Ar) as claimed. O
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